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ABSTRACT
Drug-drug interaction (DDI) identification is the task of identifying
potential interactions between drugs when administered simulta-
neously. The interactions can be synergetic or antagonistic as one
drug can affect the other. Adverse drug reactions caused by antago-
nistic DDI can pose a serious threat to health and potentially lead
to greater increase in health care expenditure. Multiple excellent
resources for DDI already exist, although unable to keep up with
the exponential increase in published biomedical literature. Most
existing systems rely on handcrafted features to extract and classify
the relationships between drugs. In this paper, we present a deep
learning method of stacked bidirectional Long Short Term Memory
(Bi-LSTM) and Convolutional neural (CNN) networks that utilize
word embeddings, part-of-speech tags and distance embeddings
respectively to perform the DDI extraction task and aid the drug
development cycle and drug repurposing. Furthermore, the model
uses attention mechanism to better focus on importance of all the
hidden states of the Bi-LSTM layers. Experimental results show
that our method can better avoid misclassifications of instances
with a minimal preprocessing.
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1 INTRODUCTION
Research in every field is disseminated mainly via text and in the
field of biomedicine, biomedical literature that contains a wealth of
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information is published at an exponential rate. Publications in the
biomedical domains concerning drugs do not pose an exception,
with an observable increase in findings on a monthly basis. One
such domain is Pharmacovigilance which is the science that studies
the prevention of Adverse Drug Reactions (ADR). Polypharmacy
which is defined as the use of multiple drugs or more than are
medically necessary, is common in the older population and in-
creases the challenges of identifying and preventing unexpected
pharmacological effects. While the use of more than one drug is
not necessarily ill-advised, it can lead to negative outcomes as well
as poor treatment effectiveness such as ADR.

In recent years, various related tasks have been introduced, such
as protein-protein interaction (PPI) [14], chemical-protein interac-
tion (CPI) [5], and drug-drug interaction (DDI) [1] extraction and
classification. In this work we study the DDI relation classification
task, with the objective being the extraction of the possible DDI
relations between drugs inside a text, using drug entities from an
annotated corpus. While it would be preferable and ideal to de-
tect all potential DDIs during the various stages of clinical trials,
most interactions are being reported after the drug’s approval for
clinical use. Predicting potential DDIs reduces the unwanted drug
interactions, the cost of drug development and has the potential to
optimize the drug design process and discover new uses for existing
drugs (i.e. drug repurposing). Consequently, the research of DDIs
and ADRs is very important for both drug design and development
as well as clinical applications and especially for co-administered
medication. In order to reduce costs and enable large quantities
of interactions to be analyzed, automated methods for identifying
ADRs are needed.

Several databases such as Drugs.com1, DrugBank2, PharmGKB3
and Kyoto Encyclopedia of Genes and Genomes (KEGG)4 collect
known adverse events caused by DDIs. Usually it is human experts
that collect DDI information from various sources such as med-
ication package inserts and the FDA’s Adverse Event Reporting
System which makes the task of collecting all the DDI events of
patients from reports and publications very difficult. Several efforts
have been made to automatically collect DDI information from
biomedical literature using text mining and natural language pro-
cessing (NLP) techniques. Gold standard datasets were released for
the DDI extraction challenges in 2011 and 2013 [4] to improve the
performance of DDI extraction using machine learning approaches
which are used to this day. Thus far, research has mostly been fo-
cused on extracting DDIs with the use of statistical methods and
1https://www.drugs.com/
2https://www.drugbank.ca/
3https://www.pharmgkb.org/
4https://www.kegg.jp/
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supervised machine learning algorithms and only in recent years
Deep Learning-based approaches have started to surface and show
promising results.

The extraction of DDI is a Relation Extraction (RE) task in the
biomedical domain and follows traditional methods (pipelinedmeth-
ods) by partitioning the extraction process in several subtasks and
then completing them stage by stage. First, the drug entities inside a
text are recognized using techniques such as Named Entity Recogni-
tion (NER) [17] creating the entity pairs present in each sentence in
the process. Afterwards each entity pair is classified as to whether
it has a relationship (i.e., a drug-drug interaction). Finally, given
that the entity pair has a relationship, it is classified to determine
the task specific relation. This approach simplifies the overall task,
making it easier to deal with each component separately. However,
it is affected by the error propagation from each consecutive task.

