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Abstract 
This paper presents a friendly visual tool for HAP, a rule-configurable planning system, 
which automatically adapts to each problem, in order to achieve best performance. HAP 
analyzes the problem and uses a rule system in order to configure the planning parameters 
in a way that best suites the morphology of the problem. The visual tool enables the user to 
use the planning system, get advice from the built-in rule system and even interfere with it. 
ViTAPlan also contains a visual designer, based on the Planning Domain Definition Lan-
guage, that enables the user to create new planning domains and problems in a graphical 
way and get visual representations of existing ones. Furthermore the tool contains a module 
that simulates the execution of the plan and illustrates the changes in the world, which fol-
low the application of each action in the plan.  

Introduction 

Automated Planning has been an active research topic for almost 40 years and during these four 
decades a great number of papers describing new methods, techniques and systems have been 
presented that mainly focus on ways to improve the efficiency of planning systems. However, 
there are not many successful examples of planning systems adapting to industrial use. From a 
technical point of view, this can be mainly explained by two facts: a) the planning systems are 
not yet efficient enough to handle real-world problems and b) since the end-user of a planning 
system in the industry will not be a planning-expert, systems must be accompanied by user 
friendly interfaces.  
 Concerning the efficiency of planning systems, the major part of researchers focus on do-
main–independent planning systems trying to make them as efficient as possible, concerning 
both planning time and length of produced plans. Although, there have been examples of really 
efficient systems, during the last decade, there are still open issues to be addressed. Little sys-
tems support aspects of planning that are crucial to industry, such as temporal planning or effi-
cient handling of resources. For instance, Advisor (Marinagi et al 1996) is a successful case of 
applying a planning system in real world applications. The planning system embodies a sym-
bolic constraint solver and a temporal reasoning mechanism in order to allow the expressiveness 
needed for encoding the problems. Another obstacle in the application of planning systems is 
the fact that they exhibit instabilities in their efficiency among different domains or even prob-
lems of the same domain. A planner may be very good in specific domains and problems but 
there is no planning system that guaranties a general top performance. 
 As far as user interfaces are concerned, there have been several approaches from institutes 
and researchers to create visual tools for defining problems and running planning systems, such 
as the GIPO system1, the SIPE-22 and the ASPEN3 graphical user interfaces. Moreover, there is 
a number of approaches in building visual interfaces for specific applications of planning. The 
PacoPlan project4 aims in building a web-based planning interface for specific domains. Asbru-
View (Kosara and Miksch, 2001) is a visual user interface for time-oriented skeletal plans rep-
resenting complex medical procedures. Another example of visual interfaces for planning is the 

                                      
1 http://scom.hud.ac.uk/planform/gipo/ 
2 http://www.ai.sri.com/~sipe/gui.html 
3 http://www-aig.jpl.nasa.gov/public/planning/aspen/aspen_index.html 
4
 http://lpis.csd.auth.gr/projects/pacoplan/ 



work of the MAPLE research group at the university of Maryland (Kundu et al, 2002), which 
concerns the implementations of a 3D graphical interface for representing hierarchical plans 
with many levels of abstractions and interactions among the parts of the plan. Although these 
approaches are very interesting and provide the community with useful tools for planning, there 
is still a lot of work to be done in order to create an integrated system that meets the needs of the 
potential user. 
 This paper describes ViTAPlan, a visual tool for a the HAP (Highly Adjustable Planner) sys-
tem, which enables the user to setup it by tuning several planning parameters. The system is also 
equipped with a rule system able to automatically fine-tune the planner based on the morphol-
ogy of the problem in hand. The graphical interface enables the user to setup and run HAP, get 
advice from the rule system and also design new domains and problems. Finally the tool enables 
the user to view visual representations of the plan and preview a simulation of the execution of 
it in the problem’s world. The graphical interface is a first prototype of a project aiming in pro-
ducing an integrated planning system for use in real world situations.  

Using HAP 

HAP, is a highly adjustable planning system that can be customized by the user through a num-
ber of parameters. These parameters concern the type of search, the quality of the heuristic and 
several other features that affect the planning process. The HAP system is based on the BP (Bi-
directional Planner) planning system (Vrakas and Vlahavas, 2001) and uses an extended version 
of the ACE (ACtion Evaluation) heuristic (Vrakas and Vlahavas, 2002). 
 HAP is capable of planning in both directions (progression and regression). The system is 
quite symmetric and for each critical part of the planner, e.g. calculation of mutexes, discovery 
of goal orderings, computation of the heuristic, search strategies etc., there are implementations 
for both directions. The direction of search is the first adjustable parameter of HAP used in 
tests, with the following values: a) 0 (Regression or Backward chaining) and b) 1 (Progression 
or Forward chaining). 
 As for the search itself, HAP adopts a weighted A* strategy with two independent weights: w1 
for the estimated cost for reaching the final state and w2 for the accumulated cost of reaching the 
current state from the starting state (initial or goals depending on the selected direction). For the 
tests with HAP, we used four different assignments for the variable weights which correspond to 
different assignments for w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3, w2 =1), c) 2 (w1 =2, w2 =1) 
and d) 3 (w1 =1, w2 =1). 

