
Vol.:(0123456789)1 3

Int. j. inf. tecnol. 
https://doi.org/10.1007/s41870-022-01137-y

ORIGINAL RESEARCH

GENEREIT: generating multi‑talented reinforcement learning 
agents

Aristotelis Lazaridis1  · Ioannis Vlahavas1 

Received: 7 July 2022 / Accepted: 7 December 2022 
© The Author(s) 2023

Abstract Creating an intelligent system that is able to gen-
eralize and reach human or above-human performance in a 
variety of tasks will be part of the crowning achievement of 
Artificial General Intelligence. However, even though many 
steps have been taken towards this direction, they have criti-
cal shortcomings that prevent the research community from 
drawing a clear path towards that goal, such as limited learn-
ing capacity of a model, sample-inefficiency or low over-
all performance. In this paper, we propose GENEREIT, a 
meta-Reinforcement Learning model in which a single Deep 
Reinforcement Learning agent (meta-learner) is able to pro-
duce high-performance agents (inner-learners) for solving 
different environments under a single training session, in 
a sample-efficient way, as shown by primary results in a 
set of various toy-like environments. This is partially due 
to the fixed subset selection strategy implementation that 
allows the meta-learner to focus on tuning specific traits of 
the generated agents rather than tuning them completely. 
This, combined with our system’s modular design for intro-
ducing higher levels in the meta-learning hierarchy, can also 
be potentially immune to catastrophic forgetting and provide 
ample learning capacity.

Keywords Deep reinforcement learning · Meta-learning · 
Neural networks · Games

1 Introduction

Reinforcement Learning is based on the concept of learn-
ing through rewards [1], which allows a system to develop a 
behavior that can solve tasks in optimal ways. It gained pop-
ularity when the research community implemented a Deep 
Q-Network (DQN) [2], the first stable Deep Reinforcement 
Learning model that combined the traditional Q-Learning 
technique with deep neural networks in a stable manner, and 
achieved human or superhuman performance when trained 
in several Atari games separately [3], followed by its appli-
cation in various other domains [4–7]. Even though many 
improved models followed this success [8–10], most Deep 
RL models share a common limitation, which is the inability 
to perform well in multiple environments.

This deficiency is not related to a single component of the 
algorithms, but rather on a set of circumstances that are usu-
ally present when training a generalized model [11]. How-
ever, the more sophisticated issues that need to be addressed 
before diving into the lower-lever technicalities are a mod-
el’s limited learning capacity, which is the model’s learn-
ing capacity (i.e., the maximum amount of “knowledge” or 
“skills” it can learn), sample inefficiency and low overall 
performance [12].

In this paper, we propose GENEREIT, which is a signifi-
cant extension of the REIN-2 system [13] that can generalize 
and solve multiple tasks at once, with only a small trade-
off in performance and sample-efficiency than what would 
be achieved by using the original REIN-2 model to solve a 
single environment. REIN-2 is an end-to-end meta-learning 
Deep RL system that tackles efficiently the aforementioned 
issues by learning how to generate high-performance and 
sample-efficient Deep RL agents that require no training on 
their own, also incorporating a Randomized Batch Vector 
(RBV) strategy.

 * Aristotelis Lazaridis 
 arislaza@csd.auth.gr

1 School of Informatics, Aristotle University of Thessaloniki, 
Thessaloniki, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-022-01137-y&domain=pdf
http://orcid.org/0000-0001-9654-9599


 Int. j. inf. tecnol.

1 3

Our approach is based on the assumption that the meta-
learner of a REIN-2 model always has the same straightfor-
ward task of generating high-performance Deep RL agents, 
regardless of the different types of environments that these 
agents might have to solve; the only difference in this case 
is that the meta-learner has to distinguish the different envi-
ronments itself. Subsequently, the learning capacity of the 
meta-learner can be used to a greater potential, thus can 
learn easier how to distinguish the different types of environ-
ments that the inner-learners have to solve.

The contribution of our paper is the introduction of a 
new method for creating generalized Deep RL agents that is 
based on a highly sample-efficient technique. Our proposed 
system has a high degree of extensibility, making it suitable 
for designing novel generalized systems.

A video demonstration of how GENEREIT works at a 
conceptual level has been prepared as well, and is available 
on YouTube1 (unlisted video).

In the rest of the paper, we discuss related works and 
compare them with the nature of GENEREIT (Sect. 2), then 
we proceed with describing the problem formulation, system 
design and implementation (Sect. 3), and present the con-
ducted experiments and results that indicate its performance 
(Sect. 4). The discussion of these results is given in Sect. 5, 
the conclusions we reach are given in Sect. 6 and the future 
scope is given in Sect. 7.

2  Related work

Generalization using Deep RL techniques proved to be a 
strenuous topic but with significant interest by the research 
community. In most cases, a generalization framework is 
used to host a Deep RL algorithm in order to improve its 
ability to generalize [12]. One notable example in this cat-
egory is PopArt [14, 15], in which the authors focused on 
addressing the problem of having to learn different magni-
tudes of returns across different environments, as this is one 
component in Deep RL algorithms that leads to inductive 
bias [11]. Originally, the authors used IMPALA [16] as core 
Deep RL algorithm for PopArt, and experiments indicated 
the significant ability of the model to achieve satisfying per-
formance when evaluated in all Atari games. Even though 
this is a highly-encouraging attempt at multi-tasking, we 
followed a different approach based on meta-learning that 
addresses a higher-level issue of generalization instead, 
which is the model’s learning capacity, i.e., the maximum 
amount of “knowledge” or “skills” it can learn.

