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ABSTRACT

In critical situations involving discrimination, gender inequality, economic damage, and even the
possibility of casualties, machine learning models must be able to provide clear interpretations of
their decisions. Otherwise, their obscure decision-making processes can lead to socioethical issues
as they interfere with people’s lives. Random forest algorithms excel in the aforementioned sec-
tors, where their ability to explain themselves is an obvious requirement. In this paper, we present
LionForests, which relies on a preliminary work of ours. LionForests is a random forest-specific
interpretation technique that provides rules as explanations. It applies to binary classification tasks
up to multi-class classification and regression tasks, while a stable theoretical background supports
it. A time and scalability analysis suggests that LionForests is much faster than our preliminary
work and is also applicable to large datasets. Experimentation, including a comparison with state-
of-the-art techniques, demonstrate the efficacy of our contribution. LionForests outperformed the
other techniques in terms of precision, variance, and response time, but fell short in terms of rule
length and coverage. Finally, we highlight conclusiveness, a unique property of LionForests that
provides interpretation validity and distinguishes it from previous techniques.

Keywords Explainable Artificial Intelligence · Interpretable Machine Learning · Local Interpreta-
tion ·Model-Specific Interpretation · Random Forests

1 Introduction

It is apparent that machine learning (ML) models will be integrated into our society and daily life. However, in
critical domains such as banking and healthcare, where models can contain errors or may suffer from biases, it is
more than necessary to ensure their transparency. Gender inequality [18], inappropriate patient treatments [8], or
tricked models [11] are only a few of the common problems when automated systems are used. Thereby, it is vital for
secure, fair, and trustworthy intelligent systems to be able to explain how they work and why they predict a particular
outcome. In addition, guaranteeing certain virtues in the behaviour of a model allows it to be compliant with legal
frameworks such as the General Data Protection Regulation (GDPR) [45] of the EU and the Equal Credit Opportunity
Act of the US 1. These needs boosted the visibility of the explainable artificial intelligence (XAI) research area in the
scientific community [15]. Interpretable machine learning (IML), a subfield of XAI, attempts to address these issues
by proposing techniques to shed light on the inner workings of ML models [1, 50, 4].

Random forest (RF) is an accurate learning algorithm [17] that has been proven robust to overfitting [5], as well as
to learning difficulties like class imbalance or noisy and anomalous data [55]. RF excels in a lot of sectors. From
applications related to security, such as intrusion detection [46], to the financial sector dealing with tasks including
credit card fraud detection [32] and loan approval [58]. The presence of RF algorithms is also apparent in healthcare
applications, like the patient safety culture [52] and different stages of Parkinson’s disease classification [49]. Such

1ECOA 15 U.S. Code §1691 et seq.
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models are also used in the industry sector to power fault diagnosis tools in self-aligning conveyor idlers [44], among
other tasks. Finally, RF algorithms are being employed in the law sector, with one well-known application being the
prediction of crime hotspots [56].

The positive aspects of RFs, in conjunction with their black box nature, have drawn the attention of the IML research
community, which introduced a variety of techniques to provide interpretation in the form of rules, trees, or feature
importance. For RF models in particular, interpretation techniques follow two main directions. The first one is to
create a surrogate model, intending to distil the knowledge of a complex RF model into a single tree [26, 13]. The
other direction is to take full advantage of the inner structure of the RF and derive information from the individual
trees that make it up [29, 40, 31]. However, these approaches have significant limitations. For example, most of them
only apply to binary classification tasks [40, 31]. Another point to consider is that the interpretations produced are not
always valid [29, 26]. This is evident in techniques that seek to approximate the actual interpretations of a complex
model.

This work presents LionForests (LF), an approach for interpreting individual predictions of RF models. LF performs
path and feature reduction towards smaller interpretation rules with wider ranges by using unsupervised techniques,
such as association rules and k-medoids clustering, as well as a path-oriented dissimilarity metric. We extend our
preliminary work [31] in multiple dimensions. First, we provide a stable theorem and a property called conclusiveness,
to support the quality and soundness of the produced rules. Besides that, we broaden LF’s capabilities by making it
applicable to multi-class classification tasks, and we introduce a new concept, the “allowed error”, to render the
technique applicable to regression tasks as well. In addition, we optimise LF’s performance in terms of response time
per produced interpretation. Further parameterisation options are also implemented in the technique concerning the
association rules and clustering algorithms. An improved and clearer method for dealing with categorical features is
also provided. Moreover, a simple visualisation functionality increases the expressiveness and clarity of the generated
interpretation rules. Experiments including sensitivity analysis, analysis of response time, scalability analysis, and
comparison with other state-of-the-art (SOTA) interpretation techniques, as well as qualitative examples of actual
interpretations, are provided to support LF’s efficiency. Finally, we are investigating whether SOTA techniques have
the same conclusiveness property as LF.

The rest of this paper is structured as follows. Section 2 presents the related work, while Section 3 establishes the
theoretical background. Section 4 describes the LF approach, and the proposed conclusiveness property. Exhaustive
experimentation from multiple perspectives, such as sensitivity analysis, time analysis, comparison with other meth-
ods, and qualitative assessments, is provided in Section 5. Section 6 presents an analysis of the experimental results.
Finally, in Section 7, we discuss conclusions and future directions.

2 Related work

Over the last few years, IML has advanced so much, making the range of solutions provided wider than ever. Of the
several dimensions of interpretability, two are primarily used for categorisation and comparison of such approaches.
The first one refers to the global-local aspect of the model, while the second refers to the agnostic-specific applicability
of the technique to a model or architecture. Local-based techniques concern the interpretation of predictions for
a single instance. Global-based techniques uncover the entire structure of a model. Both local and global-based
approaches include techniques that are model-agnostic or model-specific. Model-agnostic approaches can interpret any
machine learning model, while model-specific techniques interpret particular types of models, or even architectures.

Another interesting aspect of interpretation techniques is the form in which they deliver their results. It is possible for
a technique to provide an explanation as a set of rules, a set of feature weights, images with skewed or highlighted
sections, or prototype examples. In this section, we will present a few techniques related to these dimensions in
the context of ensemble models, such as random forests. These techniques share the same rule-based interpretation
form. This means that the output of these techniques is a set of rules, or single rules, explaining a model or a specific
prediction. Such explanations are intuitive to end users since they have a schematic and logical format, which is why
we focused on this type of explanation in this work.

Surrogate models [53], based on the principle of model compression [7], are a global-based, model-agnostic interpre-
tation technique that attempts to imitate the behaviour of more complex models. A decision tree (DT), for example,
is a surrogate model of an RF model, when trained on training data and labelled by the RF model. Metrics such as
fidelity have emerged in order to evaluate the ability of these models to mimic the original models. High fidelity means
the approximation is sufficient. However, it is still questionable how well the surrogate models should approximate
black-box models in order to be trusted [50].
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Two approaches which enabled the XAI and IML areas are LIME and SHAP. LIME is a cutting-edge method for
explaining machine learning models. Depending on the type of data, LIME constructs a local neighbourhood of
a given size using a different algorithm. LIME searches for linear correlations between features and ML model
predictions in this local neighbourhood to provide local explanations in the form of feature importance [47]. Shapley’s
values are a game theory-inspired approach for determining how much each “player” contributed to a collaborative
game’s result, feature value, and decision-making process in our case. SHAP calculates the Shapley values for an
instance using a technique similar to LIME’s sub/local space concept [36]. SHAP can provide the interpretation by
utilising a variety of visualisations, one of which is feature importance, either local or global. A tree-specific variant
known as TreeExplainer that provides faster and more accurate interpretations of trees or tree ensembles is also a part
of SHAP [35].

Anchors [48] and LORE [24], local-based model-agnostic techniques leveraging synthetically generated neighbour-
hoods, create local surrogate models to explain particular instance predictions. Specifically, Anchors provides a single
rule for interpreting a single instance’s prediction. This rule is the anchor that keeps the prediction the same. On the
other hand, for each instance, LORE creates a local neighbourhood using genetic algorithms. Then, it constructs a
surrogate decision tree from which extracts a single rule interpretation and counterfactual instances.

The RuleFit algorithm is an intriguing technique that is similar to the knowledge distillation — student-teacher training
scheme [30]. Using decision trees or tree ensembles, a set of rules is extracted and utilised as input to a sparse linear
model. Because the resulting linear model bases its decisions on the most important rules, this approach is highly
interpretable [22]. NodeHarvest, a technique similar to RuleFit, combines the best of both worlds: trees and tree
ensembles. Generating rules from a tree ensemble using its nodes and leaves, NodeHarvest attempts to weight each
rule to solve a linear quadratic problem. This results in a transparent, high-performing model [39].

Another interesting technique is the inTrees [13]. InTrees applies a series of actions like extraction, evaluation using
three metrics, pruning, and selection of rules from tree ensembles, and it also calculates frequent feature interactions.
Moreover, inTrees can combine these rules into a simple rule-based learner.

Single-tree approximation approaches like defragTrees [26], among others [14, 60], are global model-specific tech-
niques that interpret tree ensembles by approximating the output of the model they attempt to explain through a single
tree. However, these procedures are highly problematic because it is not feasible to summarise a complex model like
tree ensembles to a single simple tree or rule-based learner, as reported by other researchers [23].

Figure 1: A sample example from the visualisation tool of iForest adapted from [59]

iForest [59] is a visualisation method that offers global and local interpretations of RF models. The most interesting
aspect of this tool, though, concerns local explanations. Using a path distance metric, iForest projects the paths of an
instance to a two-dimensional space (Figure 1a) using t-Distributed Stochastic Neighbour Embedding (t-SNE) [38].
Then, it provides a feature summary (Figure 1b) and a decision path flow (Figure 1c). To produce the path flow, iForest
requires user input, in the form of drawing a lasso around a set of paths (Figure 1f). This is a disadvantage because
the user may give incorrect input, leading to an incorrect feature summary and path flow, which will result in a flawed
interpretation.

Another local model-specific interpretation strategy [40] interprets RF models by providing a collection of features
with their ranges, rated based on their importance, as explanations (Figure 2). The process of interpretation comprises
two steps. First, they measure the effect of a feature j on the prediction for a given instance x, and later this effect
will be used for the ranking process. To accomplish this, a node per tree monitoring mechanism is used to find the
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Figure 2: Template of explanation of Moore et
al. [40]

Figure 3: Comparison of techniques in terms of the response
time [29]

aggregated effect of all the features for a particular instance’s prediction. The second step is to identify the narrowest
range for each feature across all trees.

Finally, CHIRPS [29] proposes a technique for multi-class tasks, using frequent pattern (FP) mining on the paths of
the majority class to identify the most influencing features. CHIRPS promises interpretations (Figure 3) that will be
minimally complete, providing information about counterfactual cases and referring to real data, and not synthetic
data. A drawback of this approach is that it lacks a strict restriction on the number of paths that will be covered by
the generated rule, particularly in multi-class classification tasks. An extension of CHIRPS to gradient boosted tree
ensembles is gbt-HIPS [28].

LF overcomes the issues of single-tree approximations, does not require user input like iForest, and comes with a low
computational cost, in contrast to Anchors. Most importantly, LF provides rules that are always valid. Finally, it applies
to a wider range of machine learning tasks compared to Anchors, LORE, and CHIRPS, among other competitors.

3 Main concepts and notation

We here define the main concepts and notation concerning decision trees and random forests, which are necessary for
the presentation of LF in the next section.

3.1 Decision trees

Decision Trees (DT) [6] is a classic and well-known machine learning algorithm. DTs have played an important role
in the evolution of Ensemble algorithms throughout history. A DT can be shown as an acyclic directed graph, as seen
in Figure 4, containing a root node, decision nodes, and leaf nodes, which are the prediction nodes. Regarding the
learning algorithm, each node concerns a particular feature fi and a condition relation. In the case of input instances,
the decision tree traces the path to a leaf node containing a prediction. The prediction can be a class, in the case of a
binary or multi-class classification, or a real number estimate, in the scenario of a regression task.

Figure 4: A simple decision tree classifier with 4 features

Each decision path p is a conjunction of conditions, and the conditions are features and values with relations ≤, > and
=. To provide an illustration, a path from the tree on Figure 4 would be: ‘if f1 > 0.45 and f2 ≤ 1 and f3 = blue then
Decision A’. Thus, each path p is expressed as a set:

p = {fi � vj |fi ∈ F, ((� ∈ {≤, >} → vj ∈ R) ∧ (� ∈ {=} → vj ∈ Sj))} (1)
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where F = fi is the set of features used to train the RF model, vj the instance’s value for a feature fi, and Sj is the
set of the categorical values if fi is a discrete feature.

