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Abstract—The goal of water disaggregation is to specify the
consumption of the individual water fixtures using only the
aggregate consumption measurements of a single house meter.
This task belongs to the family of blind source separation
methods, where neural networks are proven to excel. Despite
that recent breakthroughs in Internet of Things (IoT) led to the
development of meters able to measure consumption in frequency
higher than 1 point per month or day, the use of deep learning
in this domain is infeasible due to the lack of publicly available
data sets. To overcome these challenges a set of deep learning
techniques is introduced to achieve great results in cases where
limited data is available. In addition, the method of domain
knowledge transfer is explored in an effort to take advantage
of models that were previously trained in energy data as feature
extractors to address the water separation problem.

Index Terms—water disaggregation, non intrusive load mon-
itoring, artificial neural networks, knowledge transfer, transfer
learning

I. INTRODUCTION

The concept of blind source separation [1] refers to the
decomposition of a signal down to its individual sources,
without any more information but the actual signal. The term
disaggregation is mainly used in the domain of non-intrusive
load monitoring (NILM) [2], where the given signal is the total
power consumption of an installation and the targets are the
individual consumptions of the electrical appliances. NILM
constitutes an important part of intelligent home energy man-
agement systems (HEMS) [3], providing numerous insights
from how users operate their electrical appliances to possible
hardware functionality inconsistencies. Eventually, the energy
management could lead to the optimization of the electricity
consumption alongside the decrease of household bills.

Water disaggregation could also be viewed from a similar
stand point, as a blind source separation task. Instead of
electricity data, water consumptions are processed, with the
total consumption signal being decomposed to the individual
water fixtures estimates. Successful disaggregation in residen-
tial installations could provide tools to properly monitor and
manage the available potable water resources. Hence, the water
demand could be controlled and possible waste of water could
be avoided. The latter is of great interest, given the fact that in
the recent years both the available resources and the weather
conditions are affected by climate change [4]. Furthermore, an

effective design of water disaggregation system in residential
installations could also provide more insights on user behavior
and habits. That could facilitate a more proactive approach to
water demand management especially in geographical areas or
systems, where limited resources are available [5], [6].

The rise of IoT towards cheap and easy to deploy solutions
resulted in an infiltration of IoT monitoring systems to every
day life activities. Given the fact that many types of services
are being produced from house [7] to health systems, the
time has come for efficient water consumption management
to be also introduced. Thus, water management could be a
vital part of the smart home ecosystems, which are currently
being deployed to residential and small commercial sector
installations [8].

NILM solutions are usually applied on low frequency mea-
surements from 1 sec up to a few minutes, even though electri-
cal data can be measured in a great range of frequencies from
sub Hz to MHz. The main reasons are the following. Firstly,
most of the commercial smart meters draw measurements in
low frequencies. Secondly, in these low frequencies there is
a good trade off between system performance and cost. As
a result, the majority of the publicly available data sets have
been recorded at low frequency [9].

On the other hand, in the sector of water disaggregation the
developed market solutions usually make use of measurements
that are gathered in monthly and/or daily periods. This is either
due to the lack of proper smart meter hardware and/or the
fact that there is not a clear direction of how and why higher
frequency data is of use. It is obvious that in such low data
resolution no useful information could be extracted regarding
the habits of the residents in day-to-day basis and water
disaggregation is intractable. Although, there are research
works where very high frequency data (up to kHz) coming
from prototype smart meters are used the design of such a
practical system could be very costly. Current approaches tend
to use data for water disaggregation in a range of frequencies
similar to NILM, considering both the performance and the
overall application costs.

II. CONTRIBUTIONS

The contribution of the current paper to the field research
of water disaggregation could be summarized in three key
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points. To begin with, as a proof of concept by adjusting a
set of lightweight yet powerful deep learning architectures
and techniques to solve the current task. Deep learning is the
current go-to approach in blind source separation tasks, but it
is not used as much for water disaggregation, due to the lack
of data. In addition, with the introduction of the concept of
domain transfer learning in water disaggregation field of study.
Transfer learning is a technique commonly used to Computer
Vision in situations where limited data is available. Lastly,
with a set of baseline results for further research usage.

This article is structured as follows. In section 3 there is
a brief presentation of the related work in the field of water
disaggregation. Additionally, there is a short presentation of
the key deep learning techniques that are used in the domain
of energy disaggregation. Section 4, contains an introduction to
the basic types of layers used in deep learning. Furthermore the
concept of transfer learning in machine learning is described.
Section 5, presents a description of the followed experiment
methodology and the datasets that were used alongside with
a thorough presentation of the proposed architectures. The
produced results are presented in section 6. In the final section,
conclusions and future work suggestions are discussed.

