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Abstract: As the world’s population is aging, and since access to ambient sensors has become
easier over the past years, activity recognition in smart home installations has gained increased
scientific interest. The majority of published papers in the literature focus on single-resident activity
recognition. While this is an important area, especially when focusing on elderly people living
alone, multi-resident activity recognition has potentially more applications in smart homes. Activity
recognition for multiple residents acting concurrently can be treated as a multilabel classification
problem (MLC). In this study, an experimental comparison between different MLC algorithms is
attempted. Three different techniques were implemented: RAkELd, classifier chains, and binary
relevance. These methods are evaluated using the ARAS and CASAS public datasets. Results
obtained from experiments have shown that using MLC can recognize activities performed by
multiple people with high accuracy. While RAkELd had the best performance, the rest of the methods
had on-par results.

Keywords: activity recognition; multilabel classification; smart home; ambient sensors;
ensemble learning

1. Introduction

Human activity recognition (HAR) is a research area with increased scientific interest.
HAR is the task of correctly recognizing human actions and activities. Its applications
vary from athlete and patient monitoring [1,2] to elderly care [3,4]. As IoT devices have
become more accessible, solutions that use activity recognition are easier to deploy in smart
home installations.

The main purpose of an activity recognition system is to correctly recognize human
actions and inform any agent interested about those actions. Recognizing performed
activities is a process that, in most cases, happens in real time, as the results are used
immediately. The majority of published works focus on recognizing the actions of a single
individual [5,6]. While recognizing the activity of only one person is important when
monitoring elderly people living alone, it is also critical to recognize activities performed
by multiple humans operating in the same space. Information about multiple actions and
the way humans interact while performing those activities could provide additional insight
about the actions’ context.

Machine learning approaches are a common way to recognize actions performed
by humans [4,6]. In a HAR system, usually, multiple activities are recognized; thus,
recognizing multiple activites is addressed as a multiclass classification problem [7]. Given
a sensory input, the trained model assigns one class (i.e., activity) to that specific input.
Multiclass classification algorithms have increased accuracy [8] when only a single person
is present. When more than one individual is acting, the problem must be reformed as a
multilabel classification problem.

Multilabel classification (MLC) is a classification task where multiple labels may be
assigned to each input [9]. Instead of selecting precisely one class out of many, as multiclass
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classification does, MLC returns one or more classes. It is worth mentioning that there is no
constraint on how many classes an input can be assigned to.

Treating HAR as a multilabel classification problem will allow activity recognition
for residents acting concurrently. Sensory information, containing activity-related data for
multiple people acting concurrently, is used as input.

The purpose of this paper is to perform a benchmark on multilabel classification
algorithms used on HAR. Implemented classifiers were trained to recognize a broad set of
activities using multiple ambient sensors (i.e., pressure, contact, etc.). Section 1 is a brief
introduction to HAR and multilabel classification. Related work is briefly presented in
Section 2, followed by the methodology used in our work in Section 4. Thereafter, the
results obtained are presented and discussed. At the end, conclusions are drawn and future
work is discussed.

2. Related Work

Human activity recognition in smart house installations with a single resident is a
research area with rapid growth. Several machine learning techniques have been em-
ployed in order to address the problem [4]. Random forests have been proven an effective
solution [10,11]; they provide robust and explainable results and are easy to implement and
train. Hidden Markov models (HMMs) are also a common approach [12,13]; HMMs are
not only used for activity recognition, but for absence and home visit detection as well [13].
Deep learning models specifically developed for HAR [14,15] have been gaining increased
interest over the past years. The popularity of those models is due to their ability to handle
sequential data and time series, the main form of data generated by ambient sensors used
in smart home installations.

Despite the fact that machine learning algorithms can recognize performed actions
with impressive accuracy, their performance is sub-par when more than one people interact
in the same environment. Benchmarks on multi-resident activity recognition [16,17] provide
a baseline for researchers that want to address multi-resident activity recognition. Thus,
state-of-the-art algorithms, such as the hidden Markov model (HMM), recurrent neural
networks (RNN), k-nearest neighbors (KNN), conditional random field (CRF), random
forests (RF), and feed-forward neural networks (FFNN), were evaluated thoroughly in this
study. Additionally, sensor placement was evaluated, as the sensor network is important
for activity recognition [17].

In order to tackle the multiple residents concurrent activity recognition problem,
ensemble techniques have been proposed in the literature. A factorial hidden Markov
model (HMM) that models two different chains (one for each resident) was proposed
by [18]. An ensemble method based on hidden Markov models was presented, aiming to
address multi-resident activity recognition, by [19]; the proposed technique introduced
a mixed-dependency model, dealing with the complexity of multiple residents acting
concurrently. Combined-label HMMs were also evaluated in [20], where activity labels
and observation labels of different residents were combined, generating a sequence of
observations, recognized by a conventional HMM. Additionally, a model where activities
are linked at each time step was proposed. Both models, combined-label and linked
activities, outperformed the baseline HMM models.

