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Abstract. In an mRNA sequence, the prediction of the exact codon where the 
process of translation starts (Translation Initiation Site – TIS) is a particularly 
important problem. So far it has been tackled by several researchers that apply 
various statistical and machine learning techniques, achieving high accuracy 
levels, often over 90%. In this paper we propose a mahine learning approach 
that can further improve the prediction accuracy. First, we provide a concise 
review of the literature in this field. Then we propose a novel feature set. We 
perform extensive experiments on a publicly available, real world dataset for 
various vertebrate organisms using a variety of novel features and classification 
setups. We evaluate our results and compare them with a reference study and 
show that our approach that involves new features and a combination of the 
Ribosome Scanning Model with a meta-classifier shows higher accuracy in 
most cases.  

1   Introduction 

The last decades has seen a rapid progress in two major scientific areas, biology and 
computer science. Lately, the field of data mining and machine learning has provided 
biologists, as well as experts from other areas, a powerful set of tools to analyze new 
data types in order to extract various types of knowledge fast, accurately and reliably. 
These tools combine powerful techniques from different areas such as statistics, 
mathematics, artificial intelligence, algorithmics and database technology. This fusion 
of technologies aims to overcome the obstacles and constraints posed by the 
traditional statistical methods.  

Translation is one of the basic biological operations that attract biologists’ 
attention. Translation along with replication and transcription make possible the 
transmission and expression of an organism’s genetic information. The initiation of 
translation plays an important role in understanding which part of a sequence is 
translated and consequently what is the final product of the process. A sequence 
contains a number of sites where the translation might initiate. However, only one of 
them is the true translation initiation site (TIS). The recognition of the true TIS among 
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the candidate TISs is not a trivial task as it requires the highest possible accuracy. 
Classification and meta-classification methods have been used in order to deal with 
this problem.  

In this paper, we propose the use of a new feature set along with a combination of 
meta-classifiers with the Ribosome Scanning Model (RSM). We test the feature set 
with 2 different statistics and then use the extracted features to train 7 different 
classifiers and a meta-clasiffier. Then we estimate the prediction accuracy of our 
approach using a state of the art evaluation method, namely 10 times 10-fold cross 
validation. We also train the same classifiers and perform the same evaluation using 
the feature sets from a reference study [12] and compare the results. In most cases the 
proposed approach has a clear advantage against the reference study, showing that 
both our feature set and our classification setup are more effective in terms of 
accuracy. 

This paper is organized as follows: In the next section, we provide a concise 
review of the literature on TIS prediction. Section 3 contains a brief introduction on 
the biological problem attacked in our study. In Section 4 we describe the mining 
approach we propose and in Section 5 we explain the experimental methodology we 
followed, show the results of the extensive experiments we performed and finally the 
evaluation and comparison of our work with a reference study. In the last sections we 
summarize our paper with our conclusions and directions for future research. 

2   Related Work 

Since 1982 the prediction of TISs has been extensively studied using biological 
approaches, data mining techniques and statistical models. Stormo et al. [20] used the 
perceptron algorithm to distinguish the TISs. In 1987 Kozak developed the first 
weight matrix for the identification of TISs in cDNA sequences [8]. The consensus 
pattern derived from this matrix is GCC[AG]CCatgG (the bold residues are the 
highly conserved positions). Meanwhile, Kozak and Shatkin [10] had proposed the 
scanning model of translation initiation, which was later updated by Kozak [9]. 
According to this model translation initiates at the first start codon that is in an 
appropriate context. 

Pedersen and Nielsen [16] make use of artificial neural networks to predict the 
TISs achieving an overall accuracy of 88% in Arabidopsis thaliana dataset and 85% in 
vertebrate dataset. Zien et al. [25] studied the same vertebrate dataset, but instead of 
neural networks employed support vector machines using various kernel functions. 
Hatzigeorgiou [4] proposed an ANN system named “DIANA-TIS” consisting of two 
modules: the consensus ANN, sensitive to the conserved motif and the coding ANN, 
sensitive to the coding or non-coding context around the start codon. The method 
applied in human cDNA data and 94% of the TIS were correctly predicted. Salamov 
et al. [19] developed the program ATGpr, using a linear discriminant approach for the 
recognition of TISs by estimating the probability of each ATG codon being the TIS. 
Nishikawa et al. [15] presented an improved program, ATGpr_sim, which employs a 
new prediction algorithm based on both statistical and similarity information. In [11] 
Gaussian Mixture Models were used for the prediction of TISs improving 
classification accuracy. 



