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ABSTRACT
Although the recent technological achievements have noticeable

impact on several aspects of daily life, more and more challenges

are raised in practice. As it concerns the Energy field, the need for

accurate predictions over time-dependent use cases of large scale

remains high. Deep learning approaches have already found great

acceptance in energy time-series signals, but there is still much

space for improvement. Contributing to the task of short-term

load forecasting we compose a hybrid method; first it exploits the

statistical profiling of input raw-signals validating them through

various complexity metrics; then a series of feature-engineering

processes are applied, before fitting a specified recurrent neural

network (RNN) architecture. During the first stage, we use time

series clustering to separate time periods in order to capture better

temporal patterns. We evaluate our approach using a public dataset

that regards the total load consumption of Spain, thus supporting

our assumptions about the benefits of leveraging hybrid models

for short-term load forecasting. The proposed method outperforms

other competitors, including a different RNN architecture and some

representative Machine Learning regressors.

CCS CONCEPTS
• Applied computing → Forecasting; • Computing method-
ologies→ Neural networks.

KEYWORDS
Short-term load forecasting, Long short-term memory networks,

Load signal decomposition, Time series clustering, Signal complex-

ity metrics
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1 INTRODUCTION
Every kind of crisis drastically affects our society and induces new

priorities for serving human needs. At the present time, the impact

of the ecological and financial crises in several aspects of our lives

is profound, while the advent of the pandemic has already set new

balances. The digital revolution is the most important ally towards

tackling this new, unstable reality. The widespread rise in environ-

mental awareness has established the Energy market of particular

interest to the corresponding committees and national regulators.

In addition, continuous advancement in this diversified field re-

quires the co-operation of policy-makers, stakeholders, researchers

and data engineers/scientists.

Naturally, the creation of amore sustainable and resource-efficient

future constitutes a central problem and has given rise to popular

plans such as the European Green Deal
1
and the National Action

Plan for Energy Efficiency
2
. The restrictions and the targets that

have been imposed recently in international and/or more local

scale settle the development of appropriate predictive tools nec-

essary in order to provide detailed analysis and reduce the needs

for new energy supplies[31]. Consequentially, these needs have

attracted the interest of the Artificial Intelligence (AI) research

community to continuously propose innovative methods for fore-

casting energy load signals, such as the consumption of individual

user(s) or building(s).[3, 18]. The instability that exists in the imme-

diate behaviour of individual consumers is still under research, and

constitutes critical issue towards the improvement of short-term

forecasting [8, 15].

Despite the non-deterministic character of this kind of tasks,

any underlying pattern and/or periodicity can be beneficial, thus

facilitating the overall forecasting quality. Considering also the

large volume of measurements that are now collected by the cor-

responding sensors, several deep neural network models (DNNs)

have conducted important achievements in the recent literature,

often outperforming the more conventional time-series methods

that depend on purely statistical methods and/or exploit ML mod-

els [10, 14]. However, their effectiveness cannot be overlooked,

1
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

2
https://www.coe.int/en/web/human-rights-intergovernmental-

cooperation/national-action-plans
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since they can still achieve equivalent performance with reduced

complexity when they are properly combined, achieving robust

performance even when the amount of the collected data is limited

[2, 4].

Although a great deal of attention has focused on these two di-

rections, approaches that either directly or indirectly combine both

of them have remained almost untouched. These few works that

presented hybrid methods try to decompose the raw-input signal,

before applying convolutional or recurrent neural networks (CNN,

RNN) for obtaining trustworthy forecasts [11, 21]. In this paper, we

investigate a novel combination of RNN and traditional time-series

methods. We design and evaluate such a hybrid combination for

the task of short-term load forecasting, proceeding also to a more

dedicated analysis of how external features are better consumed

by specified RNNs. The choice of the latter coincides with that of

Long-short term memory (LSTM) networks, which to the best of

our knowledge has yet to be combined with profiling methods in

that task, as stated in [12], but have achieved competitive behavior

in load forecasting [17].

Furthermore, we introduce an unsupervised strategy for cap-

turing more consistent time periods, thus building locally trained

models. The evaluation of that split is conducted through simple

but insightful complexity metrics. This last stage is implemented

through k-means clustering based on hour granularity of the in-

put signal, in conjunction with Dynamic Time Warping (DTW)

for distance computation [20]. We also examine when it is best to

apply a locally trained model through clustering rather against the

globally trained model. An automated parameter tuning stage has

also been integrated for optimizing each clustered model based on

a validation set.

