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Abstract This manuscript discusses the robustness to noise of deep learning
models for two audio classification tasks. The first task is a speaker recog-
nition application, trying to identify five different speakers. The second one
is a speech command identification where the goal is to classify ten voice
commands. These two tasks are very important to make the communication
between humans and smart devices as smooth and natural as possible. The
emergence of smart home devices such as personal assistants and the deploy-
ment of audio based applications in noisy environments raise new challenges
and reveal the weaknesses of existing speech recognition systems. Despite the
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advances of deep learning in audio tasks, most of the proposed architectures
are computationally inefficient and very sensitive to noise. This research ad-
dresses these problems by proposing two neural architectures that incorporate
a novel pooling operation, named entropy pooling. Entropy pooling is based
on the principle of maximum entropy. A detailed ablation study is conducted
to evaluate the performance of entropy pooling against the classic max and av-
erage pooling layers. The neural networks that are developed are based on two
architectures, convolutional networks and residual ones. The study shows that
entropy based feature pooling improves the robustness of these architectures
in the presence of noise.

Keywords internet of audio things · IoAuT · robust deep learning · noise
robustness · entropy pooling · speech commands · speaker recognition

1 Introduction

The Internet of Audio Things (IoAuT) is an emerging sub-field of the Internet
of Things (IoT) and has attracted many researchers from different disciplines.
It lies in the intersection of Internet of Things, sound recognition, machine
learning and human-computer interaction [47].

From the humans point of view, speech is the intrinsic way of communica-
tion. Yet, most machine-to-human user interfaces have been restricted to very
limited voice interactions or other methods such as touchscreens. IoAuT ad-
dresses the interdisciplinary challenges that need to be solved in order to pave
the way for new opportunities and applications. Turchet et al. [47] present
a taxonomy of these challenges based on the following classes: connectivity,
interoperability and standardization, machine analysis of audio content, data
collection and representation of audio content, edge computing, synchroniza-
tion, privacy and security and Audio Things design. In the context of machine
analysis of audio content and edge computing, the main challenges we face are
large volumes of data, presence of noise, limitations of computing resources
and latency during inference.

IoAuT will be generating a huge amount of audio data which will be hard to
clean and annotate. Learning from noisy data is a common problem for many
machine learning tasks. Even when a model is trained with noisy data, there
is no guarantee it will be robust when deployed in the real-world [32, 6, 14].
Furthermore, IoT devices have limited storage, which makes the deployment
of a state-of-the-art neural network prohibitive. Modern deep neural networks
are usually trained and tested using very powerful GPUs and thus they are
not suitable to run on embedded devices with restricted computational and
energy resources. Finally, in order to make an IoAuT application to meet
the requirements of the end users, it has to perform under low bandwidth
connectivity and in real-time.

The goal of this research is to develop efficient deep learning solutions that
are robust to nuances in audio classification applications. The tasks for eval-
uation of the proposed models are speaker recognition and speech commands
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identification. The former one regards the recognition of five different speakers
using the popular dataset ”Speaker Recognition Dataset Prominent Leaders
Speeches”. The latter one aims to identify ten voice commands from the pop-
ular dataset ”Google Speech Commands” that is provided by Google. Given
these datasets, two novel neural architectures are developed. The performance
of these models is on par with equivalent state-of-the-art models, but they are
computationally lighter due to the reduced learning parameters. Furthermore,
the proposed models utilize entropy based feature pooling, which improves
their robustness against noise.

The key contributions of this manuscript are summarized as follows. Firstly,
two novel neural architectures are proposed for two different audio classifica-
tion tasks. To the best of the authors’ knowledge it is the first time that
entropy based feature pooling is incorporated in deep neural networks for
audio classification. Secondly, a novel framework that includes four different
noisy environmental setups is suggested. The framework is used to evaluate
the noise robustness of audio classification models. Finally, an ablation study
is conducted exploring the invariance to nuances of various pooling operations
in the context of the proposed evaluation framework.

The paper is organized as follows. Initially, related literature is presented.
Next, there is a detailed description of the proposed systems and all aspects
of the experimental arrangement. Afterwards the experimental results are
demonstrated and analysed. Finally, conclusions and future research directions
are presented.

2 Related work

Modern deep learning systems have shown unprecedented performance in
many domains outperforming humans. Some non exhaustive areas, where deep
learning thrived, are image classification [43, 19], speech recognition [10, 5] and
natural language understanding [12, 41]. The performance of neural networks
is further boosted by modern hyperparameter optimization methods such as
automl [20], quantum genetic algorithms [28] and swarm intelligence [4].

