ViTAPlan: A Visual Tool for Adaptive Planning

Dimitris Vrakas and |l oannis Vlahavas

Dept. Of Informatics,
Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
[dvrakas, vlahavas]@csd.auth.gr

Abstract

This paper presents a friendly visual tool for HAPrule-configurable planning system,
which automatically adapts to each problem, in oitdeachieve best performance. HAP
analyzes the problem and uses a rule system im todmnfigure the planning parameters
in a way that best suites the morphology of thélenm. The visual tool enables the user to
use the planning system, get advice from the lwittdle system and even interfere with it.
ViTAPlan also contains a visual designer, basedhenPlanning Domain Definition Lan-
guage, that enables the user to create new plamiuingins and problems in a graphical
way and get visual representations of existing oRaghermore the tool contains a module
that simulates the execution of the plan and ilaiss the changes in the world, which fol-
low the application of each action in the plan.

Introduction

Automated Planning has been an active research topic fortalhgsars and during these four
decades a great number of papers describing new methods, technidjsystams have been
presented that mainly focus on ways to improve the efficiefi@lanning systems. However,
there are not many successful examples of planning systemisngda industrial use. From a
technical point of view, this can be mainly explained by twdsfa&) the planning systems are
not yet efficient enough to handle real-world problems and b) #irecend-user of a planning
system in the industry will not be a planning-expert, systemg bwiaccompanied by user
friendly interfaces.

Concerning the efficiency of planning systems, the majar gfaresearchers focus on do-
main—independent planning systems trying to make them a&$epffias possible, concerning
both planning time and length of produced plans. Although, there hameelzamples of really
efficient systems, during the last decade, there areoptih issues to be addressed. Little sys-
tems support aspects of planning that are crucial to indsstep as temporal planning or effi-
cient handling of resources. For instance, Advisor (Mariaagl 1996) is a successful case of
applying a planning system in real world applications. The plarsystem embodies a sym-
bolic constraint solver and a temporal reasoning mechanism intordiow the expressiveness
needed for encoding the problems. Another obstacle in the applicdtiganning systems is
the fact that they exhibit instabilities in their efficty among different domains or even prob-
lems of the same domain. A planner may be very good in spdorfi@ins and problems but
there is no planning system that guaranties a general top performance.

As far as user interfaces are concerned, there have beeralsapproaches from institutes
and researchers to create visual tools for defining problachsusmning planning systems, such
as the GIPO systémthe SIPE-2and the ASPERNgraphical user interfaces. Moreover, there is
a number of approaches in building visual interfaces for spegiiplications of planning. The
PacoPlan projetaims in building a web-based planning interface for specificaittsn Asbru-
View (Kosara and Miksch, 2001) is a visual user interfacdiriog-oriented skeletal plans rep-
resenting complex medical procedures. Another example of visudhiogsrfor planning is the

* http://scom.hud.ac.uk/planform/gipo/
2 http://www.ai.sri.com/~sipe/gui.html
3 http://www-aig.jpl.nasa.gov/public/planning/aspaspen_index.html

4 http://Ipis.csd.auth.gr/projects/pacoplan/

work of the MAPLE research group at the university of Marylé@adndu et al, 2002), which
concerns the implementations of a 3D graphical interface foesepting hierarchical plans
with many levels of abstractions and interactions among the pathe plan. Although these
approaches are very interesting and provide the community withl tsels for planning, there
is still a lot of work to be done in order to create an integrated syltgrmeets the needs of the
potential user.

This paper describes ViTAPIlan, a visual tool for a tAdPHHighly Adjustable Planner) sys-
tem, which enables the user to setup it by tuning several planning parametesygstéheis also
equipped with a rule system able to automatically fine-tunéldnener based on the morphol-
ogy of the problem in hand. The graphical interface enablesséreto setup and run HAP, get
advice from the rule system and also design new domains and problems. Finait) émables
the user to view visual representations of the plan and previgmulation of the execution of
it in the problem’s world. The graphical interface is at finototype of a project aiming in pro-
ducing an integrated planning system for use in real world situations.