However, LF’s implementation relies on a library (scikit-learn [42])2, which uses an optimised version of DTs, where
the categorical features must be either encoded to numerical features, with encoding procedures like OneHot or Ordinal
encoding. Specifically, when employing DTs, Onehot and Ordinal encoding are common processes. Hence, in the rest
of the paper, each path p is expressed as a set:

p = {fi � vj |fi ∈ F, vj ∈ R,� ∈ {≤, >}}. (2)

3.2 Random forests

One of the first ensemble algorithms using DTs as foundation is the Random Forests (RF) [5] algorithm. An RF is a
collection of a specific number of trees, which are combined under an equal voting scheme. Abstractly, the inference
process of an RF model can be seen as a voting procedure, where the outcome (prediction) corresponds to the majority
of the votes cast.

These trees are trained under different data, bootstrap aggregation - bagging, and feature partitions, feature bagging,
towards higher variance and lower bias, dealing with the overfitting problem. Then, for a specific prediction, the trees
vote:

h(xi) =
1

|T |
∑
t∈T

ht(xi) (3)

where ht(xi) is the vote cast from the tree t ∈ T for the instance xi ∈ X , representing the probability P (C = cj |X =
xi) of xi to be assigned to class cj ∈ C, and finally choosing the argmaxc∈C P (C = c|X = xi) for classification
problems, and ht(xi) ∈ R in regression tasks.

4 Our approach

LionForests (LF) is a local interpretability technique for RF models. LF provides a rule interpretation for an RF’s
decision regarding a single test instance without altering the RF model architecture and performance, as it just extracts
the interpretation, exploiting the RF’s knowledge. In this section, we present the core of LF, along with its extensions,
which concern primarily the theoretical grounding, the main algorithm’s optimisation, as well as the adaptation from
binary classification to multi-class and regression tasks.

Figure 5: LionForests architecture

LF is a technique for local interpretation of binary, multi-class, and regression RF models. The ultimate purpose of
LF is to give interpretations with properties related to the size of the rules, the ranges of the rules’ conjunctions, and
the rules’ overall comprehensiveness. These are achieved via the following sequence of actions: a) estimation of
the minimum number of paths, b) reduction through association rules, clustering, random selection, or distribution-
based selection, c) extraction of feature-ranges, d) categorical handling of features, and, ultimately, e) composition of
interpretation and f) visualisation, as depicted in Figure 5.

2We use scikit-learn as core library (https://scikit-learn.org)
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Before presenting these actions, we introduce a new property called conclusiveness (in the following subsection),
which is the last, but not least, property that we want LF to have (Section 4.1). In order to produce rules with fewer
features and broader ranges, LF first estimates the minimum number of paths that have to be maintained to produce
conclusive rules, as presented in Section 4.2. Then, it reduces the redundant paths with the different techniques
introduced in Section 4.3 to achieve feature and path reduction, and extracts the feature-ranges from the rest with the
procedure presented in Section 4.4. In case of categorical features, a related procedure takes place to present them
more comprehensively (Section 4.5). Finally, a single rule in natural language is provided (Section 4.6), as well as a
visualisation of the rule’s details (Section 4.7).

4.1 Proposed conclusiveness property

conclusiveness - the quality of being final or definitely settled

We here introduce a property which concerns an aspect of a rule’s quality, which we call conclusiveness. This property
attempts to portray the quality and soundness of an explanation, specifically whether the explanation contains erro-
neous or misleading elements. In the name of shorter rules, such erroneous elements can include feature ranges that
do not cover the correct areas or completely missing features from the interpretation rule.

“Why do we need such property in our explanations?” one might argue. So, using a simple example, let’s explore
why this property is essential. Assume a socially responsible customer visits a bank to enquire about loan eligibility.
Based on the prediction of an RF model, a bank employee informs them that they are eligible to apply. Out of curiosity
about any social biases, the customer seeks an explanation, and they obtain the following interpretation rule offered
via a local post-hoc interpretability technique.

if 27 ≤ age and $1000 ≤MonthlyIncome and 2 ≤ Y earsOnSameJob and ... then Loan Approved

Option 1. The customer returns home, and on the same day, they receive news from work that small temporary
salary cuts will be applied for the two following months due. Their salary has been reduced from $2,200 to $1,700.
Nevertheless, they applied for the loan a week later. However, when they return to the bank one week later, a bank
representative informs them that the loan cannot be approved. The customer wants an explanation, claiming that the
only difference in the application was the lower salary, which was eligible based on the initial explanation. As a result,
the local post-hoc interpretation technique provides them with another explanation:

if 27 ≤ age and MonthlyIncome ≤ $2000 and 2 ≤ Y earsOnSameJob and ... then Loan Disapproved

Option 2. He accepts to apply for the loan after being relieved that there is no gender discrimination in the bank’s
system, and he receives payment one week later. Meanwhile, in a talk with a female co-worker who also needs a loan,
it appears like she will be eligible as well, based on the explanation he received last week on his loan application.
When she visits the bank, they inform her that she is ineligible to apply for a loan. When she requests an explanation,
she is given the following:

if 27 ≤ age and $1000 ≤MonthlyIncome and 2 ≤ Y earsOnSameJob and Gender = Female and ... then Loan
Disapproved

In the first option, we can see that a modification within a defined range resulted in a different decision, whereas in
the second option, we discovered that changing the value of a feature not included in the interpretation altered the
prediction as well. In both circumstances, social and legal issues arise. For example, the algorithm discriminated
against women. Furthermore, the bank must revise its algorithm and cope with fines imposed for noncompliance with
legislation. We call such rules inconclusive. Below, we introduce the definition of a conclusive rule.

Given a dataset with a feature set F = [f1, f2, . . . , fq], a number of classes C = [ck, cl, . . . , cm], a predictive model
h, an instance x with values for the corresponding features [v1, v2, . . . , vq], and the prediction ck, h(x) = ck, we have
rules like the following: “r = if 2 ≤ f1 ≤ 10 and 0.5 ≤ f3 ≤ 1.2 then ck”.

r = {p→ ci|ci ∈ C}, (4)
where p corresponds to a path as presented in Eq. 2. Then, a rule is conclusive when:

conclusive(r, ck) =


False, ∃vl ∈ D(fi), fi = vl � vj |fi � vj ∈ r,

h(x′fi=vl) 6= ck
False, ∃vl ∈ D(fi), fi = vl|fi /∈ r, h(x′fi=vl) 6= ck
True, elsewhere,

(5)
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where D(fi) is the domain of feature fi, and x′fi=vl is an alteration of instance x but with a different value (vl) for the
specific feature fi. Therefore, a rule will be conclusive if and only if the following restrictions are met:

1. if the instance’s values for the excluded features are modified to any possible value, then the prediction will
not be influenced,

2. if the value of one of the included features is modified within the specified range, then the prediction will not
be influenced.

A technique that always produces conclusive rules owns the property of conclusiveness. As presented in the exper-
iments of Section 5, however, a conclusive rule contains more features than an inconclusive one, increasing the rule
length and being specific to a particular instance, reducing the rule’s coverage.

4.2 Estimation of minimum number of needed paths

LF attempts to identify and use only a subset of the paths that voted for the predicted class (CM ), in order to reduce
the features appearing in a rule and to broaden the ranges of the features. However, to acquire the conclusiveness
property, LF always has as many paths as needed to remain consistent with the original prediction. For each learning
task (binary, multi-class, and regression), it is necessary to define the theoretical foundations on which the estimation
of the minimum number of needed paths will rely on.

We should mention here that in LF’s implementation, apart from the minimum number of paths, an additional re-
striction concerning the average probability of a class has been added. This happens because, unlike the original
RF’s majority voting schema (hard voting) [5], the implementation of RF we use [42], it combines the probabilistic
predictions (soft voting) of the trees.

4.2.1 Minimum number of paths in binary tasks

First, we will go through the theoretical foundations for estimating the minimum required paths on binary tasks. Based
on Proposition 1, which states that we need at least |T |2 + 1 of the paths in order to maintain the same prediction CM ,
LF will select at least a quorum. For example, if we had |T | = 100 trees in an RF model and 89 of them voted for
class M for an instance xi, it has to select at least 51 of the 89 paths extracted from the trees in order to produce the
interpretation rule.

Proposition 1 An RF model, with T trees casting |T | votes, predicts always class M (CM ) if and only if class M has
at least a quorum of votes or more, where quorum = |T |

2 + 1 out of |T | votes.

As a result, the optimisation problem (Eq. 6) is formulated to minimise the number of features (|F ′|) that satisfy a
reduced set of paths (|T ′|). The constraint is to keep the same classification result as the original set of trees, making
the number of the reduced paths equal to or greater than the quorum. The final interpretation rule will include any
feature that appears in these paths, guaranteeing the property of conclusiveness.

minimise
F ′⊆F

|F ′|

subject to p = {fi � vj |fi ∈ F ′}, p ∈ Pt ∀ t ∈ T ′,

b 1

|T |
∑
t∈T ′

ht(xi) +
1

2
c = b 1

|T |
∑
t∈T

ht(xi) +
1

2
c,

|T ′| ≥ |T |
2

+ 1

(6)

An example for the equation b 1
|T |
∑
t∈T ht(xi) +

1
2c follows. When 70 out of |T | = 100 trees are voting for class 1,

then we have b 1
10070 + 0.5c = b1.2c → 1. On the other hand, if 25 out of |T | = 100 trees are voting class 1 (the

minority), then we have b 1
10025 + 0.5c = b0.75c → 0. Therefore, we are aiming to find a subset T ′ ⊆ T , which will

produce the same classification as the original T trees, with a smaller feature set |F ′|.

7
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4.2.2 Minimum number of paths in multi-class tasks

In a multi-class classification task, the voting system is more complex than in a binary task, and thus Proposition 1
cannot cover every case. The following theorems are presented in order to apply the framework of LF to multi-class
tasks. A running example will be given, along with the propositions and theorems, for better comprehension.

An RF model always predicts class M (CM ) if and only if class M has a majority of votes, while any other class J (CJ )
has fewer votes. Let, the available classes for the RF model with |T | = 100 trees beC1 (red),C2 (blue) andC3 (green).
For a specific case, each tree voted, and the result was |C1| = 45, |C2| = 35 and |C3| = 20. Thus, the prediction was
red with |C1| = |CM | = 45, and the second highest voting class was blue with |C2| = 35. Proposition 1 cannot be
used in this example because 45 = |C1| = |CM | < quorum = |T |

2 + 1 = 51.

Based on this, the result of the RF model is class M with the majority of votes. However, if we minimise the voting
paths to the majority class votes, as we did in binary tasks (only if the number of votes is less than the quorum), and
extract the interpretation rule, it is possible for another class to gain votes from other classes (see the following running
example). This is happening because the paths voting for those classes will not be covered by the interpretation rule.
Then, if a feature not appearing in the interpretation rule changes its value, this may lead to a change in the votes
(predictions) of the decision trees voted for the other classes, if this feature was important to them. This may lead
to a reallocation of votes between the other classes, and maybe a class will surpass the originally first class. As a
consequence, the outcome of the prediction could change.

Lemma 1 An RF model always predicts class M (CM ) if and only if class M has a majority of votes, while any other
class J (CJ ) can not exceed the votes of class M by obtaining at least S = |CM | − |CJ | + 1 votes from the other
classes.

In our running example, if we apply Lemma 1, we can assume that RF will always predict the red class if the other
classes do not exchange votes. For example, if |C1| − |C2|+ 1 = 45− 35 + 1 = 11 votes from the green class move
to the blue class, the number of votes from the blue class would rise to |C2| = 35 + 11 = 46, which is more than the
red class. Or if |C1| − |C3|+ 1 = 45− 20 + 1 = 26 votes from the blue class move to the green class, the number of
votes from the green class would rise to |C3| = 20 + 26 = 46 more than the red class. As a result, if we had reduced
the paths to the number of class red votes with LF, then the other votes could change and, therefore, the outcome of
the prediction could also change, while Lemma 1 would be invalid.

Proposition 2 An RF model always predicts class M (CM ) if and only if the K number of votes from any other class
remains stable, where K = |T |+ |CL| − |CM |+ 1, including the CM and CL, votes from the majority class and the
second most voted class, respectively, out of the |T | votes.

Proposition 2 argues that in situations where the majority of the class has less than a quorum of votes, the number
of votes can be reduced to K without affecting the outcome of the prediction. Maintaining only the votes of the
two key classes, majority class and second most voted class, is not enough and hence we need to retain Kother =
K − |CM | − |CL| from the other classes, also at random.

