IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 15 June 2022, accepted 15 July 2022, date of publication 8 August 2022, date of current version 15 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197281

== RESEARCH ARTICLE

Semantic Modeling and Analysis of Natural
Language System Requirements

KONSTANTINOS MOKOS, THEODOROS NESTORIDIS, PANAGIOTIS KATSAROS ~,
AND NICK BASSILIADES *, (Member, IEEE)

School of Informatics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

Corresponding author: Panagiotis Katsaros (katsaros @csd.auth.gr)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant 956123 (FOCETA).

ABSTRACT System requirements specify how a system meets stakeholder needs. They are a partial
definition of the system under design in natural language that may be restricted in syntax terms. Any
natural language specification inevitably lacks a unique interpretation and includes underspecified terms
and inconsistencies. If the requirements are not validated early in the system development cycle and refined,
as needed, specification flaws may cause costly cycles of corrections in design, implementation and testing.
However, validation should be based on a consistent interpretation with respect to a rigorously defined
semantic context of the domain of the system. We propose a specification approach that, while sufficiently
expressive, it restricts the requirements definition to terms from an ontology with precisely defined concepts
and semantic relationships in the domain of the system under design. This enables a series of semantic
analyses, which guide the engineer towards improving the requirement specification as well as eliciting tacit
knowledge. The problems addressed are prerequisites to enable the derivation of verifiable specifications,
which is of fundamental importance for the design of critical embedded systems. We present the results from
a case study of modest size from the space system domain, as well as an evaluation of our approach from
the user’s point of view. The requirement types that have been covered demonstrate the applicability of the
approach in an industrial context, although the effectiveness of the analysis depends on pre-existing domain
ontologies.

INDEX TERMS Embedded systems, ontologies, requirements validation, semantic reasoning.

I. INTRODUCTION approach, which allows to discover behavioral (not semantic)

Validation of system requirements, which are usually written
in natural language, is a prerequisite to guarantee the valid-
ity of a system specification, for an acceptable (correct) and
attainable solution. According to this perspective, we should
aim to the earliest possible discovery and resolution of speci-
fication issues; the goal is to replace part of the effort needed
in the verification testing phase with significantly less effort,
earlier in the system development cycle. Requirements vali-
dation is associated with the problem of transforming them
into a formal specification amenable to verification (formal-
ization). We have addressed this problem in [1] (Fig. 1),
within the context of a correctness-by-construction design

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Liu

84094 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

inconsistencies in requirements. However, formal reasoning
is possible only if a well-defined interpretation semantics
exists, for the requirements specification.

In this paper, we introduce an approach which allows for-
mulating requirements in natural language (Fig. 1) through
relying on a semantic modeling and analysis framework that
complements our previous work in [1], for the requirements
formalization and system design. Natural language require-
ments are informal specifications that incorporate personal
views, tacit knowledge and/or may assume facts not explicitly
specified, but expected to be applicable. Any such specifica-
tion, in general, is not characterized by a clear, unambiguous,
complete, and consistent semantics.

To this end, an ontology-driven approach is presented,
in which requirement specifications are restricted to terms

VOLUME 10, 2022

https://orcid.org/0000-0002-4309-5295
https://orcid.org/0000-0001-6035-1038
https://orcid.org/0000-0002-3267-6801

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

l

Requirements formulation &
semantic analysis

Design Model
Model [1] verification [1]

Requirements formalization [1]

FIGURE 1. Model-based approach for requirements validation and
system design.

from an ontology with precisely defined concepts and seman-
tic relationships in the domain of the system under design.
To tackle the lack of a unique interpretation for the natural
language syntax, we employ requirement boilerplates, i.e.
textual templates with placeholders to be filled with ontology
elements. These elements are semantically interrelated, as in
the conceptual model that supports the process in [1] and they
are part of a well-defined ontology architecture.

The ontology architecture relies on an upper ontology with
concepts and common relations that are applicable across a
range of system-specific domain ontologies. The upper ontol-
ogy concepts determine the scope and the expressiveness of
the semantic modeling framework, which allow combining
three different perspectives, when specifying requirements
using boilerplates, namely [2]: (i) the data, (ii) the functional
and (iii) the behavioral perspective. The domain ontologies
integrate general knowledge for the problem domain, includ-
ing knowledge that may be omitted from the requirements
but complements them. All domain-specific concepts are
“typed” as concepts of the upper ontology.

This modular and extensible ontology architecture sup-
ports, through integrating different domain ontologies, the
main motivation behind our work, i.e. to deliver a seman-
tic modeling and analysis framework that can be adapted
to multiple domains, while not being dependent on a spe-
cific design modeling language [3]. Instead, the ontology
architecture opens the possibility to adapt it to different indus-
trial standards (e.g. AUTOSAR) through introducing in the
domain ontologies constructs of particular language meta-
models. When comparing our approach with domain-specific
languages (DSLs) for the specification of system require-
ments in particular domains, our approach is more general:
it allows to adapt the domain ontologies in order to expand
the scope of specification capabilities, instead of relying on
fixed language semantics.

The whole semantic framework, together with the ontology
terms mentioned in requirements, enable a series of auto-
mated semantic analyses that guide the engineer towards
improving the requirements specification. These analyses
detect specification flaws, such as requirements that are
incomplete or missing (incompleteness), requirements with
terms undefined in the domain ontologies (noise), inconsis-
tencies and so on. We also introduce a technique for detect-
ing semantically related terms within different requirements
(semantic relatedness analysis), with the aim to elicit possible
tacit knowledge. This allows to derive and explicitly define

VOLUME 10, 2022

additional domain knowledge. Using concrete examples from
industrial experience, specifically on requirements for space
systems, we show how the different analyses can be combined
with the knowledge stored in domain ontologies, for eliminat-
ing the specification issues detected.

Our work is not the first ontology-based specification
approach using requirement boilerplates. A recent work was
reported in [4], [5], whereas the CESAR platform [6] has
also introduced a similar approach. In [4], [5], the require-
ments formalization/validation takes place by semantically
mapping the boilerplates to the design abstraction levels of
the EAST-ADL modeling language. In our case, the ontol-
ogy concepts used in the boilerplates are “typed” accord-
ing to the upper ontology, which results to not having been
locked in a specific modeling language. Another difference
is that, for the requirements validation, we support more
analyses, apart from consistency and completeness, as is the
case in [4], [5]. Regarding [6], our approach differs in that
the semantic analysis extends even beyond the boundaries
of existing system-specific domain ontologies, because all
specified terms are interrelated according to the concepts of
the upper ontology. At the behavioral level, our correct-by-
construction design process in [1], avoids verification exclu-
sively by model checking that does not easily scale to larger
models.

The evaluation of the proposed approach is two-fold, i.e.
with respect to the adequacy of the semantic framework
to express real industrial requirements of different types,
and with respect to its efficiency and effectiveness from the
users point of view. Regarding the first priority, a case study
is presented with 65 requirements of different types (func-
tional, performance, interface, operational) from a virtual
earth-observation reference satellite, called Eagle Eye [7]
that was developed by the European Space Agency (ESA).
As for the second priority, we ran an experiment to assess
the required effort for engineers to accomplish a specifica-
tion task and their effectiveness. The engineers who par-
ticipated in the experiment did not know the details of the
ontology architecture, but they could only take advantage of
it using our web-based tool,! for specifying requirements.
More concretely, we measured the man-effort for formulat-
ing requirements from the natural language description of a
space system, into our boilerplate language. We claim that
the additional cost for applying the approach is affordable
and certainly justified for critical embedded systems, such as
the space systems considered. These findings substantiate the
applicability of our proposal and provide valuable feedback,
for a number of aspects that have to be addressed, when
adopting it into an industrial context.

The concrete research contributions of this article are:

1) The upper ontology and the ontologies of the pro-

posed architecture” that facilitate integration of domain

lOntology-based Tool for Requirements Specification and Analysis:
https://iotlab.csd.auth.gr:8081.
2Ontology provided online:
requirements-ontology.

https://depend.csd.auth.gr/software/

84095

https://depend.csd.auth.gr/software/requirements-ontology
https://depend.csd.auth.gr/software/requirements-ontology

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

TABLE 1. Ontology-based requirements analysis.

Contribution Related works Our approach
Requirements qualities
. 8], 191, [10], [11 131, [14], [15], [16], [17], [18],
(In-)completeness analysis {1]9][[]20][[]21][[]22][[]][[]][[4} (151, 116], {17, 18] v
[24], [25], [9], [26], [27], (28], [12], [13], [14], [15], [16],
(In-)consistency analysis [29], [30], [31], [171, [32], [33], [19], [34], [35], [36], [37], v
[38], [20], [39], [22], [23], [40], [6], [4], [41]
Ambiguity analysis Eg} {32 %6] [27], [12], [14], [15], [43], [17], [44], [45], v
Noise analysis [12], [6] v
(471, [8], [48], [24], [49], [9], [11], [28], [50], [14], [15],
Requirements management/evolution [51], [52], [53], [54], [55], (181, [34], [35], [56], [57], [37], X
[58], [59], [60], [61], [62], [63], [6]
. . 13], [14], [64], [53], [65], [17], [32], [66], [38], [20], [67],
Domain knowledge representation {68}, {69}, {70}’ {711 {62}, {23} %6]] (66, [38], (201, [67] v
Tool [29], [65], [54], [37], [68], [60] v
Tacit knowledge extraction
Relatedness analysis [72], [73], [74], [6] v/
Similarity analysis [40], [63], [46] X
[24], [27], [28], [12], [13], [15], [51], [31], [43], [75], [65],
Implicit assumptions [17], [32], [33], [19], [35], [36], [37], [20], [59], [71], [39], v
[22], [6], [4], [41]
Requirements formalization/validation
Properties derivation [23], [4], [41] v [1]
Formal verification [22], [23], [4], [41] |
Correctness by construction v [1]
Validation wrt. industrial requirements [49], [28], [14], [18], [20], [67], [69], [62], [21], [6], [4] v

ontologies, without needing to modify the semantic
analyses implemented.

2) A methodology for building domain ontologies, which
was applied to capture the domain knowledge of a satel-
lite Attitude & Orbit Control System (AOCS).

3) The syntax and semantics of the boilerplate language
and the automated inference of relationships between
terms in the boilerplate placeholders.

4) The semantic analyses, including the semantic
relatedness analysis for eliciting possible tacit
knowledge.

5) The Eagle Eye case study and the users’ experi-
ment results, as well as a critical discussion of issues
related to the adoption of the approach in an industrial
context.

The rest of the article is structured as follows. The next
section discusses the related work. Section III presents the
overall semantic modeling framework, including the upper
ontology and the proposed ontology architecture. Section IV
introduces a method for building domain ontologies, the
syntax and semantics of the boilerplate language and how
the various ontology relationships are used in the seman-
tic representation of requirements. The implementation of
the proposed semantic analyses is described in Section V,
whereas the semantic relatedness analysis for eliciting tacit
knowledge is presented in Section VI. In Section VII, we dis-
cuss the results from the Eagle Eye case study. Section VIII
presents the experimental evaluation of the approach from
the users point of view and Section IX summarizes the
issues related to its industrial adoption. Finally, the last
section concludes the paper and refers to future research
prospects.

84096

Il. RELATED WORK

Table 1 summarizes the research contributions of related
works on ontology-driven requirements engineering. This
classification was based on the systematic literature review
in [76], from which all references until 2015 were exam-
ined with respect to the scope of our work, whereas some
additional works beyond 2015 were also included. Only
the tools that were found to be publicly available are
reported.

It is worth to note that a number of studies referenced in
Table 1 are part of a larger project or continuation work cover-
ing various aspects of requirement analysis. However, only a
small number of them, including ours, provide a detailed for-
malization of the ontology relationships and rules. Moreover,
according to Fig. 2, it seems that this work provides a more
complete coverage of capabilities. An interesting approach,
in terms of the provided support, is the CESAR project [6]
with 9 contributions, whereas [4], [23] and [14] follow with
6 contributions (the latter article is also related to the CESAR
project). The closely related works to our research contribu-
tions are described henceforward.

a: PATTERN-BASED SPECIFICATION

The CESAR reference technology platform [6], [14], [74],
[77] addresses the standardization of requirements across
the development stages of embedded systems. CESAR intro-
duces a Requirements Specification Language (RSL) with
boilerplates that combine three clauses, like in our language
(prefix, main part and suffix). RSL’s boilerplate placehold-
ers (attributes) are defined in an ontology. These placeholders
must be filled in with terms from a domain-specific ontol-
ogy. A language of property patterns with formal semantics

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

CONTRIBUTIOMS

FIGURE 2. Contributions per related work.

is used, but no exact association of boilerplates with the
specific patterns is provided, as we do in [1]. CESAR can
also perform relatedness analysis to guide the engineers in
writing requirements using semantically related concepts.
Elicitation of tacit knowledge, one of the contributions of
this work, is not supported. Finally, semantic analysis in
CESAR seems to be scoped only in comparing the infor-
mation specified in requirements with the domain ontology.
Our semantic analyses differ in that they are based on the
upper (domain-independent) ontology, which makes them
applicable to multiple system domains, while the existence of
domain knowledge is not necessary. CESAR users rely on the
DODT (Domain Ontology Design Tool) tool, which allows
editing requirements, based on the available boilerplates, and
supports the analysis of requirements, like our web-based
tool.

In [4], [5], the authors introduced the Requirement Spec-
ification language for Automotive systems (RESA). RESA
supports the specification of embedded system requirements,
their semantic representation using events and their semantic
analysis through identifying thematic roles. When compared
to that work, our semantic analysis is not limited only to
consistency and completeness checking, whereas we addi-
tionally propose a way to uncover tacit knowledge in a set of
requirements. Finally, as it was already noted, an additional
difference is that for the requirements validation at the level of
system’s behavior, we follow a correctness-by-construction
design methodology [1].

b: FORMAL VERIFICATION

A noteworthy consistency checking methodology for
requirements is the one in [41]. This approach introduces
a grammar for a natural-like language to parse time-related
functional requirements and translate them into Linear Tem-
poral Logic (LTL) formulas, amenable to semantic analysis
for consistency. The proposed solution is evaluated over a
rich set of examples, which is however limited only to a
small subset of functional requirements. Furthermore, when
interpreting sentences without using domain ontologies, the
matching with words is inevitably a manual procedure and
this is an important limitation in the applicability of the
method to real-world problems.

