
Citation: Virtsionis Gkalinikis, N.;

Nalmpantis, C.; Vrakas, D.

Torch-NILM: An Effective Deep

Learning Toolkit for Non-Intrusive

Load Monitoring in Pytorch. Energies

2022, 15, 2647. https://doi.org/

10.3390/en15072647

Academic Editor: Pablo Cortés

Received: 10 February 2022

Accepted: 30 March 2022

Published: 4 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Torch-NILM: An Effective Deep Learning Toolkit for
Non-Intrusive Load Monitoring in Pytorch
Nikolaos Virtsionis Gkalinikis * , Christoforos Nalmpantis and Dimitris Vrakas

School of Informatics, Aristotle University of Thessaloniki, 54124 Thesssaloniki, Greece;
christofn@csd.auth.gr (C.N.); dvrakas@csd.auth.gr (D.V.)
* Correspondence: nvirtsion@csd.auth.gr

Abstract: Non-intrusive load monitoring is a blind source separation task that has been attracting
significant interest from researchers working in the field of energy informatics. However, despite
the considerable progress, there are a very limited number of tools and libraries dedicated to the
problem of energy disaggregation. Herein, we report the development of a novel open-source
framework named Torch-NILM in order to help researchers and engineers take advantage of the
benefits of Pytorch. The aim of this research is to tackle the comparability and reproducibility issues
often reported in NILM research by standardising the experimental setup, while providing solid
baseline models by writing only a few lines of code. Torch-NILM offers a suite of tools particularly
useful for training deep neural networks in the task of energy disaggregation. The basic features
include: (i) easy-to-use APIs for running new experiments, (ii) a benchmark framework for evaluation,
(iii) the implementation of popular architectures, (iv) custom data loaders for efficient training and
(v) automated generation of reports.

Keywords: non-intrusive load monitoring; energy disaggregation; nilm; deep learning; pytorch

1. Introduction

Energy management of households is a non-trivial and important task both to the users
and the environment [1,2]. A viable, efficient and low-cost solution towards effective energy
management [1] is non-intrusive load monitoring (NILM) [3]. The purpose of NILM is to
estimate the appliance-level energy consumption given the total energy consumption of a
household, using only one active power mains meter. Following the continuous advances
of deep learning, most NILM research focuses on developing deep-learning solutions and
artificial neural networks to tackle this blind source separation problem.

The two main software tools when conducting deep-learning-based experiments
include an efficient data loader that effectively handles any preprocessing steps and a
computational framework for rapid model development. The most known and effective
data toolkit for loading and preprocessing publicly available NILM datasets is NILMTK [4].
NILMTK is a Python [5] toolkit based on popular data science libraries [6,7]. Most NILM
experiments have thus far been implemented using NILMTK in conjunction with machine-
learning libraries such as scikit [8], Tensorflow [9], Keras [10] etc.

An alternate very popular framework among researchers is Pytorch [11,12]. This work
aims to introduce a pytorch-based library to NILM research that exploits the benefits of
this framework. After the introduction of Pytorch Lightning [12] in the Pytorch ecosystem,
the workflow is far more user friendly. In addition, debugging is performed with python
debuggers. Finally, Pytorch offers built-in extendable objects which can be used to load
and preprocess the data more efficiently.

In this research, we introduce Torch-NILM, the first Pytorch-based toolkit for NILM.
This toolkit can be used to design, test and benchmark deep learning architectures in the
problem of NILM in an efficient and clean way, writing only a few lines of code. The usual

Energies 2022, 15, 2647. https://doi.org/10.3390/en15072647 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15072647
https://doi.org/10.3390/en15072647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3043-9220
https://orcid.org/0000-0002-7398-5862
https://doi.org/10.3390/en15072647
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15072647?type=check_update&version=2

Energies 2022, 15, 2647 2 of 20

problem that NILM researchers face is that there is not a standardised way of composing
and executing reproducible experiments. Thus, each researcher ends up developing their
own way of conducting NILM experiments. Without an experiment norm, reading and
understanding other people’s code may be stressful and inconvenient. In comparison to
computer vision or other classic deep learning problems, NILM is becoming harder to start.
On top of that, another possible barrier towards reproducible results is the lack of a clear
benchmarking methodology alongside specific training and testing data.

Torch-NILM contains six known NILM models, two different deep learning training
techniques, a benchmarking framework with four kinds of generalization tests, three
popular preprocessing methods used in NILM, three experiment APIs and an automated
reporting process with comparative plots. In addition, Torch-NILM is compatible with
NILMTK; in fact, it uses NILMTK as a bridge to load the desired measurements into the
customised dataset objects, where preprocessing is executed. This paper contributes to the
NILM-related research in the following ways. Firstly, it provides a complete NILM-specific
Python toolkit based on Pytorch and compatible with the old-time favourite NILMTK in
order to produce huge amounts of experiments and results effortlessly, with minimum
coding from the user. Secondly, it offers a structured and clean way of creating reproducible
and easy-to-read NILM experiments. Thirdly, it provides a set of easily modified, well-
known NILM deep learning architectures developed in Pytorch. These models could be
used as a guide by researchers when designing their own architectures. Finally, it provides a
complete set of specific energy data for training and testing, containing enough end-uses for
proper disaggregation. These data are used alongside the benchmark framework described
in [13], which contains four different categories of training and testing scenarios.

2. Related Work

The objective of blind source separation research is to extract individual signal sources
from the main signal [14]. Non-intrusive load monitoring is essentially a type of blind
source separation problem where the goal is to estimate the individual appliance active
power consumption using only the total consumption of a household. The term “non-
intrusive” refers to the fact that only one meter is used for gathering the measurements of
the total house consumption. It is worth noting that even though NILM research focuses on
energy estimation, it is a different problem from energy forecasting or prediction [15–17].

With the rise of deep learning in the mid 2010s, researchers started to develop NILM
applications with neural networks. The work of Kelly and Knottenbelt [18] showed great
results and triggered the use of neural networks. Soon, deep learning achieved state-of-the-
art results [19–22] and seems to be the go-to solution for NILM.

In NILM literature, data measurements are provided in a low or high sampling
frequency. Low sampling means that measurements are produced at frequencies of 1 Hz
and lower. High-frequency measurements are sampled at frequencies in the range of 1 kHz.
The majority of NILM research designs algorithms and methods using low-frequency data,
due to the fact that most of the smart meters draw measurements in low frequencies. Thus,
the majority of the publicly available data sets have been recorded at low frequency [23].

Two machine learning approaches are commonly used to tackle NILM; regression
and multi-label classification. In regression approach, the power consumption of a single
appliance is estimated [24–28]. Thus, one model per device is created. In multi-label
classification approach, the model identifies operating states of various devices. Hence,
one model learns to disaggregate a set of devices. Recently published research showed that
a multi-label approach achieves good results [29–31].

