Int. j. inf. tecnol.
https://doi.org/10.1007/s41870-022-01137-y

®

Check for
updates

ORIGINAL RESEARCH

GENEREIT: generating multi-talented reinforcement learning

agents

Aristotelis Lazaridis'® - Ioannis Vlahavas!

Received: 7 July 2022 / Accepted: 7 December 2022
© The Author(s) 2023

Abstract Creating an intelligent system that is able to gen-
eralize and reach human or above-human performance in a
variety of tasks will be part of the crowning achievement of
Artificial General Intelligence. However, even though many
steps have been taken towards this direction, they have criti-
cal shortcomings that prevent the research community from
drawing a clear path towards that goal, such as limited learn-
ing capacity of a model, sample-inefficiency or low over-
all performance. In this paper, we propose GENEREIT, a
meta-Reinforcement Learning model in which a single Deep
Reinforcement Learning agent (meta-learner) is able to pro-
duce high-performance agents (inner-learners) for solving
different environments under a single training session, in
a sample-efficient way, as shown by primary results in a
set of various toy-like environments. This is partially due
to the fixed subset selection strategy implementation that
allows the meta-learner to focus on tuning specific traits of
the generated agents rather than tuning them completely.
This, combined with our system’s modular design for intro-
ducing higher levels in the meta-learning hierarchy, can also
be potentially immune to catastrophic forgetting and provide
ample learning capacity.

Keywords Deep reinforcement learning - Meta-learning -
Neural networks - Games

P4 Aristotelis Lazaridis
arislaza@csd.auth.gr

School of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

Published online: 09 January 2023

1 Introduction

Reinforcement Learning is based on the concept of learn-
ing through rewards [1], which allows a system to develop a
behavior that can solve tasks in optimal ways. It gained pop-
ularity when the research community implemented a Deep
Q-Network (DQN) [2], the first stable Deep Reinforcement
Learning model that combined the traditional Q-Learning
technique with deep neural networks in a stable manner, and
achieved human or superhuman performance when trained
in several Atari games separately [3], followed by its appli-
cation in various other domains [4—7]. Even though many
improved models followed this success [8—10], most Deep
RL models share a common limitation, which is the inability
to perform well in multiple environments.

This deficiency is not related to a single component of the
algorithms, but rather on a set of circumstances that are usu-
ally present when training a generalized model [11]. How-
ever, the more sophisticated issues that need to be addressed
before diving into the lower-lever technicalities are a mod-
el’s limited learning capacity, which is the model’s learn-
ing capacity (i.e., the maximum amount of “knowledge” or
“skills” it can learn), sample inefficiency and low overall
performance [12].

In this paper, we propose GENEREIT, which is a signifi-
cant extension of the REIN-2 system [13] that can generalize
and solve multiple tasks at once, with only a small trade-
off in performance and sample-efficiency than what would
be achieved by using the original REIN-2 model to solve a
single environment. REIN-2 is an end-to-end meta-learning
Deep RL system that tackles efficiently the aforementioned
issues by learning how to generate high-performance and
sample-efficient Deep RL agents that require no training on
their own, also incorporating a Randomized Batch Vector
(RBV) strategy.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-022-01137-y&domain=pdf
http://orcid.org/0000-0001-9654-9599

Int. j. inf. tecnol.

Our approach is based on the assumption that the meta-
learner of a REIN-2 model always has the same straightfor-
ward task of generating high-performance Deep RL agents,
regardless of the different types of environments that these
agents might have to solve; the only difference in this case
is that the meta-learner has to distinguish the different envi-
ronments itself. Subsequently, the learning capacity of the
meta-learner can be used to a greater potential, thus can
learn easier how to distinguish the different types of environ-
ments that the inner-learners have to solve.

The contribution of our paper is the introduction of a
new method for creating generalized Deep RL agents that is
based on a highly sample-efficient technique. Our proposed
system has a high degree of extensibility, making it suitable
for designing novel generalized systems.

A video demonstration of how GENEREIT works at a
conceptual level has been prepared as well, and is available
on YouTube! (unlisted video).