Feature generation and correlation based feature selection along with machine 
learning algorithms has also been employed [13, 24]. In these studies a large number 
of k-gram nucleotide patterns were utilized. By using a scanning model an overall 
accuracy of 94% was attained on the vertebrate dataset of Pedersen and Nielsen. 
Later, in [12] the same three-step method was used, but k-gram amino acid patterns 
were considered, instead of nucleotide patterns. 

Nadershahi et al. [14] compared five methods -firstATG, ESTScan, Diogenes, 
Netstart [16] and ATGPr [19]- for the prediction of the TIS. For the comparison a 
dataset of 100 Expressed Sequence Tag (EST) sequences, 50 with and 50 without a 
TIS, was created. ATGPr appeared to outperform the other methods over this dataset. 

3   Background Knowledge 

Translation is the second process of protein synthesis. In particular, after a DNA 
molecule has been transcribed into a messenger RNA (mRNA) molecule, an organelle 
called ribosome scans the mRNA sequence. The ribosome reads triplets, or codons, of 
nucleotides and “translates” them into amino acids. An mRNA sequence can be read 
in three different ways in a given direction. Each of these ways of reading is referred 
to as reading frame. 

Translation, usually, initiates at the AUG codon nearest to the 5′  end of the mRNA 
sequence. However, this is not always the case, since there are some escape 
mechanisms that allow the initiation of translation at following, but still near the 5′  
end AUG codons. Due to these mechanisms the recognition of the TIS on a given 
sequence becomes more difficult.  

After the initiation of translation, the ribosome moves along the mRNA molecule, 
towards the 3′  end (the direction of translation is 5 3′ ′→ ) and reads the next codon. 
This process is repeated until the ribosome reaches a stop codon. For each codon read 
the proper amino acid is brought to the protein synthesis site by a transfer RNA 
(tRNA) molecule. The amino acid is joined to the protein chain, which by this way is 
elongated.  

A codon that is contained in the same reading frame with respect to another codon 
is referred to as in-frame codon. We call upstream the region of a nucleotide sequence 
from a reference point towards the 5′  end. Respectively, the region of a nucleotide 
sequence from a reference point towards the 3′  end is referred to as downstream. In 
TIS prediction problem the reference point is an AUG codon. The above are 
illustrated in Fig. 1. 

 

 
Fig. 1. Translation initiation – The ribosome scans the mRNA sequence from the 5′ end to the 
3′ end until it reads an AUG codon. If the AUG codon has appropriate context, the translation 
initiates at that site and terminates when a stop codon (i.e. UGA) is read. An in-frame codon is 
represented by three consecutive nucleotides that are grouped together 
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4   The Proposed TIS Prediction Approach 

We propose a machine learning approach, focusing on all stages of the prediction, 
namely the data selection, the feature extraction, the training of the classifier and the 
evaluation of the effectiveness.  

4.1 Datasets 

The dataset we used in our study consists of 3312 genomic sequences collected from 
various vertebrate organisms, acquired from the Kent Ridge Biomedical Data Set 
Repository (http://sdmc.i2r.a-star.edu.sg/rp). Being DNA sequences, they contain 
only the letters A, C, G and T. Therefore, a candidate TIS is referred to as ATG codon 
instead of AUG codon. 

The sequences of the dataset were extracted from GenBank, release 95 [2]. Only 
nuclear genes with an annotated start codon were selected. The DNA sequences have 
been processed and the introns have been removed. From the resulting dataset, the 
selected sequences contain at least 10 nucleotides upstream of the initiation point and 
at least 150 nucleotides downstream (with reference to A in the ATG codon). All 
sequences containing non-nucleotide symbols in the interval mentioned above 
(typically due to incomplete sequencing) were excluded. Moreover, the dataset has 
been gone through very thorough reduction of redundancy [16]. 