This technological advancement is already transforming the industry span-
ning many sectors such as energy [37], food [31], automotive [15, 16], medicine
[48] and many others. In this light, deep learning has raised the baseline in
many sound recognition tasks such as automatic speech recognition (ASR),
speech-to-text (STT), speech emotion recognition, voice commands recog-
nition, environmental sound recognition (ESR) and others. The traditional
pipeline of such systems includes a preprocessing step, feature extraction and a
learning model [55, 7, 51]. Feature extraction is not always computationally ef-
ficient [46] and modern approaches in feature preprocessing suggest fast meth-
ods for computing local features from image and video frames [1]. Deep neural
networks can provide end-to-end solutions without the need for handcrafted
feature engineering and outperforming traditional approaches [50, 49, 55, 18].
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So far, the majority of machine learning research has been performance
oriented, ignoring other aspects like efficiency. As a result, the best perform-
ing models consist of millions or billions of parameters requiring a cloud of
powerful GPUs to run. Reaching such computational limits and in accordance
to the demands of the industry, researchers realized that building efficient
neural networks with limited size is essential. A strong example is modern
language models like Bert [12], which is now replaced by smaller versions such
as MobileBERT [45]. Similar efforts in IoT applications managed to achieve
state-of-the-art performance by reducing the size of the layers and replacing
them with more efficient ones such as attention mechanism [17, 13]. Other
methodologies suggest quantization aware fine tuning [29] for NLP tasks or
dimensionality reduction for time series [36]. Compression methods have also
been utilized in speech recognition [30, 33] and there is an increasing interest
in audio based applications that can run on embedded or mobile devices [44].

Coucke et al. [11] present a neural network with dilated convolution layers
which combined gated activations and residual connections. Their contribu-
tion is twofold. The proposed neural network fits in embedded devices and
the dataset that they created, named ”Hey Snips” is public with utterances
recorded by over 2.2K speakers. Kusupati et al. [25] propose a novel recur-
rent neural network (RNN) architecture named FastGRNN, which includes
low-rank, sparse and quantized matrices. The developed neural network is up
to 35x smaller than other state-of-the-art RNNs. The goal of this study is to
develop neural networks that can easily be deployed on IoT devices. Zeng and
Xiao [54] propose a model called DenseNet-BiLSTM for the task of keyword
spotting (KWS). DenseNet-BiLSTM is evaluated utilizing the Google Speech
Commands dataset [53]. Their main contribution is the combination of a new
version of DenseNet named DenseNet-Speech and BiLSTM. DenseNet learns
local features and at the same time maintains sequential patterns. BiLSTM
learns time depended features. Solovyev et al. [44] use different representations
of sound such as Wave frames, Spectrograms, Mel-Spectograms and MFCCs
and compare different convolutional neural networks. The outcome is that the
best performing networks are the ones inspired by VGG [43] and ResNet [19].
The models are evaluated on the Google Speech Commands dataset, achieving
accuracy over 90%.

Apart from high accuracy, small size and efficiency, deploying a sound
recognition machine learning model on edge devices and in acoustically noisy
environments requires it to be robust. Zhang et al. [55] present an overview
of models which are resilient to noise and compare previous approaches with
deep learning ones. Deep learning outperforms older methods, however most of
these models do not meet the rest of the requirements for deployment on com-
putationally constraint machines and in noisy real environments. Phan et al.
[40] focus on both efficiency and robustness proposing a shallow convolutional
neural network with only three layers: a convolutional, a max pooling and a
softmax one. The convolutional layer consists of many filters that, according
to the authors, play the role of a cochlear filter. The proposed system incorpo-
rates a preprocessing step, converting an audio signal into spectrogram image
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features. The system is evaluated using the Real Word Computing Partnership
Sound Scene Database in Real Acoustic Environments [35] and outperforms
other larger convolutional neural networks. One important outcome from this
study is that the number of filters improve the robustness of the model. An-
other noteworthy outcome is that the robustness is stronger when training
occurs with both clean and noisy data. Adding noise and augmenting data
has been a good practice to enhance a model’s robustness [9], however it is
not always feasible to replicate the real-world data distribution. Therefore, it
is equally important for the model itself to encapsulate mechanisms that will
make it resilient to unpredictable noise. Pervaiz et al. [39] study the perfor-
mance of machine learning models when they are trained with noisy data.
The authors evaluate a Gaussian Mixture Model (GMM) and some varia-
tions of convolutional neural networks using the Google Speech Commands
Dataset. The main conclusion is that augmenting noise in training data im-
proves the performance of the models. Wang [52] suggests a hierarchical audio
content classification approach that leverages the robustness of the system.
The solution consists of three components: voice activity detection based on
entropy, speech/music discrimination using support vector machine and post-
processing which is rule based. The target classes are noise, speech and music.
The method is efficient and robust but more experiments are advised to be
conducted on more complex classification tasks e.g. with more labels.