Thus, in our running example, the minimum number of paths we can reduce to is K = 100+35− 45+1 = 91. From
these 91 paths, we will retain the 45 of class ‘red’ (C1) and the 35 of class ‘blue’ (C2) paths. Then we would have to
hold Kother = 91−45−35 = 11 paths from the remaining classes, in this example from the ‘green’ class (C3) which
holds 20 paths. We use the LF’s techniques, which will be detailed later in this section, to select 11 out of 20 paths.
Thus, holding 91 paths out of 100, the rest of the 9 paths of the class ‘green’, if they all switch from ‘green’ to ‘blue’,
the class ‘blue’ will not exceed the votes of the class ‘red’, and the result will remain the same. This is presented in
Theorem 1.

Theorem 1 For R = |T | − |CM | − |CL| as the remainder of the votes and Kother = K − |CM | − |CL| as the
remainder of the votes to be selected, S is always greater than R −Kother, which means that there is not a sufficient
number of votes to be received by class L, or any other class, in order to surpass the votes of class M .

In order to prove that the aforementioned Theorem holds, we will use contradiction to prove that R −Kother < S is
true.

Proof 1 To prove Theorem 1 by contradiction we assume that the statement R −Kother < S is false. We will prove
that R−Kother ≥ S is true.

8
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R−Kother ≥ S ⇐⇒
(|T | − |CM | − |CL|)− (K − |CM | − |CL|) ≥ |CM | − |CL|+ 1⇐⇒
|T | − |CM | − |CL| −K + |CM |+ |CL| ≥ |CM | − |CL|+ 1⇐⇒

|T | −K ≥ |CM | − |CL|+ 1⇐⇒
|T | − (|T |+ |CL| − |CM |+ 1) ≥ |CM | − |CL|+ 1⇐⇒
|T | − |T | − |CL|+ |CM | − 1 ≥ |CM | − |CL|+ 1⇐⇒

|CM | − |CL| − 1 ≥ |CM | − |CL|+ 1⇐⇒
−1 ≥ 1

Thus, we proved that the statement R−Kother ≥ S is not true. �

Therefore, the number of paths we can keep in order to always maintain the same classification result, is provided by
the following rules:

• If |CM | ≥ quorum then apply LF reduction to features and paths as it happens to binary tasks, based on
Proposition 1,

• If |CM | < quorum then identify the class with the second-highest number of votes, denoted as CL. The
number of paths we need to keep is equal to quorum′ = |CL| − |CM | + T + 1. Then, we keep the paths
from the CM and CL, and a random selection process is employed to collect quorum′ from the R remaining
paths.

As we will see in Section 4.4, by aggregating these paths into a single rule, we explain the “majority class”, even
though we have paths voting for different classes. Therefore, the paths voting for other classes contribute to the
formation of the aggregated explanation for why the “majority class” was the predicted class.

Nonetheless, the end user is given the option of specifying the desired number of paths that LF must reduce to, or
the average probability, for both binary and multi-class classification. In a binary configuration classification task
with 100 trees, for example, instead of 51, which would have been the quorum, a user would choose to adjust the
minimum number of trees to 80, or the average probability to 80%. The LF will then attempt to minimise the paths to
this number. This is extremely similar to the strategy used in the regression tasks, which is discussed in the following
section. However, for the rest of this work, we will assume that we always aim to reduce to the bare minimum of trees
as stated in this and the prior section.

4.2.3 Minimum number of paths in regression tasks

The estimation of the required number of paths, as defined in the binary and multi-class tasks, is not applicable for
regression. Hence, we introduce an algorithm to adapt LF to regression models. In RF for regression, the prediction is
determined by the average of the individual trees’ predictions of the RF,

h(xi) =
1

|T |
∑
t∈T

ht(xi) (7)

where ht(xi) ∈ R. On this basis, we cannot assume that by removing a few trees (for example, preserving a quorum)
we can get the same outcome. To overcome this, we introduce the allowed_error definition.

The idea is to reduce the number of features and paths with regard to an allowed_ error. We measure the mean
absolute error of the RF model with respect to the test set, and we set it as the default value for allowed_error.
We also let the user set a preferred allowed_error. A sensitivity analysis between allowed_error and the feature
and path reduction ratio is provided in Section 5.2 to guide users to choose the appropriate allowed_error for their
application based on their needs. The value of allowed_error is strongly associated with the importance of each task.
We have a regression model that predicts the indication of blood sugar. The importance of the error has a mandatory
sense, since it involves a health issue. On the other hand, when predicting, e.g., the quality of wine, the error might be
less sensitive.

In order to measure the error of an interpretation and to use the following reduction techniques, the min and max
predictions per tree of RF must be collected. Thus, for each tree of an RF model, we traverse to its leaves to identify
the min and max predictions that the tree can provide. This kind of information will be used to estimate the worst-case
error that may be added to the prediction given an interpretation. Therefore, the final interpretation will have the
following form:
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if 0.47 ≤ f1 ≤ 0.6 and 22 ≤ f3 ≤ 54 then Prediction: 24.15± local_error,
where local_error ∈ [0, allowed_error]

Algorithm 1: Calculation process of local_error
Input: trees, allowed_error, tree_stats
Output: local_error

1 L,K ← reduction_method(trees, allowed_error)
2 original_pred← 0, prediction← 0
3 for tree ∈ L do
4 original_pred← original_pred+ tree.predict(instance)
5 prediction← prediction+ tree.predict(instance)
6 end
7 for tree ∈ K do
8 tree_pred = tree.predict(instance)
9 min_pred = tree_stats[tree].min

10 max_pred = tree_stats[tree].max
11 extreme_pred← max_pred
12 if |tree_pred−min_pred| > |tree_pred−max_pred| then
13 extreme_pred← min_pred
14 end
15 original_pred← original_pred+ tree_pred
16 prediction← prediction+ extreme_pred
17 end
18 prediction = prediction

|L+K|

19 original_pred = original_pred
|L+K|

20 local_error ← |original_pred− prediction|
21 return local_error

The local_error is calculated based on a set of paths |L|. Three algorithms are introduced and presented in the
following paragraphs that will lead to a selection of |L| trees from the initial |T | trees. The |K| remaining trees, which
will be excluded from the final interpretation rule, can cause an error in the prediction. That is because the rule does
not completely cover the decision of these trees, and thus, for a change in the instance to a feature that does not appear
in the rule, those trees may produce different predictions, and the final prediction may change to:

h′(x) =
1

|T |
(
∑

t∈T\K

ht(xi) +
∑
t∈K

et(xi)) (8)

et(xi) =

{
min_predt, |ht(xi)−min_predt| > |ht(xi)−max_predt|
max_predt, elsewhere

Consequently, for those |K| trees, we replace their predictions with the min or max prediction that each tree can
provide, choosing between them on the basis of which, min or max, is the most distant to the original prediction of
the tree. The aforementioned process is depicted in Algorithm 1, which is the basis for Algorithm 6 presented later in
Section 4.3.4.

4.3 Reduction techniques

We now introduce the reduction techniques applied after identifying how many paths we can reduce. We define four
reduction techniques that we use to build rules with fewer features and larger ranges. Table 1 depicts an overview of
the applicability of each algorithm presented in the following sections to the corresponding tasks. All the techniques
aim to reduce both the paths and the features, but with different degrees of effectiveness.

4.3.1 Reduction through association rules

The first reduction process, reduction through association rules (AR), is applicable to all learning tasks with small
variations, and it starts with the implementation of the association rules [2]. In association rules, the attributes are

10



A PREPRINT - JUNE 20, 2022

Reduction through

AR CR RS DS
Inner Outer

Binary X X X - -
Multi-class X X X - -
Regression Xvariant - X X X

Designed
Towards

Feature Reduction X X - - -
Path Redution - - X X X

Table 1: Overview of algorithms we use for feature and path reduction for each task

called items I = {i1, i2, . . . , in}. Each dataset contains sets of items called itemsets IS = {is1, is2, . . . , ism},
where isi ⊆ I . Using all the possible items of a dataset, we can find all the rules X ⇒ Y , where X,Y ⊆ I . X is
called antecedent, while Y is called consequent. The purpose of the association rules is to determine the support and
confidence of every rule in order to find useful relations. A straightforward observation is that X is independent of Y
when the confidence level is particularly low. What is more, we can tell that X has high support, which implies it is
probably very significant.

Algorithm 2 describes the reduction through association rules. The association rules will be implemented at the path
level. The I items will contain the F features of our original dataset. The IS itemsets, which will be used to mine the
association rules, will contain a collection of features that reflect each path isi = {ij |ij = fj , fj � vk ∈ pi, pi ∈ P}.
It is important to mention that we keep only the presence of a feature in the path, and we discard the value of vj ,
in order to have itemsets only with features. It is then possible to apply association rules methods. To compute
the association rules, we use Apriori [3] and FP-growth [25], influenced by comparative studies of association rules
algorithms [41, 57], presenting these as options for the reduction through the association rules process.

The next step is to sort the association rules produced by the algorithm based on the ascending confidence score. For
the rule X ⇒ Y with the lowest confidence, we will take items of X and add them to an empty list of features F ′.
After that, we determine the number of paths containing conjunctions that are satisfied with the new feature set F ′.
We stop when we acquire a number of paths either equal to or more than the estimated required paths (as presented in
Sections 4.2.1 and 4.2.2), or when we have a local_error from the paths that cannot be valid with the new feature set,
smaller or equal to the allowed_error (Section 4.2.3).

Otherwise, we iterate and add more features taken from the next antecedent of the next in confidence score rule. By
using this strategy, we keep the number of features low and smaller than the original F ′ ⊆ F . Reducing the features
can also lead to a reduced collection of paths, as paths containing conjunctions with redundant features would no
longer be valid. So, we have the following representation for every p path:

p = {fi � vj |fi ∈ F ′, vj ∈ R,� ∈ {≤, >}}. (9)

It is evident that this reduction technique favours feature reduction, as its main criteria are based on the association
rules discovered in the feature sets of the paths. We should also mention here that, in contrast to our preliminary
work, we optimised the feature set extracted from the frequent patterns (Algorithm 2, L.11-18), and now the reduction
through the association rules process is providing timely responses. This is also evident through our experiments in
Section 5.3.

4.3.2 Reduction through clustering

On binary and multi-class tasks, a second reduction strategy based on clustering (CR) is used3. Aside from k-
medoids [33], which was used in our preliminary work, OPTICS [51] and Spectral Clustering [37] (SC) were added as
additional choices. These algorithms are well-known clustering algorithms which need a distance or dissimilarity met-
ric to find optimum clusters. Thus, the clustering of paths will require a distance or dissimilarity metric between two
paths. Therefore, firstly, a similarity metric has been constructed (Algorithm 3), in order to transform it to a dissimi-
larity metric in a way that favours the absence of a feature from both paths. Specifically, if a feature is missing from
both paths, the similarity of these paths increases by 1. When a feature is present in both paths, the similarity increases
by a value between 0 and 1, i.e., the intersection of the two ranges normalised by the union of the two ranges. The
similarities have a range of [0, 1], where 0 means the paths are not similar at all, and 1 means the paths are identical. To

3Reduction through clustering was not used in regression because reduction through association rules almost reaches the maxi-
mal local error allowed, and the overhead of clustering does not justify the effort
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Algorithm 2: Reduction through association rules
Input: paths, features, trees,minimum_number_paths/allowed_error, task
Output: reduced_paths, reduced_feature_set

1 itemsets← [] ; // Empty list of itemsets
2 for path ∈ paths do
3 itemset← []
4 for fi ∈ path do
5 itemset← itemset+ fi
6 end
7 itemsets← itemsets+ itemset
8 end
9 frequent_itemsets← ar(itemsets) ; // ar can be Apriori, FP-growth

10 antecedent_features← [], antecedents← ∅
11 for antecedent ∈ frequent_itemsets[antecedents] do
12 if antecedent /∈ antecedents then
13 antecedents← antecedents+ antecedent
14 for feature ∈ antecedent do
15 if feature /∈ antecedent_features then

antecedent_features← antecedent_features+ feature ;
16 end
17 end
18 end
19 reduced_paths← [], reduced_feature_set← []
20 if task ∈ {regression} then local_error ← 2 ∗ allowed_error;
21 k ← 1
22 while ((task ∈ {binary,multi− class} ∧ |reduced_paths| < minimum_number_paths) ∨ (task ∈
{regression} ∧ local_error > allowed_error)) ∧ k < |antecedent_features| do

23 reduced_feature_set← reduced_features+ antecedent_features[k − 1]
24 redundant_features← []
25 for feature ∈ features do
26 if feature /∈ reduced_feature_set then redundant_features← redundant_features+ feature;
27 end
28 reduced_paths← []
29 for pathinpaths do
30 if ∀feature ∈ path, feature /∈ redundant_features then reduced_paths← reduced_paths+ path

;
31 end
32 if task ∈ {regression} then local_error ← compute_error(paths, reduced_paths);
33 k ← k + 1
34 end
35 return reduced_paths, reduced_feature_set

convert the similarity metric to a dissimilarity metric, we subtract the measured similarities from 1 (1− similarity),
and we have a range of [0, 1], where 1 means the paths are distant and 0 means the paths are identical.

