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Abstract—Complex games require disparate behaviors in order
to be solved, giving space to researchers to study AI model
behaviors in various settings. At the same time, the video game
industry benefits by incorporating these models in their games
for delivering realistic and challenging gameplay experience to
users. However, there is a well-known difficulty of implementing
and training efficient models in complex games for entertainment
purposes. In this paper, we report on our approach to overcome
this challenge and ultimately develop AlphaBluff, a Heads-Up
No-Limit Texas Hold’em (HUNL) Poker variation video game
developed in the Unity game engine, in which human players
can play against trained AI opponents. Initially we trained
different state-of-the-art AI models and analyzed their individual
performance scores in a custom HUNL environment, as well as
their performance against each other. AlphaBluff was developed
with the goal of producing a professional-level poker video
game that includes cutting-edge AI opponents, which, to our
knowledge has never been developed before. Using data gathered
by gameplay sessions from beta testers, we performed a statistical
analysis and concluded that our models have a high win rate
against human players. An adaptation of our system can further
enrich this unique gameplay experience by combining these
models, data and statistical reports, in order to develop an
efficient player-opponent matchmaking mechanism.

Index Terms—artificial intelligence, reinforcement learning,
video games, poker

I. INTRODUCTION

The variety of game types and their individual mechan-
ics pose different challenges for Artificial Intelligence (AI)
when it comes to solving them. Several methods have been
developed that achieve high gameplay performance in various
games, with the most prominent example being techniques that
belong to the field Deep Reinforcement Learning [1].

AI techniques are continuously applied to complex games
in order to solve them, which is the natural path of research
in this field since solving simpler games meant that the bar
had to be raised higher to extend further the boundaries of AI.
To this end, Poker and its variations were always targets of
high value for researchers due to their immense complexity
produced by their imperfect-information nature [2]. Thus, not
many successful attempts at producing a high-performance
model in this popular game (and its variations) exist to date.
Admittedly, even the most eminent cases of such AI systems
require enormous amounts of processing power in order to
train adequately and become top-tier players. As such, this also
makes it extremely difficult to even train and compare existing
models, much less use them as computer-controlled opponents

in custom video games for the purposes of providing a modern,
challenging and realistic user gameplay experience.

In this paper, we present an approach for tackling these
issues with the end goal of producing a professional Heads-
Up No-Limit (HUNL) Texas Hold’em poker video game that
incorporates state-of-the-art AI algorithms as opponents to
human players. We trained and evaluated 7 different Poker
AI agents that have different learning mechanisms. Since
training these algorithms require enormous resources to reach
the level of an experienced poker player, we used our available
computing power as optimally as we could in order to produce
models that could perform decently on average.

Additionally, for this paper we also developed AlphaBluff1

(Figure 1), a modern 3D Texas Hold’em Poker video game
created in the Unity game engine, in which human players
can play against four types of AI opponents. Apart from de-
veloping and releasing AlphaBluff for entertainment purposes,
it also serves as a means to evaluate our trained models against
human players, with statistical results indicating that they can
reach a win rate of about 73% against human players.

II. RELATED WORK

Poker has been in the center of attention right after AI set its
footprint in the area of games, but its high level of complexity
and hidden-information nature proved to be an obstacle in
delivering a system that is capable of winning against experts.
Since early on, the most straightforward method of developing
a Poker AI agent was by using rule-based systems built by
domain experts [3].

However, the most promising attempts arrived with the use
of Search techniques. More specifically, the first AI agent
that achieved victories against professional rank poker players
in HUNL is DeepStack [4], which incorporates a technique
known as Counter-Factual Regret (CFR) minimization algo-
rithm [5]. Libratus [6], a powerful Poker-playing system,
managed to win against top-tier rank players in HUNL, and
its successor, Pluribus [7], was developed and trained in
multiplayer No-Limit Texas Hold’em. Recursive Belief-Based
Learning (ReBeL) [8] is the most recent Poker AI that achieves
superhuman performance in HUNL, and it can be used for
perfect and imperfect-information games. Due to the resource-
heavy processes in all of these models, the focus in other works

1https://www.youtube.com/watch?v=oFacNlXe1LQ
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Fig. 1. AlphaBluff in-game screenshot.