The rest of this work is structured as follows: Section 2 summa-

rizes some recent work regarding the main scientific directions of

the proposed approach. In Section 3, the examined data collection is

presented along with our methodology. Section 4 reveals the exper-

imental setting that was followed together with the performance of

the proposed algorithm against the selected competitors, present-

ing also a brief discussion per conducted experiment following an

ablation study format. Finally, the last Section concludes the main

contributions and how are these supported by our results, followed

by future steps.

2 RELATEDWORK
This Section initially presents the findings of a few recent survey

works in order to outline the research trends in the field of energy

forecasting and highlights possible gaps in the literature. After

recording the most remarkable points, we review some approaches

that concern the three main points over which the proposed work

contributes: use of LSTM methods in energy forecasting, decompo-

sition methods of energy signals and time series clustering.

2.1 Survey works on energy forecasting
A large part of world’s energy resources are consumed by build-

ings, according to official recordings. This fact has attracted the

interest of [9], which presented an in-depth categorization of the

energy planning and forecasting methods that tackle such use cases.

In contrast with engineering approaches, which do not explicitly

exploit historical data during their design, the AI/ML-based ap-

proaches are clearly based on them, where the Artificial Neural

Networks (ANNs) and Support Vector Machines (SVMs) have been

highlighted through that literature review. Based on the conducted

investigation, the current survey reports that ANNs can effectively

model non-linear relationships, while their generalization ability

is reduced when the specifications or the weather conditions of

the unknown use cases are drastically different. On the other hand,

SVMs are better at tackling over-fitting phenomena, but cannot

still perform appropriate scaling when the amount of data is highly

increased, while the choice of kernel function remains an important

obstacle.

The energy consumed by buildings is themain interest also of the

next survey work [30]. The aspiration of that review is the emerging

importance of energy estimation for delivering the wider objective

of sustainable development. Hence, 91 published works between

2000 and 2019 were mined through a careful selection stage in order

to format a representative pool of research demonstrations. As it

concerns themain findings of that survey, three different forecasting

model types are recorded: black-box, grey-box and ensembles of

those two categories. Three out of four works conduct experiments

on short-term forecast horizons, while 85% of the included articles

are evaluated on datasets that stem from dedicated use cases, instead

of exploiting synthetic data or benchmarks (14% and 1% of those

works, respectively).

The most recent of the mentioned surveys also follows the dis-

crimination of demand and supply sides in its context [36]. Fur-

thermore, it reaches to a conclusion about the combination of Con-

volutional neural networks (CNN) along with LSTM networks for

capturing better the underlying temporal patterns before trying to

fit over the sequential features. However, they indicate the depen-

dency that exists between the applied models and each use case,

suggesting evaluating non-hybrid models before resorting to them

during production.

2.2 LSTM-based approaches on load forecasting
LSTMs exploit various gate mechanisms in order to let periodic

patterns enrich the learning process by accumulating past infor-

mation and model better the long-term dependencies. Hence, the

issues that occur by back-propagation algorithm are effectively

handled, overcoming at the same time the need of fixed size input

and output signals. Following the same line as in case of DNNs,

stacked or convolutional architectures that are based on LSTMs

have been designed for tackling time-dependent problems [32]. A

Sequence-to-Sequence choice was proved more accurate against

typical LSTM for both hour andminute granularity scale [24].While

the adoption of a recurrent inception CNN offered an intelligent

manner of preserving the timing characteristics, it also achieved to

tune inherently posed parameters [16].

Another research approach is the adoption of ensemble schemes,

constructing usually heterogeneous or hybrid models. We discern

the next two publications; a combination between the seasonal

auto-regressive integrated moving average (SARIMA) algorithm

and the standard LSTM network [19], as well as an evolutionary

approach that explores a pool of DDNs, LSTMs and gated recurrent

unit models (GRUs) – another one RNN-based variant – [3] for
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predicting energy consumption on household level. The former

is based on the complementary behavior obtained by assessing a

linear and a nonlinear model balancing the contribution of each

algorithm through a trade-off parameter, while the latter adopts a

genetic algorithm for tuning both the number of the kept models

and their configurations.

2.3 Signal preprocess on load forecasting
Our work is also relevant to the literature of signal decomposition

and time series clustering. Despite the crucial role of the raw-signal

decomposition, plenty of the applied methods have been devised

from fields like Signal Theory without necessarily caring about the

time dependency, the computational efficiency and/or the inter-

pretability of the underlying mechanism. However, vital boost has

been recorded regarding load forecasting approaches after careful

adoption of such preprocessing stages per investigated case. A fam-

ily of ordered weighted averaging operators (OWA) was introduced

in [7] achieving to extract smoother variants of the input signal that

offered smaller aggregated errors during the evaluation. A variant

of the popular empirical model decomposition (EMD) method [37],

the ensemble EMD, found great acceptance in large scale use cases

by choosing different models for fitting the extracted frequency

components; the lower through the multi-variable linear regression

regressor and the higher ones through LSTMs [21].

