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Abstract—In this paper we propose an optimal Elec-
tric Vehicle (EV) charging scheduling scheme with the
option of Vehicle-to-Grid (V2G) and Vehicle-to-Vehicle
(V2V) energy transfer. In this way, we aim to increase
customer satisfaction as well as energy utilization com-
pared to settings where only energy from the grid ex-
ists. We assume a single charging station to exist and we
present three alternative formulations of the problem of
V2G and V2V energy transfer: (a) without additional
energy from the grid, (b) with additional energy from
the grid, and (c) with additional energy from the grid
and battery backup storage. In all cases, we formulate
the problems using Mixed Integer Programming (MIP)
and solve them off-line and optimally. We evaluate
our algorithms in a setting partially using real data
regarding energy production from photo-voltaic panels
in Belgium and we observe that solution (c) leads to
24% increase in EV satisfaction compared to (a) and to
1.70% increase compared to (b). All algorithms have
low execution time and good scalability.

I. Introduction
At the beginning of the previous decade, the first

(hybrid) Electric Vehicles (EVs) were introduced to the
market. The main idea behind this move was, and still is,
to reduce air pollution caused by CO2 and other pollutants
produced from internal combustion engines, but also to
decrease our dependance on fossil fuels. However, later the
idea of using the EVs’ large batteries as storage devices
when they stay unused in parking lots was also introduced
[1], [2] (i.e., Vehicle to Grid - V2G energy transfer). Thus,
EVs will be able to provide regulation service to the grid
and lead to higher utilization of renewable energy.

To-date, a number of different AI-based approaches have
been developed to manage V2G problems. For example,
some seek to optimize, using mathematical programming,
the use of stored energy to cater for low energy production
periods from renewables [3], [4], while others have applied
coalition formation techniques to coalesce EVs into group-
ings that can make profitable V2G trades [5], [6] and [7].

Now, based on results of [8], it becomes clear that
finding ways to increase energy utilization is an important
task. In [9], we have proposed an agent-based negotia-
tion scheme aiming to guide EV owners to change their

charging plan, so that higher energy utilization and EV
satisfaction may be achieved. Here, we use V2G-related
technologies (i.e., using EVs as temporal energy storage
devices, or as providers of energy) to improve energy
utilization and EV satisfaction. Moreover, we go a step
further and we study the direct transfer of energy between
pairs of EVs (i.e., V2V energy transfer). To-date, research
on V2V related topics is limited. For example, [10] propose
a V2V energy exchange market aiming to reduce the cost
of charging for the EVs and the load on the grid, while
Sanchez-Martin et al. [11] apply V2V energy transfer for
direct load control on battery charging. Finally, You et
al. [12] apply techniques that speed up the process of
scheduling V2G and V2V energy transfer.

In this paper, we study a centralized offline setting
where a number of EVs inform a single charging sta-
tion about their arrival and departure times, as well as
their energy demand (either positive or negative, depend-
ing on whether they want to charge or dis-charge) a
day ahead and the system calculates the optimal charg-
ing/discharging schedule. In so doing, we assume that
(renewable) energy from the grid, as well as a large battery
storage at the charging station are also available. We
advance the state of the art as follows:

1) We propose an offline optimal Mixed Integer Pro-
gramming (MIP) formulation of the problem of
scheduling the energy transfer between EVs aiming
to maximize EV satisfaction.

2) We propose an offline optimal MIP formulation of
the problem of scheduling energy transfer between
pairs of EVs, while at the same time energy from
the grid is also used.

3) We expand the previous formulation by using a
battery storage so that any energy excess may be
stored there for future use.

4) Finally, we evaluate our algorithms in a setting
partially using real data on energy production from
photo-voltaic panels and we verify the effectiveness
of using V2G and V2V energy transfer in increasing
energy utilization and customer satisfaction.



II. Problem Definition
In this paper, we study a setting where a number of

EVs arrive at a charging station (CS) aiming to either
receive or give away a specific amount of energy. In the
proposed setting, the CS receives energy from photovoltaic
panels where full knowledge of the fluctuations of the
energy production is assumed to exist. This is an impor-
tant assumption, since it guarantees that once an EV is
scheduled to charge it will definitely do so. Furthermore,
the CS is equipped with an energy storage unit (i.e., a
battery), that can be used to store any surplus of energy
coming either from the grid, or from the EVs that want
to discharge. Thus, the battery is used as an intermediate
step for the energy to reach its final destination (i.e., EV
t→ battery t′

→ EV′, or CS t→ battery t′

→ EV). Given a
schedule of EV arrivals and departures, as well as the
energy demand and energy availability (from EVs and the
grid), a number of scheduling algorithms (see Section III)
calculate the optimal charging plan, such that the number
of the satisfied EVs is maximized, while at the same time
the number of energy transactions is minimized (without
affecting the number of satisfied EVs). Minimizing energy
transactions is important in order to prolong batteries’ life.

