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Abstract. In this research a novel deep learning architecture is pro-
posed for the problem of speech commands recognition. The problem is
examined in the context of internet-of-things where most devices have
limited resources in terms of computation and memory. The uniqueness
of the architecture is that it uses a new feature pooling mechanism,
named entropy pooling. In contrast to other pooling operations, which
use arbitrary criteria for feature selection, it is based on the principle of
maximum entropy. The designated deep neural network shows compa-
rable performance with other state-of-the-art models, while it has less
than half the size of them.
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1 Introduction

Internet-of-Things emerged from the amalgamation of the physical and digital
world via the Internet. Billions of devices that are used in our daily life, are
connected to the internet. Our environment is surrounded by mobile phones,
smart appliances, sensors, Radio Frequency Identification (RFID) tags and other
pervasive computing machines, which communicate with each other and most
importantly with humans. From the humans perspective the most natural way to
communicate is by speaking. Speech recognition has been one of the most difficult
tasks in artificial intelligence and machine-to-human user interfaces have been
restricted so far to other options such as touch screens. Yet, two technological
advancements paved the way for more friendly user interfaces based on sound.

The first technological advancement is the rise of multimedia devices like
smart phones. Especially the development of digital assistants and their incor-
poration not only in mobile phones but also in smart home or smart car kits,
has established the need for audio based interactions with humans. The second
advancement is the Deep Learning revolution in many applications of artificial
intelligence.
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Deep neural networks have shown a tremendous success in many domains
including, but not limited to, computer vision, natural language processing,
speech recognition, energy informatics, health informatics etc. Such models
are already applied to real world applications such as medical imaging [15],
autonomous vehicles [4], activity recognition [8], energy disaggregation [11] and
others. Speech recognition is not an exception and there is an increasing interest
in audio based applications that can run on embedded or mobile devices [13].

Some examples of sound recognition tasks are automatic speech recognition
(ASR), speech-to-text (STT), speech emotion classification, voice commands
recognition, urban audio recognition and others. For several years, researchers
were trying to manually extract features from sound that are relevant to the
task. Thus, the traditional pipeline of such systems includes a preprocessing
step, feature extraction and a learning model [14,20]. The first two steps mainly
include unsupervised signal processing techniques, extracting information in the
frequency domain, exploiting frame-based structural information and others
[1]. Recently, deep neural networks have demonstrated unprecedented perfor-
mance in several audio recognition tasks, outperforming traditional approaches
[5,16,17,20].

This research focuses on the challenge of voice commands classification task.
Despite the fact that ASR has reached human performance, such models are
gigantic and would not fit on a device with limited resources. Moreover, ASR
is not so robust in a real world environment where noise is present in many
unexpected ways. Thus, a more direct, computationally efficient and resilient to
noise system is required. A solution to the voice command classification task
seems promising in both achieving an acceptable performance and meeting the
aforementioned requirements.

In this manuscript a novel 2D convolutional neural network is developed,
utilizing a recent pooling operation named entropy pool [10] and applied on
the Speech Commands dataset [18]. The paper is organized as follows. Firstly,
previous work on this task is presented. Next, there is a detailed description of the
proposed system and all aspects of the experimental arrangement. Afterwards
the experimental results are demonstrated and analysed. Finally, conclusions
and future research directions are presented.

2 Related Work

Recently, deep learning approaches have demonstrated superior performance
than classic machine learning systems in various audio classification tasks. Until
now there has been a race on achieving state-of-the-art performance in terms
of accuracy on specific tasks. This lead to the development of huge neural net-
works with millions or billions of parameters that are prohibitive for resource-
constrained and real-time systems. In this context, researchers now put their
effort on improving the efficiency of deep neural networks.

Recent interest in deploying speech recognition models on the edge has lead
to new work on ASR model compression [9] and other sound recognition tasks.
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Coucke et al. [3] developed a model utilizing dilated convolution layers, allow-
ing to train deeper neural networks that fit in embedded devices. It is worth
noting that the dataset that they created, named “Hey Snips” is public with
utterances recorded by over 2.2K speakers. Kusupati et al. [7] proposed a novel
recurrent neural network (RNN) architecture named FastGRNN, which includes
low-rank, sparse and quantized matrices. This architecture results in accurate
models that can be up to 35x smaller than state-of-the-art RNNs. FastGRNN
was tested on a variety of datasets and tasks including speech, images and text.
The scope of this research was to build models that can be deployed to IoT
devices efficiently. Zeng et al. [19] proposed a neural network architecture called
DenseNet-BiLSTM for the task of keyword spotting (KWS) using the Google
Speech Command dataset. Their main contribution was the combination of a new
version of DenseNet named DenseNet-Speech and BiLSTM. The former compo-
nent of the architecture captures local features whereas maintaining speech time
series information. The latter one learns time series features. Solovyev et al.
[13] used different representations of sound such as Wave frames, Spectrograms,
Mel-Spectograms and MFCCs and designed several neural network architectures
based on convolutional layers. Two of their best performing networks had very
similar architecture with VGG [12] and ResNet [6]. The models were evaluated
on the Google Speech Command dataset, showing very strong results with accu-
racy over 90%.