Recent research has shown great promise in using joint modeling
methods instead of the traditional pipelined methods, where all
the subtasks are approached as a single entity and relationship
extraction and classification task [8]. However, these approaches
rely heavily on complicated feature engineering and the use of
various NLP toolkits. In order to avoid these feature-based systems
[16], neural network-based approaches have been proposed for
the joint entity and relation extraction. More recently, Luo et al.
[8] proposed a tagging scheme that takes overlapping relations
into account in a neural network-based joint learning approach for
biomedical entity and relation extraction from biomedical literature.

In this paper, we propose a neural network-based approach for
the classification of the interactions between drugs from an anno-
tated dataset that contains the entities and entity pairs for each sen-
tence as shown in Table 1 . We aim to provide a simplified approach
to the classification methods by taking advantage of the learning
capabilities of neural networks. The drug entity recognition task
can be accomplished with the use of the well-established NLP tools
like MetaMap5 and SpaCy6. In our approach, an attention-based
neural network model, inspired by Wu et al. [20], is developed to
classify relationships in biomedical texts. The main contributions
of our work can be summarized as follows:

• We approach the task with minimal preprocessing and fea-
ture engineering.

• By reducing the dependency on preprocessing techniques,
the complexity of the data preparation process is also mini-
mized.

• We develop an attention-based Bi-LSTM-CNN model to bet-
ter focus on important words and long-distance dependen-
cies in the text.

• We explore the effectiveness of different word embeddings,
such as GloVe, Word2Vec and FastText, in further improving
the performance.

The drug entities and drug interactions types for this task are
from the DDI Extraction 2013 dataset that was developed for the
SemEval 2013 Task 9 [1] and has since been the gold standard
dataset for drug-drug interactions extraction. The dataset will be
further discussed in Section 3.1.

5https://metamap.nlm.nih.gov/
6https://spacy.io/

2 RELATEDWORK
The DDI extraction task is a special case of relationship extraction
and classification, in which relationships between entities are ex-
tracted from natural language in biomedical literature. The subtasks
are the recognition and classification of drug names and the extrac-
tion and classification of their interactions. With the emergence of
the SemEval-2013 DDI Task 9.27 extraction challenge, researchers
are able to study the effectiveness of various methods of extracting
DDI in the same gold standard corpus. Consequently, a plethora of
DDI models have been proposed.

Drug name recognition (DNR) is a traditional NER task. Typical
NER methods improve on Deep Learning (DL) techniques while
DNR methods tend to focus on the use of extra-linguistic features.
The current state-of-the-art NER systems are based on Transform-
ers, a type of stacked attention layers that also serve as bases for
BERT [2]. The best performing system, evaluated on the CoNLL
2003 dataset [18], which is considered as the benchmark corpus,
uses shallow bidirectional Transformers. However, the GCDT sys-
tem described in Liu Y. et al. [7], which has no statistically important
differences in performance, make use of combinations of contextu-
alized text representations and deep RNNs, along with an encoder
for sequence classification to achieve similar performance.

A clear state-of-the-art DNR system is difficult to identify as a
plethora of corpora that vary in scope (proteins, genes, diseases,
drugs, etc.) can be considered as the benchmark. However, BioBERT
[6] with a single multi-layer perceptron (MLP) for prediction, ap-
pears to outperform the majority of DNR systems in almost all
datasets. BioBert is a fine-tuned BERT model, trained on medical
literature collected from PubMed to enrich its vocabulary and create
better representations of medical terms. The CollaboNet [22] serves
as an exception, outperforming BioBERT on the JNLPBA dataset
for cell-line identification, with a combination of three pre-trained
Bi-LSTM-CRF architecture DNERs on chemicals, diseases and genes
to be used with a weighted-pooling mechanism as extra-linguistic
information about the text in hand.