Compared to other classic machine learning problems, NILM has the disadvantage
that there are not many domain-specific libraries. NILMTK [4] was introduced in 2014
in order to fill the gap. The main purpose of NILMTK was to help researchers build
reproducible results. NILMTK provides data parsers for almost all publicly available
datasets alongside baseline models to compare with. Even though NILM data sets usually
consume many gigabytes of ROM, NILMTK uses a very efficient format to store all the

Energies 2022, 15, 2647 3 of 20

information. In addition, it provides many built-in functionalities to extract useful energy
data statistics. The code is maintainable and often updated by the owners and the NILM
community, providing it with new data parsers and architectures. Hence, NILMTK is
rightfully established as the standard solution for conducting NILM research. Although
this library has been used by the majority of related researchers over the years, it does not
provide a standard benchmarking methodology. Moreover, in order to develop and execute
experiments, a great amount of coding is necessary.

In an attempt to overcome these barriers and make the library more user friendly, in
2019 some well-known NILM researchers contributed in developing an updated NILMTK
API [32] with a cleaner data flow. Two key points of merit can be derived. At first glance,
the data preprocessing, architecture, training process and inference are all tangled up in a
single “disaggregator” class. Therefore, any changes demand a deep understanding of each
“disaggregator” object. Furthermore, even though comparison of algorithms is easier and
demands less code writing, a standard set of experiments serving as a benchmark is not
provided. This makes data investigation necessary to specify which data sets can be used,
which households to choose and which time periods contain proper measurements for
training and testing. Moreover, simple performance comparisons between models cannot
provide reliable metrics regarding their performance.

Torch-NILM is composed of simple decoupled components; the model, the data
handling, the training and the inference are separate processes. Thus, any modification of a
process could be performed easily without relying on code deciphering. In addition, the
proposed toolkit encapsulates the benchmark developed by Symeonidis et al. [13], which
includes multiple types of tests for evaluating model performance in various scenarios.
With the underlying use of NILMTK to parse the necessary data for each situation, Torch-
NILM is a novel approach to conduct clean, modifiable and reproducible experiments. It
should be noted that currently, Torch-NILM supports only regression approaches where one
model per device is required. It is available at https://github.com/Virtsionis/torch-nilm,
accessed on 10 February 2022.

3. Architecture of Torch-NILM

The proposed toolkit consists of the following key components, organised in sepa-
rate modules:

• The datasources module is responsible for loading and preprocessing the data.
• The lab module contains the NILM trainer, the deep learning training tools and the

APIs to build new experiments.
• In the neural networks module, all the baseline deep learning architectures are located.
• Module utils consists of the reporting processes, the metrics and some helper functions.
• The benchmark module contains the appropriate configuration files for all categories of

experiments. Each file contains the selected datasets, households and dates needed
for the corresponding experiment.

A simplified overview of the Torch-NILM experiment setup is depicted in Figure 1.
The processes under the dashed lines are fully automated and easily modifiable. Hence, the
user is only responsible for the experiment configuration and the API selection, whereas
every component can be altered to fit different use-cases.

https://github.com/Virtsionis/torch-nilm

Energies 2022, 15, 2647 4 of 20

Figure 1. A rough overview of the data flow in Torch-NILM. The dashed lines denote the fully
automated process.

4. Torch-NILM APIs

Torch-NILM experiment APIs are callable methods of the NILMExperiments class,
which is located in lab modules under nilm experiments. Currently, three basic APIs are pro-
vided: the benchmark, the cross-validation and the hyperparameter-tuning cross-validation.
The function and usefulness of the provided APIs are discussed in the next subsections.

Every experiment API follows the basic set of steps presented in Figure 2. The user
is responsible for only two things. For starters, to define the basic experiment configura-
tions such as the target appliances, the number of epochs, the desired models and their
hyperparameters, the project name, etc. These configurations are analysed in one of the
following sections. Secondly, to create a NILMExperiments object to pass the configurations
to. The rest of the procedure is controlled entirely of the NILMExperiments object and it
consists of three main processes which repeat for every appliance, model and experiment
category in an automated manner. At first, the input and the output of the model are
calculated depending on the user-defined preprocessing schema. Then, the dataloaders and
the training parameters are prepared. Finally, all the settings are passed to the Torch-NILM
Trainer to conduct the training and inference.

Figure 2. The basic steps of an experiment API execution.

Energies 2022, 15, 2647 5 of 20

4.1. Benchmark API

The Benchmark is essentially a four-part stress test with gradual difficulty. The
model under evaluation goes through four different scenarios based on the methodology
presented by Symeonidis et al. [13]. The first scenario contains experiments where training
and inference are performed on data measurements collected from a single house. Inference
and training time periods should not overlap. These experiments are considered easy for
powerful models. The second benchmark category is composed of experiments where
inference is applied on data measurements from different households in comparison to
the training process. Obviously, the difficulty in this scenario is higher since different
households demonstrate different energy activity and probably different appliances.

In both the remaining two benchmark scenarios, training is executed on data that are
drawn from different buildings of the same dataset, but the evaluation differs for each
scenario. In particular, in the third scenario, data are drawn from the same dataset as the
dataset that was used during training. On the other hand, in the last category of experiment,
a different dataset is used for inference.

In Torch-NILM, the benchmark is used under a specific nomenclature. This was
because scenarios 1–2 and 3–4 share the same training process and only the inference data
are different. Thus, the benchmark is executed faster. Scenarios 1–2 refer to training in
one house and testing on a different house, which resulted in the name Single. Similarly,
scenarios 3–4 are noted as Multi experiments. The name conventions between the original
work of Symeonidis et al. [13] and Torch-NILM are summarised in Table 1.

Table 1. The benchmark name conventions used in Torch-NILM.

Category 1 Category 2 Category 3 Category 4

Torch-NILM Single Single Multi Multi

Benchmark [13] Single-building
NILM

Single-building
learning and

generalisation
on the same

dataset

Multi-building
learning and

generalisation
on the same

dataset

Multi-building
learning and

generalisation
on a different

dataset

4.2. Cross-Validation API

As the name suggests, cross-validation could be used in order to perform K-fold
cross-validation on preselected dates. Cross-validation is mostly used in situations where
the data are limited [33,34]. In NILM research, this is a very common scenario since many
public data sets contain limited period of measurements and/or from single households.
The pseudo-code of the developed cross-validation is presented in Algorithm 1. In cross-
validation API implementation, the configuration is the same as the Benchmark API. The
main difference is that due to the nature of K-fold cross-validation, training and inference
are applied on the same data. The result is the average of the performance metrics for all
the folds.