4.2 Features 

One of the most important tasks in prediction is the extraction of the right features 
that describe the data. This is also a particularly crucial point in our approach in terms 
of novelty and performance. The basic features used in our approach are summarized 
in Table 1. Some of them (features 1, 2, 12-15) have been already studied in previous 
research works [12, 13, 24]. However, there is a number of new features that we 
propose and study in this paper. One set of features (features 3), that have been 
proposed in previous works of ours [21, 22], concern the periodic occurrence of 
particular nucleotides at a specific position inside an in-frame codon (Figure 2). 
Another set of features that has not been studied yet (features 4) includes features that 
count the amino acids that appear at each in-frame position. The numbering of each 
position of a sequence is presented in Figure 3. For numbering we used the same 
conventions as in other studies [12, 13, 21, 22, 24]. What’s more important, we 
propose a number of extra features based on the chemical properties of amino acids 
that haven’t been considered before. These features are counts of hydrophobic, 
hydrophilic, acidic, or basic amino acids, as well as counts of aromatic, aliphatic, or 
neither aromatic, nor aliphatic amino acids (features 5-11). We used a window size of 
99 nucleotides upstream and 99 nucleotides downstream the ATG for calculating the 
values of the features. 

 
position: 1 2 3 1 2 3    1 2 3 1 2 3  

5′  G C C A C C A T G G C A T C G 3′

Fig. 2. The positions of nucleotides inside the in-frame codons 



Table 1. The features used in our approach 

 Features Description 

1 up_x 
down_x 

Count the number of amino acid x in the upstream and 
downstream region respectively. 

2 up-down_x 

Counts the difference between the number of occurrences 
of amino acid (or set of amino acids) x in the upstream 
region and the number of occurrences of x in the 
downstream region. 

3 up_pos_k_x 
down_pos_k_x 

Count the number of occurrences of nucleotide x in the kth 
position of the in-frame codons (k∈{1, 2, 3}) in the 
upstream and downstream region respectively. 

4 pos_-3k 
pos_3(k+1) 

Concern the presence of amino acids at in-frame positions 
in the upstream and downstream region respectively 
(k ≥ 1). 

5 up_hydrophobic 
down_hydrophobic 

Count the number of hydrophobic amino acids in the 
upstream and downstream region respectively. 

6 up_hydrophilic 
down_hydrophilic 

Count the number of hydrophilic amino acids in the 
upstream and downstream region respectively. 

7 up_acidic 
down_acidic 

Count the number of acidic amino acids in the upstream 
and downstream region respectively. 

8 up_basic 
down_basic 

Count the number of basic amino acids in the upstream and 
downstream region respectively. 

9 up_aromatic 
down_aromatic 

Count the number of aromatic amino acids in the upstream 
and downstream region respectively. 

10 up_aliphatic 
down_aliphatic 

Count the number of aliphatic amino acids in the upstream 
and downstream region respectively. 

11 

up_non_aromatic/ 
aliphatic 
down_non_aromatic/ 
aliphatic 

Count the number of amino acids that are not aromatic nor 
aliphatic in the upstream and downstream region 
respectively. 

12 up_-3_[AG] 
A Boolean feature that is true if there is an A or a G 
nucleotide three positions before the ATG codon, 
according to Kozak’s pattern (GCC[AG]CCatgG). 

13 down_+1_G 
A Boolean feature that is true if there is a G nucleotide in 
the first position after the ATG codon, according to 
Kozak’s pattern (GCC[AG]CCatgG). 

14 up_ATG A Boolean feature that is true if there is an in-frame 
upstream ATG codon. 

15 down_stop A Boolean feature that is true if there is an in-frame 
downstream stop codon (TAA, TAG, TGA). 