A top performing DDI system [8] uses, compared to the above
systems, a very simplistic NER system. The model uses a combi-
nation of three embeddings, pre-trained word embeddings from a
word2vec model, pretrained ELMo embeddings and character em-
beddings that are learned in the process. The character embeddings
are following the approach of Ma et al. [9] to extract features based
on the characters. The main model is described as an “Att-Bi-LSTM-
CRF” model, meaning that it consists of a Bi-LSTM network that
creates latent representations from the three concatenated inputs,
an attention mechanism over the hidden states of the Bi-LSTM to
assign scores to the latent features produced, and a CRF layer used
for predictions.

Except for a few unsupervised clustering methods [15], most cur-
rent relationship extraction and classification models treat this task
as a supervised multiclass classification problem. Current feature-
based approaches achieve high performance through a range of
extensive features obtained from NLP techniques, such as Part-
of-Speech (POS) tagging, syntactic and dependency parsing [16].
Kernel based approaches that use syntactic information also proved
effective for this work [13]. Deep neural network-based models

7https://www.cs.york.ac.uk/semeval-2013/task9/
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Table 1: Example sentence with the corresponding drug entities from DDI Extraction 2013 dataset.

Sentence Since barbiturates are potentiated by the anticholinesterases, they should
be used cautiously in the treatment of convulsions

Drug Pair (barbiturates, anticholinesterases)
Type of interaction Advise

which can learn the underlying semantic features automatically
and reduce the dependency on preprocessing techniques, prove
very effective in the relation extraction and classification task [12].
Recently, graph based models, based on Graph Convolutional Net-
works (GCN), have been applied to this task and achieved good
results with the use of the Entity Pair Graph concept in combination
with a Graph Neural Network (GNN) model that is able to incorpo-
rate semantic features from a sentence and topological features for
relation classification [23].

For the task of Relationship Extraction for DDI, state-of-the-art
systems employ joint entity and relation modelling methods instead
of the traditional pipelined methods. By treating the DNR and RE
tasks as a single task, Luo et al. [8] convert the joint extraction
task to a tagging problem. However, due to the sheer amount of
overlapping relations in biomedical texts, this joint approach proves
inappropriate. By introducing a novel tagging scheme and extrac-
tion rules the overlapping relations are extracted from biomedical
texts and with the use of in-domain ELMo embeddings the per-
formance of the system has been improved. These experiments
were conducted on DDI Extraction 2013 dataset (DDI) and BioCre-
ative CHEMPROT dataset (CPI) and evaluated with micro-averaged
Precision, Recall and F1-score.

3 MATERIALS AND METHODS
In this section, the dataset and our method are being described,
which contains the preprocessing, training, tuning and evaluation
phase, as shown in Figure 1. At the preprocessing phase, two addi-
tional features are generated, POS tags and distance embeddings.
Further preprocessing steps include tokenization, sequence padding
and embeddings generation. At the training phase, our model is
trained with word embeddings, vectorized POS tags and distance
embeddings, classifying drug entity pairs in a sentence. Hyper-
parameter tuning was done on the evaluation dataset. At the eval-
uation phase, the models performance is evaluated using the test
dataset. The process is described in detail in the following sections.

3.1 Dataset
The DDI Extraction 2013 corpus is a semantically annotated cor-
pus of documents that consists of sentences describing drug-drug
interactions from MedLine abstracts and the DrugBank database.
MedLine is a bibliographic database that contains biomedical re-
search articles, while DrugBank consists of manually curated texts
that combine detailed drug data with comprehensive drug target
information. The corpus has been manually annotated with phar-
macological substances (drugs) and the interactions between them.
It has been reviewed and annotated by two annotators, members
of the Advanced Database Group, Computer Science Department,
Universidad Carlos III de Madrid, Spain.

