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ABSTRACT 
Serial Analysis of Gene Expression (SAGE) is a method that 
allows the quantitative and simultaneous analysis of the whole 
gene function of a cell. One of the advantages of this method is 
that the experimenter does not have to select a priori the mRNA 
sequences that will be counted in a sample. This makes SAGE a 
powerful tool for analyzing gene expression and studying various 
diseases, such as cancer. An important concern in cancer studies 
is the discovery of the differences between healthy and cancerous 
samples and the accurate separation of these two groups of 
samples. However, the high dimensionality of the data, the 
multiple cell sources (i.e. bulk and cell line) and the multiple 
cancer subtypes make very difficult the effective clustering of 
SAGE libraries. Furthermore, the various sources of noise pose an 
extra challenge to data miners. For all these reasons we propose 
an approach that involves the discretization of the data, the 
selection of the most prominent gene tags and the use of a 
clustering algorithm in order to obtain more compact and reliable 
clusters that can assist cancer profiling. We experimented with 
two families of clustering algorithms, partitional and hierarchical, 
and we utilized various cluster validity criteria in order to 
evaluate the resulted clustering structures. The experimental 
results have shown that our approach provides more interesting 
clustering structures. 

1. INTRODUCTION 
The last decades the progress in the fields of biology and 
computer science is quite remarkable. This progress has lead to 
the introduction of new technologies as well as the improvement 
of existing ones that made possible the conduction of many and 
often large-scale experiments. As a consequent large amounts of 
data, that sometimes are highly complex, are produced in 
dramatically less time. Biologists demand the tools to organize, 
maintain, and analyze these data. The fields of data mining and 
machine learning provide biologists, as well as experts from other 
areas, a powerful set of tools to analyze new data types in order to 
extract various types of knowledge fast, accurately and reliably. 

The use of these tools in biology promises to discover new 
knowledge and enlighten the molecular and cellular details that 
govern life. 

Every living organism depends on the activities of a complex 
family of molecules, namely proteins. They are the main 
structural and functional units of an organism’s cell. Two other 
important molecules, DNA and RNA have the role to carry the 
genetic information of the organisms. The genetic information 
that is coded in DNA flows towards the proteins via the processes 
of transcription and translation. In particular, DNA is transcribed 
into mRNA (messenger RNA) and then mRNA is translated into 
proteins. Each organism contains a number of genes that are 
coding segments of DNA that code the synthesis of an mRNA or 
protein molecule. Although every cell in an organism contains the 
same set of genes, two cells may have very different properties 
and functions. This is due to the differences in abundance of 
proteins. The abundance of a protein is partly determined by the 
levels of mRNA which in turn are determined by the levels of the 
expression of the corresponding gene. Changes in gene expression 
underlie many biological phenomena. 

As implied in the previous paragraph the study of gene expression 
levels may guide to very important findings. One of the basic 
aims of gene expression data analysis is to discover differences 
between the gene expression profiles of diseased and healthy 
tissues. The last years, two major families of techniques that 
permit to measure gene expression levels have emerged. The first 
family consists of techniques based on sequencing (including 
ESTs and SAGE [1, 21] and the second family consists of 
techniques based on hybridization procedures (DNA arrays [20]). 
In this paper we will focus on the first family and especially in 
SAGE.  

SAGE (Serial Analysis of Gene Expression) is a method invented 
in John Hopkins, Baltimore, USA, in order to provide the 
quantitative and simultaneous analysis of the whole gene function 
of a cell [21]. The method works as shown in Figure 1. All the 
mRNA transcripts of a cell are collected and a short sequence of 
about ten nucleotides (RNA and DNA are sequences of smaller 
molecules called nucleotides) called tag is extracted from each 
transcript. The tags are linked together in a single chain and they 
are sequenced. Then, the frequency of each tag is counted, so that 
the relative levels of the corresponding mRNAs and consequently 
the gene expression levels are determined. The set of all tag 
counts in a single sample is called a SAGE library. 
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Figure 1. Serial analysis of gene expression. 