As smart homes are dynamic environments not limited to their residents, the need
to detect visitors, occupants, and even pets is crucial [20,21]. Calculating entropy mea-
sures and comparing them with the standard deviation, visitors can be detected and
identified [22]. This method can help activity recognition systems to focus only on sensor
activations that are relevant to the main residents of the house.

Incremental decision trees have also been employed [23]. While the results were
promising, authors identified that further work is needed to obtain results that are on
par with single-resident activity recognition. Deep learning is also often explored as a
technique able to recognize activities performed by multiple residents. Recurrent neural
networks (RNNs) were evaluated using not only real-world data, but also synthetic data
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generated with a generative adversarial network [24]. Multi-task learning, i.e., regarding
the activity of each resident as a learning task, was paired with zero-shot learning to
recognize previously unseen activities [25].

Multi-label classification, while extensively used on multiple domains, such as text [26],
video [27], and image [28] classification, etc., have only recently drawn the attention of
researchers to the activity recognition field. A comparative experimental study between
two well-known MLC algorithms [29] proved that MLC can address concurrent activity
recognition effectively. Interaction between actions performed by different people can be
identified by transforming the multi-resident activity recognition problem into an MLC
problem. Experiments have shown that random forests, when used as base classifiers
on a MLC algorithm, have an impressive performance [30]. An evaluation of multilabel
classification was performed by [31]. The authors use frequent item mining, a technique
commonly used in data mining, in order to generate frequent itemsets as features for each
activity. The generated features were used to evaluate MLC algorithms such as multilabel
KNN, labelset, and decision trees.

Treating multi-resident HAR as a multi-label classification problem while transforming
it to a multi-class problem was investigated by [32]. Decision trees were used as the base
classifier and label combination was employed for the problem transformation. Binary
relevance has been proposed in the literature for multilabel HAR [33]. The results were
competitive with approaches transforming the problem into a classic classification problem.
The classifier chains approach considers activity correlation, an important aspect of activity
recognition [34]. This proposed approach was able to find underlying correlations between
activities and reduce the classification time.

3. Our Contribution

As already discussed in the previous sections, multi-resident human activity recogni-
tion is a research area that attracts a lot of attention. Multi-class classification techniques,
while they yield good results, are far from providing a robust and reliable solution. On the
other hand, multilabel classification approaches seem to better recognize concurrent activi-
ties, but they have not been investigated to the same extent as multi-class classification.

In our work, we aim to provide a baseline for future research on multilabel classifica-
tion in multi-resident activity recognition. This will allow future researchers to compare
their results with results obtained from three well known-algorithms (considered state-
of-the-art). Two datasets were used, ARAS and CASAS, which are extensively used on
multi-resident activity recognition.

Furthermore, our results are compared with multilabel and multi-class algorithms
used on the same problem. This is to identify whether or not the experimentally evaluated
algorithms can provide similar or better results. Lastly, RAkELd has never been evaluated
on a multi-resident activity recognition problem before (based on our search); thus, our
work reports results not available in the literature.

4. Methodology

MLC can help address the problem of multi-resident activity recognition, as the
trained model is able to learn from a diverse set of sensors and assign each example to
multiple classes. In our work, several state-of-the-art (RAkELd, classifier chain, binary
relevance) MLC algorithms are evaluated. Algorithms were chosen based on previous
benchmarks [29,35]. All algorithms were implemented using Python and Scikit-Learn [36].
The features used for training were the values of each sensor, recorded every second. No
sliding windows were applied on the datasets.

4.1. RAkELd

The random k-labelsets algorithm (RAkELd) [37] is an ensemble method for multilabel
classification. Each member of the ensemble is constructed by considering a relatively
small, random subset of labels. A single label classifier is trained for the prediction of each
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element in the powerset of the subset. The benefit of applying single label classifiers to
sub-tasks with a feasible number of labels is that label correlation is taken into account.

Constructing the labelsets can be realized by using two different methods: disjoint and
overlapping labelsets. In our work, disjoint labelsets were constructed. The label space was
partitioned to equal partitions of size k. For each partition, a label powerset classifier was
trained, and the prediction was the sum of all trained classifiers. Labelset size k was set to 3,
as, according to authors, it allows the best results. An extensive evaluation was performed
on the labelset size [37], and results showed that a smaller number affects the performance
of the algorithm positively, with 3 being the value that leads to the best results on multiple
datasets. In our work, the labelset was evaluated with different values (k = 2,3,4,5) and the
value the authors proposed (k = 3) was the optimal.