The size of the planning agenda (denoted as sof_agenda) of HAP also affects the search strat-
egy and it can also be set by the user. For example, if we set sof_agenda to 1 and w2 to 0, the 
search algorithm becomes pure Hill-Climbing, while by setting sof_agenda to 1, w1 to 1 and w2 
to 1 the search algorithm becomes A*. Generally, by increasing the size of the agenda we re-
duce the risk of not finding a solution, even if at least one exists, while by reducing the size of 
the agenda the search algorithm becomes faster and we ensure that the planner will not run out 
of memory. For the tests we used three different settings for the size of the agenda: a) 1, b) 100 
and c) 1000 
 The OB and OB-R functions introduced in BP and ACE respectively, are also adopted by 
HAP in order to search the states of the search for violations of orderings between the facts of 
either the initial state or the goals, depending on the direction of the search. For each violation 
contained in a state, the estimated value of this state that is returned by the heuristic function, is 
increased by violation penalty, which is a constant number supplied by the user. For the experi-
ments of this work we tested the HAP system with three different values of violation_penalty: a) 
0, b) 10 and c) 100.  

 The HAP system employs the heuristic function of the ACE planner, plus two variations of it, 
which are in general more fine-grained. There are implementations of the heuristic functions for 
both planning directions. All the heuristic functions are constructed in a pre-planning phase by 
performing a relaxed search in the opposite direction of the one used in the search phase. During 
this relaxed search the heuristic function computes estimations for the distances of all grounded 
actions of the problem.  



 The user may select the heuristic function by configuring the heuristic_order parameter. The 
three acceptable values are: a) 1 for the initial heuristic, b) 2 for the first variation and c) 3 for 
the second variation. 
 HAP also embodies a technique for simplifying the definition of the sub-problem in hand. 
This technique eliminates from the definition of the sub-problem (current state and goals) all the 
goals that have already been achieved in the current state and do not interfere in any way with 
the achievement of the remaining goals. In order to do this the techniques performs, off-line be-
fore the search process, a dependency analysis on the goals of the problem. The parameter re-
move_subgoals is used to turn on (value 1) and off (value 0) this feature of the planning system. 
 The last parameter of HAP is equal_estimation, which defines the way in which states with 
the same estimated distances are treated. If equal_estimation is set to 0 then between two states 
with the same value in the heuristic function, the one with the largest distance from the starting 
state (number of actions applied so far) is preferred. If equal_estimation is set to 1, then the 
search strategy will prefer the state, which is closer to the starting state. 
 

 

Figure 1. Selecting Domain and Problem 

 
 

 

Figure 2. Configuring HAP 

 The proposed graphical interface enables the user to use HAP with a friendlier and more ac-
curate way. From the initial screen of the interface, which is shown in Figure 1, the user uses 
common dialogues in order to browse for the domain and problem files. The plan is also pre-
sented in the same screen along with statistics concerning the planning process (planning time, 
length of solution, examined states). Optionally, the user may select to configure HAP, through 



the window shown in Figure 2, by selecting through a number of options for each planning pa-
rameter. 

Automatic Configuration of HAP 

HAP-RC (Vrakas et., al 2003) is an extension to the HAP planning system, which uses a rule 
system in order to automatically select the best settings for each planning parameter, based on 
the morphology of the problem in hand. HAP-RC, whose architecture is outlined in Figure 3 is 
actually HAP with two additional modules (Problem Analyzer and Rule System) which are util-
ized off-line, just after reading the representation of the problem in order to fine tune the plan-
ning parameters of HAP.  
 

 