Algorithm 1 cross-validation Implementation

1: folds = K
2: time_period = [0, 1, . . . , T]
3: Split time_period in K equal vectors: v = [v1, . . . , vk]
4: for f old = 1, . . . , K do
5: train = v
6: test = v[fold]
7: Remove v[fold] from train
8: Return train, test
9: end for

Energies 2022, 15, 2647 6 of 20

4.3. Hyperparameter Tuning Cross-Validation API

Hyperparameter tuning is an unavoidable step in machine learning during definition
of the best parameters per situation. This can be performed with multiple repetitions of the
benchmark, followed by results comparison. In order to save time, cross-validation can be
used to search the hyperparameter space. Hence, we implemented the hyperparameter-
tuning cross-validation experiment.

To conduct a hyperparameter search, multiple versions of the model should be defined.
Then K-fold cross-validation for each version is executed. Finally, the user can decide which
model is the best by comparing the results produced by the different model versions.

5. Data Preparation

A crucial step before the training of a neural network is data preparation, a set of
methods that arrange the data into an appropriate format. The preparation consists of
three main processes: the data parsing, the preprocessing and the data loading to the deep
learning training. Based on the experiment, data preparation was conducted with the use
of a different custom Dataset class. These classes were implemented to cover Single and
Multi building experiment categories and can be found inside the datasources module.

5.1. Data Parsing

The parsing of the data is being handled by the NILMTK package. The data should
be in a NILMTK-compatible format. This format was inspired by the REDD dataset
arrangement [35]. In order to properly load a dataset, two classes were implemented and
can be found in the datasources module; the DatasourceFactory; and the Datasource. Datasource
objects contain methods that load the desired meter measurements. The DatasourceFactory
is responsible for creating different Datasources objects that are based on various data sets.

5.2. Datasets and Appliances

Currently, Torch-NILM is compatible with all the public datasets that NILMTK can
parse. In the current study, the following datasets are used: UK-DALE [36], REDD [35]
and REFIT [37]. UK-DALE and REFIT are composed of measurements drawn from UK
households, while REDD contains data from the USA. These datasets were chosen based
on the following factors:

• The popularity among NILM researchers.
• The variety of appliances and households.
• The volume of the data. REFIT contains up to 20 households for more than a year of

measurements and UK-DALE contains 5 households for 3 years of data.
• The granularity of the data, which is from 1 Hz up to 1/8 Hz.

Household electrical appliances are divided into three categories based on their opera-
tion cycle [3,38]: Single state, continuous and Multi-state operation appliances. Single-state
appliances operate on a certain power level without any intermediate stages of operation.
A common example is the resistive type of appliances, where a resistor is heated until it
reaches a desired temperature and then it is turned off. Multi-state appliances have interme-
diate stages in their operation cycle. The power level of each stage may differ, resulting in a
more complicated power-consumption signature. Appliances with continuous operation
follow an all-day repeated consumption pattern with a varying power level.

For all the benchmark experiments, five electrical appliances were used: the washing
machine, the dishwasher, the fridge, the kettle and the microwave. These appliances are
found in the majority of NILM papers due to their different operation characteristics and
their popularity among households. The active power level of operation for washing
machines and dishwashers is within a range of 1200 to 2500 Watts. Hence, these devices
are considered power intensive and accurate disaggregation is critical for a household
energy-management system. The fridge operates at a very low power level; usually under
200 Watts. Although it is not a power-intensive appliance, it operates 24 h a day all year

Energies 2022, 15, 2647 7 of 20

round. Its accumulated energy consumption is an important part of the total household
consumption over a given period.

The kettle and the microwave are cooking micro-appliances. These type of appliances
are very popular and they come in many variations among manufacturers. Usually, their
operation cycle lasts for limited time periods during the day. The operation of the kettle is
simple; it boils water very quickly. Hence, kettle end-uses produce low-duration pulses
with relatively high active power from 1000 to 2000 W. On the other hand, the microwave
has a more complicated operation with many different programs in various power levels
and duration cycles. Thus, accurate disaggregation of these appliance could reveal the
power of the model in detecting short appliance end-uses during a given time period.

5.3. Data Preprocessing

The data preprocessing contains the following steps which are summarised in Table 2.
For starters, the time series are aligned in terms of time. Next, the missing values are filled.
Currently two methods are supported for filling the missing values; zero replacement and
linear interpolation. Then, normalisation of the data is applied. Data normalisation or data
scaling is important because neural networks are easier to train when dealing with small
values. This is due to the gradient descent optimisation algorithm [39]. Values on the same
or a similar scale help the gradient descent algorithm to converge more quickly towards the
minima. In Torch-NILM, two methods of data normalisation are provided: max division
normalisation and standardisation. The user can choose between these two methods by
defining the proper argument for Normalisation.

Table 2. An overview of data preprocessing steps in Torch-NILM.

Process Description

Time series alignment The mains and meter consumption time series are aligned in time axis.

Fill missing values All the missing values in both mains and meter time series are either
filled with zeros or with values calculated by linear interpolation.

Data scaling
The scaling or normalisation of the data is used to bring the data
values in the same scale.
The data scaling method is selected using the variable Normalisation.

Input/output schema The alignment of the input/output is controlled by the variable
Preprocessing Method.

Gaussian noise addition
Adding noise to the signal can function as a regulariser to tackle
overfitting.
The percentage of the added noise is controlled by the noise factor.

Standardisation is a normalisation technique where the values are centred around the
zero mean with a unit standard deviation. Standardisation is given by (1):

Z =
x− µ

σ
(1)

where Z is the standardised value, x the observed value, µ the mean of the sample and σ
the standard deviation.

Another common scaling method in NILM [18,20] is the division by the max value of
the time series, resulting in simply normalised values by the max as shown in (2):

Xnorm =
x

max(x)
(2)

where Xnorm is the normalised value, x the observed value and max(x) the max value of
the sample.

Energies 2022, 15, 2647 8 of 20

After the scaling of the data, the arrangement of input and output is performed. Often,
NILM is seen as a sequence-to-sequence type of problem [18,40], where the output has
the same length of the input. Over the years, more methods were proposed and adapted
by researchers. Some methods use sliding windows on the input in order to estimate
only one point in the output [20,41]. Other methods consider different sizes of input and
output as proposed by [42]. Torch-NILM supports the following four popular methods:
sequence-to-sequence learning, proposed by [40]; sliding window, introduced by [20]; the
sequence-to-point method proposed by [41] and sequence to subsequence [42].