In the rest of the paper, we discuss related works and
compare them with the nature of GENEREIT (Sect. 2), then
we proceed with describing the problem formulation, system
design and implementation (Sect. 3), and present the con-
ducted experiments and results that indicate its performance
(Sect. 4). The discussion of these results is given in Sect. 5,
the conclusions we reach are given in Sect. 6 and the future
scope is given in Sect. 7.

2 Related work

Generalization using Deep RL techniques proved to be a
strenuous topic but with significant interest by the research
community. In most cases, a generalization framework is
used to host a Deep RL algorithm in order to improve its
ability to generalize [12]. One notable example in this cat-
egory is PopArt [14, 15], in which the authors focused on
addressing the problem of having to learn different magni-
tudes of returns across different environments, as this is one
component in Deep RL algorithms that leads to inductive
bias [11]. Originally, the authors used IMPALA [16] as core
Deep RL algorithm for PopArt, and experiments indicated
the significant ability of the model to achieve satisfying per-
formance when evaluated in all Atari games. Even though
this is a highly-encouraging attempt at multi-tasking, we
followed a different approach based on meta-learning that
addresses a higher-level issue of generalization instead,
which is the model’s learning capacity, i.e., the maximum
amount of “knowledge” or “skills” it can learn.

Our work shares many similarities with PathNet
[17], where the authors proposed using a meta-learning

! https://www.youtube.com/watch?v=5448N64CQIJE.

@ Springer

methodology based on transfer learning, and more particu-
larly exploring different network architectures and finding
an optimal one using Reinforcement Learning. However,
there are two key differences of PathNet with GENEREIT:
first, we propose Reinforcement Learning agents using their
default network architecture instead of modifying it, and
then incorporate an RBV strategy to select a subset of the
network that will be used for solving the task directly. Sec-
ondly, our meta-learning scheme is based on an end-to-end
Reinforcement Learning approach, i.e., we use a Deep RL
formulation for solving the task and for the meta-learning
mechanism, whereas in PathNet a genetic algorithm is used
for to evaluate the fitness of agents.

Our methodology can also be viewed as an approach of
having multiple workers controlled by a single entity, with
the flow of information being distributed appropriately to
increase learning efficiency. Modern implementations of
Asynchronous Actor-Critic (A2C) [9, 18] and Proximal
Policy Optimization (PPO) [10] also utilize the concept of
having multiple workers so as to solve a given environment,
however they use all workers within a single environment
to solve it, whereas GENEREIT uses only one worker per
environment/problem, with a single entity learning to solve
all environments simultaneously.

3 Methodology

We developed a system that uses the same meta-learning
approach as REIN-2 but is able to generalize efficiently in
multiple environments. REIN-2 uses a Deep RL agent (the
meta-learner) that has the role of generating an instance
of other Deep RL agents (inner-learner) that is required
to solve a specific task (i.e., inner-environment). Only an
inner-learner interacts with the inner-environment; the meta-
learner receives only the average performance of an inner-
learner instance, evaluates it, and then generates a different
inner-learner that is potentially better at solving the same
task, based on this evaluation, formulating this way a dif-
ferent RL problem (outer-environment). It should be high-
lighted that during this procedure, the inner-learner is not
trained at any way; only the meta-learner is trained in order
produce increasingly better inner-learners.

In this paper, we propose the use of multiple inner-learn-
ers instead of a single one, each solving a different task.
The concept of training is represented visually in Fig. 1 and
the GENEREIT framework is described in more detail in
Sect. 3.2. The environments to be solved, as well as the inner
and outer learning algorithms to be used, are given as input
arguments in the framework. We make use of the stable-
baselines library [19] for running our experiments with the
different RL algorithms and environments.


https://www.youtube.com/watch?v=5448N64CQJE

Int. j. inf. tecnol.

| out _ _ ] out _ ,.in

o o = 4 - P =]

e “

! in .n|
ﬁ Stin’rtin

out _—
afout - ﬂ :
in ..in
ﬂ Stin’rtin

Fig. 1 The GENEREIT architecture. The icon represents the
meta-learner, while the ﬁ icon represents the inner-learners gener-

ated at every timestep 7,

In the next subsection we describe the problem
formulation.