Two different classifiers were used during experimentation: multilayer perceptron
(MLP) and random forests. In order to fine tune the parameters of the two used classifiers,
different techniques were used. The random forest classifier was tuned using randomized
parameter optimization [38]. For every hyperparameter that required tuning, a set or range
of values was given. A random search was then performed on these distributions M times.
A model was trained for each combination and the hyperparameters for the best model
were returned.

MLP’s hyperparameters were chosen using quantum genetic algorithms (QGA) [39].
Similarly to randomized parameter optimization, a range or set of values was given. The
search space was then explored using QGA. Each set of parameters was represented as a
chromosome consisting of qudits. A model was trained for each set of parameters. The
evaluation was based on the accuracy of the trained model. Non-optimal chromosomes had
a chance to re-initialize instead of converging to the best solution. This method allows for a
fast convergence to the best solution while performing a random search, thereby avoiding
the local optimal.

4.2. Binary Relevance

Binary relevance [40] attempts to transform a multilabel classification problem with L
labels into L binary classification problems. The same classifier is used on all sub problems
(random forests in our experiments). The final prediction of binary relevance is the union
of all individual label classifiers. Binary relevance is a rather simple algorithm that yields
promising results. The simplicity of the technique allows for low modeling complexity,
linear to the number of class labels in the label space.

4.3. Classifier Chain

Another widely used MLC ensemble method is the classifier chain method [41]. A
classifier chain constructs a chain of binary classifiers. The number of classifiers constructed
is the same as the number of labels in the dataset. As the classifiers are linked in a
chain format, a single classifier can utilize the prediction of all previously trained models.
Therefore, a classifier chain reconstructs the multilabel problem into a a multi-class problem,
where each label combination is a different class and the number of classifiers is equal to
the total number of classes. In our experiments, the binary classifier chosen was random
forests, tuned with randomized parameter optimization.

4.4. ARAS Dataset

The first dataset used in our work is the ARAS (activity recognition with ambient
sensing) human activity recognition dataset [42]. The ARAS dataset contains real-life data
from two houses with multiple residents. More specifically, 2 young males (25) were living
in house A, and a married couple (35) was living in house B. Several ambient sensors
were employed to gather data. Force and pressure sensors were placed under the bed
and couches, photocells were placed in the drawers, wardrobes, and refrigerator, contact
sensors were placed on the door frames, shower cabin, and cupboards, proximity sensors
were placed on the chairs, closet, and taps, sonars were placed on the walls and door
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frames, temperature sensors were installed near the kitchen and oven, and infrared sensors
were placed near the TV. The sensors and the actions associated with them are summarized
in Table 1. As a result, 27 different activities were recognized (Table 2).

Residents did not follow a specific activity plan during data acquisition, but continued
to behave naturally. The only interaction with the system was battery replacement of the
sensors and labeling the ground truth manually. Sensors were sampled at 10 Hz (the IR
sensor was sampled at 100 Hz). Sensor events were logged every second, resulting in
86,400 data points for each day.

Table 1. Sensors and their associated actions.

Sensors Actions

Force and pressure sensors Sleeping, sitting, napping
Photo sensor Opening drawers and wardrobes

Contact sensors Opening/closing doors, cupboards
Sonar Presence detection

Temperature sensors Cooking
Infrared Watching TV

Table 2. Activities available in the ARAS dataset.

Activities

Going out Preparing breakfast Having breakfast
Preparing lunch Having lunch Preparing dinner
Having dinner Washing dishes Making snack

Sleeping Watching TV Studying
Having shower Toileting Napping
Using internet Reading book Laundry

Shaving Brushing teeth Talking on the phone
Listening to music Cleaning Having conversation
Changing clothes Having clothes Other

4.5. CASAS Dataset

The CASAS dataset contains data from different participants acting as residents of
the same house. Each resident performed 15 unique activities (Table 3). Some activities
were performed individually (ind.) while some of them required the cooperation of the
participants (co-op). Motion sensors were placed on the ceiling, monitoring movement
around the room, and contact switches were placed on objects, registering use events.
The apartment was always occupied by two participants and 40 volunteers were recruited.

Table 3. Activities performed by each resident on the CASAS dataset.

Person A Person B

Filling medication dispenser (ind.) Hanging up clothes (ind.)
Moving furniture (co-op) Moving furniture (co-op)

Watering plants (ind.) Reading magazine (ind.)
Playing checkers (co-op) Sweeping floor (ind.)
Preparing dinner (ind.) Playing checkers (co-op)

Reading magazine (ind.) Setting the table (ind.)
Gathering and packing picnic food (ind.) Paying bills (co-op)

- Gathering and packing picnic supplies (co-op)

4.6. Data Preprocessing

Before training the classifiers mentioned, the data were preprocessed. The main
purpose was to transform the dataset into a format that could be used to train the MLC
models. As the encoding of the ARAS dataset labels is sequential and common for all the
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participants (i.e., sleeping is encoded as 11, washing dishes as 9, etc.), a transformation was
applied to distinguish actions performed by different persons. Activities performed by the
second individual were re-labeled with sequential numbers by adding 27 to the already
existing value. As a result, a “new” set of 27 activities was introduce andd applied only to
the second person, while the initial set was only referenced by the first participant.

