Paper Details

  • Title:

    An empirical study on the combination of surf features with VLAD vectors for image search

  • Author(s):

    E. Spyromitros-Xioufis, S. Papadopoulos, I. Kompatsiaris, Grigorios Tsoumakas, I. Vlahavas

  • Keywords: VLAD, SURF, Image representation, Feature extraction, Principal Component Analysis.
  • Abstract:

    The study of efficient image representations has attracted significant interest due to the computational needs of large-scale applications. In this paper we study the performance of the recently proposed VLAD method for aggregating local image descriptors when combined with SURF features, in the domain of image search. The experiments show that when SURF features are used as local image descriptors, VLAD attains better performance compared to using SIFT features. We also study how the average number of local image descriptors extracted per image affects the performance and show that by controlling this number we are able to adjust the trade off between feature extraction time and search accuracy. Finally, we examine the retrieval performance of the proposed scheme with varying levels of distractor images.

  • Category: Conference Papers
  • Tags: 2012 Spyromitros Papadopoulos Kompatsiaris Tsoumakas Vlahavas