(e.g. AlphaHoldem [9]) is on reducing the computational
power required in various ways while optimizing performance,
or improving the generalization abilities of models (e.g. [10]).

To the best of our knowledge, there have been no attempts
in conducting a cross-comparison evaluation of different al-
gorithms in the game of Poker, which is partially one of the
main contributions of this paper, in order to provide baseline
performance indications within the same environment.

III. BACKGROUND

Poker is a hidden-information card game with 52 cards on
the standard deck. Each card belongs in one of 4 suits (clubs,
diamonds, hearts and spades) and has one of 13 ranks (2 –
10, Jack, Queen, King, Ace). Players wager who has the better
hand in each game, according to the game rules. Each game’s
winner of each game receives all bets that have been wagered.
While several variations of Poker exist, Texas Hold’em is the
most well-known, which is the specific variation that we used
in our work. Among the Poker variations, No-Limit Texas
Hold’em is one of the most difficult for AI systems to solve,
in which a player can bet any amount of chips, including all
remaining stake (all-in). Heads-Up No-Limit (HUNL) Texas
Hold’em refers to the variation in which only two players
participate.

A. AI Methods in Poker

The most common approach, and the one with the best
results, is trying to approximate the Nash Equilibrium using
principles for the scientific field of Game Theory. One method
of computing Nash Equilibrium is through a method called
Fictitious Play [11]. Fictitious Self-Play (FSP) [12] is a method
based on the same principles with Fictitious Play but also takes
into account the concept of time and sequence in games. A
proposed improvement of FSP is Neural Fictitious Self-Play
(NFSP) [13], which combines FSP and Neural Networks in

order to enhance its performance. It consists of two indepen-
dent Neural Networks and a memory buffer in each of them;
the first network tries to predict action values from stored
data in its memory buffer, and the second network maps the
game’s states to action probabilities using supervised learning,
subsequently defining the agent’s average strategy. NFSP is
scalable, it can work without prior domain knowledge, and
it was proven that it approaches Nash Equilibrium in small
poker games while being competitive in Limit Texas Hold’em,
a much larger game.

Another important method for approximating Nash Equilib-
rium in imperfect information games is Counterfactual Regret
Minimization (CFR) [5], and a variation termed Deep CFR
is the first non-tabular CFR algorithm that achieves strong
performance in massive poker games like HUNL [14].

IV. MATERIALS AND METHODS

Our implementation consists of the RL-formulated HUNL
environment, the algorithms that were used for the training and
evaluation procedure, the Unity-based AlphaBluff GUI that
was developed, and a brief statistical report on the performance
of our agents against human players.

A. HUNL Environment

A custom HUNL environment was implemented and for-
mulated as a Reinforcement Learning problem, inspired by
the environment implemented in RLCard [15]. In that envi-
ronment, each player has 100 chips as his initial stack, the
big blind’s size is 2 chips, while the small blind is 1 chip.
After the end of each hand, the game is reset and the players
start again with their initial stack size. This variation is called
“Doyle’s Game”, and it is commonly used by the scientific
community.

This HUNL environment is abstracted from the perspective
of the action space since it allows only three betting sizes: half



pot, whole pot and all-in. Along with the fold, check and call
actions, the length of the environment’s action vector is 6.

Our proposed observation space representation, which was
inspired by [13], is comprised of three parts. The first part
represents the betting history and is a 18x6 tensor. In this
environment the maximum length of the action sequence is
18, while there are 6 actions in total, but not all of them
are legal actions in each phase of the game. The second and
third parts represent the hole and public cards, respectively,
i.e. a k-by-n encoding in a 52-length array for each phase.
The second part that encodes each player’s hole cards is
different for each player as it is the only part representing
hidden information. The three arrays for each component
are flattened and concatenated into a 316-length array. This
state representation is more complex than the original, but it
provides more information for the agents.

B. Implemented Agents

We implementεd and evaluated different AI methods so as
to understand their potential and limitations in games with
imperfect information.

1) Hand Evaluator with Handcrafted Strategy: Α library
that calculates the winning odds based on the player’s hand
is used, which simulates all possible hands or approximates
this probability by performing Monte Carlo simulations. For
the preflop phase, it performs 1000 simulations that produce
a probability very close to the actual one, while for all phases
that follow, it computes the exact winning probability.