VOLUME 10, 2022

ggggggg

¢: DOMAIN ONTOLOGIES FOR SPACE SYSTEMS

The Systems and Software Division of the Jet Propul-
sion Laboratory (JPL) has performed related work towards
improving the systems engineering practices, in an attempt
to master the increasing complexity of space flight missions.
More concretely, JPL has developed several ontologies in
Web Ontology Language 2 (OWL 2), for the domain of
space flight missions [78], [79], [80], [81]. Their model-based
approach is focused on the Systems Modeling Language
(SysML). The ontology is used to generate a consistent model
by semantic reasoning and analysis techniques. However,
JPL’s ontologies address only top-level application domain
knowledge. The inner structure of requirement specifica-
tions is addressed briefly and mainly outsourced to SysML.
According to [82], the adaptation of the SysML requirements
concept is considered as a weakness, therefore they propose
to combine the JPL mission concepts with a more detailed
requirement semantics model.

d: SEMANTIC RELATEDNESS

The problem of generating knowledge recommendations
through semantic relatedness has been previously investi-
gated in [83]. The analysis is applied to a learning organizer
ontology, in order to measure the semantic relevance between
a learning resource and the learning context of a learner.
According to the authors, their measurement approach is
simple and achieves adequate results. Semantic relatedness
analysis has also been applied to enhance traceability of
requirements [72], [73], or to guide engineers in using seman-
tically related concepts within boilerplate requirements [74].
The latter studies are outside the scope of our work. Similarity
analysis, a special case of relatedness analysis, has been pre-
viously used in several studies [40], [46], [63] to process and
analyze natural language requirements. However, similarity
analysis is more limited in scope than semantic relatedness
analysis, which takes all kinds of relations into account.

Ill. SEMANTIC MODELING FRAMEWORK FOR
REQUIREMENTS SPECIFICATION

A. PRELIMINARIES ON ONTOLOGY-BASED MODELING
An ontology is an explicit definition of concepts in a
well-bounded domain of knowledge. The main components

84097

lEEEACC@SS K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IdentifiedConcept

SpecifiedConcept ioins

Connection

r

‘praerrts—r Interface

contains

System

Function

iriok ing rﬂs_.-‘em'rts—l’ isDecom posedToq

Y cendsTecel r—'_'r_.-‘sets—J

.
transfer s—l traverses

TraversingConcept

Flow ltem
f

|
takesValuesFrom

StateConcept —setsToj
isAvailableln

State StateValue ——belongsT StateSet
hasSubState L’

akesValuesFrom

FIGURE 3. System attributes ontology (SAO).

of an ontology are the classes, their individuals, the attributes,
the relationships and the axioms.

Classes (also termed concepts) are abstract groups or col-
lections of entities/*‘things” within a domain. Individuals
(also termed instances) are the “things” represented by a
concept. Classes have attributes (or properties), which can
be another class or individual, to store information that is
specific to the class. Relationships (or relations) describe the
way classes and individuals can be related to one another (e.g.
the subsumption relation, according to which a class - called
subclass - is subsumed by another class). Finally, axioms
are used to constrain values for classes or individuals. They
are assertions (and rules) in a logical form that all together
represent the overall theory that the ontology describes in its
domain of application.

B. SYSTEM AND ATTRIBUTES ONTOLOGY (SAO)

The upper ontology called System Attributes Ontology
(SAO) 1is depicted in Fig. 3 and provides the context
for encoding all semantic relationships between the terms
mentioned in the boilerplate placeholders (the boilerplate
syntax is given in Tables 6, 7 and 8). SAO allows express-
ing requirements by combining three different perspectives,
namely [2]: (i) the data, (ii) the functional and (iii) the
behavioral perspective. Moreover, it integrates the conceptual
model in [1], which supports the formalization of system
requirements.

84098

1) DATA PERSPECTIVE
The data perspective concerns with the input-output data rela-
tionships and the structural dependencies in a system. Within
the SAO ontology, all these relationships are defined using
structures for input and output data (e.g. decomposition of
Items), and how the system is composed (e.g. contains
relation, Interfaces and Connections to external
systems).
For example, in the following boilerplate requirement,
a Communication system contains an S—-Band system,
i.e. the verb “contain” expresses a composition relationship
between two systems.
M16: <System:Communication> shall contain
<System:S-band>
Also, in the boilerplate requirements below, the S-band sys-
tem receives the uplink signal that is sent by the Ground,
i.e. verbs “receive” and ‘“‘send” express an input-output data
relationship between the two systems.
M4: <System:S-Band> shall receive <Item:
uplink signal>
M3: <System:Ground> shall send <Item:uplink
signal>

2) FUNCTIONAL PERSPECTIVE

The functional perspective allows expressing how the sys-
tem’s functions handle data (e.g. through the performs
Function relation): it is possible to express that some data

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

are received, sent or manipulated by executing specific func-
tions.

For example, in the following boilerplate requirement, the
S—-Band system performs a function that demodulates
the uplink signal.

M7: <System:S-band> shall perform
<Function:demodulate uplink signal>
The boilerplate requirement below is a specification that com-
bines the data perspective with the functional perspective:
M10: <System:S-band> shall transfer
<Item:telemetry data>

This requirement implies an Interface definition (i.e.
structural dependency), which can be automatically inferred
through semantic reasoning, to enable the transfer of
telemetry data (a functional specification). More con-
cretely, the inference yields the relations implied by the
following semantically equivalent specifications:

M9: <System:S-band> shall present
<Interface:S-band-interface>
MI10: <Interface:S-band-interface> shall
transfer <Item:telemetry data>

3) BEHAVIORAL PERSPECTIVE

The behavioral perspective allows expressing a system’s
behavior in a state-based specification style and how it inter-
acts within the overall system context.

This is possible through defining State information for
the system, given as StateValues that belong to a
StateSet. A StateValue is set by a Function and
can be used (through the isAvailableIn relation) as a
condition that warrants a state-transition.

Finally, a system can affect another system through travers-
ing events (i.e. Flows), states or data (i.e. Items). For
example, for specifying that the S-Band system shall
receive uplink signal, as long as the S-Band Mode is
Active, we use the following prefix to extend the example
requirement in Section III-B1.

P3: Aslongas <System:S-band> <State:Mode>

is <StatevValue:Active>
M4: <System:S-Band> shall
uplink signal>

receive <Item:

4) SAO DESIGN PRINCIPLES AND INFERENCE OF IMPLICIT
ASSUMPTIONS

SAO has been defined independently of the type of system
under design and we therefore refer to it as the domain-
independent ontology. This implies that the SAO concepts
and their relationships (formally defined in first-order logic in
the online Appendix A.1°), should be specialized for the type
of system and abstraction level of the requirements specifi-
cation. The highest level of abstraction is the whole system
under design, while the lower the level of abstraction, the
more detail is taken into account (cf. system decomposition
example in Section III-B1).

3Appendix: https://depend.csd.auth.gr/software/requirements-ontology.

VOLUME 10, 2022

SAO adopts some (but not all) elementary concepts and
properties of the JPL ontologies (cf. Section II); it may be
considered as a simplification and at the same time as an
extension of the JPL Mission Ontology.

The main intend behind its design is to enable capturing
the asymmetric producer/consumer relationships that char-
acterize the functional perspective in requirements specifi-
cation: any System is producing Flow and Item entities,
and when two systems are connected by a Connection,
another System consumes the produced flows and
items (Fig. 3).

System requirements are, by definition, a partial specifi-
cation. Their semantic representation does not allow auto-
mated reasoning, unless having made explicit any implicit
information, which result in spots of incompleteness of the
semantic model. To identify assumptions that should become
explicit, we take into account the producer/consumer rela-
tionships imposed by SAO. All these assumptions result
in creating Connection instances (and Interfaces
when necessary) and property relations, using Shapes Con-
straint Language (SHACL) rules [84]. The derived ele-
ments that complete the partial specification remain in the
ontology as long as the set of requirements, where they
come from, persist. The following two cases are taken into
account:

e A Function performed by a System sends (or
emits) a Traversing Concept that a Function
of a different System receives (or ingests). Then,
(i) Interface individuals will be created to transfer
the TraversingConcept, and (ii) a Connection
individual will be created to join the Interfaces and
traverse the TraversingConcept.

e A TraversingConcept is produced (resp. con-
sumed) by two Systems through their Interfaces
using a Connection. In this case, transfer and
traverse relations are created, for the Interfaces
and Connection.

Example 1: Let us consider the following requirements,
representing the fact that a System sends an Item, and
another Sy stem receives it:

M3: <System:Rate Control Guidance> shall
send <Item:spacecraft attitude and
body rates>

M4: <System:Attitude Error Generator>
shall receive <Item: spacecraft attitude
and body rates>

According to the first implicit assumption, the new
instances Interfacel and Interface2 are cre-
ated that are presented respectively by System:Rate
Control Guidance and System:Attitude Error
Generator, whereas Connectionl is also created
to join the two interfaces and traverse the referred
Item:spacecraft attitude and body rates.
The resulting representation of these two requirements is
shown in Fig. 4.

84099

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

| fer

rusams— Interfacel +——ansrers
< > :
System Functionl:
Rate Control [—performs—
i send

Guidance

[en <ltem>
spacecraft .
i | Connection1
) attitude and mmm{

r’E‘E“‘ﬁ body rates

<System>
Attitude Error [—performs—
Generator

Function2:
receive

transfers
Interface2

T

presents:

FIGURE 4. Connection representation.

C. ONTOLOGY ARCHITECTURE

The overall ontology architecture relies on the SAO upper
ontology, which provides the core glossary to support vari-
ous system-specific domain ontologies. This allows covering
multiple heterogeneous system domains. The overall architec-
ture has been designed in order to enable:

o Design of domain-specific ontologies with self-
contained semantics, i.e. without need to refer to terms
outside of their context (maintainability).

o Integration of additional domain-specific ontologies,
without needing to modify the overall ontology architec-
ture (extensibility).

o Resolution of semantic conflicts at the top-level ontol-
ogy, when defining mappings between the different
lower-level ontologies.

o A clear separation between an ontology and a knowl-
edge base (i.e. ontology combined with individuals),
such that ontologies only contain classes, properties,
relationships and axioms. Semantic analysis takes place
at the instance level, but the overall ontology architecture
can be easily reused in multiple different projects.

The ontology architecture in Fig. 5 is given as a modular
collection of five ontology categories including SAO.

The Requirement Boilerplate Ontology (RBO) provides
semantic definitions for the boilerplates (e.g. main, prefix,
suffix) and their placeholders. It imposes structural con-
straints in assembling a requirement, which provide a formal
syntax. RBO classes are related to classes of the SAO.

The Domain Specific Ontologies (DSOs) contain
domain-specific classes for the system under design. DSOs
import all SAO classes and specialize them.

The Lexicographic Ontology (LO) contains synonym and
antonym semantic definitions for the boilerplates. It allows
using paraphrases inside a boilerplate and contributes to the
consistency analysis of requirements.

The Requirements Definition Ontology (RDO) serves as a
repository of requirements and uses elements from the LO
and DSO, following the semantic definitions of RBO. There-
fore, RDO imports the RBO, LO and DSO ontologies, and
transitively imports (through the DSO) the SAO ontology.

84100

Requirements Definition Ontology (RDO)
System and Domain
Attributes N Specific
Ontology " Ontology
(SAD) (DSO)
Requirement
Lexicographic .| Boilerplate
Ontology (LO) " Ontology)
(RBO) Relation types
) inclusion
polymorphic
RDO Instances ﬁ refinement
b 4 h 4 . 4 el instantiation
individual
LO Instances RBO Instances DSQlInstances relation

FIGURE 5. Ontology architecture.

The types of relations in Fig. 5 are explained after showing
the semantic representation of the following example require-
ment, using the ontology architecture.

Example 2: Let us consider a natural language require-
ment, for the reaction wheel (RW) unit telecommand process-
ing:

If RW processor receives a TC(8,1) manual command-
ing command, the RW actuator processor shall set the
RW torque.

The example requirement is broken into a prefix and a main

clause, as follows:

Pl: if <System:RW processor> receives <Flow:
TC(8,1) manual commanding command>
MI1: <System:RW processor> shallset <Item:RW
torque>

The details of the representation of each clause within the
overall ontology architecture is shown in Fig. 6. The prefix
and main clauses are respectively represented by the
RBO:P1 and RBO:M1 classes of RBO. Both clauses are
related (isRelatedToPlaceholder property) to the
DSO:RW processor, individual of the DSO:Actuator
processor unit. In the main clause, DSO:RW
processor,DSO:set and DSO:RW torque are respec-
tively instances of (refinements of) the SAO:System,
SAO:Function and SAO:Item classes. In the pre-
fix, DSO:RW processor, DSO:receives and DSO:
TC(8,1) manual commanding command are inst
ances of (refinements of) SAO: System, SAO: Function
and SAO:Flow respectively. In this representation, every
element in the clauses is indirectly related to a SAO class,
which enables the execution of semantic analysis queries.

The four types of relations that connect the classes and

individuals of the described representation are:

o inclusion (red arrow): if ontology A includes ontology B,
then all classes defined in B are also found in A together
with the restrictions, properties and other axiomatic rela-
tions of these classes from B. Thus, in RBO there are
classes from the LO and DSOs that are equipped with
structural constraints from those ontologies for assem-
bling a requirement.

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

SAQ:System

h 4

RBO:P1

DSO:Actuator
processor unit

RBO:M1

l

if RW processor receives a TC(8,1) manual commanding command

l

the RW processor shall set the RW torque

-~

DSO:RW processor

SAO:Function » RBO:Action

SAQ:ltem

2

isRelatedToPlaceholder

el REO:Flow lﬁ

SAC:Flow

DSO:TC(8,1) manual commanding command

DSO:receives

4 R

D50:set

l isRelatedToPlaceholder

r RBO:Attribute

DSO:RW torque

FIGURE 6. Ontology relationships for the requirement in Example 2.

o polymorphic refinement (green arrow): a definition from
an ontology is included and refined. For example, the
System class defined in SAO, can be included in a
DSO and extended in order to apply to AOCS systems,
and included in another DSO and further extended to be
applied to electric power supply systems.

o instantiation (blue arrow): ontology A imports ontol-
ogy B, where B is decomposed only into individuals.
For example, the RDO Instances import RDO and is
composed solely of RDO individuals. The instantiation
relation type separates individuals from the repository of
ontology classes that can be read or physically shared,
for improved reusability, as well as for sharing and con-
fidentiality purposes.

o individual relation (orange arrow): denotes an “‘is
related to” relationship between RBO and DSO instance
ontologies via a property. For instance, in the Example 2,
the RBO individual is related to the RW processor
of the DSO via the isRelatedToPlaceholder
(Fig. 6).