In this research a novel neural network architecture has been developed. The
proposed model is based on convolutional layers and pooling operations, has
six convolutional layers and is more efficient than other deep architectures like
VGG and ResNet, which usually have more than 12 layers. As a strong baseline
Solovyev’s et al. models are used. The experiments show that the proposed model
performs on par with the deep models but using much less computation power.

3 Materials and Methods

3.1 Dataset

The Speech Commands dataset [18] has become a standard data source for
training and evaluating speech command classification models that are targeted
for devices with constraint resources. The primary real world application of
such models are scenarios where a few target works have to be recognised in
an unpredictable and noisy environment. The challenge in this type of problems
is to achieve as very few false positives while restricting the energy consumption
as much as possible.

One common scenario is the recognition of keywords that trigger an inter-
action like the keywords “Hey Google”, “Hey Siri”, etc. It is obvious that such
devices are usually placed in houses or offices where the presence of human con-
versations is strong and there are many other noises that the devices should
ignore.

The training data consists of 60K audio clips with size around 1s. In total
there are 32 different labels, from which only 10 are the target ones. The rest of
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the labels are considered as silence or unknown. The target labels are left, right,
up, down, yes, no, go, stop, on, off. Figure 1 illustrates a pie chart which shows
the proportion of each target command in the training set. The audio files are
16-bit PCM-encoded WAVE files with sampling rate 16K.
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Fig. 1. Proportions of target commands in speech commands training dataset.

3.2 Preprocessing and Audio Features

Audio is in the form of a time series, but it is very common to convert it to a
representation in the frequency domain. The most popular sound representations
are spectogram, log-mel spectrogram and MFCC. Spectogram is used as the main
representation in this research. It is computed using the algorithm of Short Time
Fourier Transform (STFT). STFT has the advantage of Fourier transformation
converting small segments of a time series to the frequency domain, whereas
at the same time preserves temporal information. STFT has three non-default
inputs: the signal that will be transformed, the frame length and the stride. The
latter one determines how much consecutive windows will overlap each other. The
output is a matrix of complex numbers from which we get an energy spectrogram.
The spectrogram is extracted using the magnitude of the complex numbers and
then taking the logarithm of these values. In the final feature set the angle of the
complex numbers is also considered, which improves the accuracy of the final
model.

3.3 Entropy Pooling

Feature pooling has been an established layer that helps in sub sampling features
with high cardinality. The two most popular pooling operations in deep learning
are max and average. However, choosing the right pooling operation is mainly
done through a series of experiments and based on the final performance of the
model.
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To the best of the author’s knowledge, in the literature there are two main
efforts that shed light on the properties of these two mechanisms. Firstly,
Boureau et al. [2] presented a theoretical analysis and described the statisti-
cal properties of max and average feature pooling for a two-class categorization
problem. The analysis evaluated the two methods in terms of which proper-
ties affected the models performance in separating two different classes. The
most important outcome was that among other unknown factors, experiments
showed that the sparsity and the cardinality of the features affect the model’s
performance. More recently, Nalmpantis et al. [10] investigated feature pooling
operations from the information theory point of view. The authors showed the-
oretically and empirically that max pooling is not always compatible with the
maximum entropy principle. In practice a model’s performance can vary a lot
with different weight initialization. On the contrary average pooling gives more
consistent results because it will always give a more uniform feature distribution.
In this context, a novel pooling operation, named entropy pooling, was presented
with guarantees to select features with high entropy.

Entropy pooling calculates the probabilities p of the features with cardinality
N. Then, the values of probabilities are spatially separated using a kernel and a
stride size. For each group the most rare feature is selected. Given a group with
size r the mathematical formula is:

fentr(Xr) = Xr[g(Pr)]7 (1)
g(P.) = a{%rgin i, (2)

where X, is the input feature map and P, the constructed map of probabilities.

3.4 Neural Network Topology

For the problem of speech command recognition recent research has borrowed
popular architectures from computer vision such as VGG16, VGG19, ResNet50,
InceptionV3, Xception, InceptionResnetV2 and others [13]. These neural net-
works all have in common the utilization of convolutional neural networks. In
this research convolutional layers are included but with the scope to meet the
following requirements. Firstly the model has to be smaller than the original
models that were introduced for cloud based applications. In the context of
speech command recognition, the developed model has to be deployed in devices
with limited storage. Moreover, a reduced size also means less computational
complexity which is essential for embedded devices or devices with constraint
resources. Furthermore, these devices also depend on a battery, magnifying the
need for more energy-efficient models. Finally, regarding the input data of the
model, they will often be very short and most of the time irrelevant sounds. This
means that false positives have to be eliminated.