In more detail, we denote a set of EVs ai ∈ A ⊆ N, and
the charging station CS which has a number of charging
slots sj ∈ S ⊆ N (note that, a charger can do both
charging and discharging). Moreover, we assume a set of
discrete time points to exist t ∈ T ⊆ N. At each time point,
the charging station has et,cs ⊆ N units of energy available
for EV charging. On top of this, the charging station is
equipped with a battery b responsible for energy storage,
which has a maximum emax

b , and a current et
b number

of energy units. The number of simultaneous transactions
between the grid and the EVs, the battery and the EVs, as
well as between EVs is bounded by the number of chargers
the CS has. However, the transactions between the grid
and the battery are not limited.

Now, each EV is defined by a tuple pi =
{ai, t

arr
i , tdep

i , emax
i , einit

i , ereq
i }, where tarr

i is the arrival
time at the station, tdep

i is the departure time, emax
i is

the maximum amount of energy the vehicle can store in
its battery, einit

i is the initial energy, and ereq
i is the energy

demand. The ereq
i can get both negative and positive

values. Negative when the EV wants to discharge |ereq
i |

energy units and positive for the opposite case. An EV
can also have ereq

i = 0, when it just resides in the CS, and
in this case it may be used as temporary energy storage.

In the next section, we present a number of charging
and/or dis-charging scheduling algorithms.

III. EV Charging Scheduling Algorithms
In this section, we present a number of centralized,

offline MIP formulations of the problem of scheduling EV
charging and/or dis-charging, which are solved optimally
using IBM ILOG CPLEX 12.6.2. The aim of the following

formulations is to maximize the number of satisfied EVs.
Given that these formulations are offline and their solu-
tions are optimal, they can also be used as benchmarks
for other online algorithms.

A. Optimal V2V Energy Transfer Scheduling
Initially, we formulate the problem of scheduling the

transfer of energy solely between EVs. In this setting, the
charging station is providing only the infrastructure (i.e.,
chargers) for the energy transactions to take place. Thus,
neither energy from the grid, nor energy storage exists.
In this scenario, at any time point any pair of EVs can
participate in an energy transfer between each other, using
one charger each. To do so, the EV-provider should have
enough energy stored in its battery and the EV-receiver
should not exceed it maximum capacity.

In more detail, this formulation contains 3 decision
variables: 1) satisfiedi ∈ {0, 1} of binary type denoting if
EV ai is serviced or not, 2) EV toEVi,i′,t ∈ {0, 1}, binary
variable denoting whether EV ai charges EV ai′ at t, and
3) integer variable energyi,t ∈ {0, emax

i } which denotes
the energy level of EV ai at time point t. The objective
function (Eq. 1) to be maximized, consists of the difference
between the total number of satisfied EVs and the total
number of energy transactions multiplied by a very small
number µ : |T | × |S| < 1/µ. In this way, the product of
µ with the sum of all energy transactions never becomes
larger than the maximum possible number of satisfied EVs.
Thus, no unnecessary transactions will take place, while
the number of satisfied EVs will not be affected. Now,
the objective function is maximized under a number of
constraints:

Objective Function:∑
ai∈A

satisfiedi − µ×
∑

ai∈A

∑
t∈T

∑
ai′∈A

EV toEVi,i′,t (1)

Subject to:
∀ai ∈ A,∀t ∈ T,EV toEVi,i,t = 0 (2)

∀ai ∈ A,∀ai′ ∈ A,∀t ∈ T :
t < tarr

i , t < tarr
i′ , t > tdep

i , t > tdep
i′ , EV toEVi,i′,t = 0 (3)

∀ai ∈ A,∀t ∈ T,
∑

ai′∈A

(EV toEVi,i′,t + EV toEVi′,i,t) ≤ 1

(4)
∀ai ∈ A, energyi,t=0 = einit

i (5)