Time series clustering has also been used in the literature for

obtaining more accurate predictions based on proper grouping of

data patterns. Density based clustering was applied to solar energy

production data for capturing the different weather profiles [6]. Af-

terwards, they applied standard LSTM networks and the Facebook

Prophet model and achieved great error reduction in the majority

of the examined scenarios. Two works that used partitioning-based

clustering methods, k-means and k-medoids respectively, in tasks

that concern energy signals are [1, 13]. The former employs the

dynamic validity index for defining the number of clusters, while

the latter is based on the multivariate Root Mean Square Error

(RMSE) computed over the initial and the reconstructed signal.

As it regards our methodology, we used the decomposition of the

raw-signal in order to facilitate the stage of the clustering, which

later was applied for capturing local consistencies. While our ap-

proach follows a strategy similar with [11], that work materialized

the applied decomposition through a CNN profiling approach, men-

tioning at the same time the need of adopting LSTMs for similar

scenarios. Furthermore, we use DTW to obtain more robust dis-

tances and employ two different measures for selecting the number

of clusters.

3 METHODOLOGY
3.1 Data sources and preprocessing
This paper focuses on short-term load forecasting in Spain, a coun-

try that is ranked 30th by population and 45th by energy consump-

tion per person worldwide based on measurements during 2020
3
.

Specifically, we consider an energy dataset with hourly total load

3
https://www.eia.gov/international/overview/country/ESP

Table 1: Spain total consumption dataset formulation

Feature Load Weather Time Type
Total load ✓ Total (1)

Total load 1-week lag ✓ Total (1)

Total load 2-weeks lag ✓ Total (1)

Total load 3-weeks lag ✓ Total (1)

Total load 4-weeks lag ✓ Total (1)

Temperature ✓ City (5)

Pressure ✓ City (5)

Humidity ✓ City (5)

Wind Speed ✓ City (5)

Weekday ✓ Trig. (2)

Month of year ✓ Trig. (2)

Day of year ✓ Trig. (2)

Day of month ✓ Trig. (2)

Weekday or weekend ✓ Boolean (1)

observations that concern the total consumption of Spain
4
. In ad-

dition, the dataset includes weather information for temperature,

pressure, humidity, and wind speed for 5 cities of Spain. Linear

interpolation has been used to impute a small number of outliers,

while gaussian noise has been added to historical weather data in

order to make them resemble weather forecasts. In the following

paragraph, we describe additional feature engineering steps.

Regarding total load consumption, we create 4 lagged features

by taking the total load consumed 1-4 weeks before the current

day. Furthermore, we enrich the dataset with a number of calendar

features. Specifically, we consider the weekday, month, day of the

year, day of the month, and week- days/weekends indicator. Except-

ing the last feature which is a boolean indicator, the other calendar

features have been encoded with a pair of trigonometric functions

(sine and cosine) with regards to their cycle. The complete set of

features has been normalized in the range [0,1] by dividing with

the maximum value for each column, and can be found in Table 1.

Five of them are related to electric load, twenty of them refer to the

weather, and nine of them represent the time information.

The historical dataset described previously range from 1/1/2015

to 31/12/2018. Since the first 28-days are required to extract the

lagged load features, the actual interval for which all features are

available is 29/1/2015 to 31/12/2018. As it is common in the literature

of time series forecasting, we proceed to splitting the data into

train, validation and test periods. Consequently, training set is

from 29/1/2015 to 31/12/2016, validation set is from 1/1/2017 to

31/12/2017, and test set is from 1/1/2018 to 31/12/2018.

The aforementioned dataset, along with an implementation of

the learning methods and experiments of the upcoming sections,

are available in a (currently anonymized) public GitHub repository.
5

3.2 k-means Clustering with Dynamic Time
Warping

The decomposition of an input signal into multiple components to

be predicted by different models has been an effective approach in

the literature of time series forecasting [35]. In this work, we split

4
https://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-

and-weather

5
https://anonymous.4open.science/r/Short-term-Load-Forecasting-with-LSTM-7870

https://www.eia.gov/international/overview/country/ESP
https://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-and-weather
https://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-and-weather
https://anonymous.4open.science/r/Short-term-Load-Forecasting-with-LSTM-7870
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the hourly total load signal into 24 time series, one for each hour of

the day. We proceed to the description of a clustering process, the

purpose of which is to group the time series such that a different

model can be trained for each cluster.