Class imbalance was also a problem we had to address while preprocessing the dataset.
As activities do not occur with the same frequency, i.e., some activities are performed more
times than others, the dataset was imbalanced. As seen in Figures 1 and 2, there is a
big difference between the major and the minor class in each house. In order to balance
the dataset, we upscaled minority classes. To augment our data, the MLSMOTE [43]
algorithm (multilabel synthetic minority over-sampling technique), an extension of the
SMOTE [44] (synthetic minority over-sampling technique) focused on multilabel datasets,
was employed.
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Figure 1. House A class imbalance. Number of classes per resident (normalized) and percentage of
each class for the first house.
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Figure 2. House B class imbalance. Number of classes per resident (normalized) and percentage of
each class for the first house.

Further inspecting class imbalance figures (Figures 1 and 2), one can identify the
major and minor classes. In both houses, activities 2 (Going out) and 11 (Sleeping) are the
activities mostly performed, followed by watching TV (12) and studying (13). One of the
residents in both houses had a major class (going out—2) that represents approximately
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55% of the dataset. It is worth mentioning that not all classes are present for all participants.
While upscaling the minority classes, activities never recorded were ignored.

As the CASAS dataset has sensor names and values recorded as strings, e.g., ”MD2”
as the sensor ID and ”ON” as the sensor event, the data had to be transformed to a
more appropriate form. Following the same approach as [45], each sensor was assigned a
numerical ID, while values were converted to ”1” or ”0”, based on whether the sensor was
triggered or not.

4.7. Performance Metrics

Two different metrics were used for evaluation: F1 score and Hamming loss. Be-
fore defining the metrics, the type of errors and predictions a classifier can make must
be defined:

• False Positives (FP): The classifiers predicts a label that is not correct;
• False Negatives (FN): The classifier misses a label that exists in the example;
• True Positives (TP): The classifier correctly predicts the existence of a label;
• True Negatives (TN): The classifier correctly predicts the non-existence of a label.

Using the above information, we can calculate the metrics needed. F1 score is the
harmonic mean of Precision (proportion of correct predictions among all predictions)
and Recall (proportion of examples of a certain class predicted as members of the class).
Equations for each metric can be seen in Equation (1).

Precision =
∑ TP

∑ TP + ∑ FP
Recall = ∑ TP

∑ TP + ∑ FN
F1 = 2

Precision ∗ Recall
Precision + Recall

(1)

Hamming loss is the fraction of labels that are incorrectly predicted [9]. While on
multi-class classification, the Hamming loss is the Hamming distance between true and
predicted labels, in MLC, the Hamming label penalizes only the individual classes. The
Hamming loss is calculated using Equation (2), where N is the total number of data samples,
L is the total number of available classes, yi,j is the target, and zi,j is the prediction. The xor
operator (⊕) returns zero when the target and prediction are the same, and one otherwise.
Since the metric is a loss function, the optimal value is zero and the upper bound is one .

Hamming =
1

|N|×|L|
N

∑
i=1

L

∑
j=1
⊕(yi,j, zi,j) (2)

5. Results

The experiments carried out and results are presented in this section. The evaluation
was based on 10-fold cross validation. Using the 10-fold cross validation technique is a
common practice when evaluating the performance of machine learning models. This
technique has numerous advantages, such as reduced bias and variance, etc. The dataset
was partitioned into 10 subsets. During each epoch, one subset was used for validation,
while the rest (9) were used as training data. The Hamming loss and F1 score were logged
after each training epoch.

5.1. ARAS Dataset

All proposed models were trained using a whole month’s data. Similar attempts to
address the problem trained a different model for each day and averaged the individual
results [29]. The average F1 score and Hamming loss for each classifier and house can be
seen in Tables 4 and 5, respectively. Observing the results, one can see that RAkELd with
MLP classifier had the best F1 score and Hamming loss for both houses. Although RAkELd
had a better performance and lower Hamming loss, the difference from the rest of the
classifiers was not significant.

As the activity recognition problem is, by its nature, unbalanced, experiments were
also performed before applying oversampling. The results, as seen in Tables 6 and 7, do not
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differ a lot compared to a balanced dataset. Therefore, multi-label classification can provide
robust results on the activity recognition problem, even when the number of examples
differs a lot.

Table 4. Average F1 score per classifier. Inside the parentheses is the confidence
interval (96% confidence). The best value can be seen in bold.