3.1 Problem formulation

Supposing there are n different inner-environments, let us
define each inner-environment that is to be solved as P;, which
represents a Markov Decision Process (MDP) defined as
(Si, A, Ri,pi), wherei = 1,2, ..., n marks each different inner-
environment. In this definition, S; denotes the state space, A,
the action space, R; the reward function, and p, the probability
transition function of each inner-environment i.

An inner-learner is a Reinforcement Learning model that
is assigned to solve environment P;, and is defined as M[(Qi),
in which 0, € Wk denotes the set of parameters of the model,
with W¥i being a k-dimensional space of parameter values for
the corresponding environment. For readability reasons, we
shall denote the inner-learners as M,.

The case of model M, solving the problem P; can be defined
as optimizing objective J; as follows:

arg max J;(M;(6;), P;) )
0;

Since the optimization problem that we address in this paper

is the general case where all models M are assigned to solve

their respective problems P;, then our optimization problem

is formulated as follows:

arg max (J; (M,(6)),P,),J,(M,(6,),P,),
0,,0,,...,.0, (2)
o, (M(6,),P,))

Additionally, let P, denote the outer environment with
which the meta-learner interacts. P, is an MDP defined as
the tuple (Sout’Aoul’Rout’pout)’ where S, = Wk, Ay = wk
and R, = R,, are the problem’s state space, action space
and reward function respectively, p,,, denotes the probability

transition function, and k < Y k; is the dimension of the

state/action spaces. The value lof k depends on the strategy
used during implementation and cannot exceed the total
number of parameters of all inner-learners altogether. W* can
be thought of an expanded parameter space; in the general
case where k = Y k;, each element # € W* has dimension

equal to the dimension of the concatenated elements
0, € Whi,ie., 0 =(0,,0,,...,0,), and when k < Y k;, then

6 € W* represents a slice (i.e., subvector) of thelconcate—
nated parameter vector (6,,6,, ..., 6,), and in this case, the
rest of the concatenated parameter vector is ignored during
our proposed meta-learning process. Our strategy for select-
ing k is described in more detail in Subsection 3.2.

Let the meta-learner be a Reinforcement Learning model,
represented as M, (6”), where 8’ € H' denotes the model’s
parameters, with H' being an /-dimensional space of values for
its parameters. Similarly as before, for purposes of simplifica-
tion, we shall denote the meta-learner as M, ,,,.

In each timestep, the meta-learner selects an action
a,, €A,, through a function f in order to execute it in

out out
the outer environment, i.e.,, f(MW,, Pout) =a,,. We
can divide this action vector into smaller pieces, i.e.,
Aoy = (ay. 0y, ..., a,), where a; € Wi, For our purposes, let
us assume that the action selection mechanism f in our prob-
lem can be modified to select each slice a; of the whole action

separately, as follows:
f =il fi(Moue Pow) = @, Vi =1,2,....n} (©)

Now, since A,,, = WX, then a,,, € W* and a; € W5, and
since € W* and §; € W¥ as well, then action slices a; can
replace 6, in the original optimization problem:

arg max (J1(M(6)), Py ), 5 (My(6,), Py),

t91' 20 Yn

,]n(Mn(en)’ PH))

= argmax (J; (M;(a,), Py),J5(My(a,), P,),
ap,a,,...,a, (4)
o d,(My(a,).P,))

= argar,nax (Jl (Ml (fl (Moutwl)’Pout))’P‘)’

e dy (M (s (Mo (67), o)), P))

@ Springer



Int. j. inf. tecnol.