On the other hand, sequence-to-point learning receives a window of mains measure-
ments and outputs the appliance power consumption at the midpoint of the window:
Y(t : t + W − 1) -> Ximidpoint. A variation of this method is the sliding window ap-
proach, where the network estimates the appliance power consumption at the last point
of the window. Sequence to subsequence is a mix between sequence-to-sequence and
sequence-to-point methods, where the output is a smaller sequence of points than the input
sequence, centred at the midpoint of the input window as shown in Figure 3. In order to
select between these options, the Torch-NILM user should define the proper value for the
Preprocessing Method.

Figure 3. An example of sequence-to-subsequence preprocessing method.

As the final step of data preparation, Torch-NILM provides a method to add Gaussian
noise on the input series. In situations of data shortage, adding noise can function as a
regulariser for the neural network and can reduce overfitting. The percentage of the added
noise can be controlled with a noise factor, a factor to multiply a Gaussian noise signal,
which will be added to the normalised mains timeseries. The noise factor is within the range
0–1, with zero meaning no added noise. The noise follows Gaussian distribution (mu = 0,
sigma = 1). The final input mains signal is given by (3):

mains = mains + noise factor×N(0, 1) (3)

After the data preprocessing is finalised, the data are ready to be provided to the
NILM-Trainer for training and inference. For efficient data loading, Pytorch provides
built-in Dataloader objects.

6. Training and Inference

Torch-NILM comes with six different neural network models developed in Pytorch.
These models are proven to have different qualities, pros and cons. Hence, NILM re-
searchers are given a powerful set of baseline models with which to compare their original
network. Additionally, the architectural differences of these models may inspire the re-
searchers to design and implement their own solution. A brief introduction for each model
is presented below. For more information, please refer to the corresponding papers.

6.1. Torch-NILM Models

Denoising autoencoder architecture was originally proposed by Vincent et al. [43].
This model attempted to remove noise from an input and create a clean output. It was

Energies 2022, 15, 2647 9 of 20

adapted in NILM by Kelly and Knottenbelt [18], where the mains power consumption was
considered as the noisy signal and the appliance consumption as the target. In that work,
DAE was used in a sequence-to-sequence learning framework. To adapt the architecture
to accept more framing methods, a final linear layer was added. This layer adjusted the
output to the desired shape. The architecture is presented in Figure 4:

Figure 4. Architecture of DAE.

Sequence-to-point (S2P)was proposed by Zhang et al. [19]. The model consisted of
a series of convolutional layers with ReLU activations between them. Even though the
model has millions of parameters, the training time was considerably small due to the fact
that convolution operations were executed in parallel. Originally the output of the model
was the appliance consumption at the midpoint of the input window. The architecture is
shown in Figure 5.

Figure 5. Architecture of S2P.

The main component of Window GRU (WGRU) is a pair of two bidirectional GRU
layers. The GRU layer [44] is a type of recurrent neural network which is more computa-
tionally efficient than the LSTM. WGRU was proposed by Krystalakos et al. [20] and has
four intermediate layers in total. Between the layers, dropout is used [45]. In the original
paper, a sliding window approach was used to estimate the power consumption of the
device at the end of the input window. The architecture is depicted in Figure 6.

Figure 6. Architecture of WGRU.

Inspired by WGRU, Virtsionis-Gkalinikis et al. [24] proposed Self-Attentive Energy
Disaggregator (SAED), architecture that combines GRU with an attention mechanism. The
attention mechanism after the convolution layer helps the model to focus on the most
important features of the input sequences. Compared to WGRU, SAED is many times faster
and smaller in size. In the current work, the multi-head attention is also supported. This
network was also proposed with the sliding-window learning schema. Figure 7 summarises
the SAED architecture.

Figure 7. Architecture of SAED.

Langevin et al. [22] proposed a UNET [46] type of variational autoencoder (VAE) with
skip connections to tackle the problem of NILM. VAE was originally proposed by Kingma
and Welling [47] in an effort to conduct variational inference [48] on large-scale datasets in
an efficient manner. Essentially, a VAE model aims to approximate the posterior distribution,

Energies 2022, 15, 2647 10 of 20

which is intractable in most of the cases. The authors of VAE-NILM [46] claimed that the
proposed architecture learns more complex power consumption signatures, resulting in
better disaggregation and generalisation compared to other state-of-the-art deep learning
solutions. In the original implementation, a sequence-to-sequence scheme is used, where
the output is the same size as the input. The main component of VAE-NILM is IBN-Net
block, which contains a series of convolution and batch normalisation layers. VAE-NILM is
presented in Figure 8.

(a) (b)

Figure 8. The VAE network. (a) UNET VAE architecture; (b) the IBN-NET block .

NFED is architecture proposed by Nalmpantis et al. [25] in 2022. This a rather deep
neural network that was inspired by the FNET [49], a variant of the Transformer architec-
tures [50–53] where the attention layer was replaced by Fourier transformation. Fourier
transformation is used as a more efficient alternative to the attention mechanism. In the
original paper, NFED was compared with WGRU and a S2P model performing on par
with less learning parameters using the sliding window approach. NFED consists mainly
of fully connected and normalised layers as shown in Figure 9, with some additional
residual connections.

6.2. Torch-NILM Training Tools

One of the goals that drove the creation of Torch-NILM was the need to create many
deep learning models easily. Often, the architecture and the training loop are implemented
together in a large-scale code block. Even though using this design pattern may seem
easy and fast, it has some drawbacks. To begin with, the code could become difficult to
read and maintain. Furthermore, developing a new model necessitates re-implementing
the training loop code again, which is inefficient. Finally, difficulties may arise when
introducing alterations to the training loop or the model. As a result, this design pattern
makes the creation of many architectures a non-trivial task.

Energies 2022, 15, 2647 11 of 20

Normalization

Fourier

Add

Input

Normalization

Dense

Add

Output

Real Imag.

Concat

Dense

Linear/Leaky
ReLU

(a)

Conv

Pool

Fourier Block

Dense ReLU

Dense ReLU

Input

Output

Linear

(b)

Figure 9. The NFED neural network. (a) Fourier block; (b) NFED architecture.

In Torch-NILM the training loop is separated from the model architecture. Hence, the
development and modification of models and the training process is easier and maintain-
able. In order to achieve the latter, Torch-NILM offers deep learning training tools. These
tools are based on Pytorch Lightning, a framework to simplify Pytorch code into clean and
easy-to-modify snippets.

The training tools are organised into different classes to match every training occasion.
Each training tool class contains all the necessary steps to train, evaluate and save a model
in Pytorch such as forward and backward pass, loss function and optimiser configuration,
etc. In addition, all the available Pytorch Lightning callbacks can be used to modify the
training loop during execution. Callbacks are blocks of reusable code which are called after
finishing a training epoch and can be easily customised to fit many needs. Some of these
callbacks are early stopping and model-checkpoint saving.