2) Proximal Policy Optimization: The PPO algorithm was
chosen from the category of Deep RL algorithms. RLlib [16]
was used to implement the algorithm, which is an open-source
RL library. RLlib works on top of Ray [17], a python API for
building distributed applications.

Since HUNL is a two-player game, two different PPO
agents played against each other in the training phase. The
training was performed in a self-play manner: at the end
of each iteration, the agent’s weights that had won (average
reward) were transferred to the agent that lost. Finally, a
parametric model was used in order to allow the agent to play
only the legal actions in each turn.

3) Information Set Monte Carlo Tree Search (Infoset
MCTS): Information set (Infoset) MCTS [18] is a variation of
the MCTS implementation used for perfect information games.
Infoset MCTS is designed for imperfect information games,
where the player does not know in which state he is at a given
moment due to hidden information. The main difference with
the original algorithm is that Infosets are used instead of states.
At the start of each simulation, the agent randomly chooses
a state that belongs to the known Infoset and moves down
the game tree, takes the payoff for that state at the leaf node
and backpropagates its value until it reaches the root node. The
algorithm is conducting an online search, so it does not need to
be trained. For each decision, Infoset MCTS performed 1000
iterations.

4) AlphaZero with Infoset MCTS: AlphaZero [19] is a
general RL algorithm that combines RL and Search. It is

the successor of AlphaGo and AlphaGoZero, and it can play
Chess, Go, and Shogi at a superhuman level. It uses the MCTS
algorithm in order to traverse the game tree, and it utilizes two
separate Deep Neural Networks. The first is used to predict
the value of a state, while the other predicts the action policy.
AlphaZero can handle only perfect information games, it was
decided to change the MCTS with Infoset MCTS in order
to test whether it can handle uncertainty better and to what
extend. After each network training, an evaluation with the
previous best model was performed in 100 games, and if
the new one performs better then it is saved, otherwise it is
discarded.

5) Neural Fictitious Self-Play (NFSP): The NFSP imple-
mentation used for the agent was provided by OpenSpiel
[20], a framework built to assist researchers in the field of
Reinforcement Learning in games.

6) Deep CFR: The implementation of Deep CFR was also
provided by OpenSpiel. The agent performed 10 iterations of
8K traversals for each of the two players.

It should be noted that computational and other technical
limitations on either server were present, allowing us to train
the agents for no more than 48 hours consecutively, which
constrained our experimental procedures significantly.

C. Evaluation

Approximating Nash Equilibrium is currently the best ap-
proach for creating competitive poker agents, therefore the best
way to evaluate these agents is by measuring their exploitabil-
ity [21], which measures how far the agent’s strategy is from
Nash Equilibrium.

Computing the exploitability of an agent is practically
infeasible for large games like HUNL, therefore we decided
to measure the exploitability of an agent with the Local Best
Response (LBR) [22] method. The main concept of LBR
is to compute the probability for each of the possible card
combinations that the player holds as his hole cards.

To make reliable assumptions, a considerable number of
games must be played by the tested agent, so as to then com-
pute the mean reward of the LBR agent. While this method is
an approximation it is still highly demanding (e.g. computing
an agent’s exploitability against LBR in 1000 games requires
roughly 24 hours). Thus, it was decided to evaluate the agents
against an opponent that chooses its next actions randomly
during the training phase to monitor the training progress.

After training, all agents played against each other for
1000 evaluation games, and their mean reward was computed.
Also, the agents played against a random player and a “fish”
player, who always checks or calls. The LBR method was only
applied against PPO, NFSP and Deep CFR agents, since these
agents decide their next action simultaneously, while the other
agents use search-based techniques to operate and thus their
evaluation with LBR was infeasible for computational reasons.

Moreover, three other static agents (random, “fish” and
“always fold” agents) were tested against LBR so as to
compare their exploitability with the other agents. In the



Fig. 2. Heatmap of performance scores in 1-vs-1 games between implemented
agents, measured in mbb/h.

evaluation phase, their performance was measured in milli-
big-blinds per hand (mbb/h), which is the one-thousandth of a
big blind that players must bet at the beginning of each game
and it is a standard measure of win rate in poker.