Using HAP

HAP, is a highly adjustable planning system that can bemigtd by the user through a num-
ber of parameters. These parameters concern the type di,gbarquality of the heuristic and
several other features that affect the planning processdAResystem is based on the BP (Bi-
directional Planner) planning system (Vrakas and Vlahavas, 2001) andrusgtended version
of the ACE (ACtion Evaluation) heuristic (Vrakas and Vlahavas, 2002).

HAP is capable of planning in both directions (progression aneggggn). The system is
quite symmetric and for each critical part of the planner, algulation of mutexes, discovery
of goal orderings, computation of the heuristic, search strategieshere are implementations
for both directions. Thelirection of search is the first adjustable parameter of HAP used
tests, with the following values: a) 0 (Regression or Backvehaining) and b) 1 (Progression
or Forward chaining).

As for the search itself, HAP adopts a weighted A* strategy with two indepé weightsw,
for the estimated cost for reaching the final stateverfdr the accumulated cost of reaching the
current state from the starting state (initial or goaisethding on the selected direction). For the
tests with HAP, we used four different assignments for the vanaddigts which correspond to
different assignments fav; andw,: a) 0 (v; =1, w, =0), b) 1 (v; =3, w, =1), ¢) 2 (v; =2, w, =1)
and d) 3, =1, w, =1).

The size of the planning agenda (denotesbhsagenda) of HAP also affects the search strat-
egy and it can also be set by the user. For example, if weefsagenda to 1 andw, to O, the
search algorithm becomes pure Hill-Climbing, while by setsofgagenda to 1,w; to 1 andw,
to 1 the search algorithm becomes A*. Generally, by inargasie size of the agenda we re-
duce the risk of not finding a solution, even if at least onesxigtile by reducing the size of
the agenda the search algorithm becomes faster and we enstine thlanner will not run out
of memory. For the tests we used three different settinghdosize of the agenda: a) 1, b) 100
and c¢) 1000

The OB and OB-R functions introduced in BP and ACE respectively, are also addpy
HAP in order to search the states of the search for wostf orderings between the facts of
either the initial state or the goals, depending on the directi the search. For each violation
contained in a state, the estimated value of this statesthetirned by the heuristic function, is
increased by violation penalty, which is a constant number sugplidite user. For the experi-
ments of this work we tested the HAP system with three different vafwedation _penalty: a)

0, b) 10 and c) 100.

The HAP system employs the heuristic function of the ACE plaphes two variations of it,
which are in general more fine-grained. There are implemensatif the heuristic functions for
both planning directions. All the heuristic functions are constiuiciea pre-planning phase by
performing a relaxed search in the opposite direction of the one used in tieesge. During
this relaxed search the heuristic function computes estimatonisef distances of all grounded
actions of the problem.

The user may select the heuristic function by configurindwénestic_order parameter. The
three acceptable values are: a) 1 for the initial héeyris}t 2 for the first variation and c) 3 for
the second variation.

HAP also embodies a technique for simplifying the definitionhef $ub-problem in hand.
This technique eliminates from the definition of the sub-problemédntistate and goals) all the
goals that have already been achieved in the currentastdtdo not interfere in any way with
the achievement of the remaining goals. In order to do this¢haitpies performs, off-line be-
fore the search process, a dependency analysis on the gtfaspobblem. The paramete-
move_subgoals is used to turn on (value 1) and off (value 0) this feature of the plannitegrsys

The last parameter of HAP égual_estimation, which defines the way in which states with
the same estimated distances are treatedu#l_estimation is set to O then between two states
with the same value in the heuristic function, the one witHattgeest distance from the starting
state (number of actions applied so far) is preferredquél_estimation is set to 1, then the
search strategy will prefer the state, which is closer to the statditeg s