Using one of the aforementioned clustering algorithms (by default we use k-medoids), the clusters are estimated using
the dissimilarity metric discussed above. Subsequently, the ordering of the clusters is performed based on the number
of paths they cover. Then, paths from larger clusters are accumulated into a list, until at least the required number of
paths (as estimated in Section 4.2) has been obtained.

By collecting paths from larger clusters first, the probability of reducing the features is increasing. This is happening
because the paths inside a cluster appear to be more similar among them, and therefore, similar paths will contain
similar features. In addition, the biased dissimilarity metric will cluster paths with fewer insignificant features, leading
to a subset of paths that are satisfied with a smaller set of features. As a result, we can assume that the reduction through
clustering is also oriented toward feature reduction. The corresponding procedure is also represented in Algorithm 4.

12
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Algorithm 3: Path similarity metric
input : pi, pj , feature_names, min_max_feature_values
return: similarityij

1 sij ← 0
2 for f ∈ feature_names do
3 if f ∈ pi ∧ f ∈ pj then
4 find li, ui, lj , uj lower and upper bounds
5 inter ← min(ui, uj)−max(li, lj), union← max(ui, uj)−min(li, lj)
6 if inter > 0 ∧ union 6= 0 then sij ← sij + inter/union;
7 else if f /∈ pi ∧ f /∈ pj then
8 sij ← sij + 1
9 end

10 end
11 return sij/|feature_names|

Algorithm 4: Reduction through clustering
Input: paths,minimum_number_paths, clusters
Output: reduced_paths, reduced_feature_set

1 dissimilarity ← []
2 for i ∈ [0, |paths|] do
3 vector ← []
4 for j ∈ [0, |paths|] do
5 if i = j then
6 vector ← vector + [0]
7 else
8 vector ← vector + [compute_dissimilarity(path[i], path[j])]
9 end

10 end
11 dissimilarity ← dissimilarity + [vector]
12 end
13 clusters = cl(dissimilarity, clusters); // cr can be k-medoids, OPTICS, SC
14 sorted_clusters = sort_by_size(clusters)
15 reduced_paths← [], k ← 0
16 while |reduced_paths| < minimum_number_paths ∧ k < |antecedent_features| do
17 for path ∈ sorted_cluster[k] do
18 reduced_paths← reduced_paths+ path
19 end
20 k ← k + 1
21 end
22 reduced_feature_set← ∅; // Empty set of features
23 for path ∈ reduced_paths do
24 for fi ∈ path do
25 reduced_feature_set← reduced_feature_set+ fi
26 end
27 end
28 return reduced_paths, reduced_feature_set

4.3.3 Reduction through random selection

In the case of reduction through clustering, random selection (Algorithm 5) (RS) of paths is used to achieve the
minimum number of paths. For binary and multi-class tasks, RS randomly removes the unnecessary paths to only
keep the minimum required number of paths. On the regression tasks, if the local_ error after the AR is smaller than
the allowed_error, RS is applied in order to minimise the paths while maintaining the local_error less or equal to
the allowed_error.
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Algorithm 5: Reduction through random selection
Input: paths,minimum_number_paths/allowed_error, task
Output: reduced_paths, reduced_feature_set

1 reduced_paths← []
2 if task ∈ {binary,multi− class} then
3 for i ∈ [0,minimum_number_paths] do
4 j ← random(0, |paths|)
5 reduced_paths← reduced_paths+ paths[j]
6 paths← paths− paths[j]
7 end
8 else
9 local_error ← 2 ∗ allowed_error

10 last_path← ∅
11 temp_paths← paths
12 while local_error < allowed_error ∧ |paths| > 1 do
13 j ← random(0, |temp_paths|)
14 last_path← temp_paths[j]
15 temp_paths← temp_paths− temp_paths[j]
16 local_error ← compute_error(paths, temp_paths)
17 end
18 reduced_paths← temp_paths+ last_path
19 end
20 reduced_feature_set← ∅; // Empty set of features
21 for path ∈ reduced_paths do
22 for fi ∈ path do
23 reduced_feature_set← reduced_feature_set+ fi
24 end
25 end
26 return reduced_paths, reduced_feature_set

4.3.4 Reduction through distribution-based selection

The last technique, reduction through distribution-based selection (DS), is a reduction technique exclusively designed
for regression tasks. This method utilises normal distributions, is not combined with any other method, and it attempts
to reduce the features and the paths of a rule for a given instance. Each instance’s prediction is the average of the
individual predictions of the trees. These predictions have their own distribution.

In Figure 6, the actual distribution of the RF’s prediction is shown in blue, while the green distribution is a normal
distribution. The generate_distribution function creates this normal distribution by generating an array of a prede-
termined size and populating it with random values that belong to a Gaussian distribution with the mean and standard
deviation (σ) values of the original distribution. We can change the way this artificial distribution is created by multi-
plying or dividing the σ value with a parameter s, generating wider or narrower distributions around the mean value.
Therefore, for different values of s, we apply one of the following techniques, inner or outer selection, to choose the
paths we will keep for the final rule. We select the distribution’s σ value, which achieves the lowest number of paths
with a local_error ∈ [0, allowed_error] for an instance interpretation. This process is also presented in Algorithm 6,
which is based on Algorithm 1.

Inner selection The distribution-based inner selection (DSi) technique, for all the different σ values, it selects the
paths inside the range of the generated distribution to form the interpretation rule. For the paths outside the generated
distribution, we compute the local_error. This approach is going to reduce the number of paths, when the majority
of trees are providing similar predictions close to the mean value. Then, by isolating and removing distant predictions,
even if they shift, the mean will not be greatly affected, and thus the local_error will be relatively small.

Outer selection Similarly to inner selection, the distribution-based outer selection (DSo) technique, for all the differ-
ent σ values, it selects the paths outside the range of the generated distribution to form the interpretation rule. Again,
for the paths outside of the generated distribution, the local_error is computed. This approach is providing better
results when the original distribution is either like an inverse normal distribution or uniform. In this case, the majority
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Algorithm 6: Reduction through distribution-based selection
Input: instance, trees, allowed_error, variation
Output: reduced_paths, reduced_feature_set, error

1 reduced_paths← [tree..decision_path(instance),∀tree ∈ trees]
2 error ← 0 predictions← [tree.predict(instance),∀tree ∈ trees]
3 mean← 1

|predictions|
∑
prediction∈predictions prediction

4 σ ←
√

1
|predictions|

∑
prediction∈predictions(prediction−mean)2

5 for s ∈ [.1, .2, .5, 1, 2, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100] do
6 normal_distribution← generate_distribution(mean, σs )
7 normal_min = min(normal_distribution)
8 normal_max = max(normal_distribution)
9 local_reduced_paths← [], new_prediction← 0

10 for tree ∈ trees do
11 path← tree.decision_path(instance), prediction← tree.predict(instance)
12 if

(variation ∈ {DSi}∧¬(prediction < normal_min∨prediction > normal_max))∨ (variation ∈
{DSo} ∧ (prediction < normal_minorprediction > normal_max)) then

13 local_reduced_paths← local_reduces_paths+ path
14 new_prediction← new_prediction+ prediction
15 else
16 distance_with_min← |prediction− tree.min_prediction|
17 distance_with_max← |prediction− tree.max_prediction|
18 else if distance_with_min > distance_with_max then
19 new_prediction← new_prediction+ tree.min_prediction
20 end
21 new_prediction← new_prediction+ tree.max_prediction
22 end
23 local_error ← |mean− 1

|trees|new_prediction|
24 if local_error < allowed_error ∧ |reduced_paths| > |local_reduces_paths| then
25 end
26 error ← local_error, reduced_paths← local_reduced_paths
27 end
28 end
29 reduced_feature_set← ∅; // Empty set of features
30 for path ∈ reduced_paths do
31 for fi ∈ path do
32 reduced_feature_set← reduced_feature_set+ fi
33 end
34 end
35 return reduced_paths, reduced_feature_set, error

of the predictions will be distant to the mean value. Keeping those predictions, and leaving out from the interpretation
rule the predictions closer to the mean, we will probably have a low local_error, because the predictions closer to the
mean will be fewer. Moreover, those predictions are less likely to deviate a lot when small changes to the input will
occur, thus the error most of the time will be smaller than the estimated local_error.

4.4 Feature-ranges formulation

In this section, we demonstrate how feature-ranges are formulated in a simple binary classification situation without
taking into account the aforementioned reduction strategies. The formulation procedure is the same for all tasks, and
it takes place after path reduction. The following illustrative example shows both a) why the reduction is required and
b) how the aggregation of paths to a single rule occurs.
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Figure 6: Distribution of predictions of a given instance

Consider an RF model of T trees that predicts instance x as cj ∈ C = {0, 1}. We concentrate on theK ≥ |T |2 +1 trees
that classify x as cj . For each feature, we calculate the range of values imposed by the conditions in the root-to-leaf
path of each of the K trees in which it appears.

For a concrete, real-world example, we train the RF model with T = 50 trees on the Banknote dataset [16]. We focus
on the skew feature of Banknote and a test instance x, whose skew value is 0.25. The decision of the RF for this
instance is supported by K = 39 of its trees. Figure 7 presents the value ranges for skew in each of the 38 trees, whose
decision paths contain the skew feature. Figure 8 presents the corresponding stacked path ranges of skew feature,
which shows the number of paths in the y axis whose value ranges include the corresponding value in the x axis.

Figure 7: Path ranges of ‘skew’ Figure 8: Stacked path ranges of ‘skew’

The cyan/light grey region of Figure 8 is the intersection between these 38 decision paths for skew. Then, we could
say that the range of this feature will be: 0.21 ≤ skew ≤ 0.29, where skew = 0.25 for this instance. This intersection
will always contain the value (0.25) for the particular feature of the examined instance. Furthermore, no matter how
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much the value of the feature may shift, the decision paths will not change as long as it remains within this intersection.
Thus, if the instance’s value for skew changes from 0.25 to 0.28, each tree will take its decision via the same path.
Summing up the above, the interpretation may have the following shape:

‘if 0.21 ≤ skew ≤ 0.29 and . . . then Fake Banknote’

These paths will be used in order to form a final single rule. However, using all the available trees will produce
interpretations with many features, making them less comprehensible to the end user. Moreover, a large number of
paths can lead to small, strict, and very specific feature ranges. For example, the skew value of the instance x was
0.25 and the intersection range of all paths for this feature is 0.21 ≤ skew ≤ 0.29, while the global range of skew is
[−1, 1]. If the 10 first paths corresponding to the first 10 top rows (top to bottom) of the stacked area plot (Figure 8)
could have been reduced, the range would get 0.15≤ skew≤ 0.4, thus a broader one.

A narrow range, like the one mentioned above, will result in an overly specific range that is neither useful nor infor-
mative. For example, 25 ≤ age ≤ 26 is not preferred over 22 ≤ age ≤ 30 since the latter covers a broader range
and appears more trustworthy, stable, and reliable, indicating that minor changes in age will not affect the prediction.
On the other hand, a wider range would be less rebuttable and preferable. Hence, this is the reason we compute the
minimum number of paths required (Section 4.2), and then we apply reduction techniques (Section 4.3). Therefore,
we can formulate aggregated rules that address both the large number of feature-ranges and the appearance of very
narrow ranges if we minimise the number of pathways.

In this work, we also developed a much faster way of computing these intersections. This affected the responsiveness
of any operation, including the extraction of an explanation without reduction. The following assumptions about the
performance are confirmed by the time analysis studies in Section 5.3.

4.5 Categorical features

One more LF’s adaptation concerns the handling of categorical features. Focusing only on OneHot encoded cases,
we designed a handling procedure that is in accordance with this principle: if the OneHot encoded feature appears
in the reduced paths, then the categorical feature where it originates is added to the rule. If this does not exist in the
reduced paths, it means that the prediction has not been affected by this value of the categorical feature. However, we
are looking for the other OneHot encoded features of the same categorical feature appearing in the reduced rules, but
not in the instance (their values are equal to zero), and we present them to the user, along with the interpretation, as
categorical values that may change the prediction if the category changes to one of them.

