
Effective and Efficient Multilabel Classification
in Domains with Large Number of Labels

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas

Department of Informatics,
Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
{greg,katak,vlahavas}@csd.auth.gr

Abstract. This paper contributes a novel algorithm for effective and
computationally efficient multilabel classification in domains with large
label sets L. The HOMER algorithm constructs a Hierarchy Of Mul-
tilabel classifiERs, each one dealing with a much smaller set of labels
compared to L and a more balanced example distribution. This leads
to improved predictive performance along with linear training and loga-
rithmic testing complexities with respect to |L|. Label distribution from
parent to children nodes is achieved via a new balanced clustering algo-
rithm, called balanced k means.

1 Introduction

Traditional single-label classification is concerned with learning from a set of
examples that are associated with a single label λ from a set of disjoint labels
L, |L| > 1. If |L| = 2, then the learning task is called binary classification
(or filtering in the case of textual and web data), while if |L| > 2, then it is
called multi-class classification. In multilabel classification [1], the examples are
associated with a set of labels Y ⊆ L.

This work considers the task of multilabel classification in domains with large
number of labels (hundreds or more). Text categorization [2, 3], protein function
classification [4, 5] and semantic annotation of multimedia [6] are examples of
such domains.

The high dimensionality of the label space may challenge a multilabel classi-
fication algorithm in many ways. Firstly, the number of training examples anno-
tated with each particular label will be significantly less than the total number
of examples. This is similar to the class imbalance problem in single-label clas-
sification [7]. Secondly, the computational cost of training a multilabel classifier
may be strongly affected by the number of labels. There are simple algorithms
(e.g. binary relevance) with linear complexity with respect to |L|, but there are
also more advanced methods [8] whose complexity is worse. Finally, although the
complexity of using a multilabel classifier for prediction is linear with respect to
|L| in the best case, this may still be inefficient for applications requiring fast
response times.

2

The main contribution of this work is a novel algorithm for effective and
computationally efficient multilabel classification in domains with many labels,
called HOMER1 (Hierarchy Of Multilabel classifiERs). HOMER constructs a
hierarchy of multilabel classifiers, each one dealing with a much smaller set of
labels compared to L and a more balanced example distribution. This leads
to improved predictive performance along with linear training and logarithmic
testing complexities with respect to |L|.

One of the main processes within HOMER is the even distribution of a set
of labels into k disjoint subsets so that similar labels are placed together and
dissimilar apart. Such a task has been considered in the past in the literature
under the name balanced clustering [9]. A secondary contribution of this paper
is a new algorithm for this task, called balanced k means.

The rest of the paper is structured as follows. Sections 2 and 3 describe
HOMER and balanced k means respectively. Sections 4 and 5 present the setup
and results respectively of the experimental work comparing HOMER to binary
relevance, which is the most popular and computationally efficient multilabel
classification method. Finally, Section 6 concludes this paper and points to po-
tential extensions.

2 The HOMER Algorithm

HOMER follows the divide-and-conquer paradigm of algorithm design. The main
idea is the transformation of a multilabel classification task with a large set of
labels L into a tree-shaped hierarchy of simpler multilabel classification tasks,
each one dealing with a small number k << |L| of labels.

Each node n of this tree contains a set of labels Ln ⊆ L. There are |L| leaves,
each one containing a singleton (single element set) {λj} with a different label
λj of L. Each internal node n contains the union of the label sets of its children,
Ln =

⋃
Lc, c ∈ children(n). The root contains all labels, Lroot = L.

We define the concept of meta-label of a node n, µn, as the disjunction of
the labels contained in that node, µn ≡ ∨

λj , λj ∈ Ln. Meta-labels have the
following semantics: a training example can be considered annotated with meta-
label µn, if it is annotated with at least one of the labels in Ln.