∀ai ∈ A,∀t ∈ T : t > 0, energyi,t = energyi,t−1+∑
ai′∈A

(EV toEVi′,i,t−1 − EV toEVi,i′,t−1) (6)

∀ai ∈ A, satisfiedi × ereq
i =∑

ai′∈A

∑
t∈T

(EV toEVi′,i,t − EV toEVi,i′,t) (7)

∀t ∈ T,
∑

ai∈A

∑
i′∈A

(EV toEVi,i′,t + EV toEVi′,i,t) ≤ |S| (8)

In more detail, one vehicle cannot give energy to itself
at any time point (Eq. 2), while for a transaction to
take place, both of the participants must be present at



the CS (Eq. 3). Now, Eq. 4 ensures that one EV can be
part of, at most one, energy transfer per time point (i.e.,
simultaneous charging and dis-charging is not allowed).
Moreover, the decision variable energyi,t gets initialized
with the initial energy of each vehicle (einit

i ) (Eq.5), and
then for every time point after t = 0, its new value is
equal to the previous one (energyi,t−1) plus the energy
received by ai, minus the energy given during the previous
time point (Eq. 6). Now, Eq. 7 ensures that in case ai is
serviced, its energyreq

i is covered, otherwise its energy level
the time of departure should be equal to the energy level
at the time of arrival. Finally, Eq. 8 limits the number of
transactions that can take place in one time point by the
number of chargers the CS holds. Note that, the maximum
and minimum value of energyi,t are enforced internally by
CPLEX, thus no constraint is necessary.

In the next section, an extension of this formulation,
where EVs can also charge from the grid, is presented.
B. Additional Charging from the Grid

Here, we enhance the previous model by adding one
more feature to it, namely the charging of the EVs from the
grid. In more detail, at each time point there is an amount
of energy available from the grid for the EVs to charge.
This energy can potentially be stored in EVs’ batteries for
later to be transferred to other EVs. This formulation has
4 decision variables. In addition to the three variables pre-
sented in Section III-A, binary variable GtoEVi,t ∈ {0, 1}
denoting whether ai is getting charged from the grid at
time point t is added to the formulation. The objective
function (Eq. 9) is similar to the one in III-A, but the
number of energy transactions between the grid and the
EVs is also considered in the second part of it.

Objective Function:∑
ai∈A

satisfiedi−µ×
∑
t∈T

∑
ai∈A

(GtoEVi,t+
∑

ai′∈A

EV toEVi,i′,t)

(9)Subject to:
∀ai ∈ A,∀t ∈ T :

t < tarr
i , t > tdep

i , GtoEVi,t = 0 (10)
∀ai ∈ A,∀t ∈ T,∑

ai′∈A

(EV toEVi,i′,t + EV toEVi′,i,t) +GtoEVi,t ≤ 1 (11)

∀ai ∈ A,∀t ∈ T, t > 0, energyi,t = energyi,t−1+
GtoEVi,t−1 +

∑
ai′∈A

(EV toEVi′,i,t−1 − EV toEVi,i′,t−1)

(12)
∀ai ∈ A, satisfiedi × ereq

i =
∑
t∈T

(GtoEVi,t+∑
ai′∈A

(EV toEVi′,i,t − EV toEVi,i′,t)) (13)

∀t ∈ T,
∑

ai∈A

(GtoEVi,t+∑
i′∈A

(EV toEVi,i′,t + EV toEVi′,i,t)) ≤ |S| (14)

∀t ∈ T,
∑

ai∈A

GtoEVi,t ≤ et,cs (15)

Regarding the constraints, Eqs. (2), (3), and (5)
from III-A are also used here. On top of these, Eq. 10
makes sure that no transactions between the grid and EVs
can happen when an EV isn’t at the CS, while Eq. 11
ensures that an EV cannot participate in more than one
energy transactions at each time point. Eq. 12, ensures
that for every time point and for each EV, value energyi,t

is equal to energyi,t−1 plus the energy received by ai,
minus the energy provided during the previous time point.
Moreover, Eq. 13 ensures that in case ai is serviced, its
energyreq

i is fully covered, otherwise it is not serviced at
all. Now, Eq. 14 limits the maximum number of energy
transactions that can take place a specific time point by
the number of chargers. Finally, Eq. 15 limits the number
of EVs the CS can charge a particular time point by the
amount of available energy.

In the next section, an enhanced formulation of the
problem where energy storage also exists is presented.