To give a brief example, let us have a feature height with values = [short, normal, tall]. After OneHot encoding,
there are three features: heightshort, heightnormal and heighttall. An instance with height = short will therefore
have heightshort = 1, heightnormal = 0, and heighttall = 0 after encoding. If the feature heightshort appears in
the extracted paths, it means that it influences the prediction and will appear in the final rule as ‘height = short’.
Elsewhere, this indicates that this feature value does not affect the prediction. Then, we check whether the features
heightnormal and heighttall appear in the reduced paths. If any of them appear on the paths, it means that they
influence the prediction if they change. Therefore, they are provided to the user as alternative values, or they can
appear in the rule in the form ‘height 6= [normal, tall]’, only if ‘height = short’ has been reduced. In any case,
we want to provide alternative values visually in order to have less cluttered rules. More information about visualising
alternative values may be found in Section 4.7 and in the example presented in Section 5.5.

4.6 Interpretation composition

The last stage of LF combines the extracted ranges of features and the information derived from the categorical
handling, if there was any categorical feature, in a single natural language rule. The order of appearance of the ranges
of features in the rule is determined by a method of global interpretations, called permutation importance [5]. An
example of an interpretation is as follows:

‘if 0 ≤ f1 ≤ 0.5 and − 0.5 ≤ f2 ≤ 0.15 and f3 = short then Prediction’. (10)

This rule can be interpreted in this way: “As long as the value of the f1 is between the ranges 0 and 0.5, and the value
of f2 is between the ranges -0.5 and 0.15, and f3 equals short, the system will predict this instance as Prediction. If the
value of f1, f2 or both, surpasses the limits of their ranges, or f3 changes category, then the prediction may change.
Note that the features are ranked through their influence”. This type of interpretation is intuitive, human-readable, and
more comprehensible than other interpretations, like feature importance. Furthermore, this rule is conclusive since
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it will always include all the feature ranges appearing in the paths that produced the specific prediction, while these
paths will be greater than or equal to the minimum number of paths required to maintain the prediction stable.

4.7 Visualisation

Apart from extending LF to multi-class and regression tasks, as well as optimising the core functionalities of LF, we
are also presenting a proposed visualisation layout. Using this interface, the user will see the explanation rule for a
prediction, and then have the ability to choose to inspect each of the features that appear in the rule. In the case of a
feature with numerical values, the user will be supplied with a distribution plot with the values of the feature. Two
vertical green lines are being used to represent the range that appears in the rule, while two blue vertical lines reflect
the ranges of the original rule without applying any reduction technique.

On the other hand, if the selected feature is categorical, then if alternative values are available as described in Sec-
tion 4.5, they will be visible to the user. When the original value of a categorical feature has been reduced by the rule,
the alternative values become meaningful. This is because if this value is apparent to the rule, it implies that altering
it to any other value may change the prediction. However, when the rule reduces the original value, the alternative
values give helpful information to the end user as to which values may alter the prediction. An example is provided in
Section 5.5 and Figures 9 and 10.

5 Evaluation

To support our proposed methodology, we conducted experiments on response time, a scalability analysis, and a
sensitivity analysis to examine how RF parameters affect feature and path reduction. In addition, we provided a
comparative analysis with similar well-known methodologies as well as a qualitative evaluation involving examples.
LF’s code and evaluation experiments are available at the GitHub repository “LionLearn”4. The code is written in
Python.

5.1 Setup and datasets

For the series of experiments, we have used the Scikit-learn’s [42] RandomForestClassifier and RandomForestRegres-
sor. We used 8 different datasets, 3 for binary, 2 for multi-class, 2 for regression and 1 for multi-class and regression
problems. The datasets for binary tasks are: Banknote [16], Heart (Statlog) [16] and Adult (Census) [34]. Glass [16]
and Image Segmentation (Statlog) [16] for multi-class tasks. For regression, we used Wine Quality [12] and Boston
Housing [27]. Additionally, Abalone [10] was used for both multi-class and regression. For the scalability analysis,
we generated 16 datasets using the ‘make_classification’ and ‘make_regression’ functions of scikit-learn to generate
datasets with 10, 50, 100 and 1000 features, and 1 (regression), 2 (binary), 10 and 100 (multi-class) targets.

We applied a 10-fold cross-validation grid search for each dataset using the following set of parameters: depth ∈ {1,
5, 7, 10} (depth of each individual tree), max features ∈ {‘sqrt’, ‘log2’, 75%, None = all features} (max number of
features per individual tree), min samples leaf ∈ {1, 2, 5, 10}, bootstrap ∈ {True, False} (bootstrap samples or the
whole dataset is used to train each tree), estimators ∈ {10, 100, 500, 1000} (number of trees in the ensemble). The
scoring metric of the grid search was the weighted F1-score for the binary and multi-class datasets, and the mean
absolute error (mae) for the regression datasets. Table 2 and 3 shows the number of instances and features of each
dataset, the parameters’ values that achieved the best F1-score/mae for each dataset, along with the scores itself.

Dataset Task Classes Instances Features Categorical
Banknote Binary (B) 2 1372 4 -

Heart (Statlog) Binary (B) 2 270 13 1
Adult (Census) Binary (B) 2 45167 12 (85) 7 (80)

Glass Multi-Class (MC) 6 214 9 -
Image Segmentation Multi-Class (MC) 7 2310 19 -

Abalone MC/R 4/1 4027 8 -
Boston Regression (R) 1 506 13 -

Wine Quality Regression (R) 1 4898 12 -
Table 2: Datasets’ statistics

4https://git.io/JY0gF
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Dataset F1/mae #
Estimators

Max
Depth

Max
Features

Min
Samples

Leaf
Bootstrap

Banknote 99.49% 500 10 0.75 1 True
Heart (Statlog) 84.60% 500 5 sqrt 5 False
Adult (Census) 84.84% 1000 10 0.75 2 True

Glass 71.95% 1000 10 sqrt 2 True
Image Segmentation 96.98% 500 10 0.75 1 False

Abalone 68.8%/1.4 10/100 10 0.75 10/5 True
Boston 2.95 1000 10 0.75 1 True

Wine Quality 0.55 1000 10 0.75 5 True
Table 3: Performance and best parameters for each dataset

5.2 Sensitivity analysis

We have conducted the following sensitivity analysis experiments in order to compare the capability of LF to reduce
features (feature reduction ratio - FR%) and paths (path reduction ratio - PR%) while tuning both the parameters
of LF (LF) and the configuration of the Random Forests (RF) model. This study also acts as an ablation study,
since we evaluate LF utilising the various reduction strategies on their own and in combination. In order to simplify
the information obtained from the analysis, we present each task (binary, multi-class, regression) separately. The
parameters of the RF model under examination are the depth ∈ {1, 5, 7, 10}, max features ∈ {sqrt, log2, 75%, None}
and estimators ∈ {10, 100, 500, 1000}. LF parameters tested in this sensitivity analysis are the AR algorithm (AR) ∈
{Apriori (AP), FP-growth (FP)}, CL algorithm (CR) ∈ {k-medoids (k), OPTICS (OP), Spectral Clustering (SC)}, and
method ∈ {1, 2, 3, 12, 13, 23, 123} for the binary and multi-class classification, where 1 represents the use of AR, 2
the use of CL and 3 the use of RS. Therefore, 123 means the utilisation of all 3 methods, in this order. For regression,
we used method ∈ {AR+RS, DSi, DSo}, while an additional parameter of LF, allowed_error is also examined in the
regression tasks. Therefore, the following analysis is based on these experiments. More information can be found in
Appendix A.

Dataset #
Estimators

Max
Depth

Max
Features AR CL RS FR%

Banknote 500 5 0.75 AP/FP - - 41%
Heart (Statlog) 1000 5 0.75 AP/FP k X 37%
Adult (Census) 500 5 0.75 AP/FP SC - 42%

Glass 100 5 None AP OP X 40%
Segmentation 1000 7 0.75 FP SC X 34%

Abal. mc 100 1 0.75 - SC - 26%
Abal. r 1000 5 None AP/FP - - 37% 1.8 (1.6)
Boston 500 1 sqrt/log2 - X - 41% 4.5 (2.3)
Wine 500 1 log2 - X - 52% 0.6 (0.4)

DSi DSo allowed
error

Table 4: Parameters of RF and LF achieved the highest FR% based on the sensitivity analysis. Allowed Error (in
parentheses is Local Error) is the parameter of LF for the regression tasks as described in Section 4.3.4.

The first sensitivity analysis we carried out applies to the Adult, Banknote and Heart (Statlog) datasets (binary classi-
fication). The parameters of LF that attained the highest FR and PR ratios are summarised in Tables 4 and 5. Table 4
shows that AR, using either the Apriori or FP-growth algorithm, is apparent in all three binary classification datasets,
implying that it is required to achieve the maximum FR ratio. Consequently, we may say that CL is required in two
of the three circumstances, while RS is required in one. On the other hand, we note that when the RF model includes
500 estimators or more, with a depth of 5 and 75 percent of the features per tree, we achieve a higher FR.

In terms of the PR ratio, Table 5 shows that RS was employed in all three cases, whereas AR and CL were used in
only one. As a result, if we want to attain high FR and PR ratios, we recommend employing all three algorithms in
binary classification datasets. When the RF models contain 1K estimators, a depth of equal to 10, and all the features
accessible for each tree, LF appears to obtain a greater PR ratio.
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Dataset #
Estimators

Max
Depth

Max
Features AR CL RS PR%

Banknote 1000 10 None - - X 49%
Heart (Statlog) 1000 7 None AP/FP k X 43%
Adult (Census) 1000 10 None - - X 49%

Glass 1000 10 None AP/FP SC X 48%
Segmentation 1000 10 0.75 - - X 49%

Abal. mc 1000 10 None AP/FP SC X 40%
Abal. r 500 1 0.75 - X - 51% 1.8 (1.6)
Boston 500 1 sqrt/log2 - X - 66% 4.5 (2.3)
Wine 1000 1 sqrt/log2 - X - 85% 0.6 (0.4)

DSi DSo allowed
error

Table 5: Parameters of RF and LF achieved the highest PR% based on the sensitivity analysis. Allowed Error (in
parentheses is Local Error) is the parameter of LF for the regression tasks as described in Section 4.3.4.

We continue with the multi-class datasets Glass, I. Segmentation and Abalone. Table 4 indicates that CL is present
in all three multi-class classification datasets, using either the SC or OPTICS algorithm, showing that it is essential to
attain the maximum FR ratio. We also see that AR is necessary in two of the three cases, whereas RS is required in the
third. LF appears to perform best in terms of RF parameters when attempting to interpret models with 100 estimators
or more, and with 75 percent or more of the features per tree. However, the impact of the depth parameter on the FR
ratio cannot be determined from this table.

Table 5 indicates that RS was utilised in all three cases with the highest PR ratio, whereas AR and CL were used in
two of the three. When the RF models have 1K estimators, a depth of 10, and all the features available for each tree,
the LF models appear to have a higher PR ratio. Consequently, we advocate using all three techniques in multi-class
classification datasets if we want to achieve high FR and PR ratios.

The last set of experiments is related to the analysis of the regression datasets, Abalone, Boston and Wine. Table 4
suggests that DSi is found in two of the three multi-class classification datasets, indicating that it is utilised to ensure
the highest FR ratio. AR+RS is also employed in one of the three cases, but DSo is not used in any of them. In general,
LF appears to perform best in terms of RF parameters when interpreting models with 500 or more estimators and a
depth of 1 in two cases, and with 1K estimators and a depth of 5 in the third case. This table, however, cannot be used
to determine the effect of the max features parameter on the FR ratio.

Table 5 shows that DSi was employed in all three cases with the highest PR ratio, whereas AR+RS and DSo were not.
The LF models appear to have a higher PR ratio when the RF models include 500 or more estimators, a maximum depth
of 1, and the root number of features available for each tree. As a result, we recommend utilising DSi in regression
datasets in order to attain high FR and PR ratios.

Appendix A has a more in-depth sensitivity analysis with extensive statistics and explanations. Practitioners may use
this extensive study to see how LF will perform in their existing models, or to decide whether they want to adjust their
model (if the performance does not change significantly) to take advantage of higher LF performance.

5.3 Time and scalability analysis

Optimisation of LF implementation was an emerging issue to address, mainly due to the need for timely responses.
The speed of providing explanations to a model’s predictions in a variety of applications is indeed a very important
factor, specifically, for on-line applications The second direction of our experiments targets the analysis of response
time. We are comparing LF to its preliminary version in order to back up the assumption of Sections 4.3.1 and 4.4.
For this analysis we use only the binary datasets of Banknote and Heart (statlog) because the preliminary version of
LF is only applicable to binary tasks, and we do not use the Adult dataset, as the old version was unable to finish our
exhaustive analysis within a relatively reasonable time.