Through this representation of requirements within the
ontology architecture, we move from the textual form of
requirements to a precisely defined semantic structure that
consists of uniquely identified ontology elements (i.e. classes,
individuals, properties and relationships). The role of these
elements is to explicitly state and encode knowledge, which
is taken into account in order to perform semantic analysis
and possibly extract tacit knowledge, if any.

IV. SEMANTIC REPRESENTATION OF REQUIREMENTS

A. DOMAIN SPECIFIC ONTOLOGY (DSO)

To express requirements from different system domains,
we need DSOs that will encompass these domains. Any
such ontology will import all SAO classes and will further

VOLUME 10, 2022

Space
system
I
. Ground Launch
Space vehicle .
equipment support

Communications Mission specific
— Spacecraft —
payload payload
I Structure 1 Transmitter
Thermal .
— — Receiver
control
Electric power
I P 1 Transponder
supply
| | Attitude and Antennas
Orbit Control

4 Propulsion

Telemetry
“— tracking and
command

FIGURE 7. Space system DSO.

specialize them. The DSO concepts, together with their inter-
relationships will therefore provide a semantic model of the
system’s domain at each level of specification, from the sys-
tem as a whole to each hardware and software subsystem. The
example in Fig. 7 shows the different levels of a DSO for the
space system domain.

Fig. 8 introduces a process for the elicitation of a DSO.
First, an upper ontology serves as a top-level structure for the

84101

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

Desi Gather Identify Extract Assign to
ES|gtr1Iupper domain |—# |important At ra. — u:::lpler
ontology knowledge concepts categories ontology

concepts

[

FIGURE 8. Domain-specific ontology elicitation process.

@ DamafusionEstim

amr

¥ : = A dedndOri @i
s

N TeHandir i
b ;-

. % T

NN -

N
N,

\\ § Cyciics chedular
\ X
™~

FIGURE 9. Attitude and orbit control abstract concept categories.

definition of domain ontologies; in our case, this is the SAO.
Then, we gather domain knowledge from various sources,
including domain experts, requirement specification docu-
ments and architecture designs from previous projects. In this
step, we try to identify and extract abstract categories, i.e.
concepts that characterize all systems in the domain, which
may include collections of objects, distinct functionality,
exchanged information, types of objects or kinds of things.

Fig. 9 presents a decomposition of our AOCS domain
ontology, in which several categories are shown for dif-
ferent functionalities of the AOCS system. For example,
since any AOCS system shall process inputs from a set of
sensors a SensorProcessor subsystem will exist and
therefore it has been added as an abstract category for the
AttitudeAndOrbitalControlSystem class.

The next step concerns with the assignment of identified
categories to the upper ontology concepts and the representa-
tion of their interrelations by appropriate OWL constraints
(Table 2). This is crucial for incrementally building the
DSO, while unfolding the knowledge extraction process. For
example, an AttitudeAndOrbitalControlSystem
shall contain some SensorProcessor instances, and
the latter will have exactly two functions: (i) receive

84102

TABLE 2. OWL constraints with examples used in DSO.

OWL DL Symbol | Keyword Example
some ValuesFrom 3 some contains some Guidance
allValuesFrom v only performs only acquires_strobing_rate
hasValue E] has hasState has AOCS_mode
minCardinality > min contains min 1
Cardinality = exactly contains exactly 3
maxCardinality < max contains max 2
intersectionOf N and Guidance and Controller
unionOf U or CPSCommanding or RWCommanding
complementOf - not not acquires_telemetry
Requirement
—hasClause
(RDO) 1
ReqDescriptor | i
hasMain
rhasPrefixThasSuﬁix—‘l
‘ Prefix Main Suffix
[

isRelatedToPlaceholder

L Placeholder

FIGURE 10. Requirement boilerplate ontology.

only sensor input and (ii) perform only sensor
input processing, where sensor input is a
SAO:Item subclass and sensor input processing
is a SAO:Function subclass of the SensorProcessor
class.

Finally, for each of the already modeled categories the
process is iterated from the second step following a top-down
or bottom-up approach to further assign subcategories.
By focusing on a set of clearly defined concept categories,
we avoid to restrict knowledge extraction only to specific
categorical concepts, while the effort to develop an initial
knowledge base can be limited.

B. REQUIREMENT BOILERPLATE ONTOLOGY (RBO)
RBO in Fig. 10 encodes the elements of requirement specifi-
cations in a boilerplate form, like in the Examples 1 and 2.
Our boilerplates combine at most three clauses:
o Prefix, which specifies a stimulation or a condition,
« Main that specifies an expected action or state and
e Suffix,whichisused to specify additional constraints
to the expected action.

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

TABLE 3. Boilerplate grammar.

TABLE 5. Notation used in the boilerplate grammar.

<boilerplate> [<prefix>] <main> [<suffix>]

<main> M1 | M2 | M3 | M4 |M5|M6|M7|M8 |
M9 | MI10 | MI1 |M12 | M13 | M14 | M15 |
Mil6

<prefix> = <prefix> <logic connective>

<simple prefix> | <simple prefix>
P1|P2|P3

<suffix> <logic connective>

<simple suffix> | <simple suffix>
S1|S2|S3|S4[S5]S6

<logical expression> <logic connective>
<logical expression> |

<state value constraint> |

<occurring functionality>

item is stateValue |

system state is stateValue
system/function sets [<quantifier>] item |
system/function sends [<quantifier>] item |
system/function receives [<quantifier>] item |
system/function ingests flow |
system/function emits flow |

system performs function

or | and | xor

<simple prefix>
<suffix>

<simple suffix>
<logical expression>

<state value constraint> =

<occurring functionality> =

<logic connective> =

TABLE 4. Auxiliary grammar.

<quantifier>

<affirmative>
<non-numerical-affirmative>
<numerical-affirmative>

<affirmative> | <negative> | <closed-interval>
<non-numerical-affirmative> | <numerical-affirmative>
all | only

more than <numerical> | less than <numerical> |
exactly <numerical>

none | no

at least <numerical> | at most <numerical>

<number> [<number-unit>]

<negative>
<closed-interval>
<numerical>

<number> 1]2]3]4]5]ete.
<number-unit> <time-unit> | meters | kilometers | volt | etc
<time-unit> seconds | minutes | milliseconds | etc

Definition of boilerplates as a sequence of clauses offers
modularity, simplifies the problem of boilerplate composi-
tion (expressiveness), allows for a unique interpretation of
requirements and facilitates automated reasoning for seman-
tic analysis using the relevant ontology-based technologies.
A requirement shall always have a main clause.

The main RBO classes are:

o the Placeholder class representing:

— the SAO ontology concepts that are used in boiler-
plate placeholders,
— the fixed elements of the boilerplate syntax (e.g. if,
asSoonAs, asLongAs, or, and and xor), and
— classes/instances of synonyms and antonyms (e.g.
send, receive, transmit etc.) defined in the
LO.
« the RegDescriptor class that encodes the used boil-
erplate clauses.
Relations between RBO’s classes have been defined in
first-order logic (online Appendix A.2).

1) BOILERPLATES SYNTAX AND SEMANTICS

Tables 3 and 4 show the boilerplate language syntax, in a
context-free grammar (the notation for the grammar rules
is defined in Table 5). In general, the grammar is left-
associative; for the rules with ambiguous associativity (e.g.
the <logical expression> rule), left-associativity is imposed
by the parser.

VOLUME 10, 2022

Symbol Meaning
[...] optional
e | e or
<> non-terminal symbol (or boilerplate placeholder)
bold string | token with ontologically defined semantics
string token with string ontological representation

TABLE 6. Prefix templates syntax.

ID Template Explanation
Expresses a logical condition.
Paraphrases: in case, provided
that, on condition that
Expresses a temporal stimulation
concerned with the point in time
of an completed occurring
functionality.

Paraphrases: in the moment,
immediately, once

Expresses a temporal condition
concerned with a period.

The prefix clause and the

main clause take place
simultaneously.

Paraphrases: meanwhile

P1 | If/Unless <logical expression>

P2 | Assoon as <occurring functionality>

P3 | Aslong as <occurring functionality>

TABLE 7. Suffix templates syntax.

ID Template

S1 (<numerical-affirmative> | <closed-interval>) [per <time-unit>]
S2 | (after/before) flow

$3 [every/for a period of/within/for at least]

<number> <time-unit> [from flow]

S4 | at the beginning/at the end

S5 | ateven intervals

S6 | (concurrently with / sequentially to) function

Table 8 introduces the syntax for the main clause,
which may be used for system requirements referring to
a System/Function (templates M1-M7), for specifying
implementation details for a System/Interface (tem-
plates M8-M10) or for subordinate design specifications
(templates M11-M16). The optional existence of not in main
constrains a requirement’s semantics, i.e. it affects seman-
tic reasoning, but doesn’t have any impact to the resulting
semantic model.

As shown in the grammar rule for <prefix> in Table 3,
a requirement may have a simple prefix or possibly multi-
ple prefixes in sequence, separated with a logic connective
(e.g. and, or). The same is true for a requirement suffix.
The syntax of prefixes/suffixes is defined in Tables 6 and 7
respectively. When specifying constraints using suffix(es) we
need a flexible syntax for the <quantifier>s (Table 4) that
promotes expressiveness, while admitting a clear semantics.
To this end, following the guidelines of [85], the quanti-
fier definitions are grouped into three distinct syntax cat-
egories, namely <affirmative>, <negative> and <closed-
interval>. The current set of templates does not use all pos-
sible quantifiers, but the syntax structure clearly foresees the
need for more templates to address evolving specification
needs.

84103

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

[If sensor processing unit receives a TC{8,1) setup command, the sensor processing unit shall execute sensor’s set-up procedure.J

hasPrefi

£ 3

hasMain

£ 3

[Fi: If sensor processing unit receives a TC(8,1) setup commandj [M?: the sensor processing unit shall execute sensor's set-up prucedurej

l - |

i i |

<System> . " <Flow> <System > r <Function=>
Sensor processing unit Ingests TC(8,1) setup command Sensor processing unit periorm set-up procedure
FIGURE 11. Example requirement and its decomposition.
TABLE 8. Main templates syntax.
<System=> <Flow>
Iy Templ Explanation sensor processing unit TC(8,1) setup command
. o Sets item
Mi §ystem/functwn shall [not] set [<quantifier>] Paraphrases: initiate, reset,
item [to stateValue] R
update E) Function1: ingests
S erforms— . —
system/function shall [not] sct state to Sets state (o value P ingests TC[8,1) setup command
M2 Paraphrases: initiate, reset,
stateValue
update
M3 | System/function shall [not] send [<quantifier>] Sends item FIGURE 12. Prefix representation for the requirement in Fig. 11.
item Paraphrases: forward
M4 system/function shall [not] receive [<quantifier>] | Receives item
item Paraphrases: accept, acquire

Ingests flow

Paraphrases: get

Emits flow

Paraphrases: produce
System requirement
Paraphrases: execute
Function invokes another
function

Paraphrases: call, request
Presents interface

M5 system/function shall [not] ingest flow

M6 system/function shall [not] emit flow

M7 system shall [not] perform function

M8 function shall [not] invoke function

system shall [not] present interface

M9 [to system] Paraphrases: provide
system/interface shall [not] transfer Transfers Tr.aversmngOncepl
MI10 . Paraphrases: transmit,
flow/item
broadcast
Mil system shall [not] interact with system System requirement expressing
[using <connection>] interface interaction
system shall [not] have state state System requirement expressing
MI12 .
[with values stateSet] system modes
Mi3 | System state stateValue shall [not] System requirement expressing
have substate state [with values stateSet] system sub modes per mode
system item shall [not] take values from System requirement expressing
Mi14 .
stateSet item stateSet
M5 system item shall [not] System requirement expressing

be composed from item
M16 | system shall [not] contain system

item decomposition stateSet
System decomposition

To further explain the prefixes introduced in Table 6,
P2 is appropriate for specifying a temporal relation for an
<occurring functionality>, while P1 for specifying a log-
ical condition. At the semantic level, there is no differ-
ence in representing a temporal or a logical condition (or
stimulation).

Not all possible combinations of prefix, main and suf-
fix templates are meaningful. Templates M1-M7 refer to
the system’s expected behavior, and they can be combined
with any prefix and suffix, as opposed to other main tem-
plates, which introduce the system’s architectural details
(e.g. state or system decomposition, connections, interfaces
etc.).

The requirement in Fig. 11 is expressed by combining M7
with the P1 prefix. The figure shows the terminal symbols
of the boilerplate grammar and how each ReqDescriptor
clause is decomposed into instances of SAO concepts. Specif-
ically, this requirement expresses that a System receives a
Flow and then performs a System’s Function.

84104

performs <Function>
‘ set-up procedure

T

. <Flow>

<System> invokes ow

Sensor processing unit TC(8,1) setup command
Function1: '[

performs— —ingests

ingests TC[8,1) setup command

FIGURE 13. Representation of the requirement in Fig. 11.

From Section III-B, it is evident that the semantics of the
boilerplate language is closely related to the SAO concept
relationships. In many cases, the boilerplate syntax entails the
creation of additional relationships between the placeholder
terms, by running appropriate SHACL rules. These cases con-
cern with the following three specification patterns:

o Perform relationship

This pattern refers to main/prefix templates of the form:

system verb (item/flow/state)

where verb is represented by one of the relevant proper-
ties (i.e. ingest, emits, send, receive and set)
defined in SAO. Such a pattern entails the creation of
two SAO relations:

— a System is related to a Function through the
performs property,

— a Function is related to a Traversing
Concept or a StateConcept through a SAO
property relevant to the used <verb>.

For the example requirement in Fig. 11, the addi-
tional relations for the prefix are shown in Fig. 12:
System:sensor processing unit isrelated to
Functionl:ingests TC (8, 1) setup command
through the performs property, while the latter
is related to Flow:TC(8,1) setup command

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

[If sensor processing unit is enabled, the sensor processing unit shall process data.}

hasMain

l hasPrefi

[If sensor processing unit state is ENABLEDJ

| |

|

[the sensor processing unit shall perform data processingj

]

<StateValue>
ENABLED

«<System>
sensor processing unit

<System:> <Function>

! 3 perform .
sensor processing unit data processig

FIGURE 14. Example requirement with state value constraint.