1.1 Motivation 
SAGE is an expensive technique compared to DNA arrays. This 
disadvantage is the reason that there are not very much publicly 
available data and consequently there are not too many studies 
focused on SAGE data analysis. Recently, in 2004 and 2005, the 
two ECML/PKDD Discovery Challenge Workshops gave a boost 
on SAGE data mining by providing two SAGE datasets for study. 
However, although some approaches have been proposed, there 
are many directions for improvement. An important goal of gene 
expression data mining is to discover the differences between 
diseased and healthy tissues. The existence of many different 
cancer types and different cell sources (bulk and cell line) makes 
the accurate discrimination of cancerous from normal samples 
quite difficult. These difficulties expose a great challenge to data 
mining community and demand improved clustering methods for 
grouping cancerous samples together and separating them from 
normal ones. This challenge motivated our work and guided us to 
an effort to define a better approach that provides improved 

clustering structures. Moreover, the main advantage of the SAGE 
method is that the experimenter does not have to select the mRNA 
sequences that will be counted in a sample. This is quite 
important, since the appropriate sequences for studying various 
diseases such as cancer may not be known in advance. In contrast, 
in DNA array methods, the experimenter by selecting the mRNA 
sequences introduces a bias to the experiment. This advantage of 
SAGE makes it a fairly promising method, especially for cancer 
studies as the one presented in this paper. 

1.2 Contribution 
We propose an approach for selecting the most prominent features 
(gene tags) in order to use them and cluster the SAGE libraries 
according to their cell state (cancerous or normal). The aim of this 
approach is to discover more compact clusters that group 
cancerous samples away of the normal ones, in order to assist 
cancer profiling. On this basis, we provide a thorough study on 
clustering of SAGE libraries using partitional as well as 
hierarchical clustering algorithms. We evaluate cluster validity 
using external criteria based on partitions that are built according 
to our prior knowledge about the partitioning of the data. As 
shown by the experimental results, our approach provides better 
clustering structures, which separate more clearly the cancerous 
from the normal samples. Moreover, the significant reduction of 
the feature space that is achieved in most cases leads to 
considerable improvement of efficiency in terms of time and 
memory usage. 

The paper is outlined as follows. In the next section we provide a 
concise review of the relative literature. In section three we give a 
detailed description of our approach. Next, in section four, we 
present the datasets we used and define our experimental setup. 
Then, we present our results in section five and finally, we 
conclude in section six. 

2. RELATED WORK 
Most of the clustering studies of gene expression focus on clusters 
of genes and not on clusters of samples as is the case in our study. 
Moreover, due to the limited availability of SAGE datasets the 
most studies are based on microarray data [4, 6, 17]. However, the 
last years a number of studies on clustering SAGE libraries have 
been presented. Other data mining tasks, like classification and 
association analysis have recently been applied to SAGE data.  
In [8] supervised and unsupervised learning methods were utilized 
for the analysis of SAGE data. In particular decision trees (C4.5) 
and support vector machines were used to classify the data 
according to cell state (normal or cancerous) and tissue type 
(colon, brain, ovary, etc.). Furthermore, the authors studied 
hierarchical clustering for identifying different subclasses of 
tumors and normal tissues. 

Hierarchical clustering methods were also applied in [18] for 
detecting similarities and dissimilarities among different types of 
cancer. The authors utilized various preprocessing techniques, 
including error removal, normalization, missing tag imputation, 
and subspace selection based on Wilcoxon test. Their results 
shown that the SAGE libraries are grouped according to tissue 
type and cell state and revealed a possible relation between brain 
and ovarian cancer. 
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An approach for cluster analysis of SAGE data using Poisson 
statistics has been presented in [5]. They proposed two Poisson-
based distances and experimented with simulated and 
experimental mouse retina data. Their results saw that the 
Poisson-based distances are appropriate and reliable for analyzing 
SAGE in comparison to other commonly used distances or 
similarity measures such as Pearson correlation or Euclidean 
distance. 