Classifier House A House A

RAkELd (MLP) 0.676 (0.64–0.70) 0.909 (0.88–0.93)
Classifier chain 0.671 (0.64–0.69) 0.903 (0.87–0.92)

Binary relevance 0.674 (0.64–0.7) 0.904 (0.88–0.92)
RAkELd (Random forest) 0.674 (0.64–0.7) 0.904 (0.88–0.92)

Table 5. Average Hamming loss per classifier (lower is better). Inside the parentheses is the confidence
interval (96% confidence). The best value can be seen in bold.

Classifier House A House B

RAkELd (MLP) 0.024846898 (0.022–0.024) 0.008057439 (0.0059–0.01)
Classifier chain 0.026821258 (0.024–0.029) 0.008799636 (0.0065–0.0088)

Binary relevance 0.02482958 (0.022–0.027) 0.00846863 (0.0065–0.0084)
RAkELd (Random forest) 0.024929984 (0.022–0.027) 0.008469172 (0.0065–0.0084)

Table 6. Average F1 score per classifier trained on an unbalanced dataset. Inside the parentheses is
the confidence interval (96% confidence). The best value can be seen in bold.

Classifier House A House B

RAkELd (MLP) 0.679 (0.64–0.72) 0.911 (0.89–0.93)
Classifier chain 0.673 (0.64–0.70) 0.905 (0.9–0.93)

Binary relevance 0.675 (0.64–0.70) 0.906 (0.88–0.92)
RAkELd (Random forest) 0.676 (0.64–0.71) 0.911 (0.89–0.93)

Table 7. Average Hamming loss per classifier (lower is better) trained on an unbalanced dataset.
Inside the parentheses is the confidence interval (96% confidence). The best value can be seen in bold.

Classifier House A House B

RAkELd (MLP) 0.024651636 (0.022–0.028) 0.007962516 (0.0059–0.01)
Classifier chain 0.026690177 (0.024–0.03) 0.008666588 (0.0065–0.01)

Binary relevance 0.026660177 (0.024–0.03) 0.00837087 (0.0065–0.01)
RAkELd (Random forest) 0.02475237 (0.022–0.028) 0.008020018 (0.006–0.01)

An important observation is the significant difference between the results of the two
houses. Classifiers evaluated on the second house yielded better results. This observation is
justified by the difference in activities performed. Residents of the second house performed
less distinct activities, compared to residents of the first house (Figures 1 and 2). This is
important, as classification performance is related to the number of activities performed.

Further analysing the results, the standard deviation of the F1 score was calculated
for each algorithm. For both houses, RAkELd had the lower standard deviation, 0.041 for
the first house (RAkELd with MLP) and 0.034 for the second house (RAkELd with random
forest). The results for each epoch for all the classifiers can be seen in Figure 3 for the first
house and Figure 4 for the second house.
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Figure 3. Classification results for House A. Hamming loss for each classifier per validation epoch
and F1 score for each classifier per validation epoch.
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Figure 4. Classification results for House B . Hamming loss for each classifier per validation epoch
and F1 score for each classifier per validation epoch.

Performing the same experiments on a daily basis, instead of using the data from a
whole month, provided the results seen in Tables 8 and 9. RAkELd, with both classifiers
evaluated (MLP and RF), had the best overall performance. The results were consistent
and no major deviations were observed between different days. Furthermore, the re-
sults of RAkELd using MLP are compared with the results obtained on the same dataset
by [29] (Table 10). The comparison is based on the only common metric, Hamming loss.
By comparing the results, one can identify that RAkELd performed better for both houses.
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Table 8. Average F1 score and Hamming loss per day for House A. Best value per day can be seen
in bold.

Day RAkELd (MLP) Classifier Chain Binary Relevance RAkELd (Random Forest)

F1 Hamming F1 Hamming F1 Hamming F1 Hamming
1 0.808 0.036 0.791 0.0412 0.677 0.0555 0.81 0.0328
2 0.86 0.033 0.858 0.0366 0.841 0.0363 0.853 0.0454
3 0.769 0.036 0.696 0.0498 0.7 0.0495 0.769 0.0375
4 0.811 0.029 0.716 0.0503 0.789 0.0333 0.82 0.0298
5 0.795 0.025 0.732 0.0399 0.723 0.0357 0.826 0.0219
6 0.807 0.024 0.735 0.0373 0.721 0.0372 0.823 0.0255
7 0.811 0.036 0.749 0.0445 0.733 0.0475 0.865 0.0253
8 0.848 0.02 0.764 0.0327 0.692 0.0457 0.837 0.0216
9 0.782 0.03 0.688 0.0471 0.707 0.0386 0.793 0.035