We apply k-means to cluster the hourly time series, an itera-

tive clustering method that requires the experimenter to set the

number of clusters via a parameter k . Furthermore, the applica-

tion of k-means requires the specification of a distance function.

Subsequently, we use k-means in combination with the Dynamic

Time Warping (DTW) distance [25]. DTW takes into considera-

tion the time aspect of its inputs, which makes it an appropriate

distance function for the comparison of time series. Compared to

the Euclidean distance, previous works attribute the superiority of

DTW to its sequence-alignment flexibility [5]. While DTW adds

additional time complexity to k-means, it is only required in the

training phase of our system. Our criterion in the selection of pa-

rameter k lies in the maximization of the Silhouette score [38] and

the minimization of the Davies-Bouldin index (DBI) [27].

In order to define the Silhouette coefficient, it is helpful to in-

troduce some notation. Assuming a dataset X = {x1, ...,xN }, the
Silhouette score of a single example xi is denoted as Silhouette_i
and is a function of the the mean intra-cluster distance (ai ) and
the mean nearest-cluster distance (bi ) with respect to the same

example. Also, xi belongs to the clusterC(xi ) ⊆ X and NC(xi ) ⊆ X
is the cluster that is closest to xi excluding C(xi ), while C denotes

any cluster and |C | the number of examples in C . The Silhouette
coefficient is then defined as follows:

NC(xi ) = arдCmin
1

|C |

∑
x j ∈C

dist(xi ,x j ),C , C(xi ) (1a)

ai =
1

|C(xi )|

∑
xi ∈C(xi )

dist(xi ,x j ),xi , x j (1b)

bi =
1

|NC(xi )|

∑
xi ∈NC(xi )

dist(xi ,x j ) (1c)

Shillouetei =
bi − ai

max(ai ,bi )
(1d)

Shillouete =
1

N

∑
xi ∈X

Shillouetei (1e)

DBI is defined in Equation 2, in which si denotes the mean

distance between all time series in the ith cluster and their cluster’s

centroid, Mi j is the distance between the ith cluster and the jth
cluster centroids, and k is the total number of clusters.

DBI =
1

k

k∑
i=1

maxi,j
si + sj

Mi j
(2)

Moreover, to reduce the complexity of the method, we also

consider the temporal continuity of the partitions created by the

clustering result. For instance, we consider the clustering result

([0, .., 12], [13, .., 23]) more cohesive compared to a different clus-

tering ([0, .., 6, 18, .., 23], [7, .., 17]) in which clusters are more inter-

leaved. Although this restriction can be quantified, in the case of 24

different hours this heuristic is easily observable without the need

of any human expertise.

3.3 Time series decomposition
To improve the results of k−means, we investigate the potential

of time series decomposition (TSD) in specifying less complicated

components to be used as input for clustering. Specifically, we use

additive seasonal decomposition based on moving averages in order

to extract trend, season and residual components from the original

(integrated) signal. The formula for the decomposition of an input

signalyt is given in Equation 3. In the equation, T̂t denotes the trend
component, Ŝt denotes the seasonal component (computed with the

detrended signal yDt ) and R̂t denotes the remainder component.

T̂t =
1

m

k∑
j=−k

yt+j (3a)

yDt = yt − T̂t (3b)

Ŝt =
j←t%m

Ŝj =
T

m

T /m∑
i=0

yDj+im (3c)

R̂t = yt − T̂t − Ŝt (3d)

We proceed accordingly to experiments of integrated, trend, sea-

sonal and remainder clustering in order to detect the best result. In

addition to the selection criteria mentioned in the previous section,

we also consider the complexity of the produced components with

the following measures: Complexity Estimate (CE), Mean Absolute

Change (MAC) and Approximate Entropy (ApEn) [28]. Assuming

a time series yt , the complexity metrics are given in Equations 4,

5 and 6, respectively. In addition, ApEn requires the definition of

two parameters: the length of the windoww in which maximum

differences are sought and a threshold r above which differences

are not considered. The purpose of such complexity metrics is to

capture the irregularity or the degree of unforecastability found in

time series data.

CE(y) =

√√√N−1∑
t=1

(yt − yt+1)
2

(4)

MAC(y) =
N−1∑
t=1

|yt − yt+1 | (5)

di jmax =max
1≥k≥m (|yi+k−1

− yj+k−1
|) (6a)

Cim (r ) =
1

N −m + 1

N−m+1∑
j=1

1(di jmax ≤ r ) (6b)

Φm (r ) =
1

N −m + 1

N−m−1∑
i=1

ln(Cim (r )) (6c)

ApEn(m, r ) = Φm (r ) − Φm+1(r ) (6d)

3.4 Deep learning architectures
In conjunction with the profiling methods mentioned previously,

we implement and evaluate two architectures based on the LSTM

model, using two years for training and one year for validation. We

describe in detail the two architectures, including the process of

hyper-parameter exploration.
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Figure 1: Single-stage-input architecture

In the first architecture, all features are given in the first layer.