Each internal node n of the hierarchy also contains a multilabel classifier hn.
The task of hn is the prediction of one or more of the meta-labels of its children.
Therefore, the set of labels for hn is Mn = {µc | c ∈ children(n)}. Figure 1
shows a sample hierarchy produced for a multilabel classification task with 8
labels {λ1, . . . , λ8}.

For the multilabel classification of a new instance x, HOMER starts with
hroot and follows a recursive process forwarding x to the multilabel classifier hc

of a child node c only if µc is among the predictions of hparent(c). Eventually, this
process may lead to the prediction of one or more single-labels by the multi-label
classifier(s) just above the corresponding leaf(ves). The union of these predicted

1 Homer was an ancient Greek epic poet, alleged author of Iliad and Odyssey.

3

Fig. 1. Sample hierarchy for a multilabel classification task with 8 labels

single-labels is the output of the proposed approach in this case, while the empty
set is returned otherwise.

For training HOMER, we assume the existence of a set D = {(xi, Yi) | i =
1 . . . |D|} of training examples, each one consisting of a feature vector xi and a set
of labels Yi ⊆ L. HOMER creates the tree recursively in a top-down depth-first
fashion starting with the root. At each node n, k children nodes are first created,
unless |Ln| < k, in which case the number of children is |Ln|. Each such child n
filters the data of its parent, keeping only the examples that are annotated with
at least one of its own labels: Dn = {(xi, Yi) | (xi, Yi) ∈ Dparent(n), Yi ∩Ln 6= ∅}.
The root uses the whole training set, Droot = D. Two main processes are then
sequentially executed: a) the labels of the current node are distributed into k
disjoint subsets, one for each child of the current node, and b) a multilabel
classifier is trained for the prediction of the meta-labels of its children. The
approach recurses into each child node that contains more than a single label.

In the latter process, each internal node n transforms its examples (xi, Yi) ∈
Dn into meta-examples (xi, Zi), where Zi = {µc | c ∈ children(n), Yi ∩Lc 6= ∅}.
These meta-examples are used for training hn.

The main issue in the former process is how to distribute the labels of Ln to
the k children. We argue that labels should be evenly distributed to k subsets in
a way such that labels belonging to the same subset are as similar as possible.
Such a task can be thought of as clustering with the additional constrain of equal
cluster size. It has been considered in the past in the literature, under the name
balanced clustering [9]. HOMER can use existing balanced clustering algorithms
for this process (see Section 3.2). A new balanced clustering algorithm, called
balanced k means, is presented in Section 3.

The justification in favor of similarity-based distribution is that if similar
labels of a node n are placed in the same subset, then only a few (ideally just
one) meta-labels of hn will be predicted and thus the rest sub-trees will not
be activated. This will lead to reduced cost during the operation and testing of

4

HOMER. Another expected benefit is that each child node will probably contain
less training examples. The justification in favor of even distribution is that the
multilabel classifiers at each node will deal with a more balanced distribution
of positive examples for each meta-label. This is expected to lead to improved
predictive performance.

2.1 Computational Complexity

To simplify the analysis, we will assume that |L| = kd, for some integer d, which
means that the hierarchy is a perfect k-ary tree of depth d (all internal nodes
have k children and all leaves are at the same level). The number of internal
nodes in such a tree is equal to (|L| − 1)/(k − 1) [10].

The complexity of the balanced clustering process at each node n depends
on the actual algorithm being used and can range from O(|Ln|) to O(|Ln|3) (see
Section 3.2). Ln is equal to L at the root, but subsequently decreases exponen-
tially with the tree’s depth. Therefore, if f(|Ln|) is a function of the complexity
of the balanced clustering algorithm with respect to Ln, then the overall com-
plexity of HOMER with respect to this algorithm is O(f(|L|). In other words
HOMER retains the complexity of the balanced clustering algorithm.