C. Additional Energy Backup Battery
This formulation of the problem extends the previous

one by adding a large battery for energy storage in the
charging station. This battery has a maximum energy
capacity emax

b , and an initial energy level einit
b . Moreover,

energy can be transferred between EVs, between EVs
and the grid, and between EVs and the battery (V2G
energy transfer). For all cases, a number of chargers |S|
is used. However, energy can be transferred from the grid
to the battery without the use of a charger and with a
rate of one energy unit per time point. This formulation
has 8 decision variables: 1) satisfiedi, 2) EV toEVi,i′,t,
3) energyi,t are the same as in (III-A) and 4) GtoEVi,t

is the same as in (III-B). Moreover, 5) integer variable
bEnergyt ∈ {0, emax

b }, denotes the energy level in the
battery at time point t, and CPLEX enforces internally its
value in order to remain within range, without the need for
a constraint. On top of this, 6) binary variable BtoEVi,t ∈
{0, 1}, denotes if the battery is charging ai during t, and
similarly, 7) binary variable EV toBi,t ∈ {0, 1}, denotes
whether the battery receives energy from ai at t. Finally,
8) binary variable GtoBt ∈ {0, 1}, denotes whether the
grid is giving energy to the battery during time t. The
objective function (Eq. 16) is similar to the one in III-B,
but the number of energy transactions from, or to the
battery are also taken into consideration in the second part
of it. This objective function is maximized under a number
of constraints:

Objective Function:∑
ai∈A

satisfiedi − µ×
∑

ai∈A

∑
t∈T

(BtoEVi,t + EV toBi,t+

GtoBi,t +GtoEVi,t +
∑

ai′∈A

EV toEVi,i′,t) (16)



Subject to:
∀ai ∈ A,∀t ∈ T : t < tarr

i , t > tdep
i :

BtoEVi,t = 0, EV toBi,t = 0, GtoEVi,t = 0 (17)

∀ai ∈ A,∀t ∈ T,GtoEVi,t +BtoEVi,t + EV toBi,t+
+

∑
ai′∈A

(EV toEVi,i′,t + EV toEVi′,i,t) ≤ 1 (18)

∀ai ∈ A,∀t ∈ T, t > 0, energyi,t = energyi,t−1+∑
ai′∈A

(EV toEVi′,i,t−1 − EV toEVi,i′,t−1)+

GtoEVi,t−1 +BtoEVi,t−1 − EV toBi,t−1 (19)

∀ai ∈ A, satisfiedi × edemand
i =∑

t∈T

(GtoEVi,t +BtoEVi,t − EV toBi,t+∑
ai′∈A

(EV toEVi′,i,t − EV toEVi,i′,t)) (20)

bEnergyt=0 = einit
b (21)

∀t ∈ T, t > 0,
bEnergyt = bEnergyt−1 +GtoBt−1+∑

ai∈A

(EV toBi,t−1 −BtoEVi,t−1) (22)

∀t ∈ T,
∑

ai∈A

(GtoEVi,t +BtoEVi,t + EV toBi,t+∑
i′∈A

(EV toEVi,i′,t + EV toEVi′,i,t)) ≤ |S| (23)

∀t ∈ T,GtoBt +
∑

ai∈A

GtoEVi,t ≤ et,cs (24)

Eq. 17 ensures that no transactions take place when
an EV isn’t in the CS. Moreover, when an EV is in the
station, it can take part at, at most, one transaction at
any time point t (Eq. 18). Now, Eq. 19 keeps track of
EVs’ energy level ensuring that at every time point after
t = 0, its energy is equal to the energy in the previous
time point plus the energy received by any source, minus
the energy the EV discharged. Similarly, Eq. 20 takes
into consideration the new kind of transactions (i.e., EV
to battery and battery to EV), along with the previous
ones, (V2V and G2V) in order to determine if an EV’s
ereq

i can be achieved, and accordingly the decision variable
satisfiedi is set to either 1 or 0. Moreover, decision
variable bEnergyt is initialized (Eq. 21), and for every
time point after t = 0, the bEnergyt, that keeps track of
battery’s energy level, is equal to the value at the previous
time point plus the amount of energy received by the
battery from the EVs and the grid, and minus the energy
given to the EVs by the battery (Eq. 22). On top of this,
the maximum number of energy transactions is limited by
the number of chargers (Eq. 23). Note that, the number of
chargers required for a transaction is equal to the number

of EVs taking part in the transaction (i.e., V2V needs two
chargers, G2V needs one, and grid to battery doesn’t need
any). Finally, Eq. 24 sets an upper limit to the energy the
grid can provide either to EVs or the battery, based on the
amount of available energy at this particular time point.
Note that, constraints (2), (3), and (5) from III-A are also
used in this formulation. In the next section, the three
formulations are evaluated in a realistic setting and for a
number of scenarios.