 



position: -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +8 +9  
5′  G C C A C C A T G G C A T C G 3′

Fig. 3. The positions of nucleotides relative to an ATG codon 

4.3 Feature Selection Algorithms 

For the conduction of our experiments we have utilized the Weka library of machine 
learning algorithms [23]. We have used the following feature selection methods: 
• Chi-Squared. Evaluates the worth of an attribute by computing the value of the X2 

statistic with respect to the class. 
• Gain Ratio. Evaluates the worth of an attribute by measuring the gain ratio with 

respect to the class. 

4.4 Classification Algorithms 

For classification we have used the following classification algorithms: 
• C4.5. Algorithm for generating a decision tree [18]. 
• RIPPER. This is a propositional rule learner called Repeated Incremental Pruning 

to Produce Error Reduction. [3]. 
• Decision Table. This agorithm implements a simple decision table majority 

classifier [7]. 
• Naïve Bayes. A Naive Bayes classifier [5]. 
• SVM. This is the John Platt's [17] sequential minimal optimization algorithm for 

training a support vector classifier. The Weka implementation globally replaces all 
missing values and transforms nominal attributes into binary ones. It also 
normalizes all attributes by default. 

• Multilayer Perceptron. This algorithm implements a neural network that uses 
back-propagation to train. 

• k-Nearest Neighbors classifier. The algorithm normalizes attributes by default and 
can do distance weighting. We have used this algorithm with 1-nearest neighbor. 
More information about this algorithm can be found in [1]. 
The idea of meta-classifier systems is an attempt to construct more accurate 

classification models by combining a number of classifiers. Classifier combination 
includes two main paradigms: classifier selection and classifier fusion. In the first 
case a new instance is classified by selecting the appropriate classifier, while in the 
second case a new instance is classified according to the decisions of all the 
classifiers. We implemented and used two meta-classification algorithms of the 
second paradigm: 
• Simple Voting. This algorithm combines the decisions of multiple classifiers and 

makes the final decision by considering the majority of the votes. Each classifier 
participates equally to the voting. 

• Weighted Voting. This algorithm also applies voting but each classifier participates 
with a different weight to the voting procedure. The weight for each classifier is its 



classification accuracy. In other words, the more accurate classifiers contribute 
more to the final result than the less accurate ones. 

4.5   Evaluation Method 

In order to evaluate the results of our experiments we have used stratified 10-fold 
cross-validation (CV). In particular, the performance of a classifier on a given dataset 
using 10-fold CV is evaluated as follows. The dataset is divided into 10 non-
overlapping almost equal size parts (folds). In stratified CV each class is represented 
in each fold at the same percentage as in the entire dataset. After the dataset has been 
divided, a model is built using 9 of the folds as a training set and the remaining fold as 
a test set. This procedure is repeated 10 times with a different test set each time. The 
use of the 10-fold CV was based on the widely accepted study of R. Kohavi [6]. The 
results of this work indicate that for many real-word datasets, the best method to use 
for model selection is stratified 10-fold CV, even if computation power allows using 
more folds. 

Furthermore, in order to increase the reliability of the evaluation, we have repeated 
each experiment 10 times, each time generating randomly different folds and we 
finally took into account the average of the 10 independent repeats. 

5 Experimental Results 

In this section we present the results of the experiments we conducted, compared to a 
reference study [12] on the same dataset. The first subsection describes the results of 
feature selection and the second subsection deals with the results of classification. 
Finally, a discussion about the results is given in the third subsection. 

5.1   Feature Selection Results 

The best features selected by the two feature selection methods are presented in Table 
2. When using the X2 statistic for feature selection the 8 out of the 10 top features are 
the ones we propose (5 are proposed in this paper and the other 3 have been proposed 
in [21]). When using the gain ratio measure, the 6 out of the 10 top  features are the 
ones we propose (4 are introduced in this paper and the other 2 have been proposed in 
[21]). It should be noted here that the feature down_stop of the reference study is not 
Boolean (see Table 1). Instead, it counts the number of the in-frame downstream stop 
codons. Moreover, in this study, features of the form down_xy and up_xy are also 
considered, where x and y are amino acids, or a stop codon. 

5.2   Classification Results 

After extensive experiments, we present the results produced by three different 
setups: 



• Setup 1. The use of a meta-classifier (simple voting or weighted voting) for 
predicting the TIS. 