V. AI TRAINING RESULTS

In this section, the results of the evaluation procedure are
presented (Table I and Figure 2) and discussed.

Hand Evaluator with Handcrafted Strategy. The Hand
evaluator agent had the worst performance of all the agents
agents. It had a negative mean reward against all but Infoset
MCTS with a very close margin which is not statistically
important. The hand evaluator had a positive mean reward
against random and “fish” opponents, with the second being
especially high. This can be explained by the fact that the
Hand evaluator calculates the winning chances and so when
they are high it places more bets, and the fish player only
calls. A more careful creation of the handcrafted strategy by
a domain expert would have boosted the agent’s performance.

Fig. 3. Learning curve of the PPO algorithm during training.

Proximal Policy Optimization (PPO). PPO agent had a
better mean reward against the random agent than the Hand

Evaluator, but it had a margin negative mean reward against
Fish. These results show that general RL methods, such as
PPO, cannot handle imperfect information games properly.
The learning curve of the PPO agent is shown in Figure 3.

Infoset MCTS. Infoset MCTS agent achieved positive
rewards with random and fish agents and it closely won against
PPO, but it had negative rewards against the rest of the agents
(a close call against hand evaluator). Theoretically an increased
number of simulations would have achieved better results but
in practice, there have been no sign of improvement that would
worth the increase in execution time.

Fig. 4. Learning curve of the AlphaZero Infoset MCTS algorithm during
training.

AlphaZero with Infoset MCTS. The AlphaZero Infoset
MCTS agent had a positive reward against all agents but NFSP
and Deep CFR. These results show that AlphaZero’s policy
and value networks possibly assist the plain Infoset MCTS
search algorithm to take better actions but for more secure
assumptions, a longer training process and a more thorough
evaluation must be performed. As it is expected, however, the
learning curve of the modified AlphaZero agent is does not
seem to have an upward (learning) trend (Figure 4).

Neural Fictitious Self-Play (NFSP). The implemented
NFSP agent was the best overall agent. It achieved the bigger
mean rewards against all agents, and it also closely won
against Deep CFR agent, which in theory is a better method
than NFSP. The learning curve is shown in Figure 5.

Fig. 5. Learning curve of the NFSP algorithm during training.

Deep CFR. The Deep CFR agent is the second-best agent,
only behind NFSP. It achieved positive mean rewards against
all agents except NFSP, from which it lost to a small margin.
Furthermore, although the rewards were positive, they were
smaller than NFSP’s. While in theory Deep CFR overshadows



TABLE I
1-VERSUS-1 PERFORMANCE RESULTS IN MBB/H BETWEEN IMPLEMENTED AGENTS AFTER TRAINING.

Random Fish Hand Evaluator PPO Infoset MCTS AlphaZero
Infoset MCTS NFSP

Fish 250
Hand Evaluator 591 2658

PPO 1322 -136 2934
Infoset MCTS 1653 936 -105 346

AlphaZero
Infoset MCTS 602 803 1605 3788 902

NFSP 4616 3803 4611 4624 2918 1572
Deep CFR 3106 3681 3106 1458 1126 1182 -304

NFSP, the computational limitations prevented Deep CFR’s
true potential. Due to the fact that the average policy training
network is trained only at the end of the training, no learning
curve was available, a fact that held back the efforts for finding
the best possible training parameters.

LBR Evaluation. The results of the evaluation of HUNL
agents against LBR are shown in Figure 6. The agent which
is the least exploitable is Deep CFR. An interesting fact is
that the second least exploitable agent is the one that always
folds at the start of each game. While this agent never wins a
game (an exception occurs when the other player folds first),
it only loses 500 mbb when it starts the game first and has put
the small blind, while it loses 1000 mbb when it plays second
and has put the big bling. Although this agent presents very
low exploitability, it has no use to anyone because it is not
designed to win the game. All the other tested agents except
Deep CFR have a higher exploitability because they bet bigger
amounts of chips and thus are prone to losing more chips.

Fig. 6. Exploitability of implemented agents against LBR algorithm.

Another interesting fact is that the random agent is less
exploitable than the agent with the best one-vs-one results,
NFSP. This happens because this agent’s strategy is uniformly
random and has a higher probability of folding. This fact does
not make the random agent a better agent than NFSP, but it
only shows that it will lose the least amount of chips if it will
play against a player that approximates Nash Equilibrium.