Another approach for cluster analysis of SAGE data using 
Poisson statistics as well as self-organizing feature maps has been 
presented in [22]. The authors proposed two novel clustering 
algorithms, PoissonS and PoissonHC, for SAGE data analysis that 
are based on the adaptation and improvement of self-organizing 
maps and hierarchical clustering techniques. They have tested the 
proposed algorithms on synthetic and experimental SAGE data. 
Their results indicate that, the two algorithms and a hybrid 
approach based on the combination of these two algorithms, offer 
significant improvements in pattern discovery and visualization 
for SAGE data. 

Rioult [19] presented an approach for mining strong emerging 
patterns from wide (too many features) SAGE datasets. The 
approach is based on the transposition of data matrix and the use 
of Galois connection for inferring the closed sets of the original 
matrix and finally deriving the strong emerging patterns. 

Becquet et al. [3] applied association rules mining to SAGE data. 
In this study various discretization methods for transforming the 
data matrix to a Boolean context are described. Depending on the 
discretization algorithm used, different properties of the data were 
highlighted. In all cases the extracted collections of rules 
indicated a very strong co-regulation of mRNA encoding 
ribosomal proteins. Frequent closed itemset mining algorithms, 
have been used for SAGE data analysis [10]. In [13] a method to 
extract all the δ-strong characterization rules from SAGE data is 
proposed. The authors discuss the potential impact of these rules 
to characterize cancer versus no cancer biological situations. 

The effect of dimensionality reduction methods for supervised 
learning is studied in [2]. They compare filtering and wrapper 
methods. They concluded that typical filtering approaches 
negatively impact the predictive accuracy of classifiers as well as 
that many groups of genes that are not differentially expressed 
may contribute critically to classification.  

Martinez et al. [16] study the effect of data cleaning and discuss 
the process of the attribution of a tag to a gene. They use principal 
components analysis and hierarchical clustering methods. They 
conclude that the comparisons of cancers from various tissue 
types is a particularly difficult task, as tissue samples cluster 
according to tissue origin and not according to cell state (normal 
or cancerous).  

In [14] an analysis of SAGE data using various feature ranking, 
classification, and error estimation methods is presented. Their 
results show that the support vector machine with the stump 
kernel performs well on SAGE data. They have also concluded 
that a feature set of about 500 to 1000 features is adequate for 
predicting the cancerous state of a sample. 

A hybrid system based on genetic algorithms and artificial neural 
networks was proposed for classifying SAGE data [7]. The 

system works by selecting a compact set of genes predicting 
cancerous and normal cell states. 

3. OUR APPROACH 
In this section we provide a detailed description of the proposed 
approach. Before presenting the basic steps of this approach 
(discretization, feature-gene selection and clustering) we will 
describe the structure of the input data. 

The data are structured in a gene expression matrix A. The 
columns of the matrix represent the tags of the genes and the rows 
represent the different samples (SAGE libraries). The intersection 
of the ith row with the jth column, namely the element aij, is the 
gene expression level for the gene j in the sample i. 

3.1 Discretization 
In this step the data are discretized. The discretization procedure 
followed in our approach is used in order to detect the strong 
under-expressions (expressions of genes that are significantly 
lower than the mean gene expression) or over-expressions 
(expressions of genes that are significantly higher than the mean 
gene expression) of genes. The intuition behind this procedure is 
that the extreme expressions of genes, namely the over-
expressions and under-expressions, may carry important 
information, which can be utilized for enhancing clustering. 
Before the discretization step it is not necessary to apply any 
specific normalization process. The SAGE libraries that are used 
in our study contain almost the same number of tags. One of the 
main advantages of the SAGE technique is that, since it relies 
only on a sampling process, it is “self-normalized” and therefore a 
SAGE library can directly be compared to other SAGE libraries 
[9].  