The first aspect of the algorithm, we are going to inspect, concerns the identification of the ranges for each feature
appearing in a rule without applying any reduction method. In Figure 25 and 26, we can see that LF is outperforming
the preliminary version, with a huge decrease of 93% for Banknote and 95% for Heart datasets. Then, we compare the
two versions on the generation of rules applying reduction. We remind here that in the reduction pipeline we optimised
the reduction through association rules, thus this experiment will inspect the effect of this optimisation. In Figure 27
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and 28, we can see that LF is once again outperforming the preliminary version, with a huge decrease of 94% for
Banknote and 96% for Heart datasets.

We also carried out a scalability analysis. We investigated the runtime of LF under different RF setups by creating
synthetic datasets with 10, 50, 100, and 1000 features for regression, binary (2 classes), and multi-class classification
(10 and 100 classes). We particularly included RF models with varying number of estimators: 10, 100, 500, and 1000,
as well as maximum depth: 1, 2, 5, and 10.

Starting with the binary setup, we found from our investigation that the depth parameter has the most impact on the
runtime of LF. When the depth is small, such as 1 or 2, an explanation takes 0.3 to 0.4 seconds to generate. With a
depth of 5, the explanation takes around 2.6 seconds, while with a depth of 10, it takes about 7 seconds. These are the
average runtime results for various depth values for all combinations of the number of features in the dataset and the
number of estimators.

In our experiments with multi-class classification tasks, we noticed that 10 classes and 100 classes perform almost
identically in terms of runtime. This implies that the number of classes has no effect on LF’s runtime performance.
Similarly to binary classification, depth is the parameter which affects mostly the runtime of LF in these tasks as well.
When depth equals 1 or 2 the runtime is between 0.55 to 0.71, while when equals 5, the runtime reaches almost 3
seconds. When depth is greater, for example 10, the runtime increases to 7.5 seconds.

In both cases, we can observe that the average runtime for datasets with 10 to 100 features is about one and a half
seconds, including even 1000 estimators and a depth of 10. With a bigger dataset of 1000 features, the average time
increases to 7 seconds.

Finally, neither the depth nor the number of estimators appeared to affect LF’s performance in the regression task. Ac-
tually, the average runtime performance across all configurations is 0.4 seconds. Even with 1000 features, the average
runtime is 0.48 seconds. The performance in the previously worst situations, with 1000 features, 1000 estimators, and
a depth of 10, was 0.9.

More extensive analysis is available in the Appendix B, where the influence of each RF parameter is reflected in the
LF runtime performance on each task.

5.4 Comparison study with other techniques

In our experiments, we include three techniques that produce direct rules as explanations from the literature, and they
take into consideration the RF model to be explained. Those techniques are Anchors [48] (AN), CHIRPS [29] (CH)
and DefragTrees [26] (DF), as well as a simple surrogate model based on a decision tree in a global (GS) and a local
(LS) fashion, to use it as a baseline. AN is a local, model-agnostic interpretation technique for binary and multi-class
classification. CH is a local, model-specific technique for interpreting random forest models for binary and multi-class
classification tasks. DF is a global, model-specific technique that interprets tree ensembles on binary and multi-class
classification and regression. The applicability of each of these techniques to each dataset is presented in Table 6.

Baseline Surrogate Defrag Trees Anchors CHIRPS
Banknote X X X X

Heart (Statlog) X X X X
Adult (Census) X X X X

Image Segmentation X X X X
Abalone (MC) X X - -
Abalone (R) X X - -
Wine Quality X X - -

Table 6: Applicability of interpretation techniques to each dataset

We use four different evaluation metrics and compute the runtime of each algorithm on the different datasets. The
first metric computes the length of an explanation for an instance (rule_length). In scenarios involving end-users,
we want a lower rule_length, while in high-risk applications we would like a higher rule_length. The second
measures the coverage of a rule, which describes the fraction of instances of a dataset that satisfy the antecedent of
that rule (coverage). Higher coverage is better. The third is the precision of a rule, which measures the performance
of that rule on the covered instances (precision), measuring the actual precision in classification problems and the
mean absolute error (mae) in regression problems. High precision and low mae are better. We also measure a
fourth metric, variance, which quantifies how different the explanations for an instance are on different runs of a
technique. We measure variance with the same data and setup as for the interpretation technique, but just modify the
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random seed. Then, using the similarity distance presented in Section 4.3.2, we calculate the average variance between
an instance’s explanations over all examples. For each instance we produce three explanations with different random
seeds, let them be p1, p2, p3, and then we compute their average distance as 1

3

∑
i,j∈{1,2,3},i6=j(1−similarity(pi, pj)).

As we use the similarity distance, lower values are better, with the best score being 0.

We use the 10-fold cross-validation method for the four smaller datasets (Glass, Heart (statlog), Boston and Banknote)
and 80-20% train-test split for the larger datasets (I. Segmentation, Abalone, Wine Quality and Adult). In both cases,
we use test sets to calculate these metrics. In larger datasets, 10-fold cross-validation is not always required, and due
to the slow performance of some approaches, such as Anchors, we decided to use one holdout set to perform the
evaluation rather than through 10-fold cross-validation. Furthermore, the experiment was unable to finish in the Adult
and Wine dataset, where the 20% holdout set was around 9K and 1.3K instances, due to the slow performance of
Anchors and DefragTrees, respectively. As a result, we executed the experiment on the first 500 instances. We repeat
the same experiment 3 times, with the same random seeds for the whole process, except for the explanation process of
each technique, where we change the random seed.

Finally, we propose a novel property called “conclusiveness”. A rule-based explanation method is defined as “conclu-
sive” when the antecedent of a rule - explanation - is a definite proof for the consequent. LF by design is “conclusive”
because each rule contains every necessary feature to cover at least the minimum number of paths, which will always
produce the same outcome. However, this automatically suggests that LF’ explanations will be more specific, and they
will have low coverage. In the following, we experimentally prove, with at least one example per method, that all the
other methods are not “conclusive”.

Dataset LF DF GS LS CH AN
Bankn. 2.74±0.0 5.84±0.5 2.93±0.1 1.48±0.0 1.73±0.0 2.11±0.0

Heart 7.97±0.0 0.41±0.1 3.42±0.1 3.53±0.1 2.34±0.0 2.56±0.0
Adult 9.89±0.1 6.00±2.3 4.28±0.0 1.62±0.0 2.79±0.0 2.71±0.2
Glass 8.23±0.0 1.83±0.2 4.53±0.3 3.81±0.1 2.69±0.0 5.69±0.1

Segment 8.51±0.0 9.10±0.3 3.89±0.1 1.71±0.1 3.73±0.0 5.85±0.1
Abal.mc 6.80±0.0 12.19±0.9 3.60±0.0 2.33±0.0 2.11±0.0 3.50±0.1

Abal.r 4.93±0.0 11.20±0.5 4.77±0.3 3.88±0.0 - -
Boston 10.55±0.0 0.56±0.5 4.32±0.1 4.09±0.0 - -

Wine 8.43±0.0 9.96±1.7 2.89±0.0 3.16±0.0 - -
Avg. 7.56±2.3 6.34±4.3 3.85±0.6 2.85±1.0 2.57±0.6 3.74±1.5

Table 7: Comparison of techniques in terms of the rule_length. The best performance is denoted in bold

5.4.1 Comparison with evaluation metrics

The first metric to be examined is the rule_length. The results of the comparison are visible in Table 7. In these
results, it is clear that LF and DF are in almost every case the algorithms providing rules with a lot of conditions.
Specifically, we can see that LF and DF are producing rules of around 7.56±2.29 and 6.34±4.32 length by average. The
other techniques, CH= 2.565±0.63, AN= 3.74±1.50, GS= 3.85±0.64 and LS= 2.85±1.00, seem to provide smaller
rules. CH and AN are not present in the last three columns because these algorithms are not applicable in regression
tasks.

Dataset LF DF GS LS CH AN
Bankn. 6.5%±0.2 98.6%±0 16.0%±1.7 50.8%±1.2 56.3%±0.4 30.4%±0.3

Heart 4.2%±0.0 100%±0 21.0%±0.7 20.4%±0.8 33.9%±0.1 21.1%±0.4
Adult 2.1%±0.0 99.9%±0 31.0%±0.0 67.7%±0.6 42.0%±0.1 32.0%±0.9
Glass 4.4%±0.0 95.5%±1 14.3%±1.2 14.9%±0.3 27.8%±0.3 8.4%±0.1

Segment 7.8%±0.1 99.3%±0 10.0%±0.5 42.7%±0.1 13.9%±0.1 5.9%±0.2
Abal.mc 0.2%±0.0 99.2%±0 7.7%±0.0 25.0%±0.3 34.9%±0.4 10.6%±0.3

Abal.r 0.1%±0.0 99.4%±1 0.2%±0.0 0.4%±0.0 - -
Boston 1.8%±0.0 99.1%±0 9.8%±0.3 9.3%±0.2 - -

Wine 0.2%±0.0 99.9%±0 6.4%±0.0 7.8%±0.2 - -
Avg. 3.0%±2.7 99.0%±1 12.9%±8.5 26.6%±21.2 34.8%±12.9 18.1%±10.4

Table 8: Comparison of techniques in terms of the coverage. The best performance is denoted in bold
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Coverage is the second metric we investigate (Table 8). The most interesting findings in this experiment are the
extremely high coverage of DF (99.0%±1.3), and the low coverage of LF (3.00%±2.7). The performance of the
remaining algorithms is much lower than the DF’s performance, but higher than the LF’s, CH= 34.8%±12.9, AN=
18.1%±10.4, GS= 12.9%±8.5 and LS= 26.6%±21.2.

Dataset LF DF GS LS CH AN
Bankn. 100%±0 90.8%±1.0 99.6%±0.3 96.4%±0.1 99.3%±0.0 55.4%±0.0

Heart 100%±0 88.4%±0.8 96.3%±0.3 93.7%±0.5 97.6%±0.2 60.9%±0.5
Adult 100%±0 85.1%±0.6 100%±0.0 80.4%±0.2 99.0%±0.0 79.7%±0.2
Glass 100%±0 46.0%±1.1 82.5%±2.8 80.3%±0.4 83.2%±0.2 37.0%±0.7

Segment 100%±0 64.1%±5.8 98.3%±0.4 44.2%±0.7 88.2%±0.3 14.5%±0.2
Abal.mc. 100%±0 75.7%±0.2 90.6%±0.3 81.0%±0.2 88.0%±0.2 03.0%±0.0

Abal.r 0.78±0 0.95±0.0 2.27±0.0 2.27±0.0 - -
Boston 5.64±0 5.76±0.2 6.03±0.1 6.09±0.0 - -

Wine 0.25±0 0.27±0.0 0.54±0.0 0.54±0.0 - -
Avg. % 100%±0 75.0%±16 94.5%±6.2 79.3%±17 92.5%±6.3 41.7%±26.7

Avg. mae 2.22±2.4 2.33±2.4 2.95±2.3 2.97±2.3 - -
Table 9: Comparison of techniques in terms of the precision metric (first 6 rows) and mae (last 3 rows). The best
performance is denoted in bold

We evaluated the techniques using the precision metric. As already mentioned, precision is measured differently
across the classification and regression tasks. Therefore, in Table 9 the first 6 rows are measured using the ac-
tual precision of classification tasks, while in regression we used mae. The very specific rules of LF achieved a
high 100%±0.0 precision and the lowest 2.224±2.43 mae in all datasets. In the classification tasks, GS had a high
precision performance (94.5%±6.2), as well as CH (92.5%±6.3). LS (79.3%±17.0) and DF (75.0%±15.8) achieved
similar to each other results. AN (41.7%±26.7) had the worst performance. For the regression tasks, DF resulted in the
second-lowest mae score (2.233%±2.44), while the performance of GS (2.946%±2.29) and LS (2.968%±2.32) was the
worst.