Consider for example that f(|Ln|) = |Ln|2. Then at the root we have a
cost of |L|2 while at the second level we have k additional costs of (|L|/k)2, i.e.
an additional cost of |L|2/k. At the next level we have k2 additional costs of(|L|/k2

)2, i.e. an additional cost of |L|2/k2. This is a sum of a geometric series
leading to a total cost of 2|L|2 when the depth of the tree approaches infinity.

At each node, there is also the cost of training the hierarchical multilabel
classifier, which depends on the algorithm being used. If g(|L|) is a function of
the complexity of the multilabel classifier with respect to the number of labels |L|
then the complexity at node n is O(g(k)). Given that there are (|L| − 1)/(k− 1)
internal nodes, then the overall complexity of this process of HOMER is linear
with respect to |L| irrespectively of the multilabel classifier being used. This is
an important benefit, especially if the complexity of the multilabel classifier used
is worse than linear with respect to |L|.

Another interesting point is that the size of Dn at each node n also reduces
with the depth of the tree. The rate of reduction depends on many factors
(average number of labels per example, overlap of labels in examples, k) and
cannot be explicitly represented.

To conclude, HOMER’s overall training complexity is O(f(|L|)+ |L|), where
f(|L|) is the complexity of the balanced clustering algorithm with respect to a
set of labels L.

During testing or operation, the cost depends on the average multilabel clas-
sifiers that are activated. Assuming that each example is annotated with a small
number of labels compared to L, that HOMER outputs a small number of labels
as well and that a different root-to-leaf path is followed for the prediction of
each label, then we can consider the complexity as O (logk(|L|)). Compared to
the typical O(|L|) complexity, HOMER offers an important benefit, especially
for domains where online performance is critical.

5

3 Balanced k Means

We developed a new balanced clustering algorithm, called balanced k means,
which extends the well-known k means algorithm with an explicit constraint on
the size of each cluster. Since the objects of clustering are labels, we only consider
the label part, Yi, of the data at the current node of the tree, (xi, Yi) ∈ Dn,
and in particular a subset, Wi, of Yi with just the labels at the current node
Wi = Yi ∩ Ln. The algorithm accepts as input a set of labels Ln ⊆ L, a set of
label data Wi, the number of partitions k and a number of iterations it, and
outputs k disjoint subsets of Ln with approximately equal size. Figure 2 shows
the balanced k means algorithm in pseudo-code.

Input: number of clusters k, labels Ln, label data Wi, iterations it
Output: k balanced clusters of labels
for i ← 1 to k do

// initialize clusters and cluster centers
Ci ← ∅ ;
ci ← random member of Ln ;

while it > 0 do
foreach λ ∈ Ln do

for i ← 1 to k do
dλi ← distance(λ, ci, Wi)

finished ← false;
ν ← λ ;
while not finished do

j ← arg min
i

dνi;

Insert sort (ν, dν) to sorted list Cj ;
if |Cj | > d|Ln|/ke then

ν ← remove last element of Cj ;
dνj ←∞ ;

else
finished ← true;

recalculate centers;
it ← it− 1

return C1, ..., Ck;

Fig. 2. Balanced k-Means Algorithm

The key element in the algorithm is that for each cluster i we maintain a
list of labels, Ci, sorted in ascending order of distance to the cluster centroid
ci. When the insertion of a label into the appropriate position of the sorted
list of a cluster, causes its size to exceed the maximum allowed number of labels
(approximately equal to the number of items divided by the number of clusters),
the last (furthest) element in the list of this cluster is inserted to the list of the

6

next most proximate cluster. This may lead to a cascade of k − 1 additional
insertions in the worst case. Another difference compared to k means, is that
we limit the number of iterations using a user-specified parameter, it, as no
investigation of convergence was attempted.

To calculate the centroids of clusters and the distance of labels to these
centroids, we first expand the label data Wi into binary vectors wij , j = 1 . . . |Ln|,
where wij = 1 if λj ∈ Wi and wij = 0 otherwise. Then centroids are calculated
as the mean vectors of the labels in each cluster, while the Euclidean metric is
used to measure the distance between centroid and label vectors.