Algorithm 1 GENEREIT Pseudocode

Input: Inner-learner model M;(6;)
Meta-learner model M,mt(el)
Inner-environments P; : (S;, A;, R;, p;)
Outer-environment Pout : (Souh Aouta Routvpout)
Output: Trained meta-learner model
1: 41
2: Initialize model parameters 6; and 6’
3: for tout = 1:Toyt do

> Evaluate inner-learner in N episodes

> Get inner-learner’s average reward from N episodes

4: i =
5: at,,, < GetActionMeta(Mout(0), 5t,,,), Stous € Sout
6: 01; — at
7: forn=1:N do
8: R; < Evaluate(M;(6;), P;) + R;
9: end for
7
10: Rout N

11: 0’ « UpdateMeta(Moyut(0"), Rout)
12: 14 (tout div k) + 1
13: if ().E towt mod k then

14: 14— 1
15: end if
16: end for

> Update meta-learner

> Proceed to next environment every k outer steps
> Reset environment evaluation cycle

which is essentially the optimization of the meta-learner’s
parameters 0:

arg 0 J, (M (Mo (7). P)) . P) )
Equation 4 shows how the original optimization objective
of finding optimal parameters 6, for each model M, has been
transformed into finding the optimal parameters 6’ of the
meta-learner M. Thus, the meta-learner is able to generate

actions that correspond to optimized parameters 6 of each
inner-learner M, that in turn solves each inner-environment.

3.2 GENEREIT system

The meta-learning concept of REIN-2 indicated that, instead
of having a Deep RL agent learn how to behave optimally
in an environment, a meta-learner can be trained to solve a
different task, which is the generation of an optimal agent
(inner-learner) that can in turn solve the original problem.
By introducing more environments where the same type of
inner-learner is used, the goal and complexity of the problem
that the meta-learner has to solve remains the same, even
though normally each inner-learner would have to develop
a different type of optimal behavior.

The meta-learner is part of the top layer of our system,
which is responsible for evaluating the performance scores
of the different inner-learners, as well as generating new
instances of them, in our case in the form of a set of neu-
ral network weights. This information transfer process is
formulated as an RL problem, in which a conversion layer
handles the proper processing of the contents sent by the
inner-learners, and then forwards the action performed by

@ Springer

the meta-learner (i.e., the generation of new inner-learners)
to the corresponding inner-environments.

The pseudo-algorithm of GENEREIT is presented in
Algorithm 1. In each timestep in the outer environment, the
meta-learner produces an inner-agent that corresponds to
one of the inner-environments that are required to be solved.
Each inner-learner is evaluated in that inner-environment,
and its performance score defines the reward signal of the
meta-learner. More precisely, the reward signal of an indi-
vidual inner-learner during its evaluation process is defined
as the average reward received from a number of episodes,
so as to ensure that there is no other information leak related
to the environment dynamics that could bias the meta-
learner, as well as to avoid inaccuracies (e.g., a satisfying
performance of an inner-learner that could be the result of
stochasticity in the environment and not the inner-learner’s
skills).

The outer environment defines an action space for the
meta-learner that depends on the type of the learning algo-
rithm used for the inner-learners. An action of the meta-
learner corresponds to an inner-agent, i.e., to the neural
network values that define each that agent. In our approach,
we used DQN [2] as the learning algorithm for all inner-
learners in order to compare our findings with REIN-2.
However, using the same model is not a restriction of our
method, since with the appropriate configurations, different
learning algorithms can be used for solving the different
inner-environments.

The observation space used in the outer environment
is similar as to that in the original REIN-2 implementa-
tion, which is defined as the space of differences between
two consecutive inner-learners (i.e., the parameter space
of the learning algorithm). In the generalized setting of



Int. j. inf. tecnol.

GENERETIT, this is expanded to include the differences of
two consecutive inner-learners for all given environments.

Even though the Randomized Batch Vector (RBV)
strategy introduced in REIN-2 can be used in our model
so that only a fixed subset of an inner-learner’s total net-
work weights are tuned by the meta-learner (i.e., a fixed
percentage of the total weights), we decided to randomly
select a fixed (absolute) number of weights for all inner-
learners instead. This choice was made in order to simplify
the action/observation spaces. More particularly, if the RBV
method was used, then the meta-learner would have to work
with a different number of weights for each inner-learner due
to their different network total sizes. In that case, the solution
would be to concatenate each of these vectors into a long one
that would constitute a complete and longer action/observa-
tion vector. This, however, would pose an extra difficulty to
the meta-learner since he would be required to learn which
parts of that vector correspond to the different inner-learners
and environments. By selecting the same number of weights
to tune for each inner-learner, no concatenation is necessary
and the meta-learner can focus only on adjusting properly
all available weights to generate an efficient inner-learner,
regardless of the environment.