The discretization process works as follows. For the data matrix A 
we calculate a 99% confidence interval for the expression levels 
of each gene. So, for each gene j we get a confidence interval 
[left(j), right(j)]. Then we create a new matrix A′ , where 

{ 1,0,1}.a′∈ −  These values are assigned as follows: 

• 1,ija′ = −  if aij < left(j) AND aij ≠  0 

• 0,ija′ =  if aij ∈ [left(j), right(j)]  

• 1,ija′ = +  if aij > right(j) 

Assigning the value of -1 to ija′ , means that gene j is significantly 
under-expressed in the sample i. Similarly, an assignment of +1 to 

ija′ , means that gene j is significantly over-expressed in the 

sample i. Finally, a value of zero assigned to ija′  means that there 
is not a significant under-expression or over-expression.  

The term “aij ≠  0”  is used in order not to consider zero values as 
under-expressions. The rationale behind this is twofold. First, a 
zero value means that a tag is not found in a sample, so the 
corresponding gene is not just under-expressed, but it is not 
expressed at all. As mentioned in [18], biochemists believe that 
the vast majority of genes in the human genome are only 
expressed in one tissue type, and only some “housekeeping 
genes” are expressed in all cells. According to this consideration, 
it is very probable that a gene with zero expression level in a 
particular sample is not expressed in the tissue type from which 



the sample was taken. So it would be inaccurate if we considered 
it as an under-expression. Moreover, there are too many zeros in 
gene expression matrices. If we consider zeros as under-
expressions, the valuable under expressions will be lost among the 
vast majority of inaccurate zero under-expressions. 

Matrix A′  is the input to the next step that involves selecting the 
relevant genes for clustering. 

3.2 Gene Selection and Clustering 
In this step we use the discretized gene expression matrix A′  in 
order to select the most prominent tags for clustering SAGE 
libraries according to their cell state (cancerous or normal). The 
criterion of the selection is the homogeneity of the over-
expressions and under-expressions of each gene. For each gene j 
we calculate its homogeneity Hj as follows: 

Hj = .
ij

i

ij
i

a

a

′

′

∑

∑
 

The nominator of the above fraction is the sum of the values of 
column (gene) j in the discretized matrix and the denominator is 
the sum of the absolute values of column j in the discretized 
matrix. The following examples make more clear how the 
homogeneity is calculated. Let us consider two genes. The first 
one has 5 values equal to -1 and 20 values equal to 1, whereas the 
second one has 11 values equal to -1 and 9 values equal to 1. The 
zero values, which represent the absence of an over-expression or 
under-expression, are ignored. The homogeneity of the first gene 
is equal to |15/25| = 0.6 and the homogeneity of the second gene 
is equal to |-2/20| = 0.1.  

We believe that the genes with higher homogeneity are more 
useful for clustering. Although this is a reasonable idea and is, 
more or less, confirmed by our experiments, we do not propose a 
rule such as “select the genes that have homogeneity larger than a 
value h”. Instead of this, we propose the use of a criterion like 
silhouette value in order to evaluate the clustering structures 
obtained using genes with different values of homogeneity. In 
particular, in our approach we divide the range of homogeneity 
into a number of intervals (i.e. [0, 0.1), [0.1, 0.2), …, [0.9, 1]). 
For each interval we select only the genes that have a 
homogeneity value inside this interval. Then we apply a 
clustering algorithm on the initial data matrix A (not the 
discretized one) using only the selected genes and we get a 
clustering structure. We may get more than one clustering 
structure for an interval by applying many algorithms or the same 
algorithm with different parameters. This procedure is repeated 
for all intervals. Then, we evaluate each clustering structure and 
select the one with the highest mean silhouette value.  

4. EXPERIMENTAL SETUP 
In this section we define our experimental setup. First, we present 
the datasets that we experimented with. Then we present the 
clustering algorithms that were utilized in our experiments and 
finally, we describe the method we used in order to evaluate our 
results. 