3.1 Computational Complexity

At each iteration of the balanced k means algorithm, we loop over all labels |Ln|,
calculate their distance to the k cluster centers with an O(|Dn|) complexity and
insert them into a sorted list of max size |Ln|/k, which has complexity O(|Ln|).
This may result into a cascade of k − 1 additional insertions into sorted lists
in the worst case, but the complexity remains O(|Ln|). So the total cost of the
balanced k means algorithm is O(|Ln||Dn| + |Ln|2). As typically |Ln| ¿ |Dn|,
the algorithm can efficiently partition labels into balanced clusters based on very
large datasets.

3.2 Related Work

Contrary to our scenario, typical applications of (balanced) clustering involve a
very large number of objects (millions). Therefore, the scalability of balanced
clustering algorithms is an important issue. A sampling-based algorithm with
complexity O(|Ln|log|Ln|) has been proposed in [9].

The frequency-sensitive k means algorithm [11] is a fast algorithm for bal-
anced clustering (complexity of O(|Ln|)). It extends k-means with a mechanism
that penalizes the distance to clusters proportionally to their current size, lead-
ing to fairly balance clusters in practice. However, it does not guarantee that
every cluster will have at least a pre-specified number of elements.

Another approach to balanced clustering extends k means by considering the
cluster assignment process at each iteration as a minimum cost-flow problem
[12]. Such an approach has a complexity of O(|Ln|3), which is worse than the
proposed algorithm.

Finally, according to [9], the balanced clustering problem can also be solved
with efficient min-cut graph partitioning algorithms with the addition of soft
balancing constraints. Such approaches have a complexity of (O(|Ln|2), similarly
to the proposed algorithm.

4 Experimental Setup

4.1 Datasets

Two datasets are used in the experiments. The first one, called delicious was
extracted from the del.icio.us social bookmarking site on the 1st of April

7

2007. It contains textual data of web pages along with their tags, and is used to
train a multilabel classifier for automated tag suggestion. The second dataset,
called mediamill, was introduced in a video annotation challenge [6]. Table 4.1
presents statistics of both datasets, including the number of examples, attributes,
labels and the average number of labels in the examples (label cardinality) along
with its normalized version (cardinality divided by the number of labels), called
label density [1].

Table 1. Information and multilabel statistics for the data sets used in the experiments

Examples Attributes Label Label
Dataset Train Test Numeric Discrete Labels Cardinality Density

delicious 12920 3185 0 500 983 19.020 0.019
mediamill 30993 12914 120 0 101 4.376 0.043

In the rest of this subsection we describe the extraction process for the deli-
cious dataset. Initially, we retrieved the 140 most popular tags in del.icio.us2.
Then, for each of these tags we retrieved the 1000 most recent bookmarks and
selected the 200 most popular, based on the number of users that included them
in their personal bookmarks. This resulted into 28000 bookmarks, including du-
plicate entries. After the removal of duplicates, 19740 bookmarks remained.

Each bookmark is usually annotated with more than one tag, either because
the user who originally posted the bookmark annotated it with more than one
tags or because other users assigned different tags to it. For each bookmark, we
extracted the 25 most popular tags, as listed in the bookmark’s web page. This
resulted into a total of 22139 distinct tags for all bookmarks. To discharge the
dataset from rarely used tags we removed tags used in less than 10 bookmarks.
This led to a final set of 983 tags.

We then retrieved the Web page of each bookmark and extracted its con-
tent. The total number of distinct words from all pages was considerably large
(808255). To discharge the dataset from rare words, those appearing in less than
10 bookmarks were removed. This led to a reduced vocabulary of 7234 words.
The content of web pages was represented using the Boolean bag-of-words model.