< Hae-Re T e -lalx|

Pl Window, Setfings Tools

|
=

Domain I‘:.\vhd\P\anFace\dvmam pddl

Problem |

2|
7 & o B~
pid pod
pid pd
pid poid
il pd
[l problogistis-21-0.0dd] problogstics-25-1. il
pid pdd
o |
dl 5 problogstics-22+1 pdd (55 problgistics-27-0.pcdl
pid poid -
| — | s
| Fie name: [problogisic16:0 ped =l Open
Fiesoftype: [FDDL (-pad) 2 Cancel
4 otk e
I— 4

Figure 1. Selecting Domain and Problem

. Planner Settings |
Direction |Backward ‘I

Heuristic

Weights for search

Penalty for violating orderings

Agenda Size IMedium "I
Closer Yes >
Remove achieved goals Yes -

Cancel | ak |

Figure 2. Configuring HAP

The proposed graphical interface enables the user to use HIAR fiendlier and more ac-
curate way. From the initial screen of the interface, whickh@wvn in Figure 1, the user uses
common dialogues in order to browse for the domain and problem fileplames also pre-
sented in the same screen along with statistics concetréngldnning process (planning time,
length of solution, examined states). Optionally, the user magtdel configure HAP, through

the window shown in Figure 2, by selecting through a number of optioesadbrplanning pa-
rameter.

Automatic Configuration of HAP

HAP-RC (Vrakas et., al 2003) is an extension to the HAP plannisigray which uses a rule
system in order to automatically select the best setforgsach planning parameter, based on
the morphology of the problem in hand. HAP-RC, whose architecturdligeauin Figure 3 is
actually HAP with two additional modules (Problem Analyzer Bate System) which are util-
ized off-line, just after reading the representation ofpitedolem in order to fine tune the plan-
ning parameters of HAP.

Problem file
\ /

Parser

Problem epresntatior

Problem Analyzer

Values of BO1 to B19

Rule system

Values of planning parameter

(%]

A 4
Ly HAP

Figure 3. HAP-RC Architecture

The role of the Problem Analyzer is to identify the valoés specific set of 19 problem
characteristics (noted as Bl to B19). These characteristitsde measurable attributes of
planning problems, such as number of facts per predicate or brarfiabiog of the problem
e.t.c. After the identification of the values of the attrdstwhich may requires a limited search
in the problem, the analyzer discretizes the results in dategories (small, medium and large)
and feeds the Rule system with a vector containing the disxetalues for the 19 problem
attributes.

The Rule system contains a number of rules that combineispeddifies of the problem at-
tributes with settings of the planning parameter that resubetter planning performance
(shorter plans in less planning time). These rules baem extracted from Machine Learning
techniques on data produced by thorough experiments with the HAPs¥)tee specifically,
we tested all the possible combinations of the parametéigBfon a set of 150 problems and
for each run we kept record of the values of the problenbuati®s, the specific setup for HAP
and the value for a metric combining planning time and plan length. The datesseewded to
a Machine Learning tool in order to learn a rule-based cleadn model that would discrimi-
nate between good and bad value of the metric based on the rest of theeattrib

ViTAPIan also provides the user with the option to use the RroBlealyzer and the Rule
System of HAP-RC in order to automatically fine-tune thenmitag parameters of HAP. The
relevant window of the interface is shown in Figure 4. Thizdaw is divided in three parts: a)
the first part shows the discretized values for the 19 problaracteristics, as produced by the
Problem analyzer, along with a description for each one through het &)dhe second part
provides the user with the list of the triggered rules, ierdies which refer to values for B1 to

B19 that comply with the values produced by the Problem Analyzer. c) the last padeprihé
user with the proposed values for the planning parameters of HAP.

Apart from the obvious usage of the specific part of thefatter which is to automatically
fine-tune HAP, it can also help an advanced user (knowledge endméatter understand the
morphology of the problem by looking at the values of the problem attributes drables the
advanced user to alter the results of applying the rules,amyafly selecting the subset of the
triggered rules that will be eventually fired. The ruleteys embodies a conflict resolution
strategy, which is based on the confidence and the support ofuidacfihe interface enables
the user to see the subset initially selected for firinguiin check boxes at the left of each rule.
The user can deselect and select rules, while the interfaaraatically deactivates all the other
rules that are in conflict with the selected ones.