3.3 GENEREIT learner characteristics

The meta-learner perceives the state space S € R” from
the outer environment, where 7 is the length of the vector
that includes the network weight values of an inner-learner
instance. In the more general case where a different learning
algorithm is used for each inner-learner, n is the vector that
contains the parameters of all algorithms. The action space
of the meta-learner is defined as A € R" , where an action
vector contains the total of network weight values that are
to be tuned and consequently realize an instance for each
inner-learner.

Our framework works in a cyclic sequential fashion,
which ultimately means that the meta-learner generates
an inner-learner for a different inner-environment after k
timesteps, where k is defined as a meta-batch, that is, the
number of steps the meta-earner has to make in one environ-
ment before moving on to the next. This allows our model to
be more robust than in the case of having all inner-learners
deliver their results at once or having only one chance at
interacting with one outer environment before moving to the
next, since it improves its skills in noticing the specifics and
dynamics of the given environment.

At timestep ¢, the meta-learner performs action a, that
corresponds to an inner-learner that will be evaluated in
the current inner-environment. Given / environments to be
solved, at that same timestep the meta-learner observes state
s,=a,—a,_,,we{l,....,k} U{i-k|li €[l,[]}, that is, the

difference between the current and previous sets of weight
values for that particular inner-learner.

The evaluation process consists of several runs of each
inner-learner within its respective inner environment to
get an average performance score. The number of runs is a
hyperparameter that can be modified and acts as a trade-off
between model accuracy and wall-clock time.

4 Experimental results

To evaluate our model, we tested its ability to generalize in a
different number of environments. The sequential method of
training the model in each environment allowed us to track
separately the average rewards of the different inner-learners,
and thus evaluate GENEREIT performance without using a
separate evaluation process for each environment.

We compared our model directly with REIN-2, therefore
we used the same architecture parameters and environments.
More particularly, we selected the CartPole-v1 [20], Acro-
bot-v1 [21] and MountainCar-v0 [21] for the inner envi-
ronments, and set A2C and PPO algorithms as the meta-
learners, while DQN [2] was used as the algorithm for the
inner-learners. Each experiment was compared against the
performance of REIN-2 (PPO) and REIN-2 (A2C) in each
respective environment. The sets of experiments conducted
are presented in detail in Table 1.

At each outer timestep, the inner-learner interacted with
the inner-environment for N = 5 episodes to extract an aver-
age performance score, and the number of weights that were
tuned for the inner-learners was set to n = 100 (which is
roughly the 1% of the total network weights for every inner-
learner), in all experiments.

The meta-batch value for all experiments was set to
k = 16. For lower values of k (e.g., 1), we noticed slight
performance drops, and in particular, slower convergence
speed in relation to peak performance. Also, for higher val-
ues of k, we did not notice and significant improvement in
neither peak performance or convergence speed.

For all experiments, we performed a slight fine-tuning
procedure for our model, and evaluated the average per-
formance of the inner-learners per timestep of the meta-
learner, per environment, against the reported results of
REIN-2.

Additionally, we present the learning curves achieved
by PPO and A2C in each environment during training, for
comparison purposes. It should be noted that PPO and
A2C were trained in each environment individually.

Initially, we trained our model to solve two environ-
ments (CartPole, Acrobot) simultaneously. Results indi-
cate that not only generalization abilities are existent, but
the sample-efficiency and high-performance skills from the

@ Springer



Int. j. inf. tecnol.

Table 1 Experiment

A . Set Environments Meta-learner Inner-learner Evaluation against
configurations for evaluating
GENEREIT 1 [CartPole-v1, Acrobot-vl] ~ PPO DQN REIN-2 (PPO), REIN-2 (A2C)
A2C
2 [CartPole-v1, Acrobot-v1, PPO DQN
MountainCar-v0] A2C
Fig. 2 Performance of a single CartPole Acrobot
GENEREIT model trained 500 4 ,
. -
on 2 environments (CartPole -100 |
and Acrobot), compared to the
performance of two REIN-2 400 |
models trained separately on the
same environments 1 —2001
—— GENEREIT (PPO + DQN) - n=100
T 300 4 —— GENEREIT (A2C + DQN) - n=100
© REIN-2 (PPO + DQN) - 1% RBV
H —— REIN-2 (A2C + DQN) - 1% RBY
o — PPO —~300 4
=2 c
2 200 - # GENEREIT (PPO + DON) (non-smoothed)
# GENEREIT (A2C + DQN) (non-smoothed)
—400 4
100 4
o -500