The architecture begins with n LSTM layers that use the tanh
activation function, each followed by a dropout layer to reduce

over-fitting. The final layer is a fully-connected layer with linear

activation function consisting of 24 output neurons, corresponding

to the hours of the day. A graphical representation of that archi-

tecture is given in Figure 1. We will refer to this architecture as

Single-stage-input architecture.

In the second architecture, only historical load data are given in

the first layer. The remaining features which describe weekly load

lags, weather and time are given after the LSTM layers via a fully

connected hidden layer. The output of this layer is concatenated

with the output of the last LSTM, and is then passed to the output

layer. The output layer is also a fully connected network with

24 outputs. Similarly, with the previous architecture, a graphical

representation of the second one is given in Figure 2. We refer to

this architecture as Double-stage-input architecture.

Regarding the two architectures, we considered the following

hyper-parameters: learning rate, batch size, neurons per LSTM layer,

number of LSTM layers, dropout rate, training epochs, optimizer,

activation functions and window size. For the second architecture,

we also consider the number of neurons and activation function of

the hidden fully connected layer. In both cases, our optimisation

goal is to improve the MAPE during the validation period. Different

combinations of weather features and locations are also investigated

during that data pre-processing stage.

As it regards the evaluation stage, we consider a number of

forecasting performance metrics; Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE), Root Mean Square Er-

ror (RMSE), Relative Mean Square Error (RRMSE) and R2
, given in

Equations 7, 8, 9, 10 and 11, respectively. In addition, we evaluate

the percentage of absolute percentage errors that fall within three

ranges: [0,10],(10,15] and (15,100].

MAE(y, ŷ) =
1

T

T∑
t=1

|yt − ŷt | (7)

MAPE(y, ŷ) = 100

1

T

T∑
t=1

|yt − ŷt |

|yt |
(8)

RMSE(y, ŷ) =

√√√
1

T

T∑
t=1

(yt − ŷt )2 (9)

RRMSE(y, ŷ) =

√
1

T
∑T
t=1
(yt − ŷt )2∑T

t=1
(yt )

(10)

R2 = 1 −
SSE

SST
(11a)

SSE =
T∑
t=1

(yt − ŷt )
2

(11b)

SST =
T∑
t=1

(yt − ȳ)
2

(11c)

3.5 Proposed Model
We propose a hybrid model that combines time series profiling with

an appropriate LSTM architecture. The main idea is to perform

cluster-based time split forecast which may be based either on the

integrated signal or on some signal component extracted with TSD.

An algorithm for the general approach is presented in Algorithm

1. In the next paragraph, we describe the simpler approach that is

based on the integrated signal.

Using the integrated signal, we first split the total load signal into

24 time series and then apply k-means to group these into clusters

and derive k hour groups. For each hour group, we train a dedicated

instance of our model architecture to predict only the hours that

participate in the same cluster. These steps are present in (Algorithm

1, TRAINING), where we assume the parameter componentSelector
is equal to inteдrated , such that clustering runs on the original

input signal.

Then, in the prediction phase (Algorithm 1, PREDICTION ), the

input data split according to the hour groups and the full-day length

output of the proposed model is constructed by merging the pre-

diction vectors produced by each time-based cluster.

In the second approach, the difference is that k-means is applied

to a component produced by TSD. For instance, it is possible to

extract the trend component of the total load signal and perform k-
means on the same component to derive a different hour grouping,

by passing componentSelector = trend in (Algorithm 1, TRAINING).
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Figure 2: Double-stage-input architecture

Afterwards, the process is the same as described previously; that

is the training of a separate instance of our architecture for each

hour-based group and the merging of predictions from all cluster

models. In the experimental part of this paper, our selection of the

best component to use for clustering is solely based on validation

set performance.

4 EXPERIMENTAL SETTINGS AND RESULTS
4.1 Time series clustering and decomposition
The current Section presents the results of the profiling procedure,

in which we applied k-means clustering and time series decompo-

sition to group the hours of the day.

Thek-means algorithmwithDTWdistance requires the selection

of parameter k , which is the number of cluster centers. In order to

tune this parameter, we run k-means on the integrated signal for

k ∈ [2, .., 13] and evaluate the results with the Silhouette score and

Davies-Bouldin index, as presented in Table 2. The best values for

the two evaluation metrics have been highlighted with boldface.