4.1 Datasets 
We have used two SAGE datasets in our study. The first one 
consists of 74 samples (SAGE libraries) and 822 features (tags). 
The second one consists of 90 SAGE libraries and 27679 tags. 
From now on we will refer to these datasets as the 74x822 dataset 
and the 90x27679 dataset respectively. Both datasets have been 
provided by Dr Olivier Gandrillon’s team (Centre de Génétique 
Moléculaire et Cellulaire de Lyon, France) and have been studied 
and presented at the ECML/PKDD Discovery Challenge 
Workshops in 2004 and 2005. The SAGE libraries contained in 
these datasets are publicly available in the SAGEmap website 
(http://www.ncbi.nlm.nih.gov/SAGE/index.cgi) and have been 
prepared as of December 2002 [9]. They are collected from 
various human tissue types (colon, brain, ovary, etc.) and are 
labeled according to their cell state that is either normal or 
cancerous. 

4.2 Clustering Algorithms 
We used the following two clustering algorithms implemented in 
MATLAB (http://www.mathworks.com): 

• k-means. A very popular partitional algorithm [15]. The 
squared Euclidean distance was used as a distance measure. 
In order to avoid local minima we set the “replicates” 
parameter to 3, so that the clustering is repeated three times, 
each with a new set of initial centroids. We experimented 
with k (the number of clusters) ranging from 2 to 20. 

• Hierarchical algorithm. This algorithm is an agglomerative 
hierarchical clustering algorithm and represents another 
commonly used family of clustering algorithms. We used 
the Euclidean distance for measuring distances between 
samples and the ward method (minimum variance 
algorithm) for linking clusters together.  

4.3 Cluster Validity 
The cluster validity criteria can be grouped in three basic 
categories [12]: 

• External criteria. The results of a clustering algorithm are 
evaluated on the basis of a pre-specified structure. 

• Internal criteria. The results of clustering are evaluated 
using quantities and features that are inherent to the data 
(e.g. the proximity matrix). 

• Relative criteria. In this case the clustering results are 
compared to other clustering structures resulting by the 
same algorithm but with different input parameter values. 

In our setup we utilize some external criteria to evaluate our 
clustering results. In particular, we use two pre-specified 
structures-partitions of the SAGE libraries. The first one is based 
on the cell state of the sample (cancerous or normal) and the 
second one is based on the cell source of the sample (bulk or cell 
line). In the following lines we describe in more detail how we 
used these external criteria. 
In order to compare a clustering structure C of the data with a 
given partition P of the data we define the following terms:  

• SS is the number of pairs of samples that both belong to the 
same cluster of the clustering structure C and to the same 
group of partition P. 



• SD is the number of pairs of samples that both belong to the 
same cluster of the clustering structure C and to different 
groups of partition P. 

• DS is the number of pairs of samples that both belong to 
different clusters of the clustering structure C and to the 
same group of partition P. 

• DD is the number of pairs of samples that both belong to 
different clusters of the clustering structure C and to 
different group of partition P. 

The total number of pairs of samples is: SS + SD + DS + DD = 
( 1) ,

2
n n −  where n is the total number of samples in data. 

We used the following indices to measure the degree of similarity 
between C and P: 

• Jaccard Coefficient: ,SSJ
SS SD DS

=
+ +

 

• Folkes and Mallows Index: .SS SSFM
SS SD SS DS

= ⋅
+ +

 

In the next section we will present only the results of the Folkes 
and Mallows index, since the results are almost identical for both 
indices. 

5. RESULTS 
In this section we present the results of the experiments that were 
conducted according to the setup described in the previous 
section. 

As described in the experimental setup we applied k-means with k 
varying from 2 up to 20 on the 74x822 dataset. Each row of Table 
1 presents the best clustering structure -according to the mean 
silhouette value- among the structures that were obtained using 
only the genes with a homogeneity value inside the interval of the 
first column. All the intervals except the last one have the same 
width. The last one expands from 0.7 to 1, because there are not 
any genes with a homogeneity value inside the interval [0.7, 0.9). 
For the most of the intervals the clustering structure with two 
clusters has the highest mean silhouette value. This is in 
agreement with the intrinsic characteristics of the data, since there 
two partitions either if we consider a partitioning based on cell 
state (cancerous and normal) or based on cell source (bulk and 
cell line). Among all the intervals the best clustering structure was 
the one of the [0.6, 0.7). 