Dataset LF DF GS LS CH AN
Bankn. 0.17±0.2 0.29±0.2. 0.54±0.2 0.31±0.3 0.02±0.1 0.038±0.1

Heart 0.05±0.1 0.04±0.1 0.22±0.1 0.28±0.1 0.12±0.1 0.15±0.2
Adult 0.01±0.0 0.07±0.0 0.03±0.0 0.02±0.0 0.03±0.0 0.03±0.1
Glass 0.07±0.1 0.23±0.1 1.35±7.1 0.58±0.8 0.12±0.1 1.50±5.1

Segment 0.02±0.0 0.26±0.1 0.20±0.1 0.12±0.3 0.06±0.1 0.26±0.4
Abal.mc 0.05±0.1 0.30±0.1 0.08±0.1 0.28±0.2 0.08±0.1 0.14±0.2

Abal.r 0.00±0.0 0.42±0.1 0.28±0.1 0.28±0.2 - -
Boston 0.00±0.0 0.09±0.1 0.50±0.9 0.68±2.7 - -

Wine 0.00±0.0 0.50±0.1 0.06±0.1 0.72±2.9 - -
Avg. 0.04±0.1 0.24±0.2 0.36±0.4 0.36±0.2 0.07±0.0 0.35±0.5

Table 10: Comparison of techniques in terms of the variance. The best performance is denoted in bold

We now compare the different techniques regarding their variance. Notice that we measure how distant the expla-
nations provided for an instance are across multiple runs. In Table 10, we can see that LionForests achieved the
best variance score, with 0.041±0.05 across the different runs. CHIRPS also achieved low variance, with an aver-
age of 0.070±0.04, while the other techniques produced explanations with higher variance across the different runs.
Specifically, DF achieved 0.242±0.15, AN 0.354±0.52, GS 0.361±0.39, and LS 0.363±0.23.

Finally, we compare the different techniques regarding their response_time. In Figure 11, we can see that, except
from Anchors and CHIRPS, the other approaches can provide explanations in one or two seconds. Specifically, we
can see that LF provides explanations in on average 1.45±1.21 seconds. The other techniques are performing equally
well. GS as a global interpretation approach is the fastest, providing immediate responses (0.00±0.00). LS achieves
2.63±0.77 seconds per explanation, DefragTrees 0.55±0.39, and CHIRPS 2.50±2.69. However, Anchors is the most
timely technique, providing explanations in approximately 48.03±50.18.
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Dataset LF DF GS LS CH AN
Bankn. 1.04±0.0 0.28±0.0 0±0.0 2.98±0.0 0.33±0.0 4.19±0.2

Heart 1.20±0.0 0.15±0.0 0±0.0 2.97±0.0 0.40±0.0 13.20±0.3
Adult 1.48±0.0 0.49±0.0 0±0.0 3.59±0.0 6.86±0.1 26.62±1.1
Glass 4.69±0.0 0.37±0.0 0±0.0 2.17±0.0 0.56±0.0 90.31±0.7

Segment 1.33±0.0 0.65±0.0 0±0.0 2.31±0.0 1.20±0.0 142.74±7.9
Abal.mc 0.34±0.0 0.14±0.0 0±0.0 2.11±0.0 5.62±0.1 11.08±0.6

Abal.r 1.23±0.0 1.33±0.1 0±0.0 3.33±0.0 - -
Boston 1.31±0.0 1.09±0.0 0±0.0 3.24±0.0 - -

Wine 0.39±0.0 0.40±0.0 0±0.0 0.99±0.0 - -
Avg. 1.45±1.2 0.55±0.4 0±0.0 2.63±0.8 2.50±2.7 48.02±51.2

Table 11: Comparison of techniques in terms of the response_time. The best performance is denoted in bold

5.4.2 Conclusiveness property investigation

Even if LF does not always have the best performance in terms of the aforementioned metrics, it can provide “con-
clusive” interpretation rules, making it trustworthy and competitive. This occurs because LF always retains at least
the number of paths that will always produce the same result for a particular instance, and every feature (and its cor-
responding range) from those paths is included in the final rule (see Section 4.1 and 4.2). In fact, in this section, we
are manually demonstrating that all the algorithms under consideration are not conclusive, by providing at least one
example for each one of them.

We will use the Banknote dataset for this qualitative assessment. We retain 10 of the 1372 instances for manual
inspection, and the rest are used to train the RF model. After normalisation, the distributions of Banknote’s 4 features
F = [V ariance, Skew,Curtosis, Entropy] are between [−1, 1]. Then, we choose a random instance among the 10,
x1 = [0.53,−0.25,−0.24, 0.53], which was predicted to be a ‘fake banknote’. The following rules were provided by
the examined interpretation techniques:

LF: If 0.36 ≤ V ariance ≤ 1 and −0.62 ≤ Curtosis ≤ 1 then ‘fake banknote’

CH: If 0.23 < V ariance then ‘fake banknote’

AN: If 0.42 < V ariance then ‘fake banknote’

LS: If {} then ‘fake banknote’

LF indicates that the value of the featureCurtosismust be within the range [−0.62, 1], while CH, AN, and LS provide
no such requirement. When the instance’s value for this feature is set to −1, the prediction is changed from “false
banknote” to “real banknote”. As a result, the three rules, except LF, were all not conclusive. We proceed looking at
another instance x2 = [0.52, 0.79,−0.91,−0.35]. We produced the interpretation rules again after RF predicted the
instance as “false banknote”.

LF: If 0.43 ≤ V ariance ≤ 1 and −0.92 ≤ Curtosis ≤ −0.89 then ‘fake banknote’

DF: If 0.34 < Skew and −0.97 < Curtosis then ‘fake banknote’

However, we can see that DF lacks a condition for V ariance, whereas LF lacks a condition for Skew. We
changed both of them, and LF’s decision not to include Skew was correct because there was no change in the out-
come when we altered Skew from 0.79 to either 1 or −1. The prediction, on the other hand, changed when we
changed V ariance from 0.52 to −1. As a result, DF is not conclusive. Finally, we examined another instance
x3 = [−0.23, 0.24,−0.73, 0.2] to argue that GS is also not conclusive. The RF classified this instance as a “real
banknote”. We obtained the following two interpretation rules after requesting LF and GS to produce them:

LF: If−0.23 ≤ V ariance ≤ −0.12 and−1 ≤ Skew ≤ 0.32 and−1 ≤ Curtosis ≤ −0.57 then ‘real banknote’

GS: If −0.26 < V ariance ≤ 0.06 and 0.23 < Skew ≤ 0.32 then ‘real banknote’

It is clear that the rules are not identical. GS omitted the Curtosis feature, while LF provides a condition about this
feature. We proceeded to modify this feature’s values from −0.23 to 1 and the prediction changed to ‘fake banknote’.
Hence, we can say that GS is also not conclusive.
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5.5 Qualitative evaluation

In this final section of the experiments, we will present an example using an instance from the Adult dataset. Apart
from the prediction and the interpretation rule, we will show the interpretation visually, and then perform a few
manual tests to guarantee that the interpretation rule is conclusive. Initially, we obtain the following prediction and
interpretation rule, with and without LF’s reduction, for a random instance of Adult:

Original: if Marital Status = Married and 5119.0 ≤ Capital Gain≤ 5316.5 and 0 ≤ Capital Loss≤ 1782.5 and 33.5 ≤
Age≤ 49.5 and 38.5 ≤ Hours Per Week≤ 40.5 and Occupation = Exec Managerial and 108326.999 ≤
fnlwgt≤ 379670.501 and Education = Bachelors and Sex = Male and Workclass = Private and Native
Country = United Stated then Income > 50K

LF: if Marital Status = Married and 5119.0 ≤ Capital Gain≤ 5316.5 and 31.5 ≤ Age≤ 49.5 and 108326.999 ≤
fnlwgt≤ 379670.501 then Income > 50K

Based on the two explanations, we can draw the following conclusions. The capacity of LF to reduce the rules is
obvious. The new interpretation is 63% shorter since it includes only four conditions rather than eleven. The ranges of
the features Age and fnlwgt are also broader in the LF’s rule, thus the rule is less sensitive to fluctuations. Finally, we
can see that LF reduced nearly all of the categorical features, which is very positive. However, alternative categorical
values are presented to the end user, either in the rule or through visualisation. To avoid having cluttered rules, we
automatically hide the alternative values from the rule in this example.

We will analyse the features Native Country and Age, which are categorical and numerical, respectively, using the
visualisation offered by LF. Someone may notice that the feature Native Country does not appear in this interpretation
rule. This means that the value for Native Country in this case, United States, has no effect on the prediction and
has been diminished in this instance’s interpretation. Please notice that we either provide the alternative values as
indicated in Section 4.5 or we use the LF visualisation tool. The second approach is being pursued in order to avoid
having cluttered rules.

Figure 9: Visualisation of interpretation for feature Native Country (original value = United States)

As the visualisation tool in Figure 9 indicates, the only potential values that can influence the prediction are Mexico and
South. This in the rule could appear as Native Country 6= [Mexico, South], if the visualisation tool wasn’t available.
Then, if we change the value of Native Country to Greece, United Kingdom, Japan and another 36 countries not
appearing in the list of values which may affect the prediction, the outcome indeed remains the same. Our next
modification concerns the Age feature, as presented in Figure 10. Since Age is a numerical feature, the distribution
of this feature among the training data, as well as the range of the allowed values of this feature for the examined
instance, are presented in a plot.

This plot firstly informs us about how the ranges of the feature’s value were extended. The red vertical line reflects the
instance’s value for this feature (42), while the blue and green lines reflect the initial rule’s and reduced rule’s ranges,
respectively (blue and green right lines are overlapping). We then considered modifying the Age with two values
within the range, 32 and 48, and indeed, the classification result remained the same as indicated by the extracted rule.

6 Discussion

We have used 8 different datasets from 3 different learning tasks in the above series of experiments to evaluate dif-
ferent aspects of LF and compare it to other techniques. For the scalability analysis, we also utilised 16 synthetically
generated datasets.

Via a sensitivity study, we initially investigated how the LF and RF parameters affect the reduction of features and
paths (Section 5.2). The parameters ‘max features’, ‘depth’, and ‘estimators’ of the RF appear to be strongly associated
with the reduction effect. Regarding the classification tasks, a larger number of estimators (500 or more) appears to
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Figure 10: Visualisation of interpretation for feature Age (original value = 42)

favour feature and path reduction. This is most likely since there are more paths to choose from during the reduction
phase. We also notice that LF increases feature reduction when the depth of the trees in RF is greater than 5. We
believe this is because longer paths will have more in common features with each other, as opposed to very short
paths, which may have fewer in common. We could have tested larger depth values, but while the computational cost
would increase exponentially, we would notice the same trend, namely that higher depth leads to increased feature
reduction. About the ‘max features’, it is noticed that using 75% of the features in RF’s trees, helps LF to reduce better
the features of the final rules. Again, this is happening because the reduction techniques will deal with paths with a
lot of similarities in terms of features, as every tree will be allowed to use 75% of the features of the data. However,
in regression tasks, we observe the same phenomenon about the ‘estimators’, but not the same for ‘max features’ and
‘depth’, where values like ‘sqrt’ and 1, respectively, are helping LF to perform better.

For the LF’s parameters, we discovered that reduction through AR is required for high feature reduction in both binary
and multi-class classification scenarios. More specifically, it is necessary to use reduction through AR to achieve high
feature reduction. When reduction via CL and RS is paired with reduction via AR, the feature reduction can be slightly
increased. Path reduction, on the other hand, always requires RS, whereas reduction via CL and AR does not boost
the reduction. We should mention here that the CL reduction technique is the most time-consuming and increases the
overall response time. As a result, for classification tasks, it is best to always utilise reduction via AR and RS to obtain
high feature and path reduction. When there are no time constraints, we advise using all the techniques, AR, CL, and
RS, to get the greatest possible feature reduction.

We can notice from the sensitivity analysis of the regression tasks that AR+RS reduction and DSi are the most promis-
ing reduction techniques. We also investigated the impact of the local_error parameter, which confirmed the hypoth-
esis that higher local_error would lead to higher feature and path reduction.

After the sensitivity analysis, we proceeded to the time and scalability analysis in Section 5.3. Those experiments
proved how much the LF response time was improved in comparison to the preliminary version. Two core procedures
were optimised, and the result was a 93% to 95% faster run-time on the first procedure, and a 94% to 96% on the
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second. This improvement renders the LF applicable even in online scenarios where immediate interpretations must
be provided to users in real-time. Furthermore, the scalability analysis demonstrates that LF can be applied to large
datasets and provides responsive explanations. In binary and multi-class experiments, the only visible limitation
appears to be the slow performance of LF in RF models with depths of 10 or greater, especially when combined with
a large number of estimators, 500 or more. Nonetheless, because the majority of available tabular datasets have fewer
than 1K features, LF will be able to perform remarkably well in terms of time.

We then compared LF to SOTA algorithms using well-known metrics and a custom property. In terms of rule_length
and coverage the other techniques outperformed LF, but it did achieve perfect precision in the classification experi-
ments. The low performance of LF with respect to coverage is due to the extremely specific rules offered by LF. At the
same time, the rules’ specificity renders them larger than the rules of the opposing algorithms. Except for the GS, LF
outperforms all other techniques in terms of response_time performance. However, LF also has the conclusiveness
property, which renders it reliable and trustworthy, and by examining the other algorithms, we proved that none of
them has this property.