IV. Evaluation
In this section, a number of experiments are conducted

so as the pre-defined formulations to be evaluated. In
so doing, the time frame in which the experiments take
place is one full day, which is divided into 96 15-minute
intervals (T = 96). The time frame begins at 5:00 am so
as photovoltaics to be producing energy the first half of
the day and the CS potentially store the excess energy for
the rest. For each time point, the CS has an amount of
available energy units (derived from photovoltaic panels)
with a maximum value of 6 units. Data related to energy
production from photovoltaics are taken from nationwide
measurements in Belgium1, which are later scaled down
to be within the range [0, 6] in order to better match
the size of the CS. The energy data is fixed for all our
experiments and the total available energy for one day is
196 units (we assume each unit of energy to be equal to
1kWh). The battery is assumed to have no initial energy
stored (einit

b = 0), and a max capacity of 48 energy units
(emax

b = 48 - i.e., the capacity of an average EV), while
the CS has 8 chargers (|S| = 8). Note that, every V2V
energy transfer needs 2 chargers, one for the EV-provider
and one for the EV-receiver (i.e., EVs are connected to
each other through the charging station’s infrastructure).
Also, for all energy transactions the rate of transfer is
set to one energy unit per time point. The EVs have an
energy capacity of 24 units (emax

i = 24), and their initial
energy is drawn from a uniform distribution and can take
any value within range [0, 24]. Their arrival time (tarr

i ) is
also drawn from a uniform distribution and can be any
time point up until the 85th, as we assume that on the
last 10 time points no EVs enter the CS. The departure
time is calculated based on a Gaussian distribution with
mean = 24+ta, and σ = 8 and the energy demand (ereq

i ) is
drawn from a uniform distribution. Note, that the duration
of each EV’s stay in the station is calculated in this way
so as its energy demand to be able to be covered in terms
of time. Note that, for all experiments a PC equipped
with an i7-4790k and 16 GB of ram was used. In what
follows [EVs] stands for the formulation where only the
EVs participate in the transactions (Section III-A), [Grid]
stands for the formulation where there is also energy from
the grid available (Section III-B), and [Grid-B] stands for
the formulation where the supportive battery also exists

1Data from http://bit.ly/1ADOxaL



in the station (Section III-C). Finally, after we confirm the
advantages of V2G service (Section IV-A), we evaluate the
algorithms according to execution times (Section IV-B),
customer satisfaction (Section IV-C), and the number of
energy transactions (Section IV-D).

A. Significance of V2G and V2V Service
Initially, we evaluate the [Grid] and the [Grid-B] algo-

rithms against a setting, where simple EV charging exists
(i.e., neither V2G nor V2V service). Thus, we are using
the offline EV charging scheduling algorithm as this is
described in [9] (we refer to it as [simple]). In so doing,
and in order the comparison to be fair, for both [Grid]
and [Grid-B] we assume that all EVs need to charge and
no EV is providing energy. Note, that V2V transactions
still exist but only with energy previously received from
the grid. Thus, the total amount of available energy is the
same for all settings. Now, as can be seen in Figure 1, the
use of V2G and V2V service leads on average to 27.81%
higher EV satisfaction for the [Grid] and to 32.41% higher
satisfaction for the [Grid-B]. Moreover, as can be seen
in Figure 2, the use of V2G and V2V service leads on
average to 7.53% higher energy utilization for the [Grid]
and to 15.61% for the [Grid-B]. Thus, the significance of
the existence of storage devices (i.e., battery storage at
the station as well as V2V and V2G service) in order
to achieve higher customer satisfaction and better energy
utilization is confirmed. Therefore, in the next sections
[EVs], [Grid] and [Grid-B] algorithms are evaluated against
each other for a number of metrics and their performance
is thoroughly discussed.