10 0.837 0.026 0.726 0.0426 0.829 0.0258 0.835 0.0269
11 0.786 0.042 0.728 0.0507 0.805 0.0435 0.794 0.042
12 0.798 0.045 0.776 0.044 0.806 0.0451 0.817 0.0378
13 0.781 0.039 0.763 0.0445 0.796 0.0273 0.834 0.0332
14 0.791 0.064 0.752 0.0713 0.781 0.0706 0.82 0.0515
15 0.758 0.068 0.722 0.0645 0.762 0.0687 0.8 0.0516
16 0.822 0.027 0.73 0.0406 0.787 0.0339 0.846 0.0242
17 0.819 0.027 0.711 0.0487 0.814 0.0325 0.806 0.0312
18 0.826 0.033 0.774 0.0413 0.783 0.0446 0.813 0.0366
19 0.811 0.035 0.733 0.0412 0.798 0.0342 0.828 0.0297
20 0.786 0.063 0.729 0.0707 0.777 0.06 0.809 0.066
21 0.804 0.047 0.749 0.0573 0.747 0.0441 0.794 0.0415
22 0.828 0.039 0.843 0.0409 0.822 0.043 0.87 0.0361
23 0.78 0.039 0.715 0.0556 0.77 0.0403 0.786 0.0338
24 0.804 0.033 0.765 0.0371 0.828 0.0262 0.817 0.0282
25 0.782 0.051 0.708 0.0683 0.773 0.0586 0.815 0.0477
26 0.807 0.039 0.648 0.0588 0.755 0.0481 0.795 0.0435
27 0.849 0.03 0.866 0.0246 0.917 0.0191 0.891 0.0235
28 0.816 0.04 0.733 0.0488 0.82 0.0341 0.833 0.0385
29 0.838 0.043 0.775 0.0573 0.862 0.0377 0.852 0.0408
30 0.881 0.028 0.877 0.0295 0.872 0.0298 0.917 0.0226

Table 9. Average F1 score and Hamming loss per day for House B. Best value per day can be seen
in bold.

Day RAkELd (MLP) Classifier Chain Binary Relevance RAkELd (Random Forest)

F1 Hamming F1 Hamming F1 Hamming F1 Hamming
1 0.802 0.045 0.783 0.0457 0.774 0.0466 0.812 0.044
2 0.902 0.0216 0.903 0.0223 0.881 0.022 0.897 0.0216
3 0.958 0.011 0.957 0.0108 0.952 0.0113 0.96 0.0111
4 0.858 0.0236 0.843 0.0282 0.825 0.0279 0.852 0.0276
5 0.91 0.0248 0.91 0.0248 0.901 0.0249 0.908 0.0255
6 0.934 0.0134 0.94 0.0135 0.929 0.0136 0.941 0.0134
7 0.903 0.0215 0.902 0.023 0.887 0.0233 0.891 0.0232
8 0.948 0.0167 0.948 0.0175 0.939 0.0176 0.95 0.0175
9 0.947 0.0107 0.946 0.0121 0.944 0.0106 0.951 0.0113

10 0.924 0.0145 0.895 0.0196 0.898 0.0175 0.901 0.0188



Sensors 2022, 22, 2353 13 of 18

Table 9. Cont.

Day RAkELd (MLP) Classifier Chain Binary Relevance RAkELd (Random Forest)

11 0.92 0.0185 0.953 0.0189 0.901 0.0189 0.92 0.0185
12 0.922 0.0172 0.918 0.0175 0.91 0.0173 0.92 0.0172
13 0.96 0.0096 0.937 0.0142 0.951 0.0106 0.956 0.0114
14 0.984 0.0062 0.976 0.0074 0.981 0.0065 0.986 0.0074
15 0.926 0.0194 0.924 0.0207 0.92 0.0202 0.928 0.0202
16 0.908 0.0173 0.919 0.0164 0.899 0.0179 0.912 0.0177
17 0.887 0.0226 0.881 0.023 0.87 0.0219 0.885 0.0235
18 0.96 0.0096 0.954 0.0096 0.951 0.0096 0.961 0.0096
19 0.928 0.015 0.917 0.0169 0.908 0.0166 0.92 0.0165
20 0.951 0.0166 0.982 0.017 0.946 0.0166 0.952 0.0166
21 0.953 0.0153 0.929 0.0199 0.952 0.0125 0.95 0.0157
22 0.953 0.0131 0.953 0.0104 0.941 0.013 0.95 0.0131
23 0.914 0.0256 0.906 0.0256 0.899 0.0256 0.913 0.0256
24 0.903 0.0174 0.88 0.022 0.878 0.0186 0.892 0.0194
25 0.96 0.0121 0.954 0.0122 0.951 0.0124 0.957 0.0124
26 0.952 0.0126 0.948 0.0145 0.943 0.0139 0.951 0.0139
27 0.9 0.0214 0.888 0.0231 0.9 0.0208 0.897 0.0216
28 0.847 0.0262 0.83 0.031 0.846 0.0254 0.86 0.0245
29 0.932 0.0209 0.93 0.0217 0.933 0.0205 0.929 0.0235
30 0.918 0.0169 0.905 0.0204 0.914 0.0163 0.925 0.0163

Table 10. Hamming loss comparison between RAkELd (MLP) and results presented in [29]. Best
value per day can be seen in bold.