In order to further reduce the computational cost of training, feature selec-
tion was applied in the following way. We used the χ2 feature ranking method
separately for each label in order to obtain a ranking of all features for that
label. We then selected the top 500 features based on the their maximum rank
over all labels.

After the aforementioned preprocessing, and the removal of empty examples
(examples with no features or labels) the final version of the dataset included
16105 instances, 983 classes and 500 features. Various versions of the dataset are
publicly available at http://mlkd.csd.auth.gr/multilabel.html.
2 Extracted from the Web page at http://del.icio.us/tag/

8

4.2 Methods

We focus our experiments on the scalability of the binary relevance method
(BR), since it is the most widely used multilabel classification method. Both the
training and the testing phases of BR are already linear with respect to |L|. We
compare BR against HOMER using BR as the multilabel classifier at each node.
To reduce the computational cost of the experiments, we use naive Bayes as the
base classifier for the decomposed binary tasks. We evaluate the performance of
methods using a hold-out set.

HOMER is run with k = 2 . . . 8. In addition to the balanced k means algo-
rithm we examine two different approaches to distributing the labels into subsets.
The first variation, called HOMER-R, distributes evenly but randomly the labels
into the k subsets. The motivation here is to examine the benefits of clustering
on top of the even distribution of labels. The second variation called HOMER-
K, distributes the labels using the k means algorithm without any constraint on
cluster sizes. The motivation in this case is to examine the benefits of even dis-
tribution on top of the clustering. The default version of HOMER with balanced
k means is called HOMER-B.

5 Results and Discussion

5.1 Quality of Prediction

Several metrics exist for the evaluation of the predictive performance of mul-
tilabel classifiers [8]. We present results based on two representative ones, the
Hamming loss and the micro averaged F-measure.

Figure 3 shows the predictive performance of HOMER and its variations in
delicious with respect to the number of clusters. BR has a Hamming loss of
0.282 and an F-measure of 0.081. Therefore, we first notice that even the worst
results of both HOMER and its variations are much better compared to BR.
This verifies that the skewness of the distribution of the examples for each label
is an important problem of BR in domains with large number of classes and that
HOMER manages to alleviate it at some extent.

We then notice that for both metrics, HOMER-B has the best results, fol-
lowed by HOMER-R and then HOMER-K. This shows that clustering improves
on top of the even distribution, which is actually more important than simple
clustering in this domain. HOMER-K seems to be improving with the number
of clusters. Perhaps the balancing of the subsets is increased, due to the distri-
bution of a large cluster into more smaller ones. The performance of HOMER-B
and HOMER-R has a decreasing trend in terms of Hamming loss.

Figure 4 shows the predictive performance of HOMER and its variations in
mediamill with respect to the number of clusters. BR has a Hamming loss of
0.331 and an F-measure of 0.157. Similarly to the previous dataset, we notice
the clear benefits of HOMER independently of the label distribution approach.

9

0,1

0,12

0,14

0,16

0,18

0,2

0,22

0,24

0,26

2 3 4 5 6 7 8

Number of Clusters

F
-M

ea
su

re

 .

HOMER-B
HOMER-K
HOMER-R

(a)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

2 3 4 5 6 7 8

Number of Clusters

H
am

m
in

g
 L

o
ss

 .

HOMER-B
HOMER-K
HOMER-R

(b)

Fig. 3. Predictive performance of HOMER and variations in delicious

0,23

0,28

0,33

0,38

0,43

0,48

2 3 4 5 6 7 8

Number of Clusters

F
-m

ea
su

re

 .

HOMER-B
HOMER-K
HOMER-R

(a)

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0,11

0,12

0,13

2 3 4 5 6 7 8

Number of Clusters

H
am

m
in

g
 L

o
ss

 .