Currently, two types of training tools are provided: ClassicTrainingTools and VIBTrain-
ingTools. Inside ClassicTrainingTools, the necessary steps for applying training inference on
regression type problems are contained, where mean square error loss function (MSE) is used.
MSE loss is calculated as shown in (4), where n is the number of data points, Yi the i-th
actual value and Y′i the prediction.

The set of VIBTrainingTools supports variational inference training, where the loss
function is the evidence lower bound (ELBO) given by (6). Given an input xεR, variational
inference aims to learn posterior distribution rather than discrete values. This means that
the model could approximate data points that have not been encountered during training.
Resulting from the Bayes rule, as shown in (5), the posterior distribution p(z|x) is equal
to the likelihood p(x|z) times the prior p(z) divided by the evidence p(x). Due to the
fact that the evidence is intractable, the true posterior can not be computed analytically in
most cases. In order to estimate the true posterior, the ELBO loss function is used, where
q(z|x) is the approximation of the true posterior. To measure the information lost when
approximating the posterior, Kullback Leibler divergence (KL) is used [54].

MSEloss =
1
N

n

∑
i=1

(Yi −Y′i)
2 (4)

p(z|x) =
p(x|z)p(z)

p(x)
(5)

Energies 2022, 15, 2647 12 of 20

ELBO = Eq(z|x)[log(p(x|z))]−KL(q(z|x)||p(z)) (6)

All the supported models are trained using ClassicTrainingTools, except the VAE model
where VIBTrainingTools are used. In order to use the training tools that match each model,
the TrainingToolsFactory class was implemented. This class is the bridge between the model
and the training tools. It should be noted that the Torch-NILM training tools also provide
methods to compute the desired performance metrics after the inference is concluded. The
metrics used are described in the following section.

6.3. Evaluation Metrics

In order to evaluate the performance of a NILM model, three metrics are used: F1
score, mean absolute error (MAE) and relative error in total energy (RETE). F1 score measures
the ability of the model to detect the change of state (On/Off) of an appliance. As shown
in (7), it is the harmonic mean of precision and recall given by the Equations (8) and (9),
accordingly. MAE is used to quantify how much the estimated power consumption differs
from the ground truth consumption. It is an absolute measure computed in Watts and
calculated is given by (10), where T is the length of the predicted sequence, y′t the esti-
mated electrical power consumption and yt the true value of active power consumption
at moment t. Likewise, RETE evaluates the model’s ability to predict the actual electric
power consumption of an appliance. It is a dimensionless measure and is calculated by (11),
where E′ and E are the estimated and the true value of total energy correspondingly. All
the aforementioned metrics are implemented in class NILMmetrics in the utils module.

F1 = 2
Precision× Recall
Precision + Recall

(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

MAE =
1
T ∑ |y′t − yt| (10)

RETE =
|E′ − E|

max(E′, E)
(11)

6.4. Torch-NILM Benchmark

The benchmark module was created considering the reproducibility of the results. This
module contains files with preselected dates for all the training and testing testing scenarios
for the five appliances of interest: the washing machine, dishwasher, fridge, kettle and
microwave. All the dates were selected in such a way that they contained enough appliance
end-uses for producing disaggregation results.

Inside the module, three volumes of dates are provided to cover the potential needs
of the researcher. For all scenarios, the large volume contains 8 and 4 months for training
and testing, correspondingly. Similarly, the small volume contains 4 months for training
and 2 months for testing, whereas the cv volume provides 10 months of training dates.
Some of the selected houses for all the experiment categories are depicted in Table 3. In
the provided code there are more selected households for each case, but we found those
presented in Table 3 to contain enough appliance end-uses for proper disaggregation.

Energies 2022, 15, 2647 13 of 20

Table 3. Selected households for training and inference. For categories 1–3, UK-DALE houses were
used for training and testing. For the Category 4 experiments, UK-DALE was used only in training.
REFIT was used to evaluate the performance of the models in the disaggregation of the dishwasher
and the kettle, whereas REDD was used for inference of the rest of the appliances.

Single Multi

Electrical Appliance
Category 1 Category 2 Category 3 Category 4

Train Test Train Test Train Test Train Test

Washing Machine 1 1 1 4 1, 5 2 1, 5 3
Dishwasher 1 1 1 2 1, 2 5 1, 2 2
Fridge 1 1 1 2 1, 2, 4 5 1, 2, 4 3
Kettle 1 1 1 5 1, 2, 4 5 1, 2, 4 2
Microwave 1 1 1 2 1, 2 5 1, 2 1

7. Torch-NILM Reporting

Torch-NILM provides a reporting module to easily conduct comparisons between
models. This module is responsible for executing two tasks. Firstly, it creates the report files
for every training and inference session of a model. The report files contain the performance
evaluation files, the output of the model and the model weights file for each run. Secondly,
it compiles all of the assessment reports and builds a final report file along with a set
of comparison graphs between the models for fast visual inspection of the results. The
reporting module is built mostly on core Python, Pandas [6] and Plotly [55] libraries.

In order to obtain more reliable results, a common approach is to execute each experi-
ment multiple times. The final result is then computed as the average of all the different
executions. The variance of the experiment results indicate how stable a model is; low
variance means a stable model, high variance shows that the model produces very different
predictions every time. In NILM applications, models with low variance are preferred. The
reporting module supports the calculation of various statistical measures over the results
of different runs of the same model. The statistical measure that are currently supported in
the reporting module are presented in Table 4.

Table 4. The supported statistical measures in Torch-NILM.

Measure Description

mean The average of all the values of the desired performance metric across
different runs.

median The middle value of the desired performance metric across different runs.

minimum The minimum of all the values of the desired performance metric across
different runs.

maximum The maximum of all the values of the desired performance metric across
different runs.

25th quartile 25% of the observations are lower than this value.

75th quartile 75% of the observations are lower than this value.

The final report is exported in xlsx format with multiple sheets. Each sheet contains
the results for the electrical appliance of interest. In every sheet, each row contains the
statistical measures of the performance metrics for every model. The exported comparison
graphs are based on the final report results. Two type of graphs are currently supported:
bar plots and radar/spider plots.

Energies 2022, 15, 2647 14 of 20

8. Experiment Configurations

In order to create an experiment object, there are some basic configurations to be set. To
begin with, the user must provide the general experiment parameters. These parameters are:

• The maximum number of training epochs. Torch-NILM uses the early stopping callback,
which stops the training if the loss does not decrease after a number of patience epochs.

• The number of iterations that every experiment will be executed.
• The sample period of the data. In case the sampling period is lower or higher than the

original sampling of the data then sub-sampling or up-sampling is applied to match
the desired sample period.