The literature review shows that there is plenty room for improvement
in sound recognition tasks. This research focuses on audio classification tasks
with regards to robustness and efficiency of deep neural networks without
degrading performance or increasing the parameters of the model. The models
utilize pooling operations for noise invariance and experimental results show
the importance of the maximum entropy (maxent) principle when designing
neural networks.

3 Proposed Models

3.1 Preprocessing and Audio Features

The deep learning models that are used in the experiments are trained with au-
dio data in the frequency domain. Since one model consists of 2D convolutional
layers and the other one of 1D layers, there are two respective preprocessing
steps. For the 2D case, we compute the Spectogram of the input, using the
algorithm of Short Time Fourier Transform (STFT). The advantage of STFT
is that it maintains temporal information because the Fourier transformation
applies to segments of the given data and not to the entire time series. Apart
from the audio data, STFT also has two parameters the frame length and the
stride. The result of the transformation is a complex matrix. Next, the energy
spectogram is computed using the magnitude of the complex elements and
calculating their logarithm. Finally, the angle of the complex elements is also
concatenated in the feature set. Regarding the 1D case, the Fourier transfor-
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mation is applied on the given batch of data. The input to the model is the
absolute value of the first half of the frequencies.

3.2 Entropy Pooling

Modern deep learning architectures often include pooling operations, con-
tributing to invariance to data variation and robustness to perplexity. Pooling
is popular in models of image recognition, but is also used in speech recog-
nition, natural language processing, signal processing etc. The objective of
pooling is to subsample a joint feature representation into a smaller, more
compact one that maintains as much information as possible. The most com-
mon pooling techniques are max [21] and average [26, 27], whereas it is not
unusual for a neural net to include both of them. Despite the success of pooling
layers the choice of which one to use is decided through many experimental
trials and there is no established theoretical framework.

In the literature there are two main theoretical analyses, trying to fill the
gap between theory and practice and understand the dynamics of pooling in
a neural network. Boureau et al. [8] study the statistical properties of max
and average visual feature pooling in a two-class classification problem. The
authors also assume that the features are independent and identically dis-
tributed (i.i.d.) Bernoulli random variables. They conclude that the sparsity
of the features and the sample cardinality are two important properties that
affect the performance of the model. Due to the complexity of the problem, the
underlying reasons that analytically justify their performance are obscured.

Nalmpantis et al. [38] study the behaviour of pooling operations from the
information theory perspective. The study is based on the maximum entropy
principle, also known as maxent or infomax. The principle has been used in
previous research showing that it reduces redundancy in nonlinear feed-forward
neural nets [34]. Theoretical analysis as well as experimental work show that
max pooling is not always compliant with the maxent principle. Average pool-
ing shows more consistent results because its output tends to be closer to the
uniform distribution, which is attributed to the computation of means. Both
of these operations cannot guarantee high entropy and depend on the distri-
bution of the input. In order to understand better the dynamics of pooling,
Nalmpantis et al. [38] present a novel pooling operation, called entropy pool-
ing. Entropy pooling is guaranteed to select a feature set with high entropy,
regardless of the input distribution of the data. Below, a rigorous description
of the operation is described.