While the best performance is achieved by k = 2, we choose k-
means with k = 3 because it split the input signal into intervals

with better time continuity.

Table 2: Silhouette score and Davies-Bouldin index for dif-
ferent number of clusters (k)

Clusters 2 3 4 5 6 7

Silhouette 0.572 0.437 0.341 0.319 0.331 0.337

DBI 1.0 1.674 2.908 3.249 3.378 3.544

Clusters 8 9 10 11 12 13

Silhouette 0.301 0.313 0.315 0.271 0.269 0.266

DBI 3.431 3.248 3.216 3.672 4.591 5.453

In the following step, we apply time series decomposition to

derive the following components: trend, season and remainder.

We apply k-means on the integrated signal and all the additive

components separately. Then, we consider the time continuity that

results from the different clusterings. Table 3 presents how the 24

hours were grouped for feeding different signal components to k-
means. It is apparent that residual and seasonal clustering produce

hours groups of better time continuity compared to the results of

integrated and trend clustering.

Thus, hereafter we will consider only residual and seasonal clus-

tering. To choose the better option among the two, we use theMAC ,
CE and ApEn, introduced in Section 3.3, to evaluate the complex-

ity for each clustering. These results, including also a normalized

mean estimation of complexity, are provided in Table 4. Specifically,

two out of three complexity metrics regard residual clustering as

a better option on average, while it also has the best normalized

mean complexity.

Subsequently, in the following stages we proceed with residual

clustering due to the fact that it produced low complexity clusters

with good time continuity.

4.2 LSTM architecture
As mentioned in Section 3.4, we considered two deep learning

architectures. To select among the best architecture, we used a trial-

and-error approach to tune each hyper-parameter, while holding

the remaining hyper-parameters fixed. The results showed that

the Single-stage-input architecture performed better in terms of

performance and error distribution. Thus, we proceed with this

architecture for the remaining of this work.

Further details regarding the tuning process of our LSTM model,

which constitutes the backbone of the proposed architecture, are

revealed here. Specifically, we use Bayesian Optimisation to specify

and tune the LSTM architecture on the integrated signal with the

hyperas library [29]. The search space per hyper-parameter that

has been included in that stage is given in Table 5. In addition, the

configuration that achieved the optimal performance is depicted

into Table 6.
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Algorithm 1 Energy forecasting with clustered hybrid models

1: function Clustering(inputSignal,clusteringParameters)

2: hourComponents ← hourSplit(inputSiдnal) // creating a dataset with 24 components, one per hour

3: hourGroups ← DTWKmeans(hourComponents, clusterinдParameters) // partitioning the input dataset into k clusters

4: return hourGroups

5: function Clustering_Apply(inputSignal, hourGroups)

6: hourComponents ← hourSplit(inputSiдnal)
7: clusteredComponents ← clusterAssiдn(hourComponents,hourGroups)
8: return clusteredComponents

9: function Decomposition(inputSignal, componentSelector)

10: trend, season, remainder ← decompose(inputSiдnal) // based on subsection 3.3

11: siдnalComponent ← componentSelector (trend, season, remainder )
12: return siдnalComponent

13: function Training(inputSignal, componentSelector, clusteringParameters, lstmParameters)

14: if componentSelector == inteдrated then
15: siдnalComponent ← inputSiдnal
16: else
17: siдnalComponent ← DECOMPOSIT ION (inputSiдnal , componentSelector )

18: hourGroups ← CLUSTERING(siдnalComponent , clusterinдParameters)
19: clusteredComponents ← CLUSTERING_APPLY (inputSiдnal ,hourGroups)
20: for cluster in 1, ..., k do
21: clusterRNN [cluster ] ← trainRNN (clusteredComponents[cluster ], lstmParameters)

22: return clusterRNN
23: function Prediction(inputSignal, componentSelector, clusterRNN,hourGroups)

24: clusteredComponents ← CLUSTERING_APPLY (inputSiдnal ,hourGroups)
25: for cluster in 1, ..., k do
26: predictedComponents[cluster ] ← clusterRNN [cluster ].predict(clusteredComponents[cluster ])