Day House A House B

RAkELd (MLP) [29] RAkELd (MLP) [29]
1 0.036 0.107 0.045 0.058
2 0.033 0.083 0.0216 0.043
3 0.036 0.09 0.011 0.023
4 0.029 0.119 0.0236 0.039
5 0.025 0.123 0.0248 0.031
6 0.024 0.183 0.0134 0.009
7 0.036 0.116 0.0215 0.018
8 0.02 0.104 0.0167 0.02
9 0.03 0.192 0.0107 0.014

10 0.026 0.112 0.0145 0.023
11 0.042 0.105 0.0185 0.049
12 0.045 0.101 0.0172 0.021
13 0.039 0.077 0.0096 0.011
14 0.064 0.107 0.0062 0.006
15 0.068 0.158 0.0194 0.044
16 0.027 0.149 0.0173 0.054
17 0.027 0.083 0.0226 0.051
18 0.033 0.102 0.0096 0.008
19 0.035 0.164 0.015 0.022
20 0.063 0.134 0.0166 0.014
21 0.047 0.207 0.0153 0.027
22 0.039 0.145 0.0131 0.028
23 0.039 0.182 0.0256 0.039
24 0.033 0.095 0.0174 0.026
25 0.051 0.124 0.0121 0.018
26 0.039 0.12 0.0126 0.015
27 0.03 0.086 0.0214 0.018
28 0.04 0.096 0.0262 0.064
29 0.043 0.079 0.0209 0.025
30 0.028 0.05 0.0169 0.041
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Analyzing the results of the experiments, one can identify activities that are more
prone to misclassification. For House A, the hardest activities to recognize were having
lunch and having conversation for residents 1 and 2, respectively. reparing dinner was
the least recognized activity for resident 1 in House B and having conversation was least
recognized for resident 2. It is worth mentioning that, except for resident 1 (House A), the
rest of the least recognized classes were under-sampled. As a result, there were training
epochs where the class was not represented in the training data.

5.2. CASAS Dataset

Experiments on the CASAS dataset were performed similarly to the ARAS dataset.
The same classifiers, binary relevance, classifier chain, RAkELd with random forests, and
RAkELd with MLP were used. The evaluation of the CASAS dataset was based on 10-fold
cross validation in order to reduce bias and variance. Using the whole CASAS dataset,
i.e., 26 days, provided the results seen in Table 11. RAkELd with MLP classifier had the
best overall performance when the classifiers were trained and evaluated using the entire
dataset. The rest of the classifiers were on par regarding performance, making them a viable
solution for multi-resident activity recognition. Similarly to the ARAS dataset experiments,
each classifier was evaluated using daily data (Table 12). RAkELd had the best performance
with, results the being consistent with the ARAS dataset.

Table 11. Average F1 score & Hamming loss per classifier (CASAS dataset). Inside the parentheses is
the confidence interval (96% confidence). Best values can be seen in bold.

Classifier F1 Hamming Loss

RAkELd (MLP) 0.912 (0.89–0.92) 0.0080326 (0.0072–0.01)
Classifier chain 0.887 (0.87–0.9) 0.009235 (0.0075–0.012

Binary relevance 0.89 (0.88–0.91) 0.0089681 (0.0073–0.011)
RAkELd (Random forest) 0.9 (0.9–0.91) 0.008220018 (0.0058–0.01

Table 12. Average F1 score and Hamming loss per day for the CASAS Dataset. Best values per day
can be seen in bold.

Day RAkELd (MLP) Classifier Chain Binary Relevance RAkELd (Random Forest)

F1 Hamming F1 Hamming F1 Hamming F1 Hamming
1 0.86 0.033 0.732 0.0399 0.793 0.0355 0.864 0.0301
2 0.886 0.0246 0.826 0.035 0.768 0.0324 0.875 0.0296
3 0.7925 0.0285 0.798 0.047 0.782 0.0373 0.925 0.0338
4 0.806 0.0214 0.759 0.0314 0.798 0.0257 0.805 0.0337
5 0.827 0.034 0.762 0.0364 0.792 0.0269 0.863 0.0211
6 0.809 0.0264 0.763 0.0391 0.768 0.035 0.89 0.0249
7 0.787 0.025 0.749 0.0298 0.744 0.0367 0.866 0.0154
8 0.942 0.012 0.776 0.0299 0.847 0.0259 0.875 0.0155
9 0.828 0.034 0.856 0.0375 0.73 0.0315 0.877 0.0315