HOMER-B
HOMER-K
HOMER-R

(b)

Fig. 4. Predictive performance of HOMER and variations in mediamill

However, in this case we notice that HOMER-K outperforms HOMER-B,
which remains better than HOMER-R. This shows that in this domain, clus-
tering seems to be more important than balancing the examples. A possible ex-
planation is that balancing is more important as the number of labels increase.
This will have to be examined in the future via controlled experiments. Another
potential reason is that the labels of mediamill may be naturally grouped into
existing balanced clusters. For example many of the 101 categories relate to peo-
ple (people, people walking, people marching, etc), others to vehicles (car, bus,
vehicle, etc) and so on [6]. The performance of both HOMER and its variations
decreases with the number of clusters.

10

5.2 Training Performance

Training performance is measured via the total wall time of training, but also
through two additional indices: a) number of binary classifiers trained, and b)
total number of examples that these classifiers have to process.

BR trains 983 classifiers in delicious and 101 in mediamill. Figure 5 shows that
HOMER and variations need to train an additional number of binary classifiers
for each internal node, apart from the root, which is generally reduced with the
number of clusters.

1200

1300

1400

1500

1600

1700

1800

1900

2000

2 3 4 5 6 7 8

Number of Clusters

C
la

ss
ifi

er
s

 .

HOMER-B
HOMER-K
HOMER-R

(a) delicious

120

130

140

150

160

170

180

190

200

210

2 3 4 5 6 7 8

Number of Clusters

C
la

ss
ifi

er
s

.

HOMER-B
HOMER-K
HOMER-R

(b) mediamill

Fig. 5. Number of binary classifiers trained by HOMER and variations

However, we also notice in Figure 6 that the total number of examples pro-
cessed by these methods are much less than the total number of examples pro-
cessed by BR (|L||D|), which is more than 15 million in delicious and more than
3 million in mediamill. Notice that both balancing and clustering help reducing
the examples propagated from parents to children, as HOMER-B leads to the
fewest total examples in both datasets.

The total training time of BR is 24.6 minutes in delicious and 10.1 minutes
in mediamill. Apart from the number of examples, the total training time of
HOMER further depends on the process used to distribute the labels to subsets.
We have seen that HOMER-B is quadratic with respect to |L|. Despite the
fact, that k means is linear with respect to |L|, HOMER-K is also quadratic,
because the computational benefits of balancing are lost. HOMER-R is linear
with respect to |L|.

Figure 7 shows the training time of HOMER and variations with respect to
the number of clusters. We see that actually HOMER-K requires more time,
which can be explained by the fact that it requires a number of iterations to
converge. However, we interestingly notice that HOMER-B has only a small
overhead compared to HOMER-R.

This means that the total training time of HOMER and variations should
actually be less than that of BR. We believe that the increased time is due

11

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

3,0E+06

3,5E+06

4,0E+06

4,5E+06

5,0E+06

2 3 4 5 6 7 8

Number of Clusters

In
st

an
ce

s

 .

HOMER-B
HOMER-K
HOMER-R

(a) delicious

7,0E+05

8,0E+05

9,0E+05

1,0E+06

1,1E+06

1,2E+06

1,3E+06

1,4E+06

1,5E+06

2 3 4 5 6 7 8

Number of Clusters

In
st

an
ce

s

.

HOMER-B
HOMER-K
HOMER-R

(b) mediamill

Fig. 6. Number of examples processed by binary classifiers of HOMER and variations

0,1

50,1

100,1

150,1

200,1

250,1

2 3 4 5 6 7 8

Number of Clusters

T
ra

in
in

g
 T

im
e

 .

HOMER-B
HOMER-K
HOMER-R

(a) delicious

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8

Number of Clusters

T
ra

in
in

g
 T

im
e

 .

HOMER-B
HOMER-K
HOMER-R

(b) mediamill

Fig. 7. Training time of HOMER and variations

to some dominating non-optimized part of HOMER’s implementation, probably
the part performing the filtering of data from parent to children, as training time
seems to be linearly correlated with the number of classifiers. An optimization
of HOMER’s implementation is among the priorities of our future work.