Table 1. The best clustering structures of k-means on the 
74x822 dataset. 

Homogeneity Number of Clusters Mean Silhouette 
[0, 0.1) 2 0.5795 

[0.1, 0.2) 2 0.4819 
[0.2, 0.3) 20 0.4015 
[0.3, 0.4) 2 0.4619 
[0.4, 0.5) 3 0.6852 
[0.5, 0.6) 2 0.9755 
[0.6, 0.7) 2 0.9766 
[0.7, 1] 3 0.9448 

 

Figure 2 presents the evaluation of the clustering structure that 
contains two clusters and is obtained using k-means. The y-axis 
represents the Folkes and Mallows index, whereas the x-axis 
represents the homogeneity interval that was used in order to 
select the genes. As shown in the figure, the clustering structure 
conforms better to the cell state partition than to the cell source 
partition. The highest value of the index is obtained using the 
[0.6, 0.7) interval. This agrees with the results of the mean 
silhouette value and indicates that the approach we follow in 
order to select the best interval is accurate. 
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Figure 2. Evaluation of the structure with 2 clusters obtained 

using k-means on the 74x822 dataset. 

In Figure 3 the results obtained using all the features-genes are 
compared to the results obtained using the selected genes with a 
homogeneity value inside the interval [0.5, 0.7). The validation is 
based on the cell state partition. The interval of [0.6, 0.7) that was 
found to present the best clustering structure for two clusters 
contains only two genes. Although the results obtained for this 
interval are very good, two genes are very few for finding 
compact clusters based on cell state. So we merged this interval 
with its adjacent [0.5, 0.6) interval that is the second one in the 
ranking according to mean silhouette value.  
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Figure 3. Comparison of the clustering results using k-means 

on the 74x822 dataset based on cell state partition. 



As shown in Figure 3 the clustering structures of the approach 
with the selected genes are conforming better to the cell state 
partition for almost all values of k. This means that the selection 
of genes helps to the uncovering of the information that is 
relevant to discriminate cancerous from normal samples. 

In Figure 4 the results obtained using all the genes are also 
compared to the results obtained using the selected genes with a 
homogeneity value inside the interval [0.5, 0.7). The validation is 
based on the cell source partition this time. As before the 
clustering structures of the approach with the selected genes are 
conforming better to the cell source partition for almost all values 
of k. This means that the selection of genes helps to the 
discrimination of bulk from cell line samples, too.  
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Figure 4. Comparison of clustering results using k-means on 

the 74x822 dataset based on cell source partition. 

Figures 5 and 6 present comparisons of the results of both 
partitions (cell state and cell source) for the approach with the 
selected features and the approach with all features. As shown in 
the figures after feature selection the obtained clustering 
structures conform slightly better to the cell state partition than to 
the cell source partition. 
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Figure 5. Comparison of clustering results using k-means and 
all the features on the 74x822 dataset based on both partitions. 
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Figure 6. Comparison of clustering results using k-means and 

selected features on the 74x822 dataset based on both 
partitions. 

In the following lines we present the results obtained using k-
means with k varying from 2 up to 20 on the 90x27679 dataset. 
As in Table 1, each row of Table 2 presents the best clustering 
structure -according to the mean silhouette value- among the 
structures that were obtained using only the genes with a 
homogeneity value inside the interval of the first column. Again, 
for the most of the intervals the clustering structure with two 
clusters has the highest mean silhouette value. So, for this dataset 
also there is an agreement between the intrinsic characteristics of 
the data (the existing partitions) and the discovered number of 
clusters. Among all the intervals the best clustering structure was 
the one of the [0.9, 1] interval. 

Table 2. The best clustering structures of k-means on the 
90x27679 dataset. 