40000
Steps

0 20000

original REIN-2 model are maintained to a great degree
(Fig. 2). It is also evident that both versions of GENER-
EIT achieve overall roughly equal or superior performance
against PPO and A2C, which is another indicator of the
models’ property to maintain the strong performance even
after being trained on generalization tasks.

Then we proceeded into feeding three environments
(CartPole, Acrobot, MountainCar) to our system, which
still managed to learn how to generate high-performance
Deep RL agents (Fig. 3). It should be highlighted that nei-
ther convergence speed or peak performance was shriveled
due to the higher number of environments that the meta-
learner had to solve, compared to its performance in the
single-environment case. This also applies when compared
to PPO and A2C, which fail to learn faster than GENER-
EIT, even though they are trained on each environment
individually.

5 Discussion

GENEREIT showed notable ability in learning to dis-
tinguish the different environments by simply using
the average rewards received, as well as the differences
between consecutive inner-learners that were generated.
Therefore, the necessity to have a complete interaction
with the task in hand was replaced with a method of using

@ Springer

40000 60000 80000

Steps

60000 80000 0 20000

compressed knowledge, subsequently allowing for greater
learning capacity and avoiding issues such as catastrophic
forgetting.

Experiments also showed that the tradeoff between per-
formance of the REIN-2 implementation and our mod-
el’s generalization skills is relatively low, but it could be
potentially tackled with a slightly different state/action
space representation, a different strategy for agent subset
selection, or a modified data flow in relation to the meta-
learning process, instead of the cyclic sequential method
with meta-batches that we used.

The fact that GENEREIT managed to perform roughly
as well as REIN-2 is highly encouraging, since it provides
grounds for building a scaled-up generalization system
that also has high performance. As such, there is plenty of
space for further investigation with respect to the complete
GENEREIT architecture, or specific configurations of it.

6 Conclusion

In this paper we presented an extension of the REIN-2 algo-
rithm, namely GENEREIT, which allows the original meth-
odology to be used in the multi-environment setting for the
purpose of developing a generalized model. Our proposed
architecture allows a Deep RL agent (the meta-learner) to
generate other Deep RL agents (inner-learners) and assess



Int. j. inf. tecnol.

CartPole Acrobot MountainCar
500 A -120 4
—100 4
—130 A
400 +
~140 -
—200 4
—150 A
T 300 A
©
% 160
= ~300 -
2
<< 200 1 -170 4
—— GENEREIT (PPO + DON) - n=100
—— GENEREIT (A2C + DQN) - n=100 —400 —180
100 - —— REIN-2 (PPO + DON) - 1% RBV
—— REIN-2 (A2C + DON) - 1% RBV
—— PPO —-190 1
— a2c
# GENEREIT (PPO + DQN) (ncn-smoothed)
04 «  GENEREIT (A2C + DQN) (non-smoothed) | —200 1 —200 1
0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 100000 200000 300000 400000

Steps

Fig. 3 Performance of a single GENEREIT model trained on 3 envi-
ronments (CartPole, Acrobot and Mountain Car), compared to the
performance of three REIN-2 models trained separately on the same
environments. GENEREIT has a relatively small performance drop in

their performance in each given environment in a sequence.
We trained and evaluated our model in two settings that
included a different number of OpenAl Gym environments
each time (2 and 3 environments), with the produced results
being highly satisfactory. More particularly, after training,
a single GENEREIT agent was able to perform optimally or
near-optimally in all environments, while the performance
drop in comparison to the original REIN-2 model was slight
and provided the model with the required generalization
skills. This was also evident when compared to PPO and
A2C agents trained in each environment individually. Our
proposed methodology is highly customizable and scalable,
which is suitable for further experimentation in more com-
plex environments as well.