5.3 Testing Performance

Testing performance is measured through total wall time of testing and an addi-
tional index: average number of binary classifiers activated during the multilabel
classification of a new instance.

Figure 8 shows the average number of activated classifiers and total test-
ing time by HOMER and variations in delicious. BR activates 983 classifiers
and takes 69.4 minutes of testing time. The benefit of HOMER and variants is
evident, as substantially less classifiers are activated, leading to reduced total

12

testing time. We also notice that for HOMER and HOMER-R the average num-
ber of nodes fired and corresponding times increase with the number of clusters,
while for HOMER-K there is an initial decreasing trend, which is subsequently
reversed. The default version of HOMER achieves the best results.

75

125

175

225

275

325

375

425

2 3 4 5 6 7 8

Number of Clusters

A
vg

 C
la

ss
ifi

er
s

F
ir

ed

 .

HOMER-B
HOMER-K
HOMER-R

(a)

0

2

4

6

8

10

12

2 3 4 5 6 7 8

Number of Clusters

T
es

t T
im

e

 .

HOMER-B
HOMER-K
HOMER-R

(b)

Fig. 8. Average classifiers fired and testing time of HOMER and variations in delicious
with respect to the number of clusters

Figure 9 shows the average number of activated classifiers and total testing
time by HOMER and variations in mediamill. BR activates 101 classifiers and
takes 7.6 minutes of testing time. Improvements are noticed for this dataset as
well, although to a smaller extent compared to delicious. We also notice that
the number of nodes fired increases with respect to the clusters, especially for
HOMER-B and HOMER-R but also for HOMER-K at a smaller pace. Test time
graphs do not directly follow these trends, perhaps influenced by occasional
machine loads by other processes. Measuring process time instead of wall time
is another future work priority with respect to the experiments.

Most importantly, we notice again that in this domain HOMER-K performs
better than HOMER-B, which consistently outperforms HOMER-R. The same
explanations as in the case of quality predictions hold. It seems that either
balancing is more useful in domains with larger number of models, or clustering
is more useful in domains with an underlying conceptual hierarchy.

6 Conclusions and Future Work

This paper introduced a new algorithm for effective and efficient multilabel clas-
sification in domains with large number of labels, called HOMER, and presented
a theoretical analysis of its expected computational benefits. In addition, the
paper has empirically shown that HOMER provides more accurate predictions
than the popular binary relevance method in less time. To the best of our knowl-

13

0

10

20

30

40

50

60

2 3 4 5 6 7 8

Number of Clusters

A
vg

 C
la

ss
ifi

er
s

F
ir

ed

 .

HOMER-B
HOMER-K
HOMER-R

(a)

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

8

2 3 4 5 6 7 8

Number of Clusters

T
es

t T
im

e

 .

HOMER-B
HOMER-K
HOMER-R

(b)

Fig. 9. Average classifiers fired and testing time of HOMER and variations in mediamill
with respect to the number of clusters

edge, the scalability of multilabel classification algorithms with respect to the
dimensionality of the label space has not been explicitly considered in the past.

As a side contribution, a new algorithm for balanced clustering was proposed,
called balanced k means. We stress the adjective side, as HOMER can operate
with any balanced clustering algorithm. We do not perform an extensive study
of the balanced k means algorithm in this paper, nor argue for its superiority
against the related work. We merely present it as a potential instantiation of the
label distribution component of HOMER, which is the main focus of this paper.

The experimental work involved a new textual dataset that was extracted
from the del.icio.us social bookmarking site. To the best of our knowledge,
this paper is the first attempt to model the modern application of automated
tag suggestion as a multilabel classification task. However, we do not claim that
such an approach is better or more appropriate than other existing approaches
[13–15]. Such a comparison would be an interesting subject of future work, but
it is outside the scope of this paper.