27: predictions ←merдe(predictedComponents)
28: return predictions

Table 3: Hour groupings resulting from clustering of different signal components

Integrated Clustering Trend Clustering

Cluster 1 07:00, 08:00, 15:00, 16:00, 17:00, 18:00, 22:00

09:00, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00,

16:00, 17:00, 18:00, 19:00, 20:00, 21:00, 22:00

Cluster 2
23:00, 00:00, 01:00, 02:00, 03:00, 04:00, 05:00,

06:00

01:00, 02:00, 03:00, 04:00, 05:00, 06:00

Cluster 3
09:00, 10:00, 11:00, 12:00, 13:00, 14:00, 19:00,

20:00, 21:00

23:00, 00:00, 07:00, 08:00

Seasonal Clustering Residual Clustering

Cluster 1
12:00, 13:00, 14:00, 15:00, 16:00, 17:00, 18:00,

19:00, 20:00

12:00, 13:00, 14:00, 15:00, 16:00, 17:00, 18:00,

19:00, 21:00

Cluster 2
21:00, 22:00, 23:00, 00:00, 01:00, 02:00, 03:00,

04:00, 05:00, 06:00

22:00, 23:00, 00:00, 01:00, 02:00, 03:00, 04:00,

05:00, 06:00

Cluster 3 07:00, 08:00, 09:00, 10:00, 11:00 07:00, 08:00, 09:00, 10:00, 11:00, 20:00

Hereinafter, we will refer to this tuned variant of our selected

LSTM architecture as LSTM-HP.

4.3 Cluster vs global model
While the LSTM-HP model is trained on the initial integrated signal

that contains all 24 hours, we proceed to the training of three more

LSTM models. The first step is to split the 24-hour signal in three

hour groups, which are decided by running k-means with DTW

distance and k = 3 on the residual component of the integrated

signal. For each hour group, we train a separate LSTMmodel which

is similar to LSTM-HP in terms of configuration and architecture.

The three models for each hour group are denoted as Modelcluster1
,

Modelcluster2
and Modelcluster3

.
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Table 4: Complexity metrics for seasonal and residual clustering

Clustering Seasonal Residual
Metric MAC CE ApEn Norm. MAC CE ApEn Norm.

Cluster 1 0.0222 4.345 0.957 0.5366 0.0224 3.635 0.976 0.5040

Cluster 2 0.0468 8.363 0.862 0.8013 0.0429 6.003 0.919 0.6991

Cluster 3 0.0523 6.702 0.950 0.7869 0.0478 5.713 1.062 0.7492

Mean 0.0404 6.450 0.923 0.7049 0.0377 5.117 0.985 0.6507

Table 5: Hyperas options for LSTM model.

Parameters Options
LSTM layers 2, 3, 4
First LSTM neurons 100, 200, 300, 400, 600, 800, 1000
Second LSTM neurons 100, 200, 300, 400, 600
Third LSTM neurons 100, 200 ,300

Fourth LSTM neurons 50, 100 ,150

Epochs 70, 100, 130, 170, 200
LSTM act. funct. relu, sigmoid, linear, tanh

Table 6: Best hyper-parameters for LSTM model

LSTM layers 2 LSTM neurons 200-400

Drop out rate 0.3 Bach size 25

Dense layer 1 (24 neurons) Epochs 170

LSTM act. funct. linear kernel init. lecun normal

It is possible to derive a 24-hour prediction by merging the pre-

dictions of Modelcluster1
,Modelcluster2

and Modelcluster3
, which

all forecast different hours of the day. We denote this combined

model as CL-time-LSTM-R. The test set performance evaluation

metrics for LSTM-HP, Modelcluster1
,Modelcluster2

, Modelcluster3

and LSTM-HP are given in Table 7. Overall, we observe that the

combined model CL-time-LSTM-R achieves better performance

than LSTM-HP in terms of all performance measures.

For the sake of comparison, we also evaluate LSTM-HP sepa-

rately for each of the three hour-based groups, and denote the

results as LSTM-HPcluster1
, LSTM-HPcluster2

, LSTM-HPcluster3
.

Interestingly, by comparing these performances with the respective

performances of Modelcluster1
, Modelcluster2

and Modelcluster3
,

we observe that the latter models perform better in every hour

group. Hence, not only does CL-time-LSTM-R outperform LSTM-

HP with regard to the 24-hour set, but is better with regard to any

of the three hour-based groups.

Regarding the distribution of errors, we observe that LSTM-HP

has a higher percentage in the highest range of (15,100] compared

to CL-time-LSTM-R, while CL-time-LSTM-R has lower percent-

ages in the medium and lower ranges of (10,15] and [0,10]. An-

other observation can be made about the individual cluster models

when compared to the performance of LSTM-HP in the correspond-

ing hour ranges. Specifically, Modelcluster1
, Modelcluster2

and

Modelcluster3
have lower percentages in the (15,100] range com-

pared to LSTM-HPcluster1
, LSTM-HPcluster2

and LSTM-HPcluster3
.

4.4 Proposed model vs machine learning
regressors

The proposed method CL-time-LSTM-R has also been compared

with 4 traditionalmachine learning algorithms for regression. Specif-

ically, these methods are Linear Regression, Ridge Regression, De-

cision Tree and Support Vector Regression (SVR) [33]. The results

are given in Table 8.