Assume a deep neural network with a pooling operation after hidden layer
i. Let the output of the hidden layer i be a random variable X, which will
be the input of the pool. Let A be the random variable of its output. Then
pooling operation can be seen as an information channel. The Markov chain
that describes it is depicted in Fig. 3.2. The mutual information I(X,A) and the
capacity C of the channel, are expressed by the following equations accordingly:

I(X;A) = H(A)−H(A|X) (1)
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X A

pooling

C = max
p(x)

I(X;A) (2)

with H(A) the entropy and H(A|X) the conditional entropy. It is obvious that
I(X;A) is max when H(A) is maximized and H(A|X) is minimized. The con-
ditional entropy H(A|X) can be equal to zero when pooling is a deterministic
function and (1) becomes:

I(X;A) = H(A) (3)

Entropy pooling finds a maximum of the channel capacity. This maximum is
not global because the optimal solution is NP hard [42]. It computes the prob-
abilities p of N given features. Next, the probabilities are filtered by selecting
the least frequent features, giving an output with high entropy. The process is
illustrated in Fig. 1. The mathematical formula for a region of size r, is:

fentr(Xr) = Xr[g(Pr)], (4)

g(Pr) = arg min
1≤i≤r

pi (5)

, where Xr is the input feature map, g returns the indices of the smallest
probability and Pr the constructed map of probabilities. Consequently:

I(X;A) = H(fentr(Xr)) (6)

3.3 Configuration of Neural Networks

This research is inspired by two popular neural network architectures that
demonstrated state-of-the-art results in computer vision named AlexNet [24]
and ResNet [19]. Variations of AlexNet, ResNet and others like InceptionV3,
Xception and VGG have been employed in speech commands recognition by
prior research [44]. Despite the high performance of these models, there is still
room for improvement in terms of both efficiency and robustness.

Efficiency is achieved by reducing the parameters without large perfor-
mance sacrifices. A key component for better efficiency is the introduction of
batch normalization layers in between of the main ones. Robustness is lever-
aged via the pooling layers. The type of these layers has been found through
a systematic experimentation and evaluation of combinations of max, average
and entropy functions.
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Fig. 1 The process of entropy pooling. Min operator is selecting the most rare features.

The first model is a convolutional neural network with six 2D convolutional
layers and activation function ReLU. After each of the first four convolutional
layers there is a batch normalization layer and a pooling one. The architecture
is shown in 1. Pooling layers are not specified yet. As it will be explained
later on, different configurations are found to work better in the four different
environmental setups of the experiments. This architecture is evaluated on the
speech commands dataset.

The second model is a residual neural network. The residual block consists
of a convolutional layer and a parameterized number of convolutional layers
in parallel to the first one. The output of the residual convolutions is con-
catenated, pass through a ReLU activation function and a pooling layer. The
entire architecture includes five residual blocks, followed by a pooling oper-
ation and three dense layers. The details of the architecture are shown in 2.
The two pooling layers are combinations of entropy, max and average ones
and the best configuration is found to be different depending on the robust-
ness scenario. The residual architecture is evaluated on the speaker recognition
dataset.

4 Materials, Methods and Experimental Results

4.1 Datasets and Setup of Environments

Two datasets are chosen for the evaluation of the developed models. The first
one is the ”Speaker Recognition Dataset Prominent Leaders Speeches” which
can be downloaded from kaggle using the following link https://www.kaggle.

com/kongaevans/speaker-recognition-dataset. It includes speeches of the
popular leaders: Benjamin Netanyahu, Jens Stoltenberg, Julia Gillard, Mar-
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Table 1 Architecture of 2D convolutional neural network.

2DConvNN Output shape

Input (batch size, 122, 257, 2)
BatchNormalization (batch size, 122, 257, 2)
Conv2D 32 filters (batch size, 122, 257, 32)
BatchNormalization (batch size, 122, 257, 32)
Pooling Layer (batch size, 61, 128, 32)
Conv2D 32 filters (batch size, 59, 126, 32)
BatchNormalization (batch size, 59, 126, 32)
Pooling Layer (batch size, 29, 63, 32)
Conv2D 128 filters (batch size, 27, 61, 128)
BatchNormalization (batch size, 27, 61, 128)
Pooling Layer (batch size, 13, 30, 128)
Conv2D 256 filters (batch size, 11, 28, 256)
BatchNormalization (batch size, 11, 28, 256)
Pooling Layer (batch size, 5, 14, 256)
Conv2D 128 filters (batch size, 5, 14, 128)
Conv2D 64 filters (batch size, 5, 14, 64)
Flatten (batch size, 4480)
Dense (batch size, 12)
BatchNormalization (batch size, 12)

Table 2 Architecture of the residual neural network.