The DDI corpus consists of 175 MedLine abstracts selected from
the query ‘drug-drug interactions’ and 730 documents describing
drug interactions from the DrugBank database. A summary of the
main features of the corpus is presented in Table 2. According to
SemEval-2013 Shared Task, the recognition of drug-drug interac-
tions in biomedical literature is to determine whether there is a
relationship between two candidate drug entities in a given sen-
tence. The interactions for the classification of the drug pairs in the
corpus are annotated with the following types:

Advice: Advice is the category that is assigned to those drug-
drug interactions in which a recommendation or advice regarding
the concomitant use of two drugs involved in them is described.

Effect: Effect is the category assigned when the effect of the
drug-drug interaction is described. The effect can be a pharmaco-
logical effect, a clinical finding, signs or symptoms, an unspecific
modification of the effect or action of one of the drugs, an increase
of the toxicity or a protective effect, or therapeutic failure. Likewise,
this type is assigned when the sentence describes a pharmacody-
namic mechanism or effect of interaction.

Mechanism: The mechanism of interaction can be pharmaco-
dynamic or pharmacokinetic. In this corpus, however, the type
mechanism is assigned when a pharmacokinetic mechanism is de-
scribed, including changes in levels or concentration of the entities.
Int: Int is assigned when the sentence simply states that an in-
teraction occurs and does not provide any information about the
interaction, so none of the other types can be assigned.

False: False is the category that is assigned when the target
drugs in the sentence have no interaction.

The dataset provides both the training and test instances sep-
arated in documents containing paragraphs with each sentence,
the drug entities inside the sentence and the drug pairs annotated.
Sentences that contain more than one drug pair (i.e. more than
two drug entities), have all possible drug pairs annotated, leading
to multiple instances with the corresponding interaction from a
single sentence. From Figure 2 we can observe that the dataset
is extremely unbalanced, with 85 percent of the instances being
negative and 15 percent positive. Furthermore, the distribution of
each type in the positive samples is unbalanced, where the number
of instances for the type "Int" is remarkably less than the other
types.

3.2 Preprocessing
To reduce the complexity of our proposed approach, the preprocess-
ing pipeline consists of tokenization only. The following procedures
were applied to the dataset before continuing with the feature gen-
eration:

• Instance generation: The corpus contains the sentences
and all drug pairs included in each sentence. For each drug
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Figure 1: Model flowchart

Table 2: Summary of the corpus features

Corpus Training set Test set

Documents (DB/ML) 714 (572/142) 191 (158/33)
Drug pairs 26490 4465
Positive DDI 4015 777
Advice 826 167
Effect 1685 283
Mechanism 1316 245
Int 188 82
False (Negative DDI) 22475 3688

Figure 2: Distribution of training and test set positive and
negative samples.

pair in the corpus, the corresponding sentence was used,
leading to multiple instances of the same sentence.

• Tokenization: SpaCy's tokenizer was used for tokeniza-
tion. No prior preprocessing was done to the sentences be-
fore converting them into sequences of tokens, leading to a
count of 5809 unique words in the vocabulary.

3.3 Features
Our model uses word embeddings, POS tags and distance embed-
dings as basic features. In addition, the effectiveness of pre-trained
GloVe, Word2Vec and FastText [10] embeddings are investigated.

Word embeddings. Distributed word representations, also known
as word embeddings, capture useful syntactic and semantic infor-
mation of words and produce vector representations. The use of
word embeddings vectors is prevalently used to improve the per-
formance of NLP tasks. The word2vec model trained on the Google
News corpus was used, which outperforms other implementations
in the RE task on the DDI Extractions 2013 corpus [19]. The Google
News word2vec model was trained on roughly 100 billion words
and produced a vocabulary size of 3 million words and phrases. The
dimension for the word representations is 300 as researchers in the
original papers introducing word2vec, GloVe and FastText chose
the same value. A too small or too large dimension will affect the
performance of our model, introducing the risk of over/under fitting.
To achieve the best performance in our model, we experimented
with word2vec, GloVe and fastText embeddings with dimensions
of 100, 200 and 300.