<Function>

performs—H]
data processing

<System> isAwvailableln

sensor processing unit

|

hasStat <StateValue> | belonesTo
3 la e ENABLED gl
«State> <StateSet>

—takesValueFrom—

state ENABLED/DISABLED

FIGURE 15. Representation of the requirement in Fig. 14.

through the ingests property. Functionl is not
explicitly mentioned, but it is an inferred individual of
the Function:ingests class.
« Invocation relationship
When a prefix defines an <occurring functionality>,
a relation through the SAO property invokes will
be created, to reflect the fact that a Function
is invoked as a response to a flow/item stim-
uli. Fig. 13 shows how this relation is created, for
the example in Fig. 11: the new relationship repre-
sents the invocation of the functionality of the main
template (Function:set—-up procedure) by the
<occurring functionality> in the prefix (Functionl).
o Availability relationship

A <state value constraint> in a boilerplate prefix
implies an i sAvailableIn relation. In this way, the
state mentioned in the prefix is related with the func-
tionality specified in the main clause. An example is
the requirement in Fig. 14 that is decomposed into a
prefix and a main clause. This requirement expresses
the fact that a system Stateisina StatevValue, and
performs a system’s Funct ion (Fig. 15).

C. LEXICOGRAPHIC ONTOLOGY (LO)

LO is defined independently from the system to be specified
and therefore, it is a domain-independent ontology. It encodes
in the RDF/OWL language synonymous and antonymous
lexical units, which can be used in boilerplate placeholders.

VOLUME 10, 2022

SystemRequireme
nt

InterfaceRequi
ement
e CpagueRequieme
-l L
% AmbiguousRequir
v e ement
& @ Requirement

D TRy e IncompleleRequi
\ 5 rement
P \ g
L InconsistentReq
uirement

RedundantRequir
ement

FIGURE 16. Requirement classification.

FunctionalRequi
rement

&

* @ owl:Thing

For example, as shown in Table 8, the lexical unit
“receive’” is synonymous to ‘“‘accept” and ‘‘acquire’;
when the latter are used in boilerplate placeholders, they
are considered as semantically similar to “receive” and
dissimilar to ““send” (and its synonym ‘‘forward’’). Seman-
tic similarity/dissimilarity is used in consistency analysis
(Section V-B).

The LO consists of lexical units taken from two public
ontologies, namely the Gellish English Dictionary [86] and
the WordNet Lexical Database [87].

D. REQUIREMENTS DEFINITION ONTOLOGY (RDO)

RDO defines the Requirement class and provides the
framework, in which the classification of requirements and
their semantic analysis takes place. It imports the SAQO,
RBO, LO and DSO ontologies and defines the mappings and
subclassof relationships between them, while preserving
their semantics.

The relations of RDO concepts have been defined
in first-order logic (online Appendix A.3). For the pur-
pose of classifying the erroneous requirements, when
running the semantic analyses of Section V, the fol-
lowing subclasses of the Requirement class have
been defined (Fig. 16): IncompleteRequirement,
InconsistentRequirement,AmbiguousRequire-
ment, NoisyRequirement, OpaqueRequirement
and RedundantRequirement.

84105

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

V. SEMANTIC ANALYSIS

The ontology architecture and the semantic representation
of boilerplate-based requirements, make it possible to detect
flaws in specifications by running appropriate SHACL infer-
ence rules [84] based on SPARQL [88]. The semantic analy-

ses that have been implemented are:
o (In-)Completeness. Detect requirements that are

incomplete or missing.

o (In-)Consistency. Detect requirements with similar boil-
erplates that specify in corresponding placeholders dif-
ferent instances or use contradicting words or different
quantifiers (e.g. numbers or number units).

o Ambiguity. Detect requirements that have in their boil-
erplate placeholders values, which can be replaced with
instances of more concrete subclasses.

e Noise. Detect requirements that refer to concepts/
instances that are undefined in existing domain
ontologies.

e Opacity. Detect requirements that specify irrelevant
instances of concepts in their boilerplate placeholders
for the subject.

e Redundancy. Detect requirements with the same boiler-
plates that specify semantically equivalent values to their
placeholders.

A. (IN-)COMPLETENESS

The completeness of a set of requirements is assessed from
two different perspectives. From an infernal point of view,
incomplete requirements are those that omit to refer to spe-
cific instances, in some of their boilerplate placeholders.
From an external completeness perspective, incompleteness
occurs when there are requirements that refer to instances that
have not yet been specified in any other requirement (missing
requirements). The SHACL rules that implement this analy-
sis are presented in the online Appendix C.1. An aggregate
indicator of incompleteness is also computed:

ReqCount;
q incomplete % 100

ReqCountpyy

where ReqCountincompiere denotes the number of incom-
plete requirements and ReqCountpy,; is the total number of
requirements. If the set of requirements is empty, then the
reported incompleteness is 0 %.

B. (IN-)CONSISTENCY

A set of requirements is consistent when there are no con-
flicts between requirements, for every possible pair of them.
Conlflicts occur, when the same boilerplate placeholders in
a pair have been assigned diverse values. The SHACL rules
that implement this analysis are presented in the online
Appendix C.2. A metric that summarizes the findings is also
computed:

ReqCountinconsistent %100

ReqCountpysy

where ReqCountinconsistens denotes the number of all incon-
sistent requirements and ReqCountry, is the total number of

84106

requirements. If the set of requirements is empty, the reported
inconsistency is 0 %.

C. AMBIGUITY

Ambiguity refers to requirements, which have boilerplate
placeholders with values that can be replaced with instances
of more concrete subclasses. The SHACL rules that imple-
ment this analysis are presented in the online Appendix C.3.
A metric that quantifies existing ambiguity is computed as
follows:

Reqcounlambiguous

* 100
ReqCountryq

where ReqCountympiguous denotes the number of ambigu-
ous requirements and ReqCounty,, is the total number of
requirements. If the set of requirements is empty, then the
reported ambiguity is 0 %.

D. NOISE

Noise refers to requirements that specify a boilerplate place-

holder value, which is not an instance of a domain ontol-

ogy class (i.e. a term that is not defined in existing domain

ontologies). The SHACL rules that implement this analysis

are presented in the online Appendix C.4.

A metric of existing noise is computed as follows:

M % 100
ReqCountryar

with ReqCounty,sy is the number of noisy requirements and

ReqCountryy the total number of requirements. If the set of

requirements is empty, then the reported noise is 0 %.

E. OPACITY
Opacity is concerned with requirements specifying terms that
are irrelevant (i.e. there is no SAO dependency) to the require-
ment subject. The SHACL rules that implement this analysis
are presented in the online Appendix C.5
A metric of existing opacity is computed:
ReqCountopague 100
ReqCountpyy

where ReqCountpaque is the number of opaque requirements
and ReqCountpyy is the total number of requirements. If the
set of requirements is empty, the reported opacity measure-
ment is 0 %.

F. REDUNDANCY

Redundant specifications in a set of requirements occur,
when for the same subject, two corresponding boilerplate
placeholders are assigned semantically equivalent instances
or the same quantifiers (e.g. numbers and number units).
The SHACL rules for this analysis are presented in the
online Appendix C.6. A metric of redundancy is computed
as follows:

ReqCountequndant

* 100
ReqCountpyy

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

where ReqCountequndan: denotes the number of redundant
requirements and ReqCountry, is the total number of
requirements. If the set of requirements is empty, then the
reported redundancy is 0 %.

VI. TACIT KNOWLEDGE EXTRACTION

The discovery of abstract categories in a system domain
(cf. Section IV-A) and the identification of their relationships
are complex tasks, due to the need to apply techniques of
generalization and inference. We introduce here a practical
approach, called relatedness analysis, to aid the retrieval of
latent semantic connections from knowledge that is defined
either in the domain ontologies or in the requirements. The
findings of this analysis are likely to uncover tacit knowledge,
which should be taken into account, in order to improve the
overall semantic coverage of the domain or the completeness
of the requirements specification.

In essence, for any two terms we estimate the “‘closeness”
of their semantic relationships using weights that depend on
the type of their SAO properties. The semantic relatedness of
any two terms is defined as follows:

0 if no SAO property relates ¢; with
Rele ¢, = ¢j transitively

Wei/er otherwise

where W,, /¢, is the weight for term ¢ = ¢; relative to ¢y = ¢;
with k being the index of ¢; in the minimal path from ¢;. The
weight is computed using the recursive definition:

Weyep =1
Weyjep = 1/a
Wewser = A/ @OWe,_ ¢,

where « is assigned values that are prime numbers to ensure
a unique product that quantifies the semantic relatedness of
any two in a group of terms.

The highest weight («¢¢ = 2) is assigned to
all properties with meaning that relates a Function
with TraversingConcepts(send/receivel/ingests/
emits), since they result in the inference of Interfaces,
Connectionsand associated properties (cf. Section II1-B4).
The immediately lower weight (¢« = 3) is assigned to prop-
erties with decomposition meaning (isDecomposedTo,
invokes, contains or the inverse isComposedOf/
isInvokedBy/isContainedIn), because any such
information enriches our semantic knowledge for a system’s
design. The next lower weight (@ = 5) is assigned to the
only remaining property that relates a Function with a
TraversingConcept (set or the inverse isSetBy).
The remaining weights are:

o o = 7 if the property relating ¢, and ¢,,—1 is perform/
present or their inverse (isPerformedBy
/isPresentedBy respectively)

e ¢ = 11 if the property relating ¢, with ¢,_; is
transfer oritsinverse isTransferedBy

o o = 13 if the property relating ¢, with ¢,—1 is joins

VOLUME 10, 2022

<System>
Attitud eErrorGenerator

perform:

Function1: sets attitude
errors

sets

<ltem>
attitude errors

isDecomposedTo isDecomposedTo
o

et ||

<ltem>
rate error vector

error quaternion

<ltem>
RWU torque demands
T

sets receives

perfurms{ %per{urms%{

FIGURE 17. SAO representation of requirements in Example 3.

Function2: receives
error quaternion

Function3: sets RWU
torque demands

<System>
AttitudeController

e ¢ = 17 if the property relating ¢, with ¢,_; is
isAvailablelIn
e ¢ = 19 if the property relating ¢, with ¢,—; is
hasState orits inverse isStateOf
o o = 23 if the property relating ¢, with ¢,—1 denotes any
other relationship
We consider as less important all properties related with
StateConcept, due to the need to precede the informa-
tion extraction for all asymmetric producer/consumer rela-
tionships defined in SAO, from any state-related information.
Example 3: Fig. 17 depicts the graph of the SAO proper-
ties, for the following set of requirements:

MIl: <System:Attitude Error Generator>
shall set <Item:Attitude errors>
<Item:Attitude errors> shall be composed
from <Item:attitude error quaternion>
and <Item:rate error vector>
M4: <System:Attitude Controller> shall rece-

ive <Item:attitude error quaternion>
MIl: <System:Attitude Controller> shall set
<Item:reaction wheel unit torque

MI15:

demands>

The semantic relatedness values for all pairs of terms found
in boilerplate placeholders are shown in Table 9.

Algorithm 1 introduces a knowledge extraction process to
spot pairs of terms that an expert could potentially decide to
relate through a missing SAO property. Discovery of such
pairs takes place by traversing for each term the next closely
related term through an existing property, until no other
semantic assumptions can be accessed. This results in dis-
covering tacit knowledge, which should either be included
in a domain ontology or appended as additional require-
ment(s). The process depends on weighted semantic related-
ness properties that can be adapted or used with other weights,
if needed, in order to better suit a particular system context.
Application of Algorithm 1 is illustrated in Example 4, for a
set of requirements from the Eagle-Eye case study.

VII. THE EAGLE-EYE CASE STUDY

Eagle-Eye [7] is a virtual satellite for earth observation,
which carries a payload (called “GoldenEye)” consisting of
a high-resolution imaging camera. The Eagle Eye system is
decomposed into the subsystems shown in Fig. 18: (i) Data

84107

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

TABLE 9. Semantic relatedness of all terms in the requirements of Example 3.

RWU 1
torque 0 0 0 0 0 0 0 - 1
demands 5
i 1 1
Function3 0 0 0 0 0 0 1 1 1
(set) 7 5
Attitude 1 1 1 11
Controller 0 0 0 7 * 2 0 7 l 7 7 * 5
i 1 1
FunctionZ 0 0 0 - 0 1 Z 0 0
(receive) 2 7
1 1T 1 I 1 1 1 T
rate error — k= x — — % = — — % — 1 0 0 0 0
vector 7 5 3 5 3 3 3 3
error 1 1T 1 I 1 1 T 1 1 T T
. — ok — % — — ok — = 1 — % = — — %k = 0 0
quaternion 71513 513 3 - 313 2 7 2
attitude e 1 1 1 1 0 0 0 0
errors 7 5 5 3 3
i 1 1 T 1 T 1
Functionl 1 1 1 R s 0 0 0 0
(set) 7 5 5 3 5 3
Attitude
Error 1 1 1 * l l * l * l 1 l 0 0 0 0
Generator 7 705 75 3 705
Attitude Functionl attitude | error rate Function2 | Attitude Function3 RWU
Error . error . torque
(set) errors quaternion (receive) Controller (set)
Generator vector demands

Algorithm 1 Discovery of Latent Semantic Relations

Input: Semantic relatedness (sr) matrix M

Output: Potentially missing SAO property relating two existing terms

: SRy, < highest sr of matrix, found in M[c;, ¢;], such that sr # 1
: SR < SR,

<«

: k < highest sr in ¢/, with sr < SRy, found in M[¢’, ¢j]

/ .
C < C i
end while

: PFOUND <—false
if SR, # 0 then

AR O O o e

—_ =
—_ o

1 and ¢/, ¢; of Step 8.

12: Prounp < choose i
false otherwise

13: if (Proynp = true) then

14: return true
15: end if
16: end if

17: if ((SRy = 0) or (Prounp = false)) then

true if property is approved by domain expert

18: SRj, < highest sr < k in row ¢’ of Step 4, not previously selected

19: if (SR, # 0) then

20: goto 5

21: else

22: SRy, < highest sr of matrix, found in M|[c;, ¢;], such that sr < SR
23: if (SR, = 0) then

24: return false

25: else

26: goto 2

27: end if

28: end if

29: end if

while ((SR;, # minimum sr in row ¢’) and (SAO property exists that relates ¢’ with ¢;)) do

SR, < highest sr in row ¢’ found in M [/, ¢j], not previously selected, with s < SR,

Potentially missing property (if not contradicting with existing property) for any SAO valid combination of ¢;, ¢; of Step

Management System (DMS), (ii)) RF communication, (iii)
thermal subsystem, (iv) power subsystem, (v) AOCS, (vi)
sensors/actuators and (vii) payload.