From the results of the one-vs-one evaluation and the
evaluation against LBR of NFSP and Deep CFR agents one
can assume that these agents have the best overall results. It
is also obvious that although these agents are the best of all
the others, they have a different approach and game style.

Figure 7 shows the number of actions each agent has
performed in their one-vs-one evaluation. NFSP calls and
raises half and full pot more than Deep CFR, which, on the
other hand, folds, checks and performs all-in more.

Fig. 7. Action Comparison Between NFSP and Deep CFR.

In general, the NFSP agent has a more aggressive style of
play, and thus it has better results against easier opponents.
On the other hand, Deep CFR plays more defensively at the
first rounds and performs more all-ins when some or all board
cards are dealt. Results from the evaluation against LBR show
that NFSP’s aggressive strategy makes it more exploitable to
superior opponents, while Deep CFR is less exploitable even
than the agent that always folds.

VI. ALPHABLUFF VIDEO GAME

To further test our agents in HUNL and provide a play-
ground for human players against them, a Graphical User
Interface (GUI) was created in the Unity game engine, which,
along with the trained agents, constitutes AlphaBluff2.

2https://ming.csd.auth.gr/alphabluff
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In AlphaBluff, the player can choose between two modes
and four game difficulties. The two available modes are
Doyle’s Game, which was previously presented, and Normal
mode. The four game difficulties are: Easy, Normal, Hard
and Very Hard. Each of these difficulties corresponds to
“Fish”, “Random”, NFSP and Deep CFR agents respectively.
Furthermore, the game keeps logs of every gameplay session,
which includes wins and profits for every mode and difficulty.

A. Statistical Report

It is deemed necessary to see how AI agents perform against
humans as well, thus, we gathered gameplay data of each
AI player and computed their profit against each of the four
gamestyles. In total, 429 game rounds were played (normal
mode games were broken down to individual rounds) by 21
players of different levels of experience in Poker (Table II).

TABLE II
STATISTICAL ANALYSIS OF GAMEPLAYS BETWEEN AGENTS AND HUMANS.

Easy Normal Hard Very Hard
(Fish) (Random) (NFSP) (Deep CFR)

Games played 80 122 136 154
Winrate 32% 49.1% 54.6% 72.8%

As expected, the “Fish” agent is quite an easy opponent for
most human players, since its strategy is far from complex and
can be easily beaten. Human players have a more difficult time
against the Random agent, achieving wins about half of the
time, however this is probably related to each player’s level of
experience. The NFSP agent has slightly more wins against hu-
man players (54.6%) than the Random agent, while the Deep
CFR agent managed to win almost 3 out of 4 games played
(72.8%). Considering the lack of computational resources for
performing longer training sessions, these results are actually
encouraging regarding their potential against human players.

VII. DISCUSSION

Evaluation results showed promising indications that NFSP
and Deep CFR can achieve significant performance in HUNL,
outperforming all other agents. NFSP had the best overall
results on the one-vs-one evaluations but its aggressive strategy
made it struggle against a superior opponent. In contrast, Deep
CFR had a very low exploitability, but its playstyle was not as
rewarding as NFSP. Overall, performance of all agents would
be further improved if there were no computational limitations.

Furthermore, evalution with LBR revealed interesting in-
sights for each method and while it can be used as a measure
of self-improvement, it cannot be used as a point of reference
between different algorithms due to the stochastic nature of
the game and the option of folding as an action in the game.

VIII. CONCLUSION

With AlphaBluff, we filled the gap between state-of-the-art
research in AI and its applications in the field of gaming. More
specifically, for this paper we trained various agents in the
complex imperfect-information game Texas Hold’em Poker,

we evaluated their performance and compared them against
each other, which, to our knowledge, has never been carried
out before. Additionally, a modern 3D GUI that was developed
for the purposes of this work, which meets industry-level stan-
dards in regard to video game quality, constituting AlphaBluff,
where human players can play against trained AI agents. This
contributes to easy accessibility to AI models by the public,
and also allowed us to perform an essential statistical analysis
that was missing from such implementations.
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