7 Future scope

Our work allowed us to visit an unexplored space of meta-
learning schemes. We implemented a promising model that
can be further customized in various ways, such as by intro-
ducing more levels of hierarchy and integrating multiple
meta-learners. This would potentially increase even more
the learning capacity of the whole architecture and maintain
the generalization abilities as well, plus allow learning in
highly complex environments. Additionally, using a vari-
ety of learning algorithms for the different environments is
an option that should provide more insights regarding the
model’s abilities.

Steps

Steps

terms of convergence speed to the optimal (or near-optimal) solutions
as reached by REIN-2, which could be considered as the trade-off for
its generalization abilities

Acknowledgements The authors would like to thank Christos Per-
chanidis for his help in preparing the video demonstration for the
GENEREIT system.

Funding Open access funding provided by HEAL-Link Greece.
Declarations

Competing interests The authors have no competing interests to
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sutton RS, Barto AG (2018) Reinforcement learning: An intro-
duction. MIT press, Cambridge

2. Mnih V et al (2015) Human-level control through deep reinforce-
ment learning. Nature 518(7540):529-533

3. Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The
arcade learning environment: An evaluation platform for general
agents. J Artif Intell Res 47:253-279

@ Springer


http://creativecommons.org/licenses/by/4.0/

Int. j. inf. tecnol.

10.

11.

Rani G, Pandey U, Wagde AA, Dhaka VS (2022) A deep rein-
forcement learning technique for bug detection in video games.
Int J Info Technol 1-13

Khurana S, Upadhayaya S (2020) Spectrum management in cog-
nitive radio ad-hoc network using g-learning. Int J Info Technol
12(2):599-604

Rajyaguru V, Vithalani C, Thanki R (2020) A literature review:
various learning techniques and its applications for eye disease
identification using retinal images. Int J Info Technol 1-12

Saini M, Sharma K, Doriya R (2022) An empirical analysis of
cloud based robotics: challenges and applications. Int J Info Tech-
nol 14(2):801-810

Hessel M et al. (2018) Rainbow: Combining improvements in
deep reinforcement learning

Mnih V, et al. (2016) Asynchronous methods for deep reinforce-
ment learning, 1928-1937. PMLR

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)
Proximal policy optimization algorithms. arXiv preprint: arXiv:
1707.06347

Hessel M, van Hasselt H, Modayil J, Silver D (2019) On inductive
biases in deep reinforcement learning. arXiv preprint: arXiv:1907.
02908

. Lazaridis A, Fachantidis A, Vlahavas I (2020) Deep reinforce-

ment learning: A state-of-the-art walkthrough. J Artif Intell Res
69:1421-1471

@ Springer

13.

14.

15.

16.

17.

18.

19.

20.

21.

Lazaridis A, Vlahavas I (2022) Rein-2: Giving birth to prepared
reinforcement learning agents using reinforcement learning
agents. Neurocomputing

Hessel M et al. (2019) Multi-task deep reinforcement learning
with popart vol. 33, 3796-3803

van Hasselt HP, Guez A, Hessel M, Mnih V, Silver D (2016)
Learning values across many orders of magnitude. Adv Neural
Inf Process Syst 29:4287-4295

Espeholt L et al. (2018) Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures, 1407-1416
PMLR

Fernando C et al. (2017) Pathnet: Evolution channels gradient
descent in super neural networks. arXiv preprint: arXiv:1701.
08734

Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M (2009) Natural
actor-critic algorithms. Automatica 45(11):2471-2482

Hill A (2018) et al. Stable baselines. github repository

Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE
Trans Syst Man Cybernet 5:834-846

Geramifard A, Dann C, Klein RH, Dabney W, How JP (2015)
Rlpy: a value-function-based reinforcement learning framework
for education and research. J] Mach Learn Res 16(1):1573-1578


http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734

	GENEREIT: generating multi-talented reinforcement learning agents
	Abstract 
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Problem formulation
	3.2 GENEREIT system
	3.3 GENEREIT learner characteristics

	4 Experimental results
	5 Discussion
	6 Conclusion
	7 Future scope
	Acknowledgements 
	References