Figure 3. HAP-RC Architecture 

 The role of the Problem Analyzer is to identify the values of a specific set of 19 problem 
characteristics (noted as B1 to B19). These characteristics include measurable attributes of 
planning problems, such as number of facts per predicate or branching factor of the problem 
e.t.c. After the identification of the values of the attributes, which may requires a limited search 
in the problem, the analyzer discretizes the results in three categories (small, medium and large) 
and feeds the Rule system with a vector containing the discretized values for the 19 problem 
attributes. 
 The Rule system contains a number of rules that combine specific values of the problem at-
tributes with settings of the planning parameter that result in better planning performance 
(shorter plans in less planning time). These rules have been extracted from Machine Learning 
techniques on data produced by thorough experiments with the HAP system. More specifically, 
we tested all the possible combinations of the parameters of HAP on a set of 150 problems and 
for each run we kept record of the values of the problem attributes, the specific setup for HAP 
and the value for a metric combining planning time and plan length. The data set was then fed to 
a Machine Learning tool in order to learn a rule-based classification model that would discrimi-
nate between good and bad value of the metric based on the rest of the attributes. 
 ViTAPlan also provides the user with the option to use the Problem Analyzer and the Rule 
System of HAP-RC in order to automatically fine-tune the planning parameters of HAP. The 
relevant window of the interface is shown in Figure 4. This window is divided in three parts: a) 
the first part shows the discretized values for the 19 problem characteristics, as produced by the 
Problem analyzer, along with a description for each one through hot spots. b) the second part 
provides the user with the list of the triggered rules, i.e. the rules which refer to values for B1 to 
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B19 that comply with the values produced by the Problem Analyzer. c) the last part provides the 
user with the proposed values for the planning parameters of HAP. 
 Apart from the obvious usage of the specific part of the interface, which is to automatically 
fine-tune HAP, it can also help an advanced user (knowledge engineer) to better understand the 
morphology of the problem by looking at the values of the problem attributes. It also enables the 
advanced user to alter the results of applying the rules, by manually selecting the subset of the 
triggered rules that will be eventually fired. The rule system embodies a conflict resolution 
strategy, which is based on the confidence and the support of each rule. The interface enables 
the user to see the subset initially selected for firing through check boxes at the left of each rule. 
The user can deselect and select rules, while the interface automatically deactivates all the other 
rules that are in conflict with the selected ones.  
 

 

Figure 4. Using the Rule System 

 Consider for instance, the example of Figure 5, where there are four triggered rules, since 
{B4, B6, B8, B9, B10, B11, B13, B16, B17, B18} = {medium, medium, large, medium, small, 
large, small, large, small, small} in the problem being analyzed. However, rules 1 and 3 are in 
conflict, since the first rule proposes value Forward for the Direction parameter, while the third 
one proposes a different value (Backward) for the same parameter. 
 

 

Figure 5. Initial firing subset 

 The rules in HAP-RC have been sorted in decreasing order of confidence and support and the 
conflict resolution strategy works in a greedy way, selecting for firing the first rule from the top 
of the list that is not in conflict with the rules already selected for firing. Therefore, the rules 
proposed for firing are indicated with ticks in the corresponding check boxes. By clicking in the 
third rule the interface automatically includes it in the firing subset and removes the rules that 
are in conflict with the selection of the user resulting in the selection shown in Figure 6. 
 



 

Figure 6. Final firing subset 

Designing Domains and Problems 

The proposed visual tool enables the user to view and design new domains and problems 
through a visual representation. In order to build a new domain or problem the user can add new 
structural elements, like object classes, predicates or operators, and make all the necessary as-
signments with simple movements of the mouse. The interface is responsible for checking the 
validity of the user’s design and generating the appropriate PDDL (Ghallab et al 1998) files. 
 

 

Figure 7. The predicates design for the Gipper domain 

 The first step for creating a new domain, is to create a design containing the objects, the 
predicates and the connections between them. Figure 7 illustrates this design for the Gripper 
domain, which was used in the AIPS-98 planning competition. There are three object classes in 
the domain, namely room ball and gripper, that are represented with circles. The domain has 
four predicates (at, at-robby, holding and free) that are represented with rectangles. Note here 
that although PDDL, requires only the arity for each predicate and not the type of objects for the 
arguments, the interface obliges the user to connect each predicate with specific object classes 
and this is used for the consistency check of the domain design. According to the design of 
Figure 7, the arity of predicate holding, for example, is two and the specific predicate can only 
be connected with one object of class ball and one object of class gripper. 
 The constraints imposed by the design of predicates and object classes are dynamically inher-
ited in the design of operators and problems. For example if the user want to add a fact f in the 
initial state of a problem, which makes use of the holding predicate, f will have two available 
edges that will be able to connect with an object of class ball and another object of class grip-
per. However, the interface enables the user to dynamically change the design of the predicates. 
In such a case, all the operators and states that make use of altered predicates and object classes 
are automatically updated accordingly. 
 