• The batch size that will be used for training and inference.
• The preprocessing method. Currently, four methods are supported: sequence-to-sequence

learning, the sliding-window approach, the midpoint-window method and the sequence-
to-subsequence approach.

• The inference cpu parameter controls whether the inference should be executed on CPU
or GPU.

• The iterable dataset setting defines whether the training data should be loaded in
memory gradually in batches or in one go.

• The train test split parameter defines the ratio of test and validation data.
• The cv folds setting is the number of folds in cross-validation experiments.
• The noise factor parameter controls the percentage of noise to add to the mains signal.
• The fixed window parameter is the length of the input sequence. If None is given then

predefined windows are used for each model.
• The sub sequence setting is the length of the output sequence when sequence-to-

subsequence preprocessing method is chosen.
• The list devices contains the target appliances.
• The experiment categories is the list of the desired benchmark categories (Single or

Multi) to be executed.

After setting the general experiment parameters, the model hyperparameters for each
API are required. The Benchmark and the CrossValidation APIs receive their settings in the
same format, in a list called model hparams where all the desired architectures and their
respective parameters are stored. On the other hand, the Hyperparameter tuning API receives
a list that contains all the desired versions of the models of interest.

The final step is to define the project name, the experiment volume and which files should
be exported. Specifically, if the parameter save timeseries is true then Torch-NILM saves the
output of the models in a .csv format. Similarly, the parameters export plots and save model
control whether comparison graphs and model weights will be saved.

All exported files, graphs and reports in Torch-NILM are saved in distinct project
folders within the output folder. As a result, each project is structured in a logical manner,
allowing the users to find the files they need easily. Figure 10 depicts an example of the
file structure. There are three directories in each project, one for each API. The experiment
results, exported graphs and saved models are all kept in distinct folders in each API
directory. The results directory, which contains the final report, and the plots directory,
which contains the performance comparison graphs, are the two key areas of interest for
the user in this structure.

Energies 2022, 15, 2647 15 of 20

Figure 10. Torch-NILM results structure.

9. Torch-NILM in Use

This section presents the properties of Torch-NILM through a set of experiments. The
structure is as follows. At first, a short performance verification is conducted in order to
confirm the fact that Torch-NILM performs as expected. The verification was investigated
through a performance comparison of the proposed solution with another already validated
toolkit on the same input data. Then a benchmark case study was performed to highlight
some important qualities of Torch-NILM.

9.1. Performance Verification

The reliability of the results is crucial for open source projects. Regarding Torch-
NILM, the verification was performed with a results comparison between the suggested
solution and a previously validated framework. The closest framework to Torch-NILM
is the NILMTK-Contrib API [32], a software where state-of-the-art and baseline models
are offered. In fact, some of the provided models are also included in Torch-NILM due to
their popularity and effectiveness. As summarised in Table 5, the comparison results for
one state-of-the-art model and three electrical appliances on the same data input confirm
that Torch-NILM produces similar results to the verified software with 1.66% maximum
percentage difference and 3.27% maximum percentage error. It should be noted that these
toolkits are based on different deep learning frameworks, Pytorch and Tensorflow, and
small differences are expected. All the experiments were executed on data from UK-DALE
and the comparison was performed only on the MAE performance metric due to NILMTK-
Contrib metrics shortage. Two weeks of data were used for training and one week for
testing. Each experiment was executed five times with a different seed for five epochs. The
same seeds were used between the two frameworks. All the experiments were performed
on the same machine with a Titan Xp GPU.

9.2. Case Study

In order to demonstrate some of the qualities of the suggested toolkit, the benchmark
was executed through the Benchmark API for three models as a case study: S2P, NFED
and DAE, in both Single and Multi categories. The settings used for the experiments are
presented below in Figure 11. All the scenarios were executed three times for 10 epochs,
and batch size 1024 and inference was performed in GPU. The sliding-window schema
was used and 10% of noise was added in the mains signal during training. Some of the
produced results for the microwave are presented in Figures 12–15. These graphs were
generated automatically by Torch-NILM’s reporting module.

Energies 2022, 15, 2647 16 of 20

Table 5. Torch-NILM versus NILMTK-Contrib: Performance verification. For the experiments, S2P
architecture was used. The training for all experiments was performed with 15 days of data and
the testing with 7 days of data. For all the scenarios, training and testing were applied on house 1
of UK-DALE.

Appliance Model Torch NILM
MAE [W]

NILMTK
Contrib MAE

[W]

Mean
Absolute

Difference [W]

Mean
Percentage

Difference [%]

Mean
Percentage
Error [%]

Washing M. S2P 16.6± 1.03 17.1± 1.3 0.56 1.66 3.27

Dishwasher S2P 17.4± 0.92 17.8± 0.73 0.46 1.29 2.56

Microwave S2P 6.8± 0.87 7.01± 1.28 0.22 1.61 3.17

As shown in the results for the microwave, all models performed on par in terms of F1
in Single-type experiments, with S2P achieving better scores. Regarding MAE, the DAE
showed the largest values, whereas NFED and S2P achieved similar performances. On
the multi-type scenarios for the microwave, S2P showed the best performance with NFED
being relatively close regarding the MAE error.

(a) (b)

Figure 11. Experiment parameters for case study using the Benchmark API: (a) Generic experiment
parameters; (b) model hyperparameters.

Figure 12. Average model performance for Single categories of experiments.

Energies 2022, 15, 2647 17 of 20

Figure 13. Average model performance for Single categories of experiments.

(a) (b)

Figure 14. Benchmark results for Microwave: (a) F1 comparison for Single category; (b) MAE
comparison for Single category.

(a) (b)

Figure 15. Benchmark results for Microwave: (a) F1 comparison for Multi category of experiments;
(b) MAE comparison for Multi category of experiments.

10. Conclusions

Despite the fact that deep learning is a popular approach for energy disaggregation,
there are only a few NILM-oriented tools that properly assist the development and compar-
ison of neural network topologies. As a result, without an organised pathway or a template,
researchers must design their own set of tools, which often leads to non-reproducible
results and difficult-to-read implementations. Additionally, the lack of a widely accepted
benchmark poses further difficulties regarding the comparability of architectures. The
proposed toolkit was created to address these issues. Torch-NILM offers APIs in order to
easily develop experiments and comparisons with repeatable results. The combination
of Pytorch’s strengths with an integrated benchmark process, a set of powerful baseline

Energies 2022, 15, 2647 18 of 20

models and an effective set of training and reporting modules renders the proposed tool a
robust solution to perform and develop NILM research.

Torch-NILM could be further developed/improved in the future in the following
ways. Initially, implementing a modern looking graphical user interface would make the
procedure of performing experiments much easier. In addition, further data-processing
techniques and display graphs could be introduced. It would be also beneficial to add
methods and models that support Multi-label classification techniques.