It is not a surprise that a larger architecture usually achieves better results
in terms of accuracy at the expense of computation. After trying many dif-
ferent configurations, a neural network architecture with a satisfying trade off
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between best performance and efficiency has been developed. It consists of six
2D convolutional layers with activation function ReLU. Each of the first four
convolutional layers is followed by a batch normalization layer and an entropy
pooling operation. Figure 2 shows the details of the architecture.

input: | [(?, 122,257, 2)]

output: | [(?, 122, 257, 2)]

)

input: | (?, 122,257, 2)

output: | (2, 122, 257, 2)

|

input: | (2, 122,257, 2)

output: | (?, 122, 257, 32)

)

input: | (7, 122, 257, 32) l input: [ (0,27, 61, 128) I

R hN. 1i 2 B hN
BatchN sapa | ¢ 122,357, ) ’ [Louput: [ 0.27.61,128) |

'

input: | (2, 122, 257, 32)

| input: [(0‘59‘ 126, 32)| o [Cinput: T 0. 11,28,256) |
[ oupur: | 059,126, 32) | [ oupur: | 0. 11,28, 256) |

InputLayer

BatchNor

[ input: T 0, 11,28, 256) |
‘ [ output: | (0.5, 14, 256) |

input: | (0, 5. 14, 256)
Conv2D
output: | (0,5, 14, 128)

Conv2D

input: [ (0,5, 14, 128)

Conv2D

output: | (0,5, 14, 64)

)

input: | (0,5, 14, 64)
output: | (0, 4480)

Flatten

(0,27, 61, 128)
(0, 13, 30, 128)

EntropyPoolLayer

EntropyPoolLayer

output: | (0, 61, 128, 32) l

l P— 2 s
Comap |t ] ©.13.30, 128) |

input: 28.32
input: | (0, 61, 128, 32) output: | (0, 11,28, 256) |
output: | (0, 59, 126, 32) T

I

Conv2D

input: | (0, 12)
BatchNormalization

output: | (0, 12)

Fig. 2. The proposed neural network with 2D convolutions and entropy pooling oper-
ations.

4 Experimental Results and Discussion

The evaluation of the proposed neural network was done using accuracy and
cross entropy error. The latter one is the result of the cross entropy of the
model’s output and the target. Accuracy is more intuitive and estimates the
total number of correctly classified instances to the total number of samples.
The model achieves test error 0.398 and accuracy 90.4%. Other state-of-the-art
models perform slightly better with accuracy around 94%, but the size of these
neural networks is multiple times larger [13]. To give an example a modification
of the popular deep neural network VGG [12] named VGG16 includes 16 con-
volutional layers in contrast to the current solution which involves only six and
its performance is around 2% better.

For a more in depth analysis of the performance of the model, recall, precision
and f1 score are also employed. Recall is defined as the number of correctly pre-
dicted positive observations divided by the false and true positive observations.
It gives a percentage of total commands that should be recognized. Precision
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is defined as the true positives divided by the total number of true and false
positives. It gives insight of how many of the commands are actually true. This
metric is quite important because it is directly affected by the false positives,
which is very critical in the real world, as explained previously. Finally f1 score
is the harmonic mean of precision and recall. Table 1 presents a detailed classi-
fication report for each of the commands. According to the table the command
“yes” is the easiest to detect whereas the worst performance is shown for the
command “go”. The latter one, as shown in the confusion matrix in Fig.3, is
mixed with silence.

Table 1. Analytical classification report.

Yes |No |Up |Down|Left|Right| On |Off |Stop|Go |Silence Macro|Micro
Precision |0.92{0.82/0.93/0.90 [0.93/0.96 0.86/0.83/0.92 |0.76/0.92 0.89 |0.90
Recall 0.88/0.81/0.78/0.78 10.80|0.76 |0.83/0.84/0.83 0.78/0.96 0.82 |0.90
Fl-score [0.90{/0.81/0.84/0.84 |0.86|/0.85 |0.85/0.84|0.87 [0.77/0.94 0.85 0.90
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Fig. 3. Confusion matrix with results of the proposed neural network recognizing 10
different speech commands.

5 Conclusion

The problem of speech command recognition is a critical one for the success
of personal assistants and other internet of things devices.In this research a
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novel neural network has been developed, utilizing 2D convolutional layers and
a pooling operation which is based on entropy instead of randomly selecting
audio features. The proposed model meets the real world requirements and can
be used by a product with confidence. It achieves a descent performance when
compared to larger models while at the same time it is energy efficient and
computationally lightweight. For future work it is recommended to examine the
performance of entropy pool in larger neural networks. Researchers are advised
to conduct further experiments on more datasets and different sound recognition
tasks.
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