 

Figure 8. Operator Pick for the Gripper domain 

 The second step in generating a new domain is the designing of the domain’s operators. Each 
operator, in the interface, is represented with a labeled frame, which contains a column of object 
classes in the middle, two columns of predicates at the two sides of it and connections between 
the object classes and the predicates. Figure 8, for example, illustrates the design of the pick op-
erator for the gripper domain. The object classes in the middle column of the operator, represent 
the parameters of the operator, which in the case of the pick operator are three, one of each ob-
ject class. In the left column the predicates, along with the connected variables, represent the 
preconditions of the operator, while the predicates in the right represent the effects of the opera-
tor. The interface adopts the declarative schema for designing operators, i.e. the right column of 
each operator represents the state of the world after the application of the operator and not the 
facts that will be added and deleted to it. However, the creation of the add and delete lists of the 
operator is straightforward, since the facts that appear in the right column but not in the left con-
stitute the add list. Similarly, the delete list contains the facts that appear in the left column but 
not in the right. The choice of the declarative model versus the procedural one, was based on the 
fact that the first usually results in simpler designs. 
 The three lists of facts for the pick operator in Figure 8 are the following: 
Preconditions = {at-robby(room1), free(gripper1), at(room1, ball1)} 
Add-list = {holding(ball1, gripper1)} 
Delete-list { free(gripper1), at(room1, ball1)} 
 

 

Figure 9. The design for a problem in the Gripper domain 

 The designing of problems in the interface follows a similar model with that of operators. 
Problems can be formed by creating a list of objects, two lists of predicates and a number of 
connections among them. Figure 9 illustrates the design of a problem in the Gripper domain. 
The objects in the middle represent the objects of the problem, the facts created by predicates of 
the left column represent the facts of the initial state of the problems, while the predicates in the 
right column represent the goals of the problem. The two states that correspond to the design of 
Figure 9 are the following. 



Initial state = {at-robby(room3), at(room3, ball1), at(room2, ball2), free(gripper1)} 
Goals = {at(room2, ball1), at(room3,ball2)} 

Execution Simulation 

One of the most important capabilities of ViTAPlan is that it visualizes the execution of the plan 
found by HAP. The visual tool enables the user to get visual representations of each action in 
the plan independently and of the whole plan. Through the first option, which is shown in 
Figure 10, the user may select an action from the plan and view the states of the problem’s 
world before and after the application of the action. Therefore, the user can have a step-by-step 
visual representation of each intermediate state between the initial one and the goals of the prob-
lem.     
 

 

Figure 10. Visual Representation of Actions 

 The second option for the user is to view the actions of the plan on a timeline, as shown in 
Figure 11. The timeline for the plan presents for each action the point in which it is scheduled to 
be executed and the facts in its precondition and add lists. Moreover, the visualization shows the 
interactions between the actions in the plan. More specifically, for each action the user is able to 
see the preceding actions that achieved its preconditions. For instance, in the example presented 
in Figure 11 the third action in the plan is “drop ball1 gripper1 room2”, which has two precondi-
tions: “at-robby room2” and “holding gripper1 ball1”. The first one was achieved by the second 
action of the plan (i.e. “move room3 room2”) and the second one by the first action (“pick grip-
per1 ball1 room3”).  
 The arcs showing the relations between the actions in the plan are very useful in order for the 
user to understand the complexity of the plan, find possible parallelizations and also alternatives 
plans. In order for the user to test if two subsequent actions can be executed in parallel he just 
needs to check if there are any arcs connecting these actions. Furthermore, the arcs in the 
graphic allow the user to understand the role of each action in the plan. In other words, he can 
get an idea of the objectives of each step and the reasons for the specific order in which the 
steps are put. For example, it is easy to see from Figure 11 that the first three actions are needed 
in order to have both the robot and ball1 in room2. Therefore, the user could replace this part of 
the plan with a possible alternative.  
 



 

Figure 11. Plan Representation 

Conclusions and Future Work 

This paper reported on ongoing research in the field of friendly user interfaces for planning. It 
mainly focuses on the development of a composite interface for an adaptive planning system, 
which can automatically fine- tune its parameters based on rules, extracted from Machine 
Learning techniques, that associate planning parameters with problem attributes. 
 The current result of the research is ViTAPlan, a first prototype of a graphical interface for 
the HAP planning system, which has four main functions: a) using the planning system through 
a number of windows, controls and common dialogues, which make it much easier for a non – 
programmer to use the planner and experiment with different setups of the planning parameters, 
b) use the Problem analyzer and the Rule system of HAP-RC in order to acquire useful knowl-
edge about the morphology of each problem and automatically fine tune the planner with the 
most appropriate values for the planning parameters c) generating new domains and problems 
using a visual tool which saves the domain expert from the strict syntactic rules of PDDL, 
makes the definition of domains and problems more understandable, even for a non-planning-
expert, and makes a number of consistency checks on the designs in order to generate PDDL 
files with as little flaws as possible and d) produce visual representations of the plans found by 
the planning system, which enable the user to better understand each step in the plan and also 
intervene and alter the plan at will. 
 In the future we plan to improve the interface in all functions of it and introduce others that 
will make it a complete tool for planning both for academic and industrial use. It is in our direct 
plans to enhance the tool for designing domains and problems with the ability to handle ad-
vanced aspects of the PDDL2.1(Fox and Long 2002), such as treatment of numerical values, 
explicit representation of time and duration, conditional effects e.t.c.  
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