Residual Block Residual Network
m= # of convolutions f= # of filters

Conv1D Residual Block (m=16, f=2)
m x Conv1D Residual Block (m=32, f=2)
Conv1D Residual Block (m=64, f=3)
ReLU Residual Block (m=128, f=3)
Pooling Layer Residual Block (m=128, f=3)

Pooling Layer
Flatten

3 x Dense

garet Thatcher and Nelson Mandela. The length of each audio is one second
with sampling rate 16kHz and PCM encoded. The dataset also contains a
folder with audio files representing background noise like laughing, clapping
etc. The goal is to recognize the speaker taking into consideration background
noise. The second dataset is the Speech Commands dataset [53], which has
been a standard one for the task of speech commands classification targeting
devices with limited computational resources. It includes 60K audio files with
length around 1 second. The audio files are PCM encoded with sampling rate
16kHz. There are 32 different labels, from which only 10 are the target ones.
The rest of the labels are considered as silence or unknown. The target labels
are left, right, up, down, yes, no, go, stop, on, off. Figure 2 depicts a pie chart
with the proportion of each target command in the training set.
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Fig. 2 Proportions of target commands in Speech Commands training dataset.

Table 3 Environment setup based on the presence of noise. The four scenarios are also
represented by the abbreviation of three letters. E.g. FFT stands for train and evaluation
without noise and test with noise.

Scenario Training Evaluation Testing

Naive approach (FFF) False False False
Known noise (TTT) True True True
Noise augmentation (TTF) True True False
Out of distribution (FFT) False False True

The current research focuses on training and evaluating audio classification
models in terms of performance, efficiency and robustness. In order to make a
thorough comparative analysis a new evaluation framework is proposed with
respect to the environmental setup. Four scenarios are suggested with different
training, evaluation and testing environments considering whether noise should
be included or not. The first one is the naive approach where there is no
noise. Train, evaluation and test data are clean and are assumed to come
from the same distribution. The second scenario regards noise that can be
predicted, which means that we can add noise during training and evaluation.
For example it would be expected to hear people laughing in an office. The
test environment is supposed to have similar noise. The third case is when
data are augmented with noise and then testing includes clean data. This is
a rare scenario in the real world, but we include it for completeness. The last
and maybe closest to real conditions scenario is when we train our data and
the model has to make robust predictions even when there is unpredictable
noise. In this case noise is anything that is out of distribution or not included
in the target classes. Table 3 summarizes the four different scenarios with the
following names respectively: ”naive approach (FFF)”, ”known noise (TTT)”,
”noise augmentation (TTF)” and ”out of distribution (FFT)”. Because of
space limitations most of the tables in this document refer to the four scenarios
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Table 4 Experimental results showing the accuracy of the residual neural network with
different pooling operations. The experiments cover the four different scenarios: ”naive ap-
proach (FFF)”, ”known noise (TTT)”, ”noise augmentation (TTF)” and ”out of distribution
(FFT)”.

Pooling config. FFF TTT FFT TTF

AVG - AVG 0.988 0.967 0.683 0.961
ENTR - AVG 0.984 0.949 0.644 0.961
MAX - AVG 0.993 0.955 0.640 0.971
AVG - ENTR 0.996 0.966 0.685 0.970
ENTR - ENTR 0.983 0.956 0.659 0.975
MAX - ENTR 0.987 0.943 0.655 0.977
AVG - MAX 0.992 0.968 0.681 0.976
ENTR - MAX 0.989 0.962 0.656 0.955
MAX - MAX 0.992 0.966 0.654 0.976

with their abbreviations. The abbreviations refer to whether there is noise in
the training, evaluation or testing environment with F for false and T for true.
Thus, FFT means that noise is included only in the test data.

4.2 Experimental Results and Discussion

The neural network based on the residual architecture is evaluated on the
speaker recognition task using the dataset ”Speaker Recognition Dataset Promi-
nent Leaders Speeches”. The model is configured through a systematic exper-
imental study evaluating all the possible combinations of max, average and
entropy pooling layers. The process is repeated for all the four scenarios that
were described previously. In order to make the comparison of different varia-
tions of the model fair, each one is trained, evaluated and tested several times.
Next, the mean and standard deviation of accuracy results are calculated and
compared to find the most robust model.

Table 4 shows the results of all the different combinations of the three
pooling operations for the residual neural network. In this table the name of
the pooling configuration has two parts. The first part refers to the pooling of
the residual block and the second one to the last pooling of the entire network.
For example if the residual block has the max pooling layer and the last pooling
of the network is the entropy one the pooling configuration is referred as
MAX-ENTR. The most robust versions of the architecture are AVG-ENTR,
AVG-MAX, AVG-ENTR and MAX-ENTR for the scenarios ”naive approach”,
”known noise”, ”out of distribution” and ”noise augmentation” respectively.