-lojx|

Problem Analyzer
B1 [smal | B2 [smal B3 [laige B4 [medum B5 [large B [medum B7 [lage B8 [large BY [medium B10 [small
B11 Jlarge B12 {small B13 [small B14 fsmal B15 |large B16 [medium B17 fsmall B18 [small B19 |izrge

Triggered Rules =
¥ IFB11 =large and BB = larges THEM Claser = YES and Direction = Forward

¥ IF B13 = small and B10 = small THEN heuristic = C: and Removed achieved goals = Ha
™ IF BE = medium and B18 = small THEM Penalty = Small and Ditection = Backward

J¥ IF B9 = medium and B17=small and B1E=large and B4=medium THEN Agenda Size = Small

Apply Rules

Planner Seltings

Direction |Fomward Heuristic |C Weights for search |w1=3, wz=1 Closer [ves

Penalty for violating orderings |Large Agenda Size [Small Remove achieved goals No
Cancel Ok

Figure 4. Using the Rule System

Consider for instance, the example of Figure 5, where theréoar triggered rules, since
{B4, B6, B8, B9, B10, B11, B13, B16, B17, B18} = {medium, medium, large, mediumlls
large, small, large, small, small} in the problem being arealy However, rules 1 and 3 are in
conflict, since the first rule proposes vakarward for theDirection parameter, while the third
one proposes a different valugatkward) for the same parameter.

—Triggered Rules
v IFB11 =laige and BS = large THEM Clozer = YES and Direction = Fonward

¥ IF B13 = small and B10 = small THEM heuristic = C and Remaved achieved goals = Na

[~ IF BB = medium and B18 = small THEM Peralty = Small and Direction = Backward

v IF B9 = medium and B17=small and B1E=large and B4=medium THEM Agenda Size = Small

Figure5. Initial firing subset

The rules in HAP-RC have been sorted in decreasing order ofleocé and support and the
conflict resolution strategy works in a greedy way, seledondiring the first rule from the top
of the list that is not in conflict with the rules alreagBlected for firing. Therefore, the rules
proposed for firing are indicated with ticks in the correspondivegic boxes. By clicking in the
third rule the interface automatically includes it in thien§ subset and removes the rules that
are in conflict with the selection of the user resulting in the seteshown in Figure 6.

~Triggered Rules
[T IFB11 = lamge and B8 = large THEM Clozer = YES and Dirsction = Fomsard

v IF B13 = small and B10 = small THEN heuristic = C and Removed achieved goals = Na

[IF BE = mediurm and B18 = small THEN Penalty = Small and Ditection = Backward

¥ IF B9 = medium and B17=small and B16=large and B4=medium THEN Agenda Size = Small

Figure 6. Final firing subset

Designing Domains and Problems

The proposed visual tool enables the user to view and design nevndoama problems
through a visual representation. In order to build a new domairobfem the user can add new
structural elements, like object classes, predicateperators, and make all the necessary as-
signments with simple movements of the mouse. The interfasponsible for checking the
validity of the user’s design and generating the appropriate PDDL (Ghabhth¥98) files.

Jjom baﬂ\ gripp:er

at-robby holding

Figure 7. The predicates design for the Gipper domain

The first step for creating a new domain, is to createsign containing the objects, the
predicates and the connections between them. Figure 7 illgstrégedesign for th&ripper
domain, which was used in the AIPS-98 planning competition. Theréraee dbject classes in
the domain, namelyoom ball andgripper, that are represented with circles. The domain has
four predicatesat, at-robby, holding andfree) that are represented with rectangles. Note here
that although PDDL, requires only the arity for each predi@atenot the type of objects for the
arguments, the interface obliges the user to connect each peeditta specific object classes
and this is used for the consistency check of the domainndesggording to the design of
Figure 7, the arity of predicat®lding, for example, is two and the specific predicate can only
be connected with one object of clésH and one object of clagsipper.