• Setup 2. The use of a meta-classifier (simple voting or weighted voting) 
incorporated with the ribosome scanning model (RSM). The first candidate TIS 
that appears inside a sequence and has received more than 50% of votes for being a 
TIS is selected as the true TIS. The remaining candidates of the same sequence are 
considered not to be TISs, even if they have received more than 50% of votes for 
being a TIS.  

• Setup 3. We propose the use of the RSM based on the results of a meta-classifier 
(simple voting or weighted voting). Among all candidate TISs of a sequence, the 
one that has received the larger number of (positive) votes is considered as the true 
TIS. The remaining candidates of the same sequence are considered as non-TISs. 

Table 2. The top features that were selected by the feature selection methods from the set of 
features we propose (middle column) and from the set of features used in the reference study 
[12] (last column). The features are ordered according to their ranking 

FS Method Our Features Reference Features 
up_ATG up_ATG 
down_1_G down_stop 
down_hydrophobic up_M 
down_non_aromatic/aliphatic down_A 
down_3_C down_L 
down_stop down_V 
down_aliphatic down_E 
up-down_non_aromatic/aliphatic down_D 
up-down_hydrophobic up_-3_[AG] 

X2 

down_2_T down_G 
up_ATG down_stop 
down_stop up_RR 
up_M up_NH 
up_-3_[AG] down_MY 
down_non_aromatic/aliphatic up_ATG 
down_1_G up_M 
up-down_non_aromatic/aliphatic down_Lstop 
down_hydrophobic down_stopR 
up-down_hydrophobic down_stopS 

Gain  
Ratio 

down_2_C down_Pstop 
 
The results of the three setups using either simple voting, or weighted voting are 

presented in Tables 3 and 4. The first table contains the results produced using the set 
of features we propose, while the second one contains the results produced using set 
of features utilized in the reference study.  



Table 3. Classification results using the set of features we propose. The grayed cells indicate 
the setup that achieves the highest accuracy 

 Simple Voting Weighted Voting 
FS 
Method 

# Top 
Features Setup 1 Setup 2 Setup 3 Setup 1 Setup 2 Setup 3 

5 86.20% 86.34% 86.32% 86.20% 86.34% 86.38% 
10 90.36% 91.58% 93.30% 90.36% 91.58% 93.65% 
15 94.60% 95.19% 95.53% 94.60% 95.19% 96.01% 
20 94.71% 95.34% 95.89% 94.71% 95.34% 96.25% 
25 94.78% 95.41% 95.85% 94.79% 95.41% 96.19% 

X2 

30 94.79% 95.37% 95.79% 94.78% 95.37% 96.21% 
5 93.09% 94.16% 94.87% 93.09% 94.16% 94.77% 

10 94.10% 94.99% 95.12% 94.10% 94.99% 95.46% 
15 94.58% 95.14% 95.27% 94.58% 95.14% 95.75% 
20 94.60% 95.16% 95.34% 94.60% 95.16% 95.79% 
25 94.66% 95.23% 95.53% 94.66% 95.23% 95.98% 

Gain  
Ratio 

30 94.70% 95.28% 95.60% 94.70% 95.28% 95.99% 

Table 4. Classification results using the set of features utilized in the reference study. The 
grayed cells indicate the setup that achieves the highest accuracy 

 Simple Voting Weighted Voting 
FS 
Method 

# Top 
Features Setup 1 Setup 2 Setup 3 Setup 1 Setup 2 Setup 3 

5 87.98% 90.71% 91.64% 87.98% 90.71% 90.90% 
10 91.75% 92.57% 93.68% 91.75% 92.57% 93.70% 
15 91.93% 92.61% 93.76% 91.93% 92.61% 93.84% 
20 92.40% 92.90% 94.07% 92.40% 92.90% 94.25% 
25 92.40% 92.85% 94.02% 92.40% 92.85% 94.19% 

X2 

30 92.53% 92.91% 94.18% 92.53% 92.91% 94.32% 
5 82.62% 86.56% 87.42% 82.62% 86.56% 84.79% 