In order to shed light on the impact of the different pooling types on the
robustness of the model, the neural networks with the configurations ENTR-
ENTR, MAX-MAX and AVG-AVG are separately evaluated in terms of the
cross entropy error. Figure 3 presents the experimental results in the four dif-
ferent environmental setups. The scenario ”out of distribution” is scaled down
10 times in order to fit with the bars of the other three scenarios. The conclu-
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sion is that max pooling helps the neural network to achieve high performance
under known conditions, especially in the ”naive approach”. Average pooling
shows similar results, however it is easily biased by noise if it is present in the
training data. In the case where noise is present only in the test data, average
pooling is robust. Finally, entropy pooling has the lowest error in the scenario
”noise augmentation” and performs on par with average pooling in the sce-
nario ”out of distribution”. Entropy pooling is robust when the distribution
of testing data is different from the distribution of training data. An example
of the validation error during training of the three versions of the model is
shown at Fig. 4. According to the diagram the three versions of the model all
converge with the one that uses entropy pooling achieving the lowest error.
The configuration with average pooling follows and the worse performance is
from max pooling.

Fig. 3 Evaluation of the residual neural network using one type of pooling each time. The
out of distribution testing results are scaled down 10 times to fit the diagram with the rest
of the results.

ENTR-ENTR

MAX-MAX

AVG-AVG

Fig. 4 The diagram depicts the cross entropy error of the residual neural network during
training. The three versions of the network correspond to the pooling types max, average and
entropy. All three versions converge for the speaker recognition task. Average and entropy
pooling show similar performance while max one has higher error.
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Table 5 Experimental results of residual neural network with different pooling operations
when testing dataset is out of distribution and in the presence of different scaling factors of
the magnitude of the noise.

Pooling config. x0.25 x0.5 x0.75 x1 x2

AVG - AVG 0.808 0.683 0.558 0.491 0.368
ENTR - AVG 0.810 0.644 0.558 0.491 0.369
MAX - AVG 0.819 0.640 0.527 0.488 0.377
AVG - ENTR 0.794 0.685 0.579 0.506 0.404
ENTR - ENTR 0.793 0.659 0.539 0.484 0.389
MAX - ENTR 0.790 0.655 0.557 0.508 0.372
AVG - MAX 0.802 0.681 0.578 0.510 0.375
ENTR - MAX 0.764 0.656 0.549 0.512 0.404
MAX - MAX 0.810 0.654 0.589 0.492 0.391

Table 6 Results showing the accuracy of the 2D convolutional network with different pool-
ing operations. M stands for max pooling and E for entropy pooling. The first column covers
the naive approach and the rest include noise in testing with a scaling factor.

Pool conf. FFF x0.25 x0.5 x1 x2

MMMM 0.932 0.856 0.782 0.706 0.620
MMEM 0.931 0.875 0.811 0.720 0.637
MMME 0.926 0.861 0.805 0.707 0.611
EMMM 0.923 0.876 0.805 0.677 0.512
MEMM 0.923 0.870 0.810 0.713 0.605
EMEM 0.923 0.836 0.775 0.686 0.556
MEEM 0.917 0.860 0.795 0.717 0.641
EMME 0.916 0.854 0.787 0.712 0.644
EEMM 0.916 0.826 0.748 0.645 0.540
EEME 0.915 0.830 0.755 0.624 0.581
EEEM 0.914 0.846 0.785 0.702 0.619
MEME 0.909 0.833 0.746 0.602 0.437
MMEE 0.907 0.843 0.773 0.696 0.634
EEEE 0.901 0.792 0.724 0.668 0.638
EMEE 0.898 0.841 0.776 0.708 0.628
MEEE 0.888 0.816 0.734 0.668 0.616

Among the four scenarios, ”out of distribution” is the most common in
the real world because a real environment is unpredictable and any kind of
sound can happen spanning music, traffic, appliances, animals and others.
More experiments are conducted taking into account different scaling factors
of the amplitude of noises. Table 5 presents the results from five different cases
of noise with scaling factors x0.25, x0.5, x0.75, x1 and x2. The versions of the
network AVG-ENTR and ENTR-MAX seem the most robust ones and should
be preferred especially when we cannot predict or control the intensity of noise
in the real environment.