HOMER could be easily extended to work with an existing hierarchy. This
way it will constitute a new general hierarchical multilabel classifier that can
exploit recent advanced multilabel classification algorithms for increased per-
formance. In the future, we intend to investigate this promising extension and
compare to existing algorithms for hierarchical multilabel classification [16–18].

Within the next steps of this work, we also plan to put a lot of effort in
enriching the empirical data. We intend to examine the scalability of BR in
conjunction with Support Vector Machines (SVMs), which are more computa-
tionally demanding but also more effective algorithms. Since SVMs may have
larger than linear complexity with respect to the size of the training set, the
benefits of HOMER will be higher. We also intend to examine the scalability of
multilabel classification methods with larger complexity than linear. Based on
the theoretical analysis, the benefits of HOMER are expected to be higher in
this case too.

14

Acknowledgements

This work was partially supported by a PENED program (EPAN M.8.3.1, No.
03∆73), jointly funded by the European Union and the Greek Government (Gen-
eral Secretariat of Research and Technology/GSRT).

References

1. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3 (2007) 1–13

2. McCallum, A.: Multi-label text classification with a mixture model trained by em.
In: Proceedings of the AAAI’ 99 Workshop on Text Learning. (1999)

3. Schapire, R.E. Singer, Y.: Boostexter: a boosting-based system for text catego-
rization. Machine Learning 39 (2000) 135–168

4. Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In:
Proceedings of the 5th European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD 2001), Freiburg, Germany (2001) 42–53

5. Roth, V., Fischer, B.: Improved functional prediction of proteins by learning kernel
combinations in multilabel settings. In: Proceeding of 2006 Workshop on Proba-
bilistic Modeling and Machine Learning in Structural and Systems Biology (PMSB
2006), Tuusula, Finland (2006)

6. Snoek, C.G., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.:
The challenge problem for automated detection of 101 semantic concepts in mul-
timedia. In: Proceedings of ACM Multimedia. (2006) 421–430

7. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from
imbalanced data sets. SIGKDD Explorations 6 (2004) 1–6

8. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multi-
label classification. In: Proceedings of the 18th European Conference on Machine
Learning (ECML’07), Warsaw, Poland (2007) 406–417

9. Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing constraints.
Data Mining and Knowledge Discovery 13 (2006) 365–395

10. Preiss, B.R.: Data Structures and Algorithms with Object-Oriented Design Pat-
terns in Java. Wiley (1999)

11. Banerjee, A., Ghosh, J.: Frequency-sensitive competitive learning for scalable bal-
anced clustering on high-dimensional hyperspheres. IEEE Transactions on Neural
Networks 15 (2004) 702–719

12. Bennett, K., Bradley, P., , Demiriz, A.: Constrained k-means clustering. Technical
Report TR-2000-65, Microsoft Research (2000)

13. Jaschke, R., Marinho, L.B., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag
recommendations in folksonomies. In: Proceedings of the 11th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases (PKDD’07),
Berlin, Heidelberg (2007) 506–514

14. Sood, S., Hammond, K., Owsley, S., Birnbaum, L.: TagAssist: Automatic Tag
Suggestion for Blog Posts. In: Proceedings of the International Conference on
Weblogs and Social Media (ICWSM 2007). (2007)

15. Chirita, P.A., Costache, S., Nejdl, W., Handschuh, S.: P-tag: large scale automatic
generation of personalized annotation tags for the web. In: WWW ’07: Proceedings
of the 16th international conference on World Wide Web, New York, NY, USA,
ACM (2007) 845–854

15

16. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical
classification. Journal of Machine Learning Research 7 (2006) 31–54

17. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label pre-
diction of gene function. Bioinformatics 22 (2006) 830–836

18. Blockeel, H., Schietgat, L., Struyf, J., Dzeroski, S., Clare, A.: Decision trees for
hierarchical multilabel classification: A case study in functional genomics. In: Pro-
ceedings of the 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD’06). (2006) 18–29