10 85.33% 91.80% 91.67% 85.33% 91.80% 87.59% 
15 87.23% 91.00% 92.01% 87.23% 91.00% 89.45% 
20 87.97% 90.98% 92.27% 87.97% 90.98% 89.82% 
25 88.00% 90.98% 92.33% 88.00% 90.98% 89.90% 

Gain  
Ratio 

30 88.02% 91.00% 92.35% 88.02% 91.00% 89.96% 
 
Figure 4 depicts the results for the 3rd Setup, which is introduced in this paper. In 

particular, the results obtained using the features proposed here are compared to the 
results obtain using the features of the reference study [12]. The results of each of the 
seven classifiers are not presented here for brevity since only their output is 
considered in the meta-classification step. 
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Fig. 4. Comparison of the results obtained using the proposed feature set against the reference 
feature set [17], for Setup 3. The error bars are calculated as ± 2 standard deviations 

5.3   Discussion 

The classification accuracy achieved by the setup proposed in this study (Setup 3) is 
higher in almost all cases when using the set of features we propose. When using the 
features of the reference study, Setup 3 outperforms Setups 1 and 2 with the Χ2 
statistic for feature selection. However, this is not the case when the Gain Ratio 
measure is used. Moreover, when the features we propose are used, the best accuracy 
is achieved with Χ2 statistic for feature selection and the top 20 ranked features along 
with the weighted voting meta-classification algorithm and Setup 3 (96.25%). At the 
other hand, when the features of the reference study are used, the best accuracy is 
achieved with Χ2 and the top 30 ranked features along with the weighted voting meta-
classification algorithm and Setup 3 (94.32%). 

The results of Setups 1 and 2 for both simple and weighted voting are identical. 
This happens because there are zero or very few decisions of the simple voting 
schema that are based on a majority near 50%. The percentage of majority is high 
enough, so that the weighting of the votes do not affect the results. However, in Setup 
3 the results are better when using the weighted voting schema. 

The incorporation of the ribosome scanning model (RSM) (Setup 2) provides 
better classification accuracy in almost all cases. Moreover, the improvement is much 
higher when RSM is used with the features of the reference study. Specifically, the 
improvement achieved is 6.48 percentage units. The improvement when the set of our 
proposed features are used is only 1.22 percentage units. However, when using the set 



of features we propose in Setup 1, the classification accuracy is in most cases higher 
than the results achieved using the reference study features enhanced with RSM 
(Setup 2). This implies that a large portion of the improvement provided by the use of 
RSM is incorporated in the features we use. In other words, although the use of RSM 
greatly enhances the effectiveness of the reference feature set, its effect on our feature 
set (used in Setup 3) is not that significant because the accuracy attained by the latter 
alone is already the highest so far. 

Although previous works [13, 21, 24] have shown that the feature that counts the 
distance of a candidate ATG from the start of the sequence is very good for 
discriminating a TISs from non-TISs we excluded it from our study. The reason is 
that this feature is highly affected by the intrinsic characteristics of the sequences 
contained in the dataset we used. For example, for each sequence there are always 
150 nucleotides downstream of the TIS and there is up to a maximum of 150 
nucleotides upstream. 

6 Conclusions and Future Work 

In this paper we tackle the problem of the prediction of Translation Initiation Sites in 
genome sequences. We implement a machine learning approach that shows higher 
accuracy than previous approaches on a public vertebrate dataset. First, we provide a 
review of the literature on this task and a short section on biological background 
knowledge. By extensive experiments using two different statistics (X2 and Gain 
Ratio) we propose the use of a novel feature set that leads to higher accuracy when 
compared to the feature sets of the reference study. Then, we introduce a new 
prediction setup that utilizes meta-classifiers and the ribosome scanning model in 
order to achieve higher accuracy. We support our claims by extensive experiments 
using 7 different classifiers along with 2 meta-classifiers. Then, we evaluated our 
results by performing 10 times 10-fold cross validation, in order to prove the 
reliability of our approach. 

In the near future we are going to apply our approach on more datasets, run more 
experiments with more classifiers and new feature sets. We also plan to investigate 
the application of our approach on other functional site prediction problems, such as 
splice sites. 
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