The constraints imposed by the design of predicates and olagses are dynamically inher-
ited in the design of operators and problems. For example if thevasé to add a fadtin the
initial state of a problem, which makes use of hbkling predicatef will have two available
edges that will be able to connect with an object of ddadsand another object of clagsip-
per. However, the interface enables the user to dynamically clihagkesign of the predicates.
In such a case, all the operators and states that make aisered predicates and object classes
are automatically updated accordingly.

rpick
at-robby ot
at-robby
gripperl
holding
rooml
|

Figure 8. Operator Pick for the Gripper domain

The second step in generating a new domain is the designihg dbmain’s operators. Each
operator, in the interface, is represented with a labeled frameh wbintains a column of object
classes in the middle, two columns of predicates at thesithes of it and connections between
the object classes and the predicates. Figure 8, for exaihysgates the design of thpéck op-
erator for thegripper domain. The object classes in the middle column of the operator, represent
the parameters of the operator, which in the case of theopetator are three, one of each ob-
ject class. In the left column the predicates, along withctmnected variables, represent the
preconditions of the operator, while the predicates in th rapresent the effects of the opera-
tor. The interface adopts the declarative schema formlegigperators, i.e. the right column of
each operator represents the state of the world aftepiplecation of the operator and not the
facts that will be added and deleted to it. However, thatioreof the add and delete lists of the
operator is straightforward, since the facts that appear ingtitecolumn but not in the left con-
stitute the add list. Similarly, the delete list contahmes flacts that appear in the left column but
not in the right. The choice of the declarative model versus the proceduralasneased on the
fact that the first usually results in simpler designs.

The three lists of facts for the pick operator in Figure 8 areotlmnving:

Preconditions = {at-robby(room1), free(gripperl), at(rooml, ball1)}
Add-list = {holding(balll, gripperl)}
Delete-list { free(gripperl), at(rooml, balll)}

-Problem

at-robby room\

room3

ball2

gripperl

Figure 9. The design for a problem in the Gripper domain

The designing of problems in the interface follows a simi@del with that of operators.
Problems can be formed by creating a list of objects, tste 6f predicates and a number of
connections among them. Figure 9 illustrates the design of a prabldre Gripper domain.
The objects in the middle represent the objects of the problenadtsecteated by predicates of
the left column represent the facts of the initial statthefproblems, while the predicates in the
right column represent the goals of the problem. The two staesorrespond to the design of
Figure 9 are the following.

Initial state = {at-robby(room3), at(room3, balll), at(room2, ball2), {nepperl)}
Goals = {at(room2, balll), at(room3,ball2)}

Execution Simulation

One of the most important capabilities of ViTAPlan is that it visualizesxecution of the plan
found by HAP. The visual tool enables the user to get visuad¢septations of each action in
the plan independently and of the whole plan. Through the first optibichvis shown in
Figure 10, the user may select an action from the plan andthiewstates of the problem’s
world before and after the application of the action. Thereforeysbecan have a step-by-step
visual representation of each intermediate state between the initiahdriee goals of the prob-
lem.

(move oom3 aom2
drop balll gripperl room2
at-robby faom2 pick gripper] ball2 room2

move roomz room3
drop ball2 gripper! room3

= :jflq\m

m\““? at-rabby

gripperl

Figure 10. Visual Representation of Actions

The second option for the user is to view the actions of tlreguiaa timeline, as shown in
Figure 11. The timeline for the plan presents for each action theipouhich it is scheduled to
be executed and the facts in its precondition and add lists. Moreover, thezaiguashows the
interactions between the actions in the plan. More specificallgdch action the user is able to
see the preceding actions that achieved its precondition;gtance, in the example presented
in Figure 11 the third action in the plan is “drop balll gripperl room2”, whichwaaprecondi-
tions: “at-robby room2” and “holding gripperl ball1l”. The first ongsvachieved by the second
action of the plan (i.e. “move room3 room2”) and the second one biyghaction (“pick grip-
perl balll room3”).