III. RELATED WORK

The increasing deployment of smart meters in cities across
the world constitutes water disaggregation as a new interesting
research area. Pressure-based sensors have been designed
for installation on water fixtures to help identify activity
and estimate the corresponding consumption for individual
household devices [10]. By utilizing both occupancy sensors
and whole house water flow meter data [11], categorization
of the aggregated consumption at the fine-grained device level
could be achieved.

Although such methods are capable of high accuracy results,
they depend on high-sampling-rate sensing data (as high as
1 Khz) to capture the characteristic open/close signatures of
devices. A HMM (Hidden Markov Model) based approach
was developed in [12] for separating low-sampling-rate (1/900
Hz) data, while [13], [14] proposed a hybrid combination of
HMM and DTW (Dynamic Time Warping) to automate the
categorisation of residential water end use events and estimate
the consumption of each device. However, a HMM based
structure inherently restricts its ability to infer consumption
for devices that are active in parallel.

There is a lack of models designed for disaggregating low-
sampling-rate water consumption. The existing HMM based
method analyses the activities with interval based consump-
tion; however, it has limited ability to estimate the consump-
tion for parallel devices due to its inherent serial structure.

From the machine learning perspective two approaches are
commonly used to tackle NILM and disaggregation; regression
and multi-label classification. In regression approach, the
power consumption of a single appliance is estimated [15]–
[17]. Thus, one model per device is created. In multi-label
classification approach, the model identifies operating states
of various devices. Hence, one model learns to disaggregate

a set of devices. Recently published research showed that a
multi-label approach achieves descent results [18]–[20].

IV. INTRODUCTION TO NEURAL NETWORKS

The recent advances in hardware solutions and especially
the breakthroughs in Graphics processing units (GPUs) tech-
nology provided the necessary computational power to design
and train neural network architectures. Neural networks con-
stitute a natural solution in machine learning problems due to
the fact that they produce state of the art results in a wide
range of problems, even though researchers do not accurately
now why.

A neural network is made of a number of neural layers.
The basic types of these layers are; the fully connected, the
convolutional and the recurrent [21]. In this article we evaluate
architectures with a combination of these layers.

A. Neural Networks in a nutshell

Essentially, an artificial neural network (ANN) is a directed
graph, where the nodes are artificial neurons and the edges
allow information from one neuron to pass to another neuron
(or the same neuron in a future time step). Neurons are
typically arranged into layers such that each neuron in layer
l connects to every neuron in layer l + 1. Connections are
weighted and it is through modification of these weights that
ANNs learn. ANNs have an input layer and an output layer.
Any layers in between are called hidden layers. Each artificial
neuron calculates a weighted sum of its inputs, adds a bias
and passes this sum through an activation function. Multiple
nonlinear hidden layers can be used to re-represent the input
data (hopefully by learning a hierarchy of feature detectors).

Neural network architectures learn by example. In order to
train a neural network in a supervised learning manner [22]
the network’s output given a specific input is compared with
the ground truth and the error is calculated. Then, the weights
are modified in the direction which should reduce the error
with an optimization algorithm based on gradient descent [23].
Depending of the type of neural network the optimization
algorithm may differ, but the basic principals are the same.

B. Transfer Learning

In order to reduce the computational costs a popular tech-
nique on is knowledge transfer known as also transfer learning
[24]. This method was firstly applied on Computer Vision
problems with very good results [25]. It should be noted
that transfer learning was also used in NILM research with
some success in [26], [27] in order to reduce computational
resources.

The general idea of transfer learning is to use the features
extracted from training on one domain to a completely differ-
ent one. After fine tuning the parameters of the last layers of
the network the model is ready to be used on the new domain.
This framework usually applies to problems, where the domain
data is limited and/or to applications where low computational
cost is the main concern. Usually, transfer learning produce
good results faster than the complete retraining of the network.



V. EXPERIMENTS

All the experiments were designed using Torch-NILM [28]
and were executed on the same machine with a Titan Xp
GPU. Torch-NILM is the first Pytorch oriented framework
that is used to build and run NILM experiments easily. It
contains numerous build in models alongside known pre-
processing methods popular in NILM problems. To use the
framework minor adjustments had to be made. The com-
plete code is provided in the official Torch-NILM repository
github.com/Virtsionis/torch-nilm.

The Sliding Window approach 1 proposed by [29] was used
for all the experiments alongside data standardization pre-
processing method. In the Sliding Window method the time
series is divided into chunks with predefined length. Given a
chunk the model predicts the last point of it. This method is
suitable for online disaggregation in the sense that the model
estimates the last point of the window. For all the models
under evaluation the input window was set to 100 points.