10 0.926 0.0205 0.841 0.025 0.805 0.0257 0.872 0.014
11 0.852 0.0223 0.731 0.0304 0.721 0.0303 0.871 0.0189
12 0.823 0.0119 0.797 0.034 0.833 0.0331 0.902 0.0295
13 0.917 0.0213 0.828 0.0223 0.797 0.0343 0.911 0.0285
14 0.925 0.022 0.868 0.0235 0.728 0.0375 0.844 0.015
15 0.854 0.0225 0.808 0.0303 0.787 0.0385 0.909 0.0306
16 0.902 0.025 0.755 0.0384 0.88 0.0221 0.911 0.03
17 0.97 0.013 0.781 0.0362 0.799 0.0258 0.869 0.0328
18 0.916 0.023 0.893 0.0269 0.899 0.0345 0.871 0.026
19 0.929 0.016 0.84 0.0287 0.78 0.0241 0.835 0.0201
20 0.889 0.023 0.815 0.0302 0.73 0.0224 0.904 0.0152
21 0.866 0.0345 0.823 0.025 0.856 0.0222 0.89 0.0107
22 0.93 0.0103 0.855 0.0378 0.735 0.035 0.899 0.027
23 0.89 0.0226 0.887 0.0295 0.81 0.0275 0.887 0.0324
24 0.914 0.0218 0.853 0.035 0.796 0.022 0.867 0.0227
25 0.858 0.0392 0.79 0.0361 0.8 0.0371 0.863 0.0232
26 0.847 0.0563 0.727 0.0345 0.823 0.0203 0.909 0.0336
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5.3. Multilabel and Multi-Class Comparison

Multi-resident activity recognition, as already discussed in Section 2, can be addressed
both as a multilabel and multi-class classification problem. In order to further support our
position that MLC can be used on multi-resident activity recognition without sacrificing
accuracy, a comparison between the two approaches is needed. We did not run any
experiments with multi-class models, but we compared our results with results already
published in the literature [16].

As seen in Table 13, multilabel classification outperformed multi-class classification.
The average F1 score was better for MLC approaches with both datasets. The multi-class
classifiers with the best overall performance was recurrent neural networks for the CASAS
dataset, and random forests for ARAS. It is worth mentioning that on the ARAS dataset, for
House A, there was a significant difference between multilabel and multi-class classification.
This is important, as the aforementioned house had increased difficulty, mainly because of
the diverse set of activities performed.

Table 13. F1 score comparison between multilabel and multi-class classification approaches. Best
values are in bold.

Method ARAS House A ARAS House B CASAS

Multilabel 0.679 0.911 0.902
Multi-class [16] 0.5987 0.8796 0.8227

6. Conclusions

In this work, an experimental evaluation of RAkELd , classifier chain, and binary
relevance methods for multi-resident human activity recognition was performed. Ex-
periments were performed on the ARAS and CASAS datasets, two activity recognition
datasets with two residents acting concurrently. RAkELd had the best overall performance
on both datasets, with the rest of the evaluated classifiers yielding on-par results. When a
multi-layered perceptron was used as a base classifier on RAkELd, the performance of the
algorithm was improved.

The ARAS dataset was analyzed and the findings showed that it suffers from the
class imbalance problem. In order to address this, the minority classes were upscaled
before training the classifiers. Balancing the dataset was an important step during data
preprocessing, as the major classes represented approximately 90% of the whole data for
both houses. Experiments were performed on both a balanced and unbalanced dataset,
without any significant difference between the results.

Observing the activity distribution on the dataset, it was observed that residents follow
a different activity pattern. Although the dataset has records for 27 different activities, not
all of them are present in each house. As house B residents performed less distinct activities,
the trained models had a better overall performance.

Results were also compared with multi-class classification methods used on the same
set of data, as well as multilabel classification methods already published in the literature.
The comparison showed that RAkELds performance is on par with, if not better than,
different multilabel classification approaches, outperforming multi-class classification
techniques. This can provide a baseline for future comparisons of multilabel classification
solutions used on the multi-resident activity recognition problem.

Future work will be focused on identifying correlations between different activities
in multi-resident environments. Some activities could potentially be mutually exclusive
(i.e., both residents toileting), or inclusive (i.e., both having a conversation, lunch, etc.).
That relationship could be identified and thereby further enhance the performance of
classification. As the datasets used in our work do not contain mutually exclusive activities,
this aspect is not investigated in this work.

Furthermore, more MLC algorithms should be evaluated. While this study extends
already published works on multi-resident activity recognition, there are a lot of techniques
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that have not yet been evaluated, such as ML-KNN [46], CLARE decision trees [47], and
deep neural networks adapted for MLC problems. While our work is tested on two
different datasets, proving the robustness of the evaluated algorithms, there are more
methods available in the literature. Additionally, hierarchical multilabel classification
should be explored. As some activities are correlated in a hierarchical order, e.g., preparing
dinner always precedes eating dinner, it is a promising idea to create efficient structures
that represent that hierarchical order.
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