The arcs showing the relations between the actions in the plaargraseful in order for the
user to understand the complexity of the plan, find possible paratiefiz and also alternatives
plans. In order for the user to test if two subsequent actionbe@&xecuted in parallel he just
needs to check if there are any arcs connecting these actiotiserfore, the arcs in the
graphic allow the user to understand the role of each actitre iplan. In other words, he can
get an idea of the objectives of each step and the reasoris fepécific order in which the
steps are put. For example, it is easy to see from Figure tithéhiirst three actions are needed
in order to have both the robot and balll in room2. Therefore, theaslerreplace this part of
the plan with a possible alternative.

Initial pick gripper1 ball1 room3 move room3 room2 dro

=rabby room3 at-robby room3
\ at-robby room2

rroom3 ball1

ree gripper] holding ball1 grippert at-robby room3 | at-robby room?2

‘room?2 ball2
\holdmg ball1 gripper’

2e gripper? at room3 balll

Figure 11. Plan Representation

Conclusions and Future Work

This paper reported on ongoing research in the field of friendly ingerfaces for planning. It
mainly focuses on the development of a composite interface fadaptive planning system,
which can automatically fine- tune its parameters based @s,rektracted from Machine
Learning techniques, that associate planning parameters with prabiéotes.

The current result of the research is ViTAPlan, a firstotype of a graphical interface for
the HAP planning system, which has four main functions: a) usingléin@ing system through
a number of windows, controls and common dialogues, which make it msien #& a non —
programmer to use the planner and experiment with differampsef the planning parameters,
b) use the Problem analyzer and the Rule system of HARxR@ler to acquire useful knowl-
edge about the morphology of each problem and automatically fine tumpéatireer with the
most appropriate values for the planning parameters c) genenatmglomains and problems
using a visual tool which saves the domain expert from the syitactic rules of PDDL,
makes the definition of domains and problems more understandahtefoe\se non-planning-
expert, and makes a number of consistency checks on the desmueririo generate PDDL
files with as little flaws as possible and d) produce viseptasentations of the plans found by
the planning system, which enable the user to better understandtegadah the plan and also
intervene and alter the plan at will.

In the future we plan to improve the interface in all functiohg and introduce others that
will make it a complete tool for planning both for acadeamd industrial use. It is in our direct
plans to enhance the tool for designing domains and problems witibilitg to handle ad-
vanced aspects of the PDDL2.1(Fox and Long 2002), such as treafmemherical values,
explicit representation of time and duration, conditional effects e.t.c.

Acknowledgments

This research has been partially supported by SUN Microsystgarg, number: EDUD-7832-
010326-GR.

References
Fox, M., and Long, D., 2002. PDDL2.1 — An Extension to PDDL for Expressing Temporal
Planning Domains.
Ghallab, M., et. al., 1998. PDDL — The Planning Domain Definition Language, Version 1.3.

Kosara, R., and Miksch, S., 2001. Metaphors of Movement: A Vistigizand User Interface
for Time-Oriented, Skeletal Plans. Artificial IntelligeniceMedicine, Special Issue: Informa-
tion Visualization in Medicine, pp. 111-131, 22(2).

Kundu, K., Sessions, C. DesJardins, M., and Rheingans, P., 2002 Three-dimensi@iaa-
tion of hierarchical task network plans, In Proceedings of3thelnternational NASA Work-
shop on Planning and Scheduling for Space, Houston, Texas.

Marinagi, C., Panayiotopoulos, T., Vouros, G., and Spyropoulos, C., 1996. Advisarowl-K
edge-Based Planning System, International Journal of Expert Systems@)9-355.

Vrakas, D., et., al, 2003. Learning Rules for Adaptive Planning. Tird=ented in the 1'3n-
ternational Conference on Automated Planning and Scheduling.

Vrakas, D. and Vlahavas, |, 2002. A heuristic for planning basedtmm aavaluation. In Pro-
ceedings of the IDInternational Conference on Artificial Intelligence: Methodglo§ystems
and Applications.

Vrakas, D., and Vlahavas, I., 2001. Combining progression and regressiateigice heuris-
tic planning. In Proceedings of th® Buropean Conference on Planning.