Fig. 1. Sliding window approach.

A. Methodology

The experiments in this article are divided in two categories.
The first one involves training and inference on a dataset
with measurements from pure water end uses. Hence the
ability of the models to successfully learn from water data is
measured. In the second category a transfer learning schema
was executed in order to explore the transfer-ability between
the two domains of NILM and water disaggregation.

The idea of transfer learning is that a pre-trained model
can be used as a feature extraction for a different task. At
first the models are trained on the electrical measurements
of washing machine appliance data coming from a popular
dataset in NILM. Then, fine-tuning on the last layers of the
network was applied on the target device and inference was
performed. It should be noted that the fine-tuning and the
inference were executed on water data.

B. Neural Network Topologies

In the current work three known NILM topologies were
used; NFED [30], SAED [15] and WGRU [29]. Alongside
those architectures a simpler and lighter recurrent archi-
tecture called SimpleGru was developed. The NFED and
WGRU models produce state-of-the-art results on NILM tasks,
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Fig. 2. The NFED neural network. (a) Fourier block; (b) NFED architecture.

whereas SAED shows strong generalization capabilities with
small number of parameters and fast training and inference
speeds. The architectures WGRU, SAED and SimpleGru are
based on Bidirectional GRU layers, an efficient version of the
LSTM network [31]. WGRU has two of those layers in series
whereas the other two have one. Between the layers dropout
is used [32].

NFED consists mostly of fully connected and normalization
layers along with residual connections. The basic component
is called the fourier block which contains a fourier transfor-
mation at the top.

Fig. 3. Architecture of WGRU.

Comparing to WGRU, SAED is many times faster and
smaller in size. In addition, the SAED model contains an
Attention layer before the GRU. The intuition is that the
attention mechanism after the convolution aids the model to
focus on the most important features of the input sequences.

A summary of the architecture size and parameters number
is depicted on table I.



TABLE I
PROPERTIES OF THE TESTED ARCHITECTURES. NUMBER OF PARAMETERS,

SIZE OF THE MODEL AND TRAINING SPEED (GPU TIME).

Architecture Parameters Size (MB) Train (it/s)
NFED 900 K 3.6 30.92
SAED 59.9 K 0.240 37.51

SimpleGru 39.9 K 0.160 39.41
WGRU 698 K 2.794 16.94

Fig. 4. Architecture of SAED.

Fig. 5. Architecture of SimpleGru.

C. Data

To train and conduct the experiments, water and electricity
data with granularity 1-10 seconds is necessary. As the elec-
tricity data, UKDALE [33] was used. This dataset contains
appliance measurements in 6 seconds and total consumption
measurements in 1 second time period.

In general, not many datasets for water disaggregation are
publicly available. In this work data from WEUSEDTO dataset
was utilized [34], [35] which contains measurements in 1
second sampling period from a single resindent appartement
in Naples. The dataset refers to 1 year of monitoring between
2019 and 2020 (March to November 2019 and July to October
2020). The water data was down sampled to 6 seconds to speed
up the training and also match the electricity data that was used
for transfer learning.

The dataset contains ground truth measurements for 7 kind
of water appliances. In this work data only for Washbasin,
Bidet, Kitchen faucet, Shower and Washing Machine were

used. Due to the lack of good aggregate measurements, the
aggregate water consumption was artificially composed by
adding the separate water end uses. From the final dataset
10 months were used for training and the rest were used for
testing.

D. Metrics

In order to evaluate and compare the models, some well
known NILM metrics were calculated; F1 score, Relative Error
in Total Volume (REVol) and Mean Absolute Error (MAE).
The ability of model to detect on/off states is evaluated with
F1 score. As seen in eq. 3, F1 score is computed as the
harmonic mean of Precision and Recall, presented in eq. 4
and 5. Precision measures the ratio of the actual true positives
(TP) versus the total predicted positives. In addition, Recall is
the percentage of TP versus the actual positives.

On the other hand, MAE (measured in mili litres) and
REVol (dimensionless) evaluate the capability of the models
to estimate the actual water consumption of the device. MAE
and REVol are given in equations 1 and 2, where V’ is the
predicted total volume, V is the true value of total volume, T is
the length of the predicted sequence, yt’ and yt the estimated
and the true water flow values at moment t correspondingly.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2
Precision ∗Recall

Precision+Recall
(3)

REV ol =
|V ′ − V |

max(V ′, V )
(4)

MAE =
1

T

∑
|y′t − yt| (5)

VI. RESULTS

The models were compared on two experiments. At first, in
a schema where training and inference were executed on the
same water dataset. Next, on a knowledge transfer scenario,
where the models were pre-trained on Washing Machine end
uses of house 1 of UKDALE and then they were fine tuned
with water data. In tables II and III the metrics F1, MAE and
REVol are presented. An example of the output of the models
for the second experiment is depicted in figures 6 and 7.