Distance embeddings. Distance embeddings, also referred to as
position embedding representations, consist of relative distances
between words and each drug entity. Inspired by the method used
by Wu et al. [20], given a sentence 𝑆 = [𝑤1 𝑤2 𝑤3 𝑒1 𝑤4 𝑤5 𝑤6
𝑒2𝑤7], where𝑤𝑖 is the 𝑖 − 𝑡ℎ word and 𝑒𝑖 is the 𝑖 − 𝑡ℎ drug entity
in the sentence, relative distance vectors in the form of 𝑃1 = [−3,
−2, −1, 0, 1, 2, 3, 4, 5] and 𝑃2 = [−7,−6,−5,−4,−3,−2,−1, 0, 1] are
produced for drug entity 1 and 2 respectively.

POS tags: Part-of-Speech tagging is used to assign tags based on
syntactic, distributional and morphological properties to each word
in a sentence. SpaCy’s Part-of-Speech tagging system was used to
generate the tag annotations for each word in a given sentence.
The large English statistical model was used, which is trained with
GloVe vectors on the OntoNotes 5 Common Crawl corpus and has
a POS syntax accuracy of 97.22 percent. The unique POS tags in
the dataset are 49 and mapped to a real valued vector to encode the
tags in to a sequence.

3.4 Attention-based Bi-LSTM CNN model
We present a multi-input model consisting of stacked Bi-LSTM and
Convolutional (CNN) networks and a separate Bi-LSTM (Att-BLLC).
The mapped sentence embeddings pass through the two successive
Bi-LSTM networks and the output is fed to the attention layer. The
attention layer is used to consider all the hidden states of the output
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of the two stacked Bi-LSTM layers on a word level. The mapped
distance embeddings are fed to the stacked CNN layers along with
MaxPooling layers and the encoded POS tags are fed to a separate
Bi-LSTM network. Finally, the outputs of all three networks was
averaged in a fully connected layer and fed to a fully connected
layer with Softmax activation to classify the interaction into one of
the four positive categories (described in section 3.1) by assigning a
probability to each. The overall architecture of our Att-BLLC model
is illustrated in Figure 3.

Bi-LSTM layers. Recurrent neural networks (RNN) are a spe-
cial type of neural network where the output layer is fed back
to the input layer multiple times, allowing information to persist.
Although this is a powerful architecture for modeling sequential
data [11], for instances with longer sentences it may suffer with
exploding or vanishing gradient problems [3]. Long Short Term
Memory networks (LSTM) are a type of RNN explicitly designed to
avoid the long-term dependency problem, by using gate and mem-
ory mechanisms. Bidirectional LSTM (Bi-LSTM) connect the two
hidden layers of opposite directions to the same output. The input
vectors and the corresponding reverse input vectors are fed int to
LSTM (forwards and backwards) respectively and the combined
output is the Bi-LSTM layers output. This approach of generative
deep learning enables information persistence form past and future
states simultaneously. We stack Bi-LSTM layers, to better capture
the characteristic of the sentence in each Bi-LSTM unit.

Attention layer. Attention mechanisms place different focus on
different elements in the input sequences by assigning a score to
each element, capturing global information from the sequences.
We utilize a self-attention mechanism where the the output of the
stacked Bi-LSTM layers is fed to the attention layer. As the mecha-
nism processes each position in the input sequence, self-attention
allows it to look at other positions in the the same sequence to
capture information from all the hidden states.

CNN layers. Convolutional neural networks utilize layers with
filters that perform convolutions on the input layer. We fed the
distance embeddings as described in section 3.3 to the CNN layers
with a set of different kernel sizes. Each filter applies convolutions
to a set number of continuous feature representations to generate
new features.

3.5 Training and experiments
In our approach the DDI Extraction 2013 dataset was used as de-
scribed in section 3.1. Our model takes full advantage of the stacked
Bi-LSTM and CNN layers. Word embeddings were mapped to real
valued embedding matrix and encoded POS tags were fed to a sep-
arate Bi-LSTM network. Thereafter, the output of the two stacked
Bi-LSTM layers served as input to the attention mechanism. Dis-
tance embeddings were fed to the CNN stack and the outputs of
each CNN was added and used as input to a MaxPooling layer.
Finally, all outputs from the attention layer, the Bi-LSTM and the
CNN stack were averaged in a fully connected layer and fed to a
Softmax layer to predict the probability of each class. The results
suggest that our stacked Bi-LSTM with attention mechanism in
combination with pre-trained word embeddings can capture more
latent features from sentences without extensive preprocessing and
a rich set of features.