Author Contributions: Conceptualisation, N.V.G. and C.N.; methodology, N.V.G. and C.N.; software,
N.V.G. and C.N.; validation, N.V.G., C.N. and D.V.; formal analysis, N.V.G. and C.N.; investigation,
N.V.G. and C.N.; resources, D.V.; data curation, N.V.G. and C.N.; writing—original draft preparation,
N.V.G.; writing—review and editing, N.V.G. and C.N.; visualisation, N.V.G.; supervision, D.V.; project
administration, D.V.; funding acquisition, D.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This research has been co-financed by the European Regional Development Fund of the
European Union and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code:
T1EDK-00343(95699)-Energy Controlling Voice Enabled Intelligent Smart Home Ecosystem).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We gratefully acknowledge the support of the NVIDIA Corporation with the
donation of the Titan Xp GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Armel, K.C.; Gupta, A.; Shrimali, G.; Albert, A. Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy

Policy 2013, 52, 213–234. [CrossRef]
2. Mahapatra, B.; Nayyar, A. Home energy management system (HEMS): Concept, architecture, infrastructure, challenges and

energy management schemes. Energy Syst. 2019, 1–27. [CrossRef]
3. Hart, G.W. Nonintrusive appliance load monitoring. Proc. IEEE 1992, 80, 1870–1891. [CrossRef]
4. Batra, N.; Kelly, J.; Parson, O.; Dutta, H.; Knottenbelt, W.; Rogers, A.; Singh, A.; Srivastava, M. NILMTK: An open source toolkit

for non-intrusive load monitoring. In Proceedings of the 5th International Conference on Future energy Systems, Cambridge, UK,
11–13 June 2014; pp. 265–276.

5. Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
6. McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin,

TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56.
7. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,

N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]
8. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
9. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 7 November 2015).
10. Chollet, F. Keras. 2015. Available online: https://github.com/keras-team/keras (accessed on 21 November 2015)
11. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32, pp. 8024–8035.

12. Falcon, W. PyTorch Lightning. GitHub. 2019, Volume 3. Available online: https://github.com/PyTorchLightning/pytorch-
lightning (accessed on 16 December 2019).

13. Symeonidis, N.; Nalmpantis, C.; Vrakas, D. A Benchmark Framework to Evaluate Energy Disaggregation Solutions. In Pro-
ceedings of the International Conference on Engineering Applications of Neural Networks, Crete, Greece, 24–26 May 2019;
pp. 19–30.

14. Pal, M.; Roy, R.; Basu, J.; Bepari, M.S. Blind source separation: A review and analysis. In Proceedings of the 2013 International
Conference Oriental COCOSDA Held Jointly with 2013 Conference on Asian Spoken Language Research and Evaluation
(O-COCOSDA/CASLRE), Gurgaon, India, 25–27 November 2013; pp. 1–5. [CrossRef]

http://doi.org/10.1016/j.enpol.2012.08.062
http://dx.doi.org/10.1007/s12667-019-00364-w
http://dx.doi.org/10.1109/5.192069
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
tensorflow.org
https://github.com/keras-team/keras
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
http://dx.doi.org/10.1109/ICSDA.2013.6709849

Energies 2022, 15, 2647 19 of 20

15. Khan, N.; Haq, I.U.; Ullah, F.U.M.; Khan, S.U.; Lee, M.Y. CL-Net: ConvLSTM-Based Hybrid Architecture for Batteries; State of
Health and Power Consumption Forecasting. Mathematics 2021, 9, 3326. [CrossRef]

16. Haq, I.U.; Ullah, A.; Khan, S.U.; Khan, N.; Lee, M.Y.; Rho, S.; Baik, S.W. Sequential Learning-Based Energy Consumption
Prediction Model for Residential and Commercial Sectors. Mathematics 2021, 9, 605. [CrossRef]

17. Ullah, F.U.M.; Khan, N.; Hussain, T.; Lee, M.Y.; Baik, S.W. Diving Deep into Short-Term Electricity Load Forecasting: Comparative
Analysis and a Novel Framework. Mathematics 2021, 9, 611. [CrossRef]

18. Kelly, J.; Knottenbelt, W. Neural nilm: Deep neural networks applied to energy disaggregation. In Proceedings of the 2nd ACM
International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul, Korea, 4–5 November 2015;
pp. 55–64.

19. Zhang, C.; Zhong, M.; Wang, Z.; Goddard, N.; Sutton, C. Sequence-to-point learning with neural networks for nonintrusive
load monitoring. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018.

20. Krystalakos, O.; Nalmpantis, C.; Vrakas, D. Sliding window approach for online energy disaggregation using artificial neural
networks. In Proceedings of the 10th Hellenic Conference on Artificial Intelligence, Thessaloniki, Greece, 18–20 May 2018;
pp. 1–6.

21. Yue, Z.; Witzig, C.R.; Jorde, D.; Jacobsen, H.A. BERT4NILM: A Bidirectional Transformer Model for Non-Intrusive Load
Monitoring. In Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring, NILM’20, Virtual Event,
18 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 89–93. [CrossRef]

22. Langevin, A.; Carbonneau, M.A.; Cheriet, M.; Gagnon, G. Energy disaggregation using variational autoencoders. Energy Build.
2022, 254, 111623. [CrossRef]

23. Iqbal, H.K.; Malik, F.H.; Muhammad, A.; Qureshi, M.A.; Abbasi, M.N.; Chishti, A.R. A critical review of state-of-the-art
non-intrusive load monitoring datasets. Electr. Power Syst. Res. 2021, 192, 106921. [CrossRef]

24. Virtsionis-Gkalinikis, N.; Nalmpantis, C.; Vrakas, D. SAED: Self-attentive energy disaggregation. Mach. Learn. 2021, 1–20.
[CrossRef]

25. Nalmpantis, C.; Virtsionis Gkalinikis, N.; Vrakas, D. Neural Fourier Energy Disaggregation. Sensors 2022, 22, 473. [CrossRef]
[PubMed]

26. Kukunuri, R.; Aglawe, A.; Chauhan, J.; Bhagtani, K.; Patil, R.; Walia, S.; Batra, N. EdgeNILM: Towards NILM on Edge Devices.
In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, BuildSys’20, Virtual Event,
18–20 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 90–99. [CrossRef]

27. Athanasiadis, C.; Doukas, D.; Papadopoulos, T.; Chrysopoulos, A. A Scalable Real-Time Non-Intrusive Load Monitoring System
for the Estimation of Household Appliance Power Consumption. Energies 2021, 14, 767. [CrossRef]

28. Athanasiadis, C.L.; Doukas, D.I.; Papadopoulos, T.A.; Barzegkar-Ntovom, G.A. Real-Time Non-Intrusive Load Monitoring:
A Machine-Learning Approach for Home Appliance Identification. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid,
Spain, 28 June–2 July 2021; pp. 1–6.