For the first experiment it is obvious that the WGRU is
the clear winner regarding the F1 measure and the MAE, for
3 to 5 appliances and next is the SimpleGru with two wins.
The greatest differences occurred on Washing Machine and
Shower appliances. In terms of REVol the SAED shows the
best performance with 4 wins and then follows the NFED.

The transfer learning technique that was used in the second
experiment affects the performance of certain models. Specif-
ically, SimpleGru performs better in terms of F1 score for
the appliances Washing Machine, Shower and Kitchen Faucet
with up to 7% boost. On the other hand, SAED has a drop in



performance for Washing Machine and Shower and a raise of
13% for the Kitchen Faucet. NFED and WGRU do not show
differences in performance between the two experiments. In
terms of MAE and REVol the results among the experiments
are very close.

Considering the results and the architecture properties
showed in tables I, II and III, SimpleGru with knowledge
transfer technique could be the best choice for the current data
because it combines good performance with low computational
cost.

TABLE II
PERFORMANCE COMPARISON FOR EXPERIMENT 1.

Appliance Architecture F1 REVol MAE

Bidet
NFED 0.3 0.3 0.062
SAED 0.29 0.06 0.063

SimpleGru 0.34 0.31 0.059
WGRU 0.33 0.31 0.057

KitchenFaucet
NFED 0.22 0.34 0.17
SAED 0.38 0.18 0.13

SimpleGru 0.41 0.29 0.11
WGRU 0.25 0.42 0.12

Shower
NFED 0.76 0.16 0.117
SAED 0.77 0.13 0.083

SimpleGru 0.72 0.31 0.078
WGRU 0.79 0.14 0.073

Washbashin
NFED 0.52 0.126 0.11
SAED 0.48 0.078 0.12

SimpleGru 0.54 0.119 0.11
WGRU 0.56 0.126 0.09

Washing Machine
NFED 0.66 0.268 0.071
SAED 0.66 0.194 0.061

SimpleGru 0.74 0.149 0.048
WGRU 0.79 0.097 0.047

Fig. 6. Model output versus ground truth for Washing Machine, for Experi-
ment 2.

VII. CONCLUSIONS AND PROPOSALS FOR FUTURE WORK

The produced results in the current work highlight a nu-
merous of key points regarding the problem of water dis-
aggregation. To start with, the similarities between water
disaggregation and NILM emphasize the fact that the first
can be formulated as a blind source type of task. Secondly,

TABLE III
PERFORMANCE COMPARISON FOR EXPERIMENT 2.

Appliance Architecture F1 REVol MAE

Bidet
NFED 0.32 1.14 0.114
SAED 0.29 0.23 0.072

SimpleGru 0.32 0.337 0.063
WGRU 0.33 0.31 0.057

KitchenFaucet
NFED 0.22 0.336 0.168
SAED 0.43 0.234 0.101

SimpleGru 0.43 0.29 0.106
WGRU 0.42 0.146 0.116

Shower
NFED 0.78 0.18 0.118
SAED 0.75 0.11 0.10

SimpleGru 0.77 0.31 0.075
WGRU 0.79 0.14 0.073

Washbashin
NFED 0.52 0.126 0.104
SAED 0.47 0.135 0.124

SimpleGru 0.54 0.119 0.115
WGRU 0.56 0.126 0.097

Washing Machine
NFED 0.66 0.268 0.071
SAED 0.58 0.154 0.085

SimpleGru 0.77 0.149 0.041
WGRU 0.79 0.097 0.047

Fig. 7. Model output versus ground truth for Shower, for Experiment 2.

even in situations with limited data, deep learning techniques
can be applied to water disaggregation by producing descent
results. Furthermore, the use of transfer learning concept
across different disaggregation problems shows potential. The
fact that the models performed the same or even better in
some cases of the second experiment indicates that pre-trained
models from the NILM domain could be easily adapted and
used as feature extractors on water disaggregation problems.

Regarding future work the following proposals can be made.
Firstly, a more extensive investigation of the knowledge trans-
fer technique with different scenarios of available data could
be insightful. Next, more pre-processing techniques similar to
the sliding window approach could be tested in order to decide
which one fits better the current problem. Finally, more neural
network architectures and state-of-the-art models from NILM
could be used.
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