Firstly, we observe that LSTM-HP outperforms the traditional

methods across the most performance measures, with only excep-

tion that Ridge Regressionwasmarginally better in terms of themet-

rics RMSE, RRMSE and R2
. More interestingly, the proposed model

CL-time-LSTM-R outperformed the traditional methods in every

case, with the differences in performance being more noticeable

than those of LSTM-HP. In the [0,10] error range, CL-time-LSTM-R

achieved a higher percentage compared to the other regressors.

This is also true for the (10,15] error range, while LSTM-HP has a

marginally lower percentage than. In the (15,100] range, CL-time-

LSTM-R has the lower percentage of errors among all competitors,

followed by Ridge Regression and LSTM-HP. Based on that error

distribution, we can safely reach to the conclusion that the proposed

method obtained the most robust performance, recording both accu-

rate predictions and eliminating its deviations.Despite the fact that

LSTM-based models demand increased computational resources

compared with conventional ML regressors, the improved perfor-

mance for offline predictions with large lead time compensates that

fact.

A violin representation for the absolute percentage error of each

distribution is given in Figure 3. It is noticeable that the quartiles Q1,

Q2 andQ3 for the LSTM basedmethods are lower compared to those

of the traditional regressors. Moreover, this graphical illustration

constitutes an additional qualitative confirmation for the improved

error distribution of the LSTM architecture.

5 CONCLUSION
To sum up, we present a dedicated LSTM-based algorithm for tack-

ling the short-term load forecasting problem. Towards that direc-

tion, we applied a proper feature engineering stage for integrating

weather and time information along with the raw-signal, and ex-

ploited signal decomposition for feeding our clustering mechanism

in order to capture better time dependencies. The proposed pipeline

is totally data-driven, and our results prove the superiority of the

clustered-based predictions against the conventional LSTM model,

as well as against some popular ML-based regressors. The results

obtained by five different performance metrics are presented, along

with a more qualitative analysis of the error distribution, revealing
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Table 7: Train Cl-time-LSTM model to compare Integrated clustering and Residual clustering.

Model MAPE MAE RMSE RRMSE R2 [0,10] (10,15] (15,100]

Modelcluster1
6.75% 0.051 0.07 9.12% 0.311 75.83% 13.21% 10.96%

Modelcluster2
4.20% 0.026 0.035 5.75% 0.473 91.51% 6.36% 2.13%

Modelcluster3
7.102% 0.051 0.072 9.73% 0.4 78.27% 9.82% 11.92%

CL-time-LSTM-R 5.88% 0.042 0.06 8.54% 0.394 82.32% 9.80% 7.89%

LSTM-HPcluster1
7.048% 0.054 0.074 9.662% 0.232 76.267% 10.684% 13.047%

LSTM-HPcluster2
4.983% 0.031 0.041 6.711% 0.302 88.858% 7.488% 3.652%

LSTM-HPcluster3
7.334% 0.055 0.077 10.130% 0.277 77.142% 9.863% 12.994%

LSTM-HP 6.357% 0.045 0.065 9.223% 0.272 81.244% 9.247% 9.509%

Table 8: Compare LSTM models with 4 machine learning algorithms in test set.

Regressors MAPE MAE RMSE RRMSE R2 [0,10] (10,15] (15,100]

Linear regression 7.73% 0.055 0.083 11.72% -0.15 74.06% 14.77% 11.16%

Ridge regression 6.70% 0.048 0.064 9.09% 0.28 78.62% 13.16% 8.22%

Decision tree 7.01% 0.049 0.072 10.23% 0.07 77.14% 10.45% 12.42%

SVR 7.65% 0.055 0.07 9.88% 0.1 70.15% 19.86% 9.99%

LSTM-HP 6.35% 0.045 0.065 9.22% 0.27 81.24% 9.25% 9.51%

CL-time-LSTM-R 5.88% 0.042 0.06 8.53% 0.39 82.32% 9.80% 7.89%

Figure 3: Violin plots for absolute percentage error (%)

the positive effect of adopting a strategy that concatenates forecasts

from clustered-based models that stem from different time periods.

In future work, we plan to gradually tune and evaluate the pro-

posed architecture for different time periods and or time horizon,

revealing more insights about its learning capacity and validating

the coverage of the current decomposition and clustering choices.

More recent decomposition strategies should be examined [22, 34],

trying at the same time to exploit those exported components also

during the inference stage, signal transformations [26], or even ap-

ply attention-based mechanisms for better utilising the correlation

of the load signal with the rest of collected indicators [23].
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