Table 3: Hyper-parameters used in our model.

Parameter Value

Number of stacked Bi-LSTM layers 2
Word embedding dimension 300
Hidden layer dimensions 256
CNN window size [2,3,4]
Dropout rate 0.1
Learning rate 0.0005
Batch size 128
Max length of features 135

The experiment utilized the Python programming language and
used the TensorFlow library to implement our model. The train
dataset was split into two parts, 80 percent for training and 20
percent for validation. Hyper-parameter tuning to optimize the
system performance was conducted based on this a validation set.
All parameters of our tuned model are listed in Table 3.

4 RESULTS
4.1 Experimental results
In order to evaluate the performance of our model we used micro-
averaged 𝐹1−𝑠𝑐𝑜𝑟𝑒 on the DDI Extraction 2013 dataset as described
in Section 3.1. The micro-averaged 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 can be interpreted
as a weighted average of the Precision and Recall where the con-
tributions of all classes are aggregated to calculate the average
score and was used in the SemEval DDI Extraction task as well
as in related studies. As the dataset is extremely unbalanced, the
amount of negative instances impact the classification accuracy
greatly, classifying over 90 percent to the negative class. Therefore,
similar to recent studies, we focus mainly on the classification task
of the positive classes (Advice, Effect, Mechanism, Int) excluding
the negative class entirely.

On the overall dataset, our Att-BLLC model performed compara-
ble to similar deep learning approaches (±1.26) with minimal pre-
processing and feature engineering. The hierarchical LSTM model
of Zhang et al. [21] that employed an attention mechanism, in
comparison, used word, position, shortest dependency path (SDP)
and POS features to achieve an 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 of 0.729. The classes of
"Advice" and "Mechanism" performed better overall, while the "Int"
class achieved a low F1-score, greatly attributed to the insufficient
number of instances of this class. What is more, the instances of the
class "Int" were often missclassified to "Effect" instances. Further-
more, our model performed better with FastText embeddings and
misclassification of instances was improved. Our validation model
with the optimal hyper-parameters, was evaluated on the test set,
and obtained a 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 of 0.7214. Additionally, we evaluated
the effectiveness of our model on different feature sets, with the
experimental features and respective score shown in Table 4.

4.2 Comparison of word embeddings
The results show that the word embedding models contribute to
differences in performance in our model. The effects of the different
pre-trained word embeddings on our models F1-score are illustrated
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Figure 3: Architecture diagram of our attention-based BiLSTM-CNN (Att-BLLC) model.

Table 4: Comparison of our model with different features.

Parameter F1-score

Word Emb. 0.7033
Word Emb. + POS 0.7103
Word Emb. + Dist. Emb. 0.7123
Word Emb. + POS + Dist. Emb. 0.7214

in Figure 4. In our model, the pre-trained FastText word embeddings
performed better then GloVe and Google-News Word2Vec word
embeddings corpus. FastText word vectors are built from vectors of
substrings of characters contained in it. This allows to build vectors
even for misspelled words or concatenation of words which proved
effective on the unprocessed DDI dataset.

5 CONCLUSION
In this paper, we presented an attention based Bi-LSTM-CNNmodel
for the DDI classification task which can aid the drug development
process and the identification of possible new drug targets for drug
repurposing. The proposed method utilized word embeddings, POS
tags and distance embeddings as features and learns high-level rep-
resentations, reducing the complexity in the preprocessing stage.
Our model takes advantage of stacked Bi-LSTM layers and an atten-
tion mechanism to improve classification results. The performance
of our model was evaluated on the DDI Extraction 2013 corpus and
experimental results indicate that our approach achieves compa-
rable results to best performing approaches with more complex

Figure 4: The effects of the different pre-trained word em-
beddings.

feature engineering with the advantage of reduced misclassifica-
tions due to imbalanced data.
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