84108

The DMS controls and processes commands and data orig-
inated from the equipment, the ground and the Golden Eye
payload. DMS also handles all the data flow, data storage

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

Data Management
Subsystem

Payload High
— . SSMM 1553 RT- X-band
speed link

GoldenEye #1553 RT——{ comMmu }171553 RT-

1553 RT.

RF Communication

S-band | | AOCS ‘

1553 RT- T
nalo

——1553 RT

Power Sensors
subsystem Thermal
subsystem

~{ Temp. sensors
Battery -
~'{ Heaters

PCDU -

Actuators

Sallar Array GPS

Reaction wheels }1—

| Thrusters }"

| Magnetorquer }t—

Gyros

Sun sensor

N I I

= Star tracker

Magnetometer

I

FIGURE 18. EagleEye virtual spacecraft architecture.

and data encryption/decryption between the subsystems. The
RF Communication receives commands from the ground and
transmits the satellite status (S-Band) and the payload data
(X-Band) to the ground. The Power Control and Distribution
Unit (PCDU) of the power subsystem controls the onboard
power generated by the solar array cells. For energy storage,
Eagle Eye uses batteries. The AOCS controls the attitude
and position of the satellite, and interacts with: (i) sensors
(Global Positioning System - GPS, Gyroscopes, Sun sensors,
Star tracker and Magnetometer), and (ii) actuators (Reaction
wheels, Thrusters and Magnetorquer).

The thermal subsystem is passive during nominal opera-
tions. Heaters are only activated in case of contingencies. The
GoldenEye imaging unit transfers science data to the Solid
State Mass Memory (SSMM), where they are buffered. The
SSMM transfers the data to the X-band unit upon a command
received from the Central Data Management Unit (CDMU).
All on-board I/O for EagleEye are conducted across a single
MIL-STD-1553 bus.

Eagle-Eye has been developed in a number of ESA studies
as a workbench for evaluating new tools and techniques. Our
case study includes a list of 65 natural language requirements
of the following types (Table 10):

« functional requirements (F)

« performance requirements (P)

« interface requirements (I)

« operational requirements (O)

« design and implementation requirements (D)

To apply our boilerplate syntax we had to decompose the
natural language requirements into 234 requirements. For
example, the design requirement shown in Table 11 had to
be decomposed into six distinct boilerplates.

It is important to emphasize the role of the AOCS DSO,
described in Section I'V-A, which facilitated the specification
and the semantic representation of the AOCS-related require-
ments. The non-AOCS requirements were not the same
easy to decompose and represent them using appropriate

VOLUME 10, 2022

TABLE 10. Eagle-Eye system requirements per subsystem.

System/subsystem Natural language requirements ~ Boilerplate

requirements

8
30

EagleEye 3

RF Communcation 6

Power 3 8

AOCS 2 97

Sensors 2 15
1
2
5
2
2

S]

Actuators 7
Thermal 4
Payload 9
Data Management 47
Failure Detection Isolation Recovery (FDIR) 9

ontology concepts. Since the relevant expertise did not exist
in the respective domains, the DSOs had to be updated,
while expressing the requirements using the boilerplate
placeholders. Still, at the end it was not possible to specify
all relationships between the additional concepts included in
the DSOs.

The semantic analysis of Section V yielded the results
shown in Table 12. No conflicts were found, which is
explained by the fact that these requirements are specifica-
tions at a relatively high level of abstraction. As expected,
no internal incompleteness was found, since we had to update
the DSOs with additional concepts, relevant to the values
assigned in the boilerplate placeholders. On the other hand,
the external incompleteness is relatively high, due to sev-
eral concepts that are referred only once, while our DSOs
cover sufficiently only the AOCS. Noise analysis is also
adversely affected, for the same reason. Ambiguity is rela-
tively low, but it reflects only the AOCS requirements, which
include concepts that can be replaced by subclasses of them.
Finally, the opacity score demonstrates the partial coverage
of domain-specific knowledge (i.e. for the AOCS), in relation
with the knowledge needed to cover all satellite subsystems.

The abstraction level of requirements has the following
impact. If the requirements are at a relatively high level of
abstraction, i.e. they are not detailed to the lowest level of
subsystem decomposition, as is the case of our AOCS require-
ments, external incompleteness may seem to be high, with-
out necessarily implying a real case of missing information.
In this case, we expect that the requirements may be refined
in subsequent iterations of allocating them to subsystem com-
ponents.

Finally, it is worth to highlight the important role of the
ambiguity analysis in guiding the refinement of require-
ments. Table 13 shows a requirement that refers to Eagle-
eye’s AOCS system. In this case, <Item:absolute
pointing error> and <Item:absolute measu-
rement error> were already defined within the Error
Generation and Controller subsystems of the AOCS
domain ontology (Fig. 9). Therefore, the ambiguity analysis
reported that <System:AOCS> can be replaced by the
respective subsystems, thus showing how these requirements
can be refined.

The semantic relatedness analysis of Section VI was also
applied, in an attempt to discover additional knowledge,
in particular for the system domains in which we had only

84109

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

TABLE 11. Eagle Eye subsystems requirement.

Requirement Type | Boilerplate requirements

The Eagle Eye shall provide

the following subsystems: MI16: <System:Eagle Eye> shall contain <System:Communication>

- Communication M16: <System:Eagle Eye> shall contain <System:Power>

- Power D MI16: <System:Eagle Eye> shall contain <System:AOCS>

- AOCS MI16: <System:Eagle Eye> shall contain <System:Thermal>

- Thermal M16: <System:Eagle Eye> shall contain <System:DMS>

- DMS MI16: <System:Eagle Eye> shall contain <System:Golden Eye payload>
- Golden Eye payload

TABLE 12. Eagle-Eye semantic analysis results.

Analysis Percentage Ideal
Incompleteness (internal) 0% 0%
Incompleteness (external) 34% 0%
Inconsistencies 0% 0%
Ambiguity 8% 0%
Noise 80% 0%
Opacity 3% 0%
Redundancy 0% 0%
<System = perform Functionl:
Communication (a=7) sends
I
contain send
(a=3) (a=2)
| I
<System= <ltem>
5-Band satellite status
[data and
present scientific data
(2=7)
Interfacel: | transfer | <ltem>
transfers (a=11) telemetry data

FIGURE 19. SAO representation of requirements in Example 4.

limited expertise. Example 4 refers to a small subset of
requirements for satellite communication, which is not sup-
ported by a DSO and points out a common problem in
requirements specification: functionality defined at different
levels of abstraction.

Example 4: We consider the following set of requirements
and the graph in Fig. 19, which shows the SAO property
assignments for the terms in the placeholders, with their cor-
responding weights:

(EE-MR-0160_7) M3: <System:Communicat
ion> shall send <Item:satellite status
data and scientific data>
(EE-MR-0170_1) MIl6:<System:Communicati
on> shall contain <System:S—- band>
(EE-MR-0170_3) MI10:<System: S-band> shall
transfer <ITtem: telemetry data>

The semantic relatedness of the mentioned terms is shown
in Table 14.

84110

The analysis of Algorithm 1 starts from the high-
est semantic relatedness (step 1), which is given in
cell [satellite status data and scientific
data, Functionl]. In the row for Functionl, the
highest semantic relatedness that is selected next (step 4)
is found in the Communication column. Finally,
in the Communication row, the semantic relatedness
value corresponding to satellite status data and
scientific data cannot be selected and the next high-
est value that is selected is found in column Interfacel.
Table 15 shows the selected semantic relatedness values.

It is evident that no SAO property exists that relates
Communication with Interfacel, therefore the while
loop in step 5 exits and the algorithm yields the following
candidate properties:

a. Communication performs Functionl

b. Communication presents Interfacel

c. Interfacel transfers satellite status

data and scientific data

The pair Communication and satellite status
data and scientific dataisexcluded from the list,
since no SAO property can relate a System with an Ttem.
The first candidate property already exists, whereas the sec-
ond property is not valid, since the Communication sys-
tem cannot present Interfacel, whichis an interface of its
S—-Band subsystem (a system cannot present the same inter-
face with its subsystem). The last candidate property, accord-
ing to which Interfacel transfers the satellite
status data and scientific data, can be a
valid missing property if the telemetry data con-
tains or is contained in satellite status data and
scientific data.

If none of the candidate properties is valid, based on the
domain expert knowledge, then according to step 17 of Algo-
rithm 1, the next lower semantic relatedness value is selected,
in order to retrieve additional candidate properties.

As shown in Table 16, this value is given in
[Functionl,S-Band], the analysis diverts to step 5 and
yields (without entering in the while loop) the following
candidate property:

S-Band performs Functionl
This property denotes that the functionality specified in EE-
MR-0160_7 could be performed at a lower system level,
such that the transmission of telemetry data is done by the
Communication system through the S-Band.

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

TABLE 13. Eagle-Eye AOCS performance requirement.

the range of 100 prad
- Absolute pointing error in the
range of 1 mrad

Requirement Type | Decomposition

M3: < :A > shall s < ical-affi i :less th
The AOCS subsystem shall 3 Sy;tem 0OCS> shall send numerical-a irmative:less than
rovide performances such as: <numerical:<number:100><number_unit:purad>>>
P o <Item:absolute measurement error>
- Absolute measurement error in P

M3: <System:AOCS> shall send <numerical-affirmative:less than
<numerical:<number:1><number_unit :mrad>>>
<Item:absolute pointing error>

TABLE 14. Semantic relatedness of all terms in the requirements of Example 4.

]) T T T T T T T T 1
Communication 1 = =% — = — % = —k =k —
7 7_2 3 3 7 3 7 11
Functionl 1 1 I 1 I 1T 1 I 1T 1T 1
= 1 - — % — — % — % — — ok — ok — ok —
(send) 7 2 73 7 3 7 7 3 7 11
satellite status 11 1 11 1|1 1 1 1|1 1 1 1 1
data and — ok — = 1 — % =k — — ok — ok — k — —k =k — ok — % —
scientific data 27 2 2 7 3|2 7 3 7|2 7 3 7 1
T T T T T T T T 1
S-Band = — % — — ok — % — 1 = — ok —
3 3 7 3 7 2 7 7 11
Interfacel T 1 I 1T 1 I 1T 1T 1 1
— % = — % — % — — ok — ok — ok — - 1 —
(transfer) 7 3 7 3 7 7 3 7 2 7 11
T T 1T T T T 1T T T T T 1T T 1 T
telemetry data — ok ok — —— ok =k — ok — ok ok — k= k — — %k — — 1
11 7 3 11 7 3 7 11 7 3 7 2 11 7 11
Functionl satellite status Interfacel
Communication data and S-Band telemetry data
(send) N L. (transfer)
scientific data

TABLE 15. Discovery of latent semantic relations for Example 4 (1).

Row Column Property SRy
satellite status 1
data and Functionl send =
scientific data 2
I
Functionl Communication | perform ?

T T

Communication Interfacel - 5 * ?

TABLE 16. Discovery of latent semantic relations for Example 4 (2).

Row Column Property SRy,
satellite status 1
data and Functionl send -
scientific data 2
Functionl S—-Band - 1 * 1
7 3

VIIl. EXPERIMENTAL EVALUATION

A. WEB-BASED TOOL FOR REQUIREMENTS
SPECIFICATION AND ANALYSIS

A web-based tool was developed to automate the specifi-
cation, the semantic analysis and editing of system require-
ments based on the methodology proposed and the underlying
ontologies. No ontology engineering skills are required for
the tool user; it is not even necessary to have a basic under-
standing of the ontology technology.

The tool provides essential functionality for adding, editing
and deleting boilerplate requirements based on the overall
ontology architecture and the existing DSOs. The user does
not need to be knowledgeable for the available templates
in the boilerplate language (cf. Section IV-B1). Instead, the
right boilerplate template is automatically chosen based on
the placeholder terms that the user types or selects. If there
is no matching boilerplate, a warning is raised. A browsing
window is also provided, while editing a requirement, for

VOLUME 10, 2022

exploring the available classes in the existing DSOs. The
user can create new instances for any of the browsed classes,
in order to use them in requirement specifications.

Once the user has specified a set of requirements, it is
possible to run the semantic analysis that flags those require-
ments, which are found to contribute to any of the metrics
for the semantic issues that are checked (cf. Section V). The
semantic analysis runs through invoking the Apache Jena
APL* According to the feedback provided (e.g. an inconsis-
tency case or incompleteness), the user can edit a requirement
or create additional requirement(s) towards improving the
quality of the requirements specified.

The tool interface consists of two windows:

o The requirement entry/editing window (Fig. 20),
through which it is possible to add, edit or delete a
boilerplate-based requirement. Editing takes place by
selecting terms (instances) from the DSOs shown in the
right-hand side of the window; it is also possible to use
instances of the SAO classes, if no relevant DSO class is
found.

o The semantic analysis window (Fig. 21) that shows
all requirements specified in a project, along with the
results of the last semantic analysis run.

B. EXPERIMENT DESCRIPTION

The experiment aimed to retrieve empirical evidence on the
effectiveness and efficiency of the proposed method into
a real industrial context. The experiment took the form of
an observation case study, whose design is described here
according to the relevant template by Runeson et al. [89].

4Appache Jena: https://github.com/TopQuadrant/shacl.

84111

lEEEACC@SS K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

Projects Log out

Projects / Requirement List / Edit Requirement

Invalid instances thruster_actuator_commands

Start searching for a System, Function, etc.

Refers il f module d
ces
oot g5z
Subclasses
e Sukgous: Rpte Deik AOCSSoftware
e
et P
S o
ThrustingMode Logic connectivity
ControlSystem v
System : Softwar ElectricalPowerSystem v
P— v
ol bt = hlirstiost Vall HimhEntat TelecommunicationSystem -
biect: e ControlSystembata PropulsionSystem v
otcmsmen v
Find triples You can search the information that is in the DSOs for a specific input -
0 suffix Instances
Update Boilerplate Delete Boilerplate

FIGURE 20. Requirement entry window of the web-based tool for requirements specification and analysis.