29. Tabatabaei, S.M.; Dick, S.; Xu, W. Toward non-intrusive load monitoring via multi-label classification. IEEE Trans. Smart Grid
2016, 8, 26–40. [CrossRef]

30. Nalmpantis, C.; Vrakas, D. On time series representations for multi-label NILM. Neural Comput. Appl. 2020, 32, 17275–17290.
[CrossRef]

31. Athanasiadis, C.L.; Papadopoulos, T.A.; Doukas, D.I. Real-time non-intrusive load monitoring: A light-weight and scalable
approach. Energy Build. 2021, 253, 111523. [CrossRef]

32. Kukunuri, R.; Batra, N.; Pandey, A.; Malakar, R.; Kumar, R.; Krystalakos, O.; Zhong, M. NILMTK-Contrib: Towards reproducible
state-of-the-art energy disaggregation. In Proceedings of the AI for Social Good Workshop, Virtual Event, 7–8 January 2021.

33. Ng, A.Y. Preventing “Overfitting” of Cross-Validation Data. In Proceedings of the Fourteenth International Conference on
Machine Learning, ICML’97, Nashville, TN, USA, 8–12 July 1997; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA,
1997; pp. 245–253.

34. Deisenroth, M.P.; Faisal, A.A.; Ong, C.S. Mathematics for Machine Learning; Cambridge University Press: Cambridge, UK, 2020.
35. Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Proceedings of the Workshop on Data

Mining Applications in Sustainability (SIGKDD), San Diego, CA, USA, 21 August 2011; Volume 25, pp. 59–62.
36. Jack, K.; William, K. The UK-DALE dataset domestic appliance-level electricity demand and whole-house demand from five UK

homes. Sci. Data 2015, 2, 150007.
37. Firth, S.; Kane, T.; Dimitriou, V.; Hassan, T.; Fouchal, F.; Coleman, M.; Webb, L. REFIT Smart Home Dataset. Available online:

https://repository.lboro.ac.uk/articles/dataset/REFIT_Smart_Home_dataset/2070091/1 (accessed on 16 June 2016).
38. Dong, M.; Meira, P.C.M.; Xu, W.; Freitas, W. An Event Window Based Load Monitoring Technique for Smart Meters. IEEE Trans.

Smart Grid 2012, 3, 787–796. [CrossRef]
39. Montavon, G.; Orr, G.; Mller, K.R. Neural Networks: Tricks of the Trade, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012.
40. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th International

Conference on Neural Information Processing Systems, NIPS’14, Bangkok, Thailand, 18–22 November 2020; MIT Press: Cambridge,
MA, USA, 2014; Volume 2, pp. 3104–3112.

http://dx.doi.org/10.3390/math9243326
http://dx.doi.org/10.3390/math9060605
http://dx.doi.org/10.3390/math9060611
http://dx.doi.org/10.1145/3427771.3429390
http://dx.doi.org/10.1016/j.enbuild.2021.111623
http://dx.doi.org/10.1016/j.epsr.2020.106921
http://dx.doi.org/10.1007/s10994-021-06106-3
http://dx.doi.org/10.3390/s22020473
http://www.ncbi.nlm.nih.gov/pubmed/35062434
http://dx.doi.org/10.1145/3408308.3427977
http://dx.doi.org/10.3390/en14030767
http://dx.doi.org/10.1109/TSG.2016.2584581
http://dx.doi.org/10.1007/s00521-020-04916-5
http://dx.doi.org/10.1016/j.enbuild.2021.111523
https://repository.lboro.ac.uk/articles/dataset/REFIT_Smart_Home_dataset/2070091/1
http://dx.doi.org/10.1109/TSG.2012.2185522

Energies 2022, 15, 2647 20 of 20

41. D’Incecco, M.; Squartini, S.; Zhong, M. Transfer Learning for Non-Intrusive Load Monitoring. IEEE Trans. Smart Grid 2020,
11, 1419–1429. [CrossRef]

42. Pan, Y.; Liu, K.; Shen, Z.; Cai, X.; Jia, Z. Sequence-To-Subsequence Learning With Conditional Gan For Power Disaggregation.
In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 3202–3206. [CrossRef]

43. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and Composing Robust Features with Denoising Autoencoders.
In Proceedings of the 25th International Conference on Machine Learning (ICML’08), Helsinki, Finland, 5–9 July 2008; pp. 1096–
1103. [CrossRef]

44. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling.
In Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 12 December 2014.

45. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

46. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015.

47. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
48. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.

[CrossRef]
49. Lee-Thorp, J.; Ainslie, J.; Eckstein, I.; Ontanon, S. FNet: Mixing Tokens with Fourier Transforms. arXiv 2021, arXiv:2105.03824.
50. Choromanski, K.M.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlos, T.; Hawkins, P.; Davis, J.Q.; Mohiuddin, A.; Kaiser,

L.; et al. Rethinking Attention with Performers. In Proceedings of the International Conference on Learning Representations,
Addis Ababa, Ethiopia, 26–30 April 2020.

51. Katharopoulos, A.; Vyas, A.; Pappas, N.; Fleuret, F. Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention. In Proceedings of the International Conference on Machine Learning (ICML), Virtual Event, 13–18 July 2020.

52. Shen, Z.; Zhang, M.; Zhao, H.; Yi, S.; Li, H. Efficient Attention: Attention with Linear Complexities. arXiv 2018, arXiv:1812.01243.
53. Kitaev, N.; Kaiser, L.; Levskaya, A. Reformer: The Efficient Transformer. In Proceedings of the International Conference on

Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
54. Joyce, J.M. Kullback-Leibler Divergence. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany,

2011; ISBN 978-3-642-04898-2. [CrossRef]
55. Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. Available online: https://plotly-r.com (accessed

on 19 December 2019).

http://dx.doi.org/10.1109/TSG.2019.2938068
http://dx.doi.org/10.1109/ICASSP40776.2020.9053947
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1007/978-3-642-04898-2_327
https://plotly-r.com

	Introduction
	Related Work
	Architecture of Torch-NILM
	Torch-NILM APIs
	Benchmark API
	Cross-Validation API
	Hyperparameter Tuning Cross-Validation API

	Data Preparation
	Data Parsing
	Datasets and Appliances
	Data Preprocessing

	Training and Inference
	Torch-NILM Models
	Torch-NILM Training Tools
	Evaluation Metrics
	Torch-NILM Benchmark

	Torch-NILM Reporting
	Experiment Configurations
	Torch-NILM in Use
	Performance Verification
	Case Study

	Conclusions
	References