Regarding the rule_length, even though LF provided larger rules than the other approaches, we can notice two points.
First, it was still able to provide rules with fewer features than the maximum length (based on the size of the feature
set) for each dataset. Second, the fact that LF provided larger rules than the other approaches is not necessarily
a negative fact, especially when relevant researchers suggest that very small rules are not preferred over lengthier,
more informative and expressive rules [19]. Nevertheless, despite the superior performance of the other algorithms in
the metrics favoured in the literature (coverage and rule_length), they lack the “conclusiveness” property, which we
believe is necessary for any interpretation algorithm that provides rules to the user towards more transparent, complete,
and reliable explanations.

We finally presented a detailed use case from one dataset. We chose the Adult dataset, which facilitates both numerical
and categorical features. By taking a random instance we generated both the prediction by the RF model, the interpre-
tation rule from the LF and the visual interface as well. We investigated both the ranges of a numerical value and the
alternate values of a categorical feature using the user interface. In comparison to other algorithms that only provide
the feature and the category in the rule, this tool allows the user to see alternate categorical values.

7 Conclusion

Random forest is one of the top-performing machine learning algorithms in critical sectors such as health, industry, or
retail. At the same time, its uninterpretable nature makes it an inappropriate solution, due to trustworthiness concerns,
and even issues related to legal frameworks. Therefore, the need of injecting interpretability to such algorithms is
evident. In a preliminary work, we introduced a random forest-specific local-based interpretation technique called
LionForests. The interpretations are presented in the form of rules. Each rule is a conclusive set of conditions about
the features that affected an instance’s prediction. LionForests implements a series of feature and path reduction
approaches in order to provide smaller rules containing conditions with broader ranges.

We are refining this methodology in a number of ways in this work. Providing a stable theoretic background, enhancing
its core procedures towards timely responses, extending its applicability to a variety of learning tasks, LionForests
technique undergoes a series of experiments. We investigated and evaluated how the parameters of a random forest
model, as well as the parameters of LionForests, influence feature and path reduction in these experiments, which were
focused on 8 separate datasets. A time analysis backs up our claim that LionForests responds in a timely manner, in
contrast to its preliminary version. The scalability analysis with synthetically generated datasets indicates that LF can
be used and can provide explanations for larger datasets as well. We compare LionForests using well-known metrics
with cutting-edge techniques. However, while the performance of LionForests based on such metrics does not imply
that our system is superior, its inherent property known as “conclusiveness” distinguishes it from the other techniques.
We also demonstrate that all the other techniques are not conclusive. Eventually, we give a detailed example of how
to best exploit the LionForests technique, in a qualitative manner.

Few of our next steps will be to evaluate LionForests in a human-oriented way, exploiting information from relevant
works [54]. Another interesting study would be to investigate LF’s adaptability to other types of data as well as
different tree ensemble techniques such as GradBoost [20, 21], XGBoost [9], and CatBoost [43]. In addition, we
can explore the transformation of the conclusiveness property to an evaluation metric. Finally, we can look into how
additional information accompanying an explanation, such as precision and coverage statistics, might be useful to the
end user.
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Appendix A Deeper sensitivity analysis

In this appendix, we present a deeper sensitivity analysis, as originally presented in Section 5.2.

A.1 Binary Classification

Diving deeper to the sensitivity analysis, Figure 11 presents the FR% for the parameters of the RF while Figure 12
refers to the parameters of LF. The parameter analysis reveals that when the RF’s max features parameter is set to
75%, the reduction in features in all datasets is higher. With regard to depth and estimators, LF achieves over 35% FR
when the depth is greater than or equal to 5 and the estimators are 100 or more.

Figure 11: Binary classification: analysis of FR relation to RF’s parameters. ‘sqrt’ and ‘log2’, as well as estimators
500 and 1000, have similar results, and they are grouped.

In Figure 12, we can see how the parameters of LF affect the FR% in these datasets. We observe that the two different
AR (1) are performing identically in the FR%. In CR (2), the FR% seemed to diverge for the different algorithms.
Specifically, k-medoids and SC manage to reduce the features by 20% or more in all datasets, while OPTICS could not
manage to perform any reduction. RS (3) did not achieve any FR in Adult and Banknote, while it achieved low FR%
in Heart (Statlog). Among the three approaches, AR seems necessary to achieve high FR%, while the combination of
AR (1) with CL (2) seems to increase slightly in all three datasets the FR%.

About the PR analysis, Figure 13 reveals that when the RF’s max features parameter is set to ‘None’, the reduction in
paths in all datasets is higher. Regarding depth and estimators, LF achieves over 40% PR when the depth is greater or
equal to 5 and the estimators are 100 or over.

In Figure 14, we can see how the parameters of LF affect the PR% in these datasets. In contrast to FR, for PR, CR
(2) and RS (3) are both maximising the PR%. Recall that we cannot reduce more than a quorum in a binary setup,
thus these techniques achieving 49% PR are performing optimally. AR (1), on the other hand, cannot seem to be able
to optimally reduce paths. Finally, we observe that when combining all three techniques (123), for every parameter
setting, the PR% is higher than 40%.
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Figure 12: Binary classification: analysis of FR relation to LF’s parameters

Figure 13: Binary classification: analysis of PR relation to RF’s parameters. Depth 7 and 10, as well as estimators 500
and 1000 are grouped.

A.2 Multi-class classification

The tuning of RF’s parameters and their impact to the FR% are visible in Figure 15. The analysis reveals that when
the RF’s max features parameter is set to 75%, the FR in all datasets is higher. LF achieves over 17% FR when the
depth is greater than or equal to 5 and estimators are 100 or over, while it achieves more than 25% and 34% for the
individual datasets, Abalone and I. Segmentation, respectively.

Figure 16 presents how FR% is affected based on the different parameters of LF. As observed in the binary classi-
fication sensitivity analysis, here as well it is eminent that AR (1) is performing equally in the FR%. CR (2) in the
Abalone dataset achieved a higher FR than AR, and when combined (123) with the other techniques, AR and RS, the
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Figure 14: Binary classification: analysis of PR relation to LF’s parameters

Figure 15: Multi-class classification: analysis FR relation to RF’s parameters. ‘sqrt’ and ‘log2’, as well as estimators
500 and 1000, have similar results, and they are grouped.

FR% is not increasing. The analysis of Glass dataset revealed that rather than the FR achieved by the AR (1), no other
method or combination managed to increase the FR%. Finally, on I. Segmentation seemed the combination of AR and
CR (12), with specifically SC, to provide the highest FR%. Another interesting point is that the RS (3) managed to
reduce the features of the rules in all three datasets, in contrast to the RS’s performance on the binary’s classification
sensitivity analysis.

Through Figure 17, observing the PR while tuning the RF’s parameters in these datasets, we can say that the max
features parameters do not affect the PR%. We can not conclude the same for depth and estimators, where we need 5
or higher and 100 or more, respectively, to achieve higher PR%. The highest PR% it is achieved when depth equals
10 and estimators equals 1000.
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Figure 16: Multi-class classification: analysis of FR relation to LF’s parameters

Figure 17: Multi-class classification: analysis of PR relation to RF’s parameters. Depth 7 and 10, as well as estimators
500 and 1000 are grouped.

In Figure 18, we can see how the parameters of LF affect the PR% in these datasets. RS (3) is maxing out the PR%.
AR (1) cannot seem to achieve the desirable PR results, while CL (2) is performing well, but not as good as RS (3).
Thus, RS or any combination with RS leads to a PR% of 38% or more.

A.3 Regression

In Figure 19, the relation of RF’s parameters to the FR% is visible. We can say that the most influencing parameter is
estimators. When estimators are equal or more than 500 and depth is either 1 or 5, then the reduction is between 35%
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Figure 18: Multi-class classification: analysis of PR relation to LF’s parameters

Figure 19: Regression: analysis FR relation to RF’s parameters. ‘sqrt’ and ‘log2’, as well as estimators 500 and 1000,
have similar results, and they are grouped.

to 51%. Moreover, for Boston and Wine we observe that when max features is set to either ‘sqrt’ or ‘log2’, the FR%
is higher. On the other hand, higher max features values like ‘0.75’ or ‘None’ seem to favour the FR% for Abalone.

Inspecting how the LF’s parameters are affecting the FR%, in Figure 20, we can see that AR+RS method provides
better results for Abalone, while DSi for Boston and Wine. However, DSo cannot reach desirable levels of FR% in
any case.

The same pattern we identified for the FR% relation to RF’s parameters, it is apparent for the relation of PR% with
the RF’s parameters as well (Figure 22). Setting estimators between 500 or 1000 and depth to either 1 or 5, the PR is
between 50% to 85%. However, max features do not affect the PR%.
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Figure 20: Regression: analysis of FR relation
to LF’s parameters

Figure 21: Regression: analysis of PR relation
to LF’s parameters

Figure 22: Regression: analysis of PR relation to RF’s parameters. ‘sqrt’ and ‘log2’, as well as estimators 500 and
1000, have similar results, and they are grouped.

In Figure 21, we can see how the parameters of LF affect the PR% in these datasets. We observe the highest PR%,
over 50%, with the DSi reduction method of LF. DSo is also better than AR+RS in terms of PR%.

Examining the relation of local_error with the FR% (Figure 23), we can say that for the Wine dataset we can achieve
high FR%, over 50%, with a low local_error of around 0.36. For the Abalone dataset, we need a local_error with
a value between [1.1, 1.4] in order to achieve approximately 35% of FR. Finally, for Boston in order to achieve FR%
higher than 40% we need a local_error around 2.2.

Finally, about the relation of PR% with the local_error, we observe, in Figure 24, that we acquire higher PR% when
we allow higher local_error, in every dataset. In order to let the reader understand better the relation of both the FR%
and PR% with the local_error, we present the target variable statistics of each dataset in Table 12. This will help to
associate the local_error with the actual values of the target variable of each dataset.
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Figure 23: Regression: analysis of FR relation to local_error

Figure 24: Regression: analysis of PR relation to local_error

Appendix B Deeper analysis of time and scalability analysis

In this appendix, we present a deeper analysis regarding the runtime performance and scalability, as originally pre-
sented in Section 5.3.

In Figure 26 we are zooming the y-axis in order to make visible that LF runs approximately between 0.2 to 0.6 seconds
per explanation, in contrast to the preliminary version which generates explanations from 0.2 to almost 80 seconds.

In Figure 28 we are zooming the y-axis in order to make visible that the version of LF runs approximately between
0.2 to 11 seconds per explanation, in contrast to the preliminary version which generates explanations from 2 to 128
seconds, and even over 280 in few extreme cases.

37



A PREPRINT - JUNE 20, 2022

Min Max Mean Std
Abalone 3.0 19.0 9.74 2.86
Boston 5.0 50.0 22.53 9.19
Wine 3.0 9.0 5.82 0.87

Table 12: Statistics of target variable of regression task’s datasets

Figure 25: Comparison of preliminary LF and LF on features’ ranges generation without reduction (y-axis in seconds)

As it is visible from Figure 29, the worst performance in thee binary setup occurred when we used a dataset with 1000
features, 1000 estimators, and a depth of 10, reaching over 1 minute per explanation. An explanation takes 4 seconds
in a typical configuration with 1000 features, 500 estimators, and a depth of 5. While 100 features, 1000 estimators,
and depth 2 produce an explanation in half a second.

In the multi-class experiments (Figure 30), the lowest performance was with 1000 features, 1000 estimators, and a
depth of 10, with either 10 or 100 classes, reaching over 1 minute, actually 64 seconds. In a common configuration
with 1000 features, 500 estimators, and a depth of 5, an explanation takes 4.5 seconds. An explanation takes 0.8
seconds to generate using 100 features, 1000 estimators, and depth 2.

In the regression experiments (Figure 31), the worst performance was with 10 features, 1000 estimators, and a depth
of 10, reaching almost 1 second. In a common configuration with 1000 features, 500 estimators, and a depth of 5, an
explanation takes 0.64 seconds. An explanation takes 0.48 seconds to generate using 100 features, 1000 estimators,
and depth 2.
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Figure 26: Comparison of preliminary LF and LF on features’ ranges generation without reduction (y-axis in second
- zoomed)

Figure 27: Comparison of preliminary LF and LF on features’ ranges generation with reduction (y-axis in second)
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Figure 28: Comparison of preliminary LF and LF on features’ ranges generation with reduction (y-axis in second -
zoomed)

Figure 29: Binary classification: analysis of runtime performance of LF for different number of features and different
parameters for RF
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Figure 30: Multi-class classification: analysis of runtime performance of LF for different number of features and
different parameters for RF

Figure 31: Regression: analysis of runtime performance of LF for different number of features and different parameters
for RF
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