Projects Logout

Projects / Requirement List

Search Add Requirement

o THe Pt wain
168 REQB Contolleraocs shall eceive Atttude.error

6 REQ Contolleraocs shall eceive Rate_error

0 Reaso Contolleraocs shallset ConroLTorque_Demand

172 REQ.52 ° Once aocs mode ThrustingMode (Commanding_aocs shall set thruster_actuator_commands
185 REQS3 wheel_actuator_commands

s reass @ aocs shallInteract ErorGeneraton_a0cs mil_std_1553 bus
s reass @ aocs shallInteractgyroscopes mil_s_1553_bus

w a0cs shalIteract fs.processor mil_std_1553_bus

Redundantequirement

OpaqueRequirement

NoisyRequirement

N. Requirements Complete Requirement
61 50

AmbiguousRequirement

InconsistentRequiram

Incomplete Requirement
n

FIGURE 21. Semantic analysis window of the web-based tool for requirements specification and analysis.

a: RESEARCH OBJECTIVES & RESEARCH QUESTIONS
According to the Goal - Question - Metric template [90], the
goal is to “analyse the methodology proposed for the purpose
of assessing it with respect to its effectiveness and efficiency
from the point of view of the requirement engineers, in the
context of the requirements formulation and semantic analysis
problem™.
To this end, three research questions (RQ) were posed:
RQI1. Are there important differences in the time needed by
the engineers, to complete a given requirements spec-
ification task using our methodology?

84112

RQ2.

To answer this question, the time (in hours) taken by
the subjects to complete the requirements specifica-
tion is recorded. This is an indication for the efficiency
of the methodology.

How effective is the methodology for assuring that
everyone has the same expectations, for the system
under design?

Based on a natural language description of the system
under design, we assess the overall understanding of
the methodology by focusing on the difficulty to iden-
tify, which boilerplates to use and which values to fill

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

TABLE 17. Subjects know-how and experience.

Engineer | Space domain expert | Requirement specification experience
El No 2 years
E2 No < 1 year
E3 Yes 10 years
E4 Yes 35 years
E5 Yes 40 years

in their placeholders. Also, we evaluate the extent of
semantic similarity between the requirement specifi-
cations delivered by the different subjects.

RQ3. How effective is the methodology towards improv-
ing a requirements specification, i.e. to find cases of
incompleteness, inconsistency etc. and revise the cor-
responding requirements?

We explore the effectivenes of the semantic analysis
in guiding the subjects to improve their requirements
specification. First, we count the number of specifica-
tion issues that are initially identified using the seman-
tic analysis. Afterwards, we measure the degree of
difficulty, for the subjects, to understand these issues
(if any) and the degree of difficulty to remove them.
The research questions focus on the evaluation of the
method itself, which depends on the web-based tool used by
the subjects. No questions were posed for the tool evaluation,
because this was left as future work, as the tool may be further
improved.

b: CASE STUDY AND SUBJECTS SELECTION

To answer questions RQ1 - RQ3, the selected subjects were
assigned the task of specifying requirements for the Orbit
Control System that is described in online Appendix B.
The subjects were prompted to use the AOCS DSO
(cf. Section IV-A) and the web-based tool, in order to spec-
ify requirements for the Orbit Control System, to analyze
them semantically and subsequently fix as many problems as
possible.

The subjects were five engineers with diverse domain
expertise and industrial experience in requirements specifica-
tion (Table 17). The reason for having selected subjects with
diverse domain knowledge was to assess the degree to which
the DSO is used and the impact of this to the effectiveness
metrics. The subjects did not know each other, so that they
could not discuss, while working on the specification task.

c: DATA COLLECTION
Each subject studies a brief introduction (4 pages) to the
SAO ontology and the boilerplate language, along with con-
crete examples on the use of specific boilerplates, for the
data, functional and behavioral perspectives when specifying
requirements (cf. Section III-B). Then, the case study descrip-
tion was given to them, as well as private access to the web-
based tool. No additional help was provided to the subjects,
while working on the case study.

After having completed their work, the questionnaire in
Fig. 22 was given to the subjects, in a personal inter-

VOLUME 10, 2022

« Method efficiency:

-- Time in hours to finish assignments (initial spec-
ification & improved specification based on the
semantic analysis results)

-- Estimate the overall understanding of the method-
ology (0 no understanding - 5 fully understood)

-- Estimate the difficulty to identify which boiler-
plates to use (0 not difficult - 5 very difficult)

-- Estimate the difficulty to identify the values for
the boilerplate placeholders (0 not difficult - 5
very difficult)

o Method effectiveness:

-- Estimate the number of specification issues iden-
tified through semantic analysis (number of issues
identified)

-- Estimate the difficulty to understand specification
issues through semantic analysis (0 not difficult -
5 very difficult)

-- Estimate the difficulty to remove specification
issues, if any, to improve the initial specification
(number of eliminated specification issues)

FIGURE 22. Questionnaire for research questions.

view, to collect qualitative data on the research questions
RQI - RQ3. The subjects were asked not only to answer the
linkert scale questionnaire, but also to convincingly justify
their answers. Moreover, the evaluator (designer of the SAO,
the boilerplate language and the DSO) asked questions on the
final specification outcome, in order to interpret the answers
of the subjects. The interviews were not recorded, but the
evaluator kept notes.

d: DATA ANALYSIS

Given the data collected from the interviews, the evaluator
performed simple quantitative and qualitative analyses. In the
quantitative analysis, the linkert scale values from the ques-
tionnaires were compared. For the qualitative analysis, the
evaluator studied the requirement specifications provided by
the subjects, in order to measure the number of common
boilerplate requirements, as well as to find errors in the spec-
ifications, due to a possible misuse of the DSO. Common
boilerplate requirements are considered those using the same
boilerplate templates, with all their placeholders filled in with
instances of the same ontology classes.

C. EXPERIMENTAL RESULTS
Table 18 reports the quantitative results on the metrics asso-
ciated with the answers to the questions of Fig. 22.

All subjects found the methodology easy to understand,
well documented and not particularly difficult to apply. Since
the boilerplate language is based on the SAO concepts and
relationships, we expected that this would affect its ease of
use. Actually, it was found that once the subjects became

84113

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

TABLE 18. Quantitative experimental results.

Question

Time for initial specification (in hours)
Time for improved specification (in hours)
Overall understanding

Boilerplate identification difficulty
Placeholder identification difficulty
Number of issues identified:

- Incompleteness

- Redundancy

- Noise

- Opacity

- Ambiguity

Difficulty to understand specification issues
Number of eliminated specification issues

E1 E2 E3 E4 E5
4:00 7:30 2:45 2:30: 2:00
1:00 0:30 0:10 | 0:10 0:10
4 5 5 4 4

1 1 1 1 1

2 2 1 1 1
12/64 | 7/70 5/80 | 5/75 4/73
16/64 | 4/70 0/80 | 0/75 0/73
0/64 0/70 0/80 | 0/75 0/73
3/64 8/70 0/80 | 0/75 0/73
0/64 0/70 0/80 | 0/75 0/73
2 3 2 2 2
17/31 10/20 | 5/5 5/5 4/4

familiarized with the concept relationships in SAO, it came
more natural to them to express requirements using the
language, without consulting the grammar notes provided.
In general, the subjects found ‘“boilerplates to be self-
explanatory” and several times during their interviews char-
acterized the language as highly “expressive’’. None of the
subjects mentioned any difficulty in identifying the place-
holder values to use in the boilerplates, but during data anal-
ysis, it was found that the two subjects with limited or no
domain expertise utilized less instances from the AOCS DSO
compared to the number of instances used by the domain
experts.

The semantic analysis results showed some opacity issues
in the specifications performed by the subjects with limited or
no domain expertise. These issues were attributed to incorrect
use of the instances in the AOCS DSO, which was confirmed
during the interview. Concretely, it was noted that ““the most
difficult part, while specifying the boilerplate requirements,
was to select the right placeholder values from the AOCS
DSO” and that they “would like to have more explanations
for the terms found in the domain”, which is also related
to the lack of domain knowledge, for these subjects. Also,
it was found that due to the existence of multiple classes and
subclasses in the AOCS DSO ontology and the abundance
of instances, the task to find the right instances was very
time-consuming and they did not manage to avoid making
mistakes.

For the subjects that are domain experts, no issues were
found in selecting the right instances of the AOCS DSO.
During their interview, these subjects commented that the
domain ontology ‘“is highly extensive and extensible™.

Regarding the other semantic analysis results, all subjects
stated that “incomplete and redundant requirements were
fully understood” and they had no difficulty to eliminate
these issues. On the other hand, for the noisy and opaque
requirements, the subjects would like to have more explana-
tions on how to handle them.

Table 19 reports the results of the qualitative analysis con-
ducted in the requirement specifications by the different sub-
jects. Similarity, i.e. the percentage of common boilerplate

84114

requirements, lies from 60% to 65,63% among the non
experts in the domain, from 83,75% to 94,52% among the
experts, and from 29,33% to 39,1% when comparing the
non experts with the domain experts. Specification problems
stemming from erroneous use of the DSO were found only in
the requirements written by the non experts.

The conclusions drawn from the quantitative and qualita-
tive analysis regarding the research questions posed are sum-
marized as follows:

RQI1. There are noteworthy differences in the time efficiency
to complete the given requirements specification task,
between the subjects with no domain expertise and the
domain experts.

All subjects reported that they had almost no diffi-
culty to understand the methodology from the point
of view of identifying the right boilerplate, but the
subjects with no domain expertise had some more
difficulties to find the right values for the boilerplate
placeholders. High similarity was observed between
the requirement specifications of the domain experts,
which means that, for them, the methodology assures
the same expectations for the system under design.
Allissues identified in the specifications of the domain
experts have been eventually eliminated, whereas the
subjects with limited or no experience managed to
eliminate about 55% of the issues detected. A sig-
nificant number of the remained issues was due to
incorrect use of the DSO.

RQ2.

RQ3.

Some enlightening feedback was also provided by the sub-
jects, which is worth to mention:

o In the description of the Orbit Control System that
was given to the subjects, it was not clearly stated
whether the MIL-STD-1553 bus protocol is used for
both external and internal system communication. The
domain experts, based on the AOCS DSO, specified the
MIL-STD-1553 bus connection for external communi-
cation only, which is correct. On the other hand, the
subjects with limited expertise in the domain, misun-
derstood the AOCS DSO and used the MIL-STD-1553

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

TABLE 19. Qualitative experimental results.

Common boilerplates El E2 E4 ES5 Specification errors
El - 65,63% | 46,88% 39,1% 39,1% 18,75%
E2 60% - 38,57% | 31,43% | 31,43% 14,29%
E3 37,5% 33,75% - 83,75% | 83,75% 0%
E4 33,33% | 29,33% | 89,33% - 92% 0%
E5 34,25% | 30,14% | 91,78% | 94,52% - 0%

bus connection in the interconnect with the orbit control
subsystems, which is not correct.

This clearly shows how the DSO can affect the end-
result, if there are ambiguities in the description of the
system under design.

o The domain experts pointed out the need to interfere
with the design of the DSO and allow extending it
according to their project-specific needs, which is not
currently supported by the web-based tool. This need
stemmed from the fact that the AOCS DSO differen-
tiates control systems from the software, whereas for
the domain experts the control systems would not be
expected as decoupled from the software. Moreover,
it was also mentioned that the current AOCS DSO does
not cover domain knowledge that is mission-specific
(e.g. differentiate between Lagrangian or Geostationary,
where in the former, no GPS sensors can be used in
attitude determination).

o The domain experts emphasized the need to allow for
differentiating the naming of terms in the DSO, when
specifying requirements, due to possible discrepancies
in terms, between the different companies. This can be
addressed by the ontology architecture proposed, since
it supports the definition of synonyms (through the LO
ontology) for the terms given as instances of the classes
in the DSO.

D. THREATS TO VALIDITY

The potential threats to validity of the experiment’s results
are distinguished in threats against the internal and external
validity. Internal validity refers to possible influences that
may alter the experiment’s outcome, whereas external valid-
ity concerns with the degree to which the results can be gen-
eralized.

While the scope of the conducted experiment is the
method’s efficiency and effectiveness, the performance of the
subjects inevitably depends on the available tool for applying
the proposed methodology. In particular, even though the
subjects could easily access the semantic analysis results,
including feedback for each specified requirement, a potential
internal validity threat is whether the subjects cannot fully
comprehend and eliminate the reported issues in their require-
ment specifications. This threat concerns with a potentially
inadequate design of our web-based tool, which could affect
the internal validity of the experimental results. However,
from the results presented in Section VIII-C,, we note that the
subjects were eventually able to select the right boilerplates,

VOLUME 10, 2022

whereas the cause for any specification issue that was not
eliminated (i.e. when the subject did not manage to iden-
tify the right values for boilerplate placeholders) was related
exclusively to the lack of domain expertise. Consequently,
even if the semantic analysis results would be presented in
a different way, this could not affect the experimental results
for the method’s efficiency and effectiveness.

On the side of external validity, a potential threat is the
dependence of the experimental results on how the domain
knowledge is presented to the prospective users of our
methodology. In practice, for the DSO ontologies to be effec-
tively utilized, users with limited or no domain expertise
need a thorough presentation and an adequate description of
their classes and instances. The degree to which the current
interface of the web-based tool affects the external validity
of the experimental results needs to be further examined, and
this will happen when being able to consider and compare
the present implementation with alternative user interface
designs.

IX. LESSONS LEARNED

Among the lessons learned from the case study of Section VII
and the experiment in Section VIII, we noted that the set of
requirements affects some analysis results more than some
other. Incompleteness and inconsistency analyses, in prin-
ciple, depend on the requirement specifications, for which
they check the boilerplate placeholders for missing references
(e.g. producer/consumer relationships, states etc.) and con-
flicts (e.g. contradicting functions and placeholder values).
The rest of the semantic analyses mainly depend on the avail-
ability of concepts and their relationships in domain specific
ontologies, i.e. on the degree to which these ontologies have
been developed.

Furthermore, the requirement specification approach and
boilerplate language did not present any difficulties for the
engineers to understand and use them, irrespective of whether
they are domain experts or not. It is also noteworthy that the
size of a specification task matters in what is concerned with
the detail reflected in the DSO. Thus, for a small specification
task, a large DSO may not be easily utilized, whereas for a
relatively large specification task, the DSO may be limited in
scope and need to be extended.

The domain ontology was characterized as highly exten-
sive. The engineers without experience in the particular
domain still can perform their requirement specification task,
despite that they will likely not use the domain ontology as
effectively as the domain experts. This affects the time needed

84115

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

to specify requirements, as well as the degree to which DSO
instances are used.