Homogeneity Number of Clusters Mean Silhouette 
[0, 0.1) 18 0.2409 

[0.1, 0.2) 3 0.5181 
[0.2, 0.3) 2 0.4765 
[0.3, 0.4) 2 0.4606 
[0.4, 0.5) 3 0.8603 
[0.5, 0.6) 2 0.8471 
[0.6, 0.7) 2 0.9654 
[0.7, 0.8) 2 0.9530 
[0.7, 0.9) 2 0.8420 
[0.9, 1] 2 0.9841 

 

Figure 7 presents the evaluation of the clustering structure that 
contains two clusters depending on the homogeneity interval that 
was used in order to select the genes. As shown in the figure, the 
clustering structure conforms better to the cell state partition than 
to the cell source partition. The highest value of the index is 
obtained for the [0.7, 0.8) as well as the [0.9, 1] interval. This 
agrees with the results of the mean silhouette value, where the 
[0.9, 1] interval achieved the highest value. The [0.7, 0.8) has also 
a very high silhouette value. 
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Figure 7. Evaluation of the structure with 2 clusters obtained 

using k-means on the 90x27679 dataset. 

In Figure 8 the results obtained using all the genes are compared 
to the results obtained using the selected genes with a 
homogeneity value inside the interval [0.9, 1]. As shown in the 
figure the clustering structures of the approach with the selected 
genes are conforming better to the cell state partition for all values 
of k (for 2 and 3 clusters they perform the same). As with the 
other dataset this indicates that the selection of genes helps to the 
uncovering of the information that is relevant to discriminate 
cancerous from normal samples. 
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Figure 8. Comparison of the clustering results using k-means 

on the 90x27679 dataset based on cell state partition. 

In Figure 9 the results obtained using all the genes are also 
compared to the results obtained using the selected genes with a 
homogeneity value inside the interval [0.9, 1]. The validation is 
based on the cell source partition. In this case also, the clustering 
structures of the approach with the selected genes are conforming 
better to the cell source partition for almost all values of k.  

By observing the graphs of both Figures 8 and 9 we see that only 
for the clustering structures of 2 and 3 clusters the results are the 
same for both approaches. This means that the selection of the 
gene tags does not lead to improved clustering structures. 

However, the quality of clusters does not reduce, but remains the 
same. If we consider the important improvement in all the 
remaining clustering structure we can undauntedly conclude that 
the quality of the clustering structures obtained by our approach is 
considerably improved.  
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Figure 9. Comparison of clustering results using k-means on 

the 90x27679 dataset based on cell source partition. 

Figures 10 and 11 present comparisons of the results of both 
partitions (cell state and cell source) for the approach with the 
selected features and the approach with all features. With this 
dataset the improvement of the discrimination between different 
cell states is quite visible. As shown in Figure 10 the clustering 
structures got using all features conform better to the cell source 
partition than to the cell state partition, when more than three 
clusters are obtained except with 2 and 3 clusters. However, in 
Figure 11 we see that after feature selection the obtained 
clustering structures conform pretty better to the cell state 
partition than to the cell source partition. 
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Figure 10. Comparison of clustering results using k-means 
and all the features on the 90x27679 dataset based on both 

partitions. 
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Figure 11. Comparison of clustering results using k-means 

and selected features on the 90x27679 dataset based on both 
partitions. 

As described in the experimental setup we also used a hierarchical 
clustering algorithm. We used the distance as a criterion in order 
to obtain specific numbers of clusters from the hierarchy of 
clusters. As with k-means the number of clusters varies from 2 up 
to 20. The results of this algorithm are quite similar to those of k-
means and the observations made for the results of k-means are 
also valid for this algorithm. For this reason we will not present 
extensive experimental results, but we will focus on the most 
interesting findings on the 74x822 dataset. 