Fig. 1. Customer Satisfaction (%) with and without V2G

Fig. 2. Energy Utilization with and without V2G

B. Execution Time
Highly combinatorial problems, similar to the ones

studied here, are known to suffer from high execution
times. Thus, here the execution times, and therefore the

scalability, of the proposed algorithms is evaluated. In
more detail, for all algorithms we observe a similar trend,
as the execution times increase quadratically. However,
as seen in Figure 3, [EVs] has a much lower rate of
growth than the other two formulations. [Grid] and [Grid-
B] have almost indistinguishable execution times, despite
[Grid-B] constantly satisfying greater numbers of EVs
(see Section IV-C). For [Grid] and [Grid-b], the higher
execution times compared to [EVs] were expected due
to the more complex problems they represent. However,
interestingly [Grid-B] although it uses the battery storage
and contains a larger number of decision variables has
similar execution times with [Grid]. A possible explanation
is that the battery is actually providing more options for
charging scheduling, which simplifies the solution.

Fig. 3. Execution times
C. Customer Satisfaction

Apart from execution times, the maximization of the
number of satisfied EVs is also crucial. Figure 4 shows
that [EVs] performs worse compared to the other two
formulations. This was expected, as in this formulation
the energy is received only from the EV-providers which
are on average 30% of the total. Especially for small
numbers of EVs, the gap is larger as, due to the fact
that EVs’ arrival times are distributed over time, the
stay of many EVs in the station does not overlap in
terms of time (we can call it time proximity problem).
Thus, energy transfer is impossible. Later, the number of
satisfied EVs increases until the number of 60, but then
slightly decreases again. This could be explained due to
the fact that as the number of chargers is limited, the
station cannot support all the desired transactions. Now,
comparing [Grid] to [Grid-B] we can observe that the first
has lower effectiveness compared to the second for small
numbers of EVs. This is due to a combination of two facts:
1) similarly to [EVs] energy storage in EVs is not always
possible and 2) energy production from photovoltaics has
an uneven distribution across the day. However, when the
number of EVs increases, more EVs are used for temporary
energy storage, and the energy is better utilized, thus
leading to more EVs being serviced. In contrast, [Grid-
B] satisfies nearly 100% of EVs for small numbers of EVs,
as the battery negates the time proximity problem the
other two formulations face. For large numbers of EVs,
a small decrease in EV satisfaction is observed for both
[Grid] and [Grid-B], as the total energy demand is raising



to levels close, and later above, the total energy the grid
can provide. Overall, and considering the costs associated
with it, we observe that on any number of EVs the usage of
the battery storage increases the number of satisfied EVs,
but this increase is greater for low numbers of EVs (i.e.,
around 5% improvement). Finally, regarding EV-receivers,
(i.e., EVs that need to charge), their satisfaction is, in
the worst case, at around 90% for [Grid-B]. It has been
observed (see Figure 5) that [EVs] is quite sensitive to the
EV-providers - EV-receivers ratio, while both [Grid] and
[Grid-B] are more robust. Note that, the difference in EV
satisfaction in Figures 1 and 4 is due to the fact that
in Figure 4 EV-providers also exist, increasing the total
amount of the available energy.

Fig. 4. Customer satisfaction (%)

Fig. 5. Customer satisfaction (%) - 100 EVs
D. Energy Transactions

Energy transactions reduce batteries’ life time and cause
energy loses and therefore, they should be minimized.
Figure 6 shows that for [EVs] the growth of the number
of transactions is linear, and lower compared to the other
two formulations. Formulations [Grid] and [Grid-B] show
a rapid increase on the number of transactions until the
number of EVs reaches 80 when the rate of growth slows
down, as the energy from the grid starts to be inadequate.
Overall, the number of transactions vary similarly to the
number of satisfied EVs but with lower gradient, especially
for [Grid] and [Grid-B]. This is due to the fact that as
the number of EVs increases, solutions where fewer energy
transactions are required can be found.

V. Conclusion and Future Work
In this paper we have presented three offline optimal

solutions of the problem of EV charging scheduling, where
energy transfer between EVs is supported. Through a
number of experiments we have proven the efficiency of
energy storage devices (i.e., EV batteries, or batteries at

Fig. 6. Number of energy transactions
the CS) towards the higher utilization of the available
energy and higher EV satisfaction. Moreover, we have
shown that all algorithms have relatively low execution
times and good scalability. For future work we target to
study mechanism design techniques to further enhance the
V2V energy transfer and provide incentives to EV owners
to participate as sellers in such markets. Moreover, we aim
to develop online algorithms which will add higher realism
and better usability for real-world deployments.
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