The 2D convolutional architecture is evaluated in the Google Speech Com-
mands Dataset. This model includes four pooling layers. The experiments
include all the variations of the model by combining max and entropy pooling
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Table 7 Results showing the cross-entropy error of the 2D convolutional network with
different pooling operations. M stands for max pooling and E for entropy pooling. The first
column covers the naive approach and the rest include noise in testing with a scaling factor.

Pool conf. FFF x0.25 x0.5 x1 x2

MMMM 0.289 0.553 0.797 1.102 1.448
MMEM 0.321 0.587 0.791 1.088 1.380
MMME 0.328 0.583 0.797 1.151 1.513
EMMM 0.325 0.610 0.882 1.260 1.689
MEMM 0.341 0.580 0.786 1.097 1.441
EMEM 0.325 0.733 0.924 1.220 1.595
MEEM 0.362 0.563 0.764 1.040 1.344
EMME 0.346 0.539 0.746 1.058 1.406
EEMM 0.362 0.728 0.967 1.295 1.605
EEME 0.374 0.625 0.858 1.646 1.831
EEEM 0.365 0.617 0.804 1.089 1.408
MEME 0.411 0.708 0.967 1.367 1.800
MMEE 0.408 0.620 0.829 1.110 1.405
EEEE 0.405 0.757 0.973 1.224 1.434
EMEE 0.419 0.620 0.808 1.069 1.371
MEEE 0.456 0.663 0.924 1.258 1.582

layers. For brevity we refer to the architectures with four letters depending on
the type of the pooling layers. For example MEME would be the architecture
where the first to the last pooling types are max, entropy, max and entropy.
The metrics that are used are the accuracy and the cross entropy error. The
experimental environments are the naive approach and the out of distribution
scenario. Table 6 presents the results with the accuracy of each model. The first
column represents the naive approach where there is no noise. The two best
models are MMMM and MMEM, with the first one performing slightly bet-
ter. The other four columns show the results when there is noise in the testing
environment with various scaling factors. For the case where the amplitude of
noise is scaled by 0.25 the most robust model is EMMM. MEMM and MMEM
show very similar performance. For the cases with scaling factors 0.5 and 1,
the best model is MMEM followed by MEMM in both cases. In the last case
with scaling factor 2, the best performance is shown by EMME, followed by
MEEM, EEEE and MMEM. Overall MMEM looks the most promising one
when the model has to be deployed in an environment with unexpected noises.
Now, considering the metric of cross entropy error, the results are slightly dif-
ferent. As shown in table 7 the models MEEM and EMME show the lowest
error. Comparing MMEM which shows the best overall accuracy and MEEM
or EMME which show the lowest overall error, it is concluded that MMEM
shows relatively low error as well. MEEM and EMME also show descent ac-
curacy, but MEEM seems to outperform EMME in most cases. Thus, the two
most robust models with respect to both metrics are MMEM and MEEM.
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5 Conclusion

This work evaluates two deep neural networks evaluated in two different audio
classification tasks. The architectures of the networks are built with efficiency
in mind, having as less parameters as possible without compromising a lot of
performance. This indicates that existing deep neural networks are far from
an optimal architecture. Therefore, there is a need to discover formal math-
ematical methods for designing neural networks. One research direction is to
design novel neural layers based on fundamental principles such as the entropy
pooling.

Furthermore, the impact of pooling layers on the robustness of the models
is examined. A systematic evaluation process is followed taking into consider-
ation different environmental conditions of noise. The main outcome is that
entropy pooling seems promising in making a deep neural network robust to
noise. The combination of pooling layers is also shown to demonstrate strong
performance. Further experiments are advised to be conducted by exploring
the impact of pooling on the performance of other neural architectures as well
as on other datasets. Entropy pooling could also be improved. One possible
improvement of entropy pooling is to find a more optimal solution. However,
this is considered an NP-hard problem and better solutions trade off a lot of
computational complexity [23].

Deep learning is a research domain that grows very fast and there are sev-
eral neural layers that could be evaluated using noisy audio data. For future
research it is recommended to explore the robustness of audio classifiers using
other types of layers such as dropout and compare it with modern approaches
like variational dropout [22] or information dropout [2]. Other variational ap-
proaches, such as deep variational information bottleneck [3], are shown to be
resilient to adversarial attacks and should enhance the performance of neural
networks under distribution shifts.
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