During the experiment analysis we have recorded the engi-
neers expectations: (i) to provide an overview of what exactly
is supported in the domain and (ii) to provide the means to
enhance the existing domain knowledge on a per project use.
For the first requirement, the current version of the web-based
tool provides only a limited view of the domain ontology
contents, i.e. it shows only the existing classes and instances,
while their relations are limited only to the SAO relationships.
For the second requirement, the domain ontology architecture
is open to extensions, but we currently assume that DSO
extensions will not be allowed for the engineer(s) involved
in the requirements specification, therefore this functional-
ity is not supported by the tool. Possible extensions to the
DSO are currently implemented through external ontology
editing tools (e.g. TopBraid Composer), a task that is usually
entrusted to an ontology engineer, who knows how to prop-
erly extend the domain knowledge.

Last but not least, our experience on extending the AOCS
DSO has shown the need to perform alternating cycles of
requirements specification and DSO updates, a practice that
contributes towards building a highly expressive and benefi-
cial domain ontology.

X. CONCLUDING REMARKS

We presented an ontology-driven requirements formulation
and semantic analysis approach, for system requirements.
This work complements a previous work in [1] that focuses
on the requirements formalization and their model-based val-
idation. To address the lack of a universal interpretation of
the natural language syntax, we employ requirement boiler-
plates with ontology-based semantics. This also serves as a
means to generate semantic relationships between the values
in the boilerplate placeholders, as well as to derive all implicit
assumptions by utilizing the asymmetric producer/consumer
relationships defined in an upper ontology.

The overall semantic modeling framework makes it easy to
develop and integrate domain specific ontologies, which pro-
vide an essential aid for specifying requirements. We showed
how to accomplish this goal and then we presented a series of
analyses that allow detecting inconsistencies, missing infor-
mation, ambiguity and other semantic omissions. Last but
not least, a semantic relatedness analysis was introduced
that facilitates the extraction of tacit knowledge from a set
of requirements, in order to improve the semantic coverage
of the system domain. This particular contribution leads to
explicitly represent any implicit knowledge that will have to
be taken into account.

The expressiveness of the requirements specification
approach and the scope of the semantic analyses were evalu-
ated based on a set of system requirements of diverse types,
for a virtual earth-observation reference satellite by ESA,
called Eagle Eye. A user experiment was also conducted,
to assess the efficiency and the effectiveness of the proposed
solution. The subjects of this experiment were requirement

84116

engineers with varied degrees of experience in the space
industry. The results confirmed that the additional cost for
applying the approach is affordable and justified for the kind
of systems they are working on (critical embedded systems),
but provided also valuable feedback towards introducing it
into the industrial practice.

The system of ontologies of the overall framework is avail-
able online, along with the detailed formalization of the ontol-
ogy relationships and rules that are provided in an online
appendix of the present article. Finally, our web-based tool
makes the approach accessible to engineers, who do not have
any ontology engineering experience.

The main ingredients of the overall approach, i.e. the
boilerplate syntax (Section IV-B1), the semantic analy-
sis (Section V) and the tacit knowledge extraction pro-
cess (Section VI), are founded on the SAO upper ontology
(Section III-B). As a future prospect, we are interested to
assess the suitability of this framework for other industrial
contexts, beyond space systems. We expect that the SAO
upper ontology and the expressiveness of requirement boiler-
plates, will have to be extended in order to cover an expanding
range of extra-functional requirements.

A tempting prospect is also the validation of the ontology
with respect to the overall coverage of the domain knowledge.
There are several ontology analysis tools, which allow to eval-
uate qualitatively or quantitatively an ontology (e.g. average
or maximum depth of class inheritance tree or class ances-
tors etc.) and they can help to identify potentially problem-
atic parts. However, none of the existing evaluation methods,
neither alone nor in combination, can guarantee a ‘“‘sound”
ontology [91].

Finally, a related direction of research is the derivation of
formal properties from semantically validated requirements
and their verification on a formal model of system design.
In [1], we proposed a correctness-by-construction design
approach to limit the need for a posteriori model checking,
which does not scale to solve realistic problems. However,
further work is required to incorporate fault handling and
diagnosability analysis (e.g. failure mode and effects analysis,
fault tree generation, failure recovery analysis etc).

REFERENCES

[1] E. Stachtiari, A. Mavridou, P. Katsaros, S. Bliudze, and J. Sifakis, “Early
validation of system requirements and design through correctness-by-
construction,” J. Syst. Softw., vol. 145, pp. 52-78, Nov. 2018.

[2] K. Pohl and C. Rupp, Requirements Engineering Fundamentals: A Study
Guide for the Certified Professional for Requirements Engineering
Exam-Foundation Level-IREB Compliant, 1st ed. San Rafael, CA, USA:
Rocky Nook, 2011.

[3] P. Feiler, J. Delange, and L. Wrage, “A requirement specification lan-
guage for AADL,” Softw. Eng. Inst., Carnegie Mellon Univ., Pittsburgh,
PA, USA, Tech. Rep. CMU/SEI-2016-TR-008, 2016. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=464370

[4] N.Mahmud, C. Seceleanu, and O. Ljungkrantz, “Specification and seman-
tic analysis of embedded systems requirements: From description logic to
temporal logic,” in Proc. Int. Conf. Softw. Eng. Formal Methods, Trento,
Ttaly, 2017, pp. 332-348.

[5] N. Mahmud, C. Seceleanu, and O. Ljungkrantz, “ReSA: An ontology-
based requirement specification language tailored to automotive systems,”
in Proc. 10th IEEE Int. Symp. Ind. Embedded Syst. (SIES), Jun. 2015,
pp. 1-10.

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

[6]
[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Oertel and B. Josko, CESAR-Cost-Efficient Methods and Processes for
Safety-Relevant Embedded Systems. Berlin, Germany: Springer, 2013.

M. Schon and G. Caspersen, ‘“‘EagleEye virtual spacecraft system architec-
ture,” ESA Model. Simul. Sect., Tech. Rep. TOS-EMS-VSRF-TN-0002,
Mar. 2004.

S. Anwer and N. Ikram, “A process for goal oriented requirement engi-
neering,” in Proc. IASTED Int. Conf. Softw. Eng. Calgary, AB, Canada:
ACTA Press, 2008, pp. 255-261.

I. Cardei, M. Fonoage, and R. Shankar, “Model based requirements spec-
ification and validation for component architectures,” in Proc. 2nd Annu.
IEEE Syst. Conf., Apr. 2008, pp. 1-8.

1. Castillo, F. Losavio, A. Matteo, and J. Bgegh, “Requirements, aspects
and software quality: The REASQ model,” J. Object Technol., vol. 9, no. 4,
pp. 69-91, 2010.

J. Chicaiza, J. Lopez-Vargas, N. Piedra, O. Bonastre, and E. Caro, ‘“Usage
of social and semantic web technologies to design a searching architec-
ture for software requirement artefacts,” IET Softw., vol. 4, pp. 407-417,
Dec. 2010.

D. V. Dzung and A. Ohnishi, “A verification method of elicited software
requirements using requirements ontology,” in Proc. 19th Asia—Pacific
Softw. Eng. Conf., vol. 1, Dec. 2012, pp. 553-558.

D. V. Dzung and A. Ohnishi, “Improvement of quality of software require-
ments with requirements ontology,” in Proc. 9th Int. Conf. Quality Softw.,
Aug. 2009, pp. 284-289.

S. Farfeleder, T. Moser, A. Krall, T. Stalhane, I. Omoronyia, and H. Zojer,
“Ontology-driven guidance for requirements elicitation,” in The Semanic
Web: Research and Applications (Lecture Notes in Computer Science).
Berlin, Germany: Springer, 2011, pp. 212-226.

S. Ghaisas and N. Ajmeri, ‘“Knowledge-assisted ontology-based require-
ments evolution,” in Managing Requirements Knowledge. Berlin,
Germany: Springer, 2013, pp. 143-167.

R. Guizzardi, X. Franch, and G. Guizzardi, “Applying a foundational
ontology to analyze means-end links in the i* framework,” in Proc. 6th
Int. Conf. Res. Challenges Inf. Sci. (RCIS), 2012, pp. 1-11.

M. Kitamura, R. Hasegawa, H. Kaiya, and M. Saeki, ““A supporting tool for
requirements elicitation using a domain ontology,” in Software and Data
Technologies (Communications in Computer and Information Science).
Berlin, Germany: Springer, 2009, pp. 128-140.

M. Kossmann and M. Odeh, “Ontology-driven requirements
engineering—A case study of ontorem in the aerospace context,” in
Proc. INCOSE Int. Symp., 2010, vol. 20, no. 1, pp. 1000-1012.

J. Lasheras, R. Valencia-Garcia, J. Fernandez-breis, and J. Alvarez, “Mod-
elling reusable security requirements based on an ontology framework,”
J. Res. Pract. Inf. Technol., vol. 41, no. 2, pp. 119-133, 2009.

T. H. Nguyen, B. Q. Vo, M. Lumpe, and J. Grundy, “KBRE: A framework
for knowledge-based requirements engineering,” Softw. Quality J., vol. 22,
no. 1, pp. 87-119, 2014.

E. Yu, L. Liu, and J. Mylopoulos, “A social ontology for integrating

security and software engineering,” in Social and Human Elements of

Information Security: Emerging Trends and Countermeasures. Hershey,
PA, USA: IGI Global, Jan. 2008, pp. 148-177.

Y. Zhang and W. Zhang, “Description logic representation for requirement
specification,” in Computational Science—(ICCS) (Lecture Notes in Com-
puter Science). Berlin, Germany: Springer, 2007, pp. 1147-1154.

Z.-Y. Li, W. Zhi, X. Zhang, and X. Yong, “The domain ontology and
domain rules based requirements model checking,” Int. J. Softw. Eng.
Appl., vol. 1, no. 1, pp. 89-100, 2007.

N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej, “Ontology-
based multiperspective requirements traceability framework,” Knowl. Inf.
Syst., vol. 25, no. 3, pp. 493-522, Dec. 2010.

E. Bagheri, M. Asadi, F. Ensan, D. Gasevic, and B. Mohabbati, “Bringing
semantics to feature models with SAFMDL,” in Proc. Conf. Center Adv.
Stud. Collaborative Res. Armonk, NY, USA: IBM, 2011, pp. 287-300.

V. Castafieda, L. C. Ballejos, and M. L. Caliusco, “Improving the quality of
software requirements specifications with semantic web technologies,” in
Workshop Em Engenharia De Requisitos (WER). Buenos Aires, Argentina,
2012.

O. Daramola, G. Sindre, and T. Moser, “Ontology-based support for secu-
rity requirements specification process,” in On the Move to Meaning-
ful Internet Systems: OTM Workshops. Berlin, Germany: Springer, 2012,
pp. 194-206.

0. Daramola, T. Stalhane, I. Omoronyia, and G. Sindre, “Using ontologies
and machine learning for hazard identification and safety analysis,” in
Managing Requirements Knowledge. Berlin, Germany: Springer, 2013.

VOLUME 10, 2022

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

(44]

(45]

[46]

[47]

J. Guo, Y. Wang, P. Trinidad, and D. Benavides, “Consistency main-
tenance for evolving feature models,” Exp. Syst. Appl., vol. 39,
no. 5, pp. 4987-4998, Apr. 2012. [Online]. Available: https:/www.
sciencedirect.com/science/article/pii/S0957417411014990

H. He,Z. Wang, Q. Dong, W. Zhang, and W. Zhu, “Ontology-based seman-
tic verification for UML behavioral models,” Int. J. Softw. Eng. Knowl.
Eng., vol. 23, no. 2, pp. 117-146, 2013.

H. Hu, D. Yang, C. Ye, C. Fu, and R. Li, “Detecting interactions between
behavioral requirements with OWL and SWRL,” Int. J. Comput. Inf. Eng.,
vol. 4, no. 12, pp. 1833-1839, 2010.

L. Kof, R. Gacitua, M. Rouncefield, and P. Sawyer, “Ontology and model
alignment as a means for requirements validation,” in Proc. IEEE 4th Int.
Conf. Semantic Comput., Sep. 2010, pp. 46-51.

P. Kroha, R. Janetzko, and J. E. Labra, “Ontologies in checking for incon-
sistency of requirements specification,” in Proc. 3rd Int. Conf. Adv. Seman-
tic Process., Oct. 2009, pp. 32-37.

J. F. Lima, B. P. Garcia, C. M. G. Amaral, and G. M. Caran, “Building
an ontological model for software requirements engineering,” in ENTER-
prise Information Systems (Communications in Computer and Information
Science). Berlin, Germany: Springer, 2011, pp. 228-237.

C.-L. Liu, “CDADE: Conflict detector in activity diagram evolution
based on speech act and ontology,” Knowl.-Based Syst., vol. 23, no. 6,
pp. 536-546, Aug. 2010.

C. Lopez, H. Astudillo, and L. M. Cysneiros, “Semantic-aided interactive
identification of reusable NFR knowledge fragments,” in On the Move to
Meaningful Internet Systems: OTM Workshop (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2008, pp. 324-333.

T. Moser, D. Winkler, M. Heindl, and S. Biffl, “Requirements manage-
ment with semantic technology: An empirical study on automated require-
ments categorization and conflict analysis,” in Advanced Information Sys-
tems Engineering (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 2011, pp. 3-17.

A. Mtibaa and F. Gargouri, “’A multi-representation ontology for the spec-
ification of multi-context requirements,” in Advanced Internet Based Sys-
tems and Applications (Lecture Notes in Computer Science). Berlin, Ger-
many: Springer, 2009, pp. 259-269.

H. H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, “Verifying
feature models using OWL,” J. Web Semantics, vol. 5, no. 2,
pp. 117-129, 2007. [Online]. Available: http:/linkinghub.elsevier.
com/retrieve/pii/S1570826807000042

S. Park, H. Kim, Y. Ko, and J. Seo, “Implementation of an effi-
cient requirements-analysis supporting system using similarity mea-
sure techniques,” Inf. Softw. Technol., vol. 42, no. 6, pp.429-438,
Apr. 2000. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584999001020

R. Yan, C.-H. Cheng, and Y. Chai, “Formal consistency checking
over specifications in natural languages,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), 2015, pp. 1677-1682. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2757012.2757200

I. Boukhari, L. Bellatreche, and S. Jean, “An ontological pivot model
to interoperate heterogeneous user requirements,” in Leveraging Appli-
cations of Formal Methods, Verification and Validation Applications and
Case Studies (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 2012, pp. 344-358.