In Figure 12, k-means and the hierarchical algorithm are 
compared based on cell state partition using all the features. As 
shown in the figure, the clustering structures of k-means for 2 and 
3 clusters conform fairly better to the cell state partition than the 
hierarchical algorithm’s structures. For the rest clustering 
structures there are not important differences.  
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Figure 12. Comparison of k-means and hierarchical algorithm 

on the 74x822 dataset based on cell state partition. 

The same observation could be made for the 2 and 3 clusters of 
Figure 13, where k-means and the hierarchical algorithm are 
compared based on cell source partition. In this case for 3 to 9 
clusters the hierarchical clustering algorithm performs better. 
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Figure 13. Comparison of k-means and hierarchical algorithm 

on the 74x822 dataset based on cell source partition. 

Figures 14 and 15 present a comparison of k-means and 
hierarchical algorithm for 2 clusters with various homogeneity 
intervals for selecting the genes. In Figure 14 the comparison is 
based on cell state, whereas in Figure 15 is based on cell source. 
In both cases the two algorithms perform identically for 
homogeneity values over 0.5. This observation is quite important 
since the most prominent genes as indicated by the experiments 
tend to have values of homogeneity greater than 0.5 and near to 1. 
In contrast, as shown in Figures 12 and 13 there is a great 
difference between k-means and the hierarchical algorithm for the 
clustering structures of 2 and 3 clusters. These observations 
indicate that the clustering structures obtained by our approach 
are less dependant on the used clustering algorithm. This means 
that the discretization and feature selection steps of our approach 
assist significantly the discovery of the most prominent genes.  
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Figure 14. Comparison of k-means and hierarchical algorithm 
for 2 clusters and various homogeneity intervals on the 74x822 

dataset (comparison is based on cell state). 
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Figure 15. Comparison of k-means and hierarchical algorithm 
for 2 clusters and various homogeneity intervals on the 74x822 

dataset (comparison is based on cell source). 

6. CONCLUSIONS 
In this paper we proposed an approach for clustering gene 
expression data that are collected with the SAGE method. In 
particular we focused on clustering SAGE libraries according to 
their cell state (cancerous or normal) and compared with the 
clustering of the libraries according to their cell source (bulk or 
cell line). SAGE libraries are usually clustered almost equally 
well according to either their cell state, or their cell source. 
However, a clustering structure that discriminates cancerous 
samples from normal ones is more interesting than one that 
discriminates bulk from cell line samples. Moreover, the presence 
of two cell sources in combination to the high dimensionality of 
the data and the existence of many cancer types makes more 
difficult the discrimination of the samples. In addition, if we think 
of the considerable contamination that is present in the bulk tissue 
samples, the problem becomes even harder. By saying 
contamination we mean that a cancerous bulk tissue sample may 
also contain surrounding normal cells. The phenomenon of bulk 
tissue contamination was also observed in previous works [11, 
18].  

In order to deal with these problems and uncover those features 
(gene tags) that are more relevant to the cell state grouping of 
SAGE libraries, we have utilized the under-expressions and over-
expressions of genes for studying their variation across the SAGE 
libraries. Our approach successfully discovers the number of 
clusters that are intrinsic in the two datasets that were used in this 
paper. Also, the clustering structures obtained using our approach, 
conform quite better to the cell state partition of the data. These 
clustering structures also conform better to the cell source 
partition in comparison to the clustering structures obtained using 
all the features. Moreover, the experiments shown that a number 
of genes (sometimes very small number of genes is adequate) can 
encapsulate the most valuable information for clustering. So, the 
benefit is twofold. First, we manage to obtain considerably better 
clustering structures, and second we drastically reduce the data 
dimensionality and consequently the computational cost.  

Our future plans include the improvement of the gene selection 
step of our approach. In particular, we plan to use a better method 

for partitioning the homogeneity space in a number of intervals. 
Moreover, we are thinking about the modification and application 
of our approach on gene expression data that were collected with 
other techniques, like DNA arrays. Finally, we intend to study 
more in-depth the impact of sequencing errors and other possible 
sources of noise on the effectiveness of gene expression 
clustering. 
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