A. A. AlSanad, A. Chikh, and A. Mirza, “A domain ontology for software
requirements change management in global software development envi-
ronment,” IEEE Access, vol. 7, pp. 49352-49361, 2019.

J. Polpinij, “An ontology-based text processing approach for simplifying
ambiguity of requirement specifications,” in Proc. IEEE Asia—Pacific Ser-
vices Comput. Conf. (APSCC), Dec. 2009, pp. 219-226.

A. Rashwan, O. Ormandjieva, and R. Witte, “Ontology-based classifi-
cation of non-functional requirements in software specifications: A new
corpus and SVM-based classifier,” in Proc. IEEE 37th Annu. Comput.
Softw. Appl. Conf., Jul. 2013, pp. 381-386.

J. Matsuoka and Y. Lepage, “Ambiguity spotting using wordnet semantic
similarity in support to recommended practice for software requirements
specifications,” in Proc. 7th Int. Conf. Natural Lang. Process. Knowl. Eng.,
Nov. 2011, pp. 479-484.

T. H. Al Balushi, P. R. F. Sampaio, and P. Loucopoulos, “Eliciting
and prioritizing quality requirements supported by ontologies: A case
study using the ElicitO framework and tool,” Exp. Syst., vol. 30,
no. 2, pp. 129-151, May 2013. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1468-0394.2012.00625.x

84117

IEEE Access

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

G. N. Aranda, A. Vizcaino, and M. Piattini, “Analyzing ontology as a
facilitator during global requirements elicitation,” in Proc. 4th IEEE Int.
Conf. Global Softw. Eng., Jul. 2009, pp. 309-314.

I. Bicchierai, G. Bucci, C. Nocentini, and E. Vicario, “An ontological
approach to systematization of SW-FMEA,” in Computer Safety, Reliabil-
ity, and Security (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 2012, pp. 173-184.

E.J. de Lima, J. A. R. Nt, G. B. Xexéo, and J. M. de Souza, “ARARA—
A collaborative tool to requirement change awarenes,” in Proc. 14th Int.
Conf. Comput. Supported Cooperat. Work Design, 2010, pp. 134-139.

S. Hayashi, T. Yoshikawa, and M. Saeki, ““Sentence-to-code traceability
recovery with domain ontologies,” in Proc. Asia Pacific Softw. Eng. Conf.,
Nov. 2010, pp. 385-394.

A.M. Hickey and A. M. Davis, “An ontological approach to requirements
elicitation technique selection,” in Ontologies: A Handbook of Principles,
Concepts and Applications in Information System. Boston, MA, USA:
Springer, 2007, pp. 403—-431.

A. M. Hoss and D. L. Carver, “Towards combining ontologies and
model weaving for the evolution of requirements models,” in Innovations
for Requirement Analysis From Stakeholders Needs to Formal Designs
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2008,
pp. 85-102.

K. Karwowski, W. Wysota, and J. Wytrebowicz, “Computer aided require-
ments management,” in Computational Collective Intelligence Semantic
Web, Social Networks and Multiagent Systems (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2009, pp. 389—400.

M. Kassab, O. Ormandjieva, and M. Daneva, ‘“Relational-model based
change management for non-functional requirements: Approach and
experiment,” in Proc. 5th Int. Conf. Res. Challenges Inf. Sci., May 2011,
pp. 1-9.

C.-L. Liu and H.-L. Yang, “Applying ontology-based BLOG to detect
information system post-development change requests conflicts,” Inf. Syst.
Frontiers, vol. 14, no. 5, pp. 1019-1032, Dec. 2012.

B. N. Machado, L. O. Arantes, and R. Falbo, “Using semantic annotations
for supporting requirements evolution,” in Proc. SEKE, 2011, pp. 185-190.
E. Niemeld, A. Evesti, and P. Savolainen, “Modeling quality attribute
variability,” in Proc. ENASE, 2008, pp. 169-176.

P. F. Pires, F. C. Delicato, R. Cdbe, T. Batista, J. G. Davis, and J. H. Song,
“Integrating ontologies, model driven, and CNL in a multi-viewed
approach for requirements engineering,” RequirementS Eng., vol. 16, no. 2,
pp. 133-160, Jun. 2011.

T. Riechert and T. Berger, “Leveraging semantic data Wikis for distributed
requirements elicitation,” in Proc. ICSE Workshop Wikis Softw. Eng.,
May 2009, pp. 7-13.

P. Schugerl, J. Rilling, R. Witte, and P. Charland, “A quality perspective
of software evolvability using semantic analysis,” in Proc. IEEE Int. Conf.
Semantic Comput., Sep. 2009, pp. 420-427.

H. H. Wang, D. Damljanovic, and J. Sun, “Enhanced semantic access to
formal software models,” in Formal Methods and Software Engineering
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2010,
pp. 237-252.

J. N. O. Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson,
“A feasibility study of automated natural language requirements anal-
ysis in market-driven development,” Requirements Eng., vol. 7, no. 1,
pp. 20-33, Apr. 2002.

F. Gailly, S. Esparia, G. Poels, and O. Pastor, “Integrating business domain
ontologies with early requirements modelling,” in Advances in Concep-
tual Modeling—Challenges and Opportunities. Berlin, Germany: Springer,
2008, pp. 282-291.

H. Kaiya, Y. Shimizu, H. Yasui, K. Kaijiri, and M. Saeki, ‘“Enhancing
domain knowledge for requirements elicitation with web mining,” in Proc.
Asia Pacific Softw. Eng. Conf., Nov. 2010, pp. 3-12.

G.Li, Z.Jin, Y. Xu, and Y. Lu, “An engineerable ontology based approach
for requirements elicitation in process centered problem domain,” in
Knowledge Science, Engineering and Management (Lecture Notes in
Computer Science). Berlin, Germany: Springer, 2011, pp. 208-220.

1. Omoronyia, G. Sindre, T. Stalhane, S. Biffl, T. Moser, and W. Sunindyo,
“A domain ontology building process for guiding requirements elici-
tation,” in Requirements Engineering: Foundation for Software Quality
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2010,
pp. 188-202.

J. Osis, A. Slihte, and A. Jansone, “Using use cases for domain modeling,”
in Proc. ENASE, 2012, pp. 224-231.

84118

[69]

[70]

(71]

(72

(73]

(74]

[75]

[76]

(77

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

[89]

[90]

(911

M. Saeki, S. Hayashi, and H. Kaiya, “Enhancing goal-oriented security
requirements analysis using common criteria-based knowledge,” Int. J.
Softw. Eng. Knowl. Eng., vol. 23, no. 5, pp. 695-720, Jun. 2013.

M. Shibaoka, H. Kaiya, and M. Saeki, “GOORE: Goal-oriented and ontol-
ogy driven requirements elicitation method,” in Advances in Conceptual
Modeling—Foundations and Applications (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2007, pp. 225-234.

A. Souag, C. Salinesi, I. Wattiau, and H. Mouratidis, ‘“Using security and
domain ontologies for security requirements analysis,” in Proc. IEEE 37th
Annu. Comput. Softw. Appl. Conf. Workshops, Jul. 2013, pp. 101-107.

W. Alhoshan, R. Batista-Navarro, and L. Zhao, “Using frame embeddings
to identify semantically related software requirements,” in Proc. REFSQ
Workshops, 2019, pp. 1-9.

W. Alhoshan, R. Batista-Navarro, and L. Zhao, ‘“Semantic frame embed-
dings for detecting relations between software requirements,” in Proc. 13th
Int. Conf. Comput. Semantics-Student Papers, 2019, pp. 44-51. [Online].
Available: https://www.aclweb.org/anthology/W19-0606

S. Farfeleder, T. Moser, and A. Krall, “Using semantic relatedness and
locality for requirements elicitation guidance,” in Proc. 24th Int. Conf.
Softw. Eng. Knowl. Eng., 2012, pp. 19-24.

Z.Jin, X. Chen, and D. Zowghi, “‘Performing projection in problem frames
using scenarios,” in Proc. 16th Asia—Pacific Softw. Eng. Conf., Dec. 2009,
pp. 249-256.

D. Dermeval, J. Vilela, 1. B. Bittencourt, J. Castro, S. Isotani, P. Brito,
and A. Silva, “Applications of ontologies in requirements engineering:
A systematic review of the literature,” Requirements Eng., vol. 21, no. 4,
pp. 405437, 2016.

S. Farfeleder, T. Moser, A. Krall, T. Stalhane, H. Zojer, and C. Panis,
“DODT: Increasing requirements formalism using domain ontologies
for improved embedded systems development,” in Proc. 14th IEEE Int.
Symp. Design Diag. Electron. Circuits Syst., Cottbus, Germany, Apr. 2011,
pp. 271-274.

“Analysis ontology—Integrated model-centric engineering,” NASA, JPL
Syst. Softw. Division, Jet Propuls. Lab., California Inst. Technol.,
Pasadena, CA, USA, Tech. Rep. D-68444, 2012.

“Mission ontology—Integrated model-centric engineering,” NASA, JPL
Syst. Softw. Division, Jet Propuls. Lab., California Inst. Technol.,
Pasadena, CA, USA, Tech. Rep. D-68443, 2012.

“Project ontology—Integrated model-centric engineering,” NASA, JPL
Syst. Softw. Division, Jet Propuls. Lab., California Inst. Technol.,
Pasadena, CA, USA, Tech. Rep. D-68445, 2012.

D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette, S. Jenkins, and
M. Ingham, “An ontology for state analysis: Formalizing the mapping to
SysML,” in Proc. IEEE Aerosp. Conf., Mar. 2012, pp. 1-16.

T. Fancott, P. Kamthan, and N. Shahmir, ‘“Towards next generation
requirements engineering,” in Proc. Int. Conf. Social Informat., vol. 22,
Dec. 2012, pp. 328-331.

A. Yessad, C. Faron-Zucker, R. Dieng-Kuntz, and M. T. Laskri,
“Ontology-based semantic relatedness for detecting the relevance of learn-
ing resources,” Interact. Learn. Environ., vol. 19, no. 1, pp. 63-80,
Jan. 2011.

(2022). Shapes Constraint Language (SHACL). Accessed: Feb. 11, 2022.
[Online]. Available: https://www.w3.org/TR/shacl/

K. Winter, H. Femmer, and A. Vogelsang, “How do quantifiers affect
the quality of requirements?” in Requirements Engineering: Founda-
tion for Software Quality (Lecture Notes in Computer Science). Cham,
Switzerland: Springer, 2020, pp. 3—18.

A. van Renssen, Gellish: A Generic Extensible Ontological Language—
Design and Application of a Universal Data Structure. Amsterdam,
Netherlands: IOS Press, Jan. 2005.

G. A. Miller, “WordNet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39-41, 1995.

(2008). SPARQL Query Language for RDF—W3C Recommendation.
Accessed: Dec. 31, 2019. [Online]. Available: https://www.w3.org/TR/rdf-
sparql-query/

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples, 1st ed. Hoboken, NIJ,
USA: Wiley, 2012.

R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, Goal
Question Metric (GQOM) Approach. Hoboken, NI, USA: Wiley,
2002. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/0471028959.s0f142

D. Vrandeci¢, “Ontology evaluation,” in Handbook on Ontologies (Inter-
national Handbooks on Information Systems). Berlin, Germany: Springer,
2009, pp. 293-313.

VOLUME 10, 2022

K. Mokos et al.: Semantic Modeling and Analysis of Natural Language System Requirements

IEEE Access

KONSTANTINOS MOKOS was born in
Thessaloniki, Greece, in 1980. He received the
B.S. degree in computer science from the Aristotle
University of Thessaloniki, Greece, in 2005, and
the M.S. degree (Hons.) in software engineer-
ing from York University, York, U.K., in 2006.
He is currently pursuing the Ph.D. degree in soft-

ware engineering with the Aristotle University of
h Thessaloniki.

From 2011 to 2013, he was a National Trainee
with the European Space Agency; ESTEC; and TEC-SWE, Noordwijk, The
Netherlands. Since 2013, he has participated in various programs including
ESA’s in-flight Solar Orbiter and Sentinel-6 missions, in which except from
developing AOCS systems, he was also responsible for the on-board software
verification and validation. His research interests include space systems
formal modeling and validation, requirements engineering, dependability
assessment of software intensive systems, and knowledge-based design and
development.

THEODOROS NESTORIDIS received the
undergraduate and postgraduate degrees in infor-
matics from the Department of Informatics,
Aristotle University of Thessaloniki, Greece,
where he is currently pursuing the Ph.D. degree
in software engineering. His research inter-
ests include software and networks systems
engineering.

VOLUME 10, 2022

PANAGIOTIS KATSAROS received the bache-
lor’s degree in mathematics from the Aristotle
University of Thessaloniki (AUTh), Greece, the
Master of Science degree in software engineer-
ing from Aston University, Birmingham, and the
Ph.D. degree in computer science from AUTh.
He is an Associate Professor with the School
of Informatics, AUTh. He has published over
100 research papers in international journals and

: conference proceedings on software engineering.
His research interests include the formal verification of software/systems,
the model-based design, the analysis of dependability and security, and the
simulation-based performance analysis and optimization. He is a coordi-
nator (or participates) in national and European research and development
projects focusing on engineering of software for the Internet of Things
systems, space systems, and more recently autonomous systems. Regular
updates on his recent research achievements can be accessed online at
https://depend.csd.auth.gr

NICK BASSILIADES (Member, IEEE) received
the M.Sc. degree in applied artificial intelligence
from the Computing Science Department, Univer-
sity of Aberdeen, in 1992, and the Ph.D. degree in
parallel knowledge-based systems from the School
of Informatics, Aristotle University of Thessa-
loniki (AUTh), Greece, in 1998. He is currently a
Professor with AUTh, where he is also currently
f serving as the Head for the IT Center. He is the
- Director of RuleML, Inc. He has published more
than 230 papers at journals, conferences, and books; and has coauthored five
books and co-edited 11 volumes. His published research has received over
5000 citations (H-index 33), while seven of his papers have received awards.
He has been involved in 40 research and development projects leading 11 of
them. His research interests include knowledge-based and rule systems,
multiagent systems, ontologies/linked data/semantic web, electric vehicles
charging scheduling, and eXplainable AI. He is a member of the Greek
Computer Society and ACM. He has been a member of the program com-
mittee of more than 150 and on the organizational committee of nine confer-
ences/workshops and was the program chair of 11 conferences/workshops.
He has been the General Secretary of the Board of the Greek Artificial
Intelligence Society. Regular updates on his recent research achievements
can be accessed online at: http://tinyurl.com/bassiliades

84119