Our work shares many similarities with PathNet 
[17], where the authors proposed using a meta-learning 

methodology based on transfer learning, and more particu-
larly exploring different network architectures and finding 
an optimal one using Reinforcement Learning. However, 
there are two key differences of PathNet with GENEREIT: 
first, we propose Reinforcement Learning agents using their 
default network architecture instead of modifying it, and 
then incorporate an RBV strategy to select a subset of the 
network that will be used for solving the task directly. Sec-
ondly, our meta-learning scheme is based on an end-to-end 
Reinforcement Learning approach, i.e., we use a Deep RL 
formulation for solving the task and for the meta-learning 
mechanism, whereas in PathNet a genetic algorithm is used 
for to evaluate the fitness of agents.

Our methodology can also be viewed as an approach of 
having multiple workers controlled by a single entity, with 
the flow of information being distributed appropriately to 
increase learning efficiency. Modern implementations of 
Asynchronous Actor-Critic (A2C) [9, 18] and Proximal 
Policy Optimization (PPO) [10] also utilize the concept of 
having multiple workers so as to solve a given environment, 
however they use all workers within a single environment 
to solve it, whereas GENEREIT uses only one worker per 
environment/problem, with a single entity learning to solve 
all environments simultaneously.

3  Methodology

We developed a system that uses the same meta-learning 
approach as REIN-2 but is able to generalize efficiently in 
multiple environments. REIN-2 uses a Deep RL agent (the 
meta-learner) that has the role of generating an instance 
of other Deep RL agents (inner-learner) that is required 
to solve a specific task (i.e., inner-environment). Only an 
inner-learner interacts with the inner-environment; the meta-
learner receives only the average performance of an inner-
learner instance, evaluates it, and then generates a different 
inner-learner that is potentially better at solving the same 
task, based on this evaluation, formulating this way a dif-
ferent RL problem (outer-environment). It should be high-
lighted that during this procedure, the inner-learner is not 
trained at any way; only the meta-learner is trained in order 
produce increasingly better inner-learners.

In this paper, we propose the use of multiple inner-learn-
ers instead of a single one, each solving a different task. 
The concept of training is represented visually in Fig. 1 and 
the GENEREIT framework is described in more detail in 
Sect. 3.2. The environments to be solved, as well as the inner 
and outer learning algorithms to be used, are given as input 
arguments in the framework. We make use of the stable-
baselines library [19] for running our experiments with the 
different RL algorithms and environments.

1 https:// www. youtu be. com/ watch?v= 5448N 64CQJE.

https://www.youtube.com/watch?v=5448N64CQJE


Int. j. inf. tecnol. 

1 3

In the next subsection we describe the problem 
formulation.

3.1  Problem formulation

Supposing there are n different inner-environments, let us 
define each inner-environment that is to be solved as Pi , which 
represents a Markov Decision Process (MDP) defined as (
Si,Ai,Ri, pi

)
 , where i = 1, 2,… , n marks each different inner-

environment. In this definition, Si denotes the state space, Ai 
the action space, Ri the reward function, and pi the probability 
transition function of each inner-environment i.

An inner-learner is a Reinforcement Learning model that 
is assigned to solve environment Pi , and is defined as Mi

(
�i

)
 , 

in which �i ∈ Wki denotes the set of parameters of the model, 
with Wki being a ki-dimensional space of parameter values for 
the corresponding environment. For readability reasons, we 
shall denote the inner-learners as Mi.

The case of model Mi solving the problem Pi can be defined 
as optimizing objective Ji as follows:

Since the optimization problem that we address in this paper 
is the general case where all models Mi are assigned to solve 
their respective problems Pi , then our optimization problem 
is formulated as follows:

(1)argmax
�i

Ji
(
Mi

(
�i

)
,Pi

)

Additionally, let Pout denote the outer environment with 
which the meta-learner interacts. Pout is an MDP defined as 
the tuple 

(
Sout,Aout,Rout, pout

)
 , where Sout = Wk , Aout = Wk 

and Rout = Rin are the problem’s state space, action space 
and reward function respectively, pout denotes the probability 
transition function, and k ⩽

∑
i

ki is the dimension of the 

state/action spaces. The value of k depends on the strategy 
used during implementation and cannot exceed the total 
number of parameters of all inner-learners altogether. Wk can 
be thought of an expanded parameter space; in the general 
case where k =

∑
i

ki , each element � ∈ Wk has dimension 

equal to the dimension of the concatenated elements 
�i ∈ Wki , i.e., � = (�1, �2,… , �n) , and when k <

∑
i

ki , then 

� ∈ Wk represents a slice (i.e., subvector) of the concate-
nated parameter vector (�1, �2,… , �n) , and in this case, the 
rest of the concatenated parameter vector is ignored during 
our proposed meta-learning process. Our strategy for select-
ing k is described in more detail in Subsection 3.2.

Let the meta-learner be a Reinforcement Learning model, 
represented as Mout

(
�
′
)
 , where �� ∈ Hl denotes the model’s 

parameters, with Hl being an l-dimensional space of values for 
its parameters. Similarly as before, for purposes of simplifica-
tion, we shall denote the meta-learner as Mout.

In each timestep, the meta-learner selects an action 
aout ∈ Aout through a function f  in order to execute it in 
the outer environment, i.e.,, f

(
Mout, Pout

)
= aout . We 

can divide this action vector into smaller pieces, i.e., 
aout =

(
a1, a2,… , an

)
 , where ai ∈ Wki . For our purposes, let 

us assume that the action selection mechanism f  in our prob-
lem can be modified to select each slice ai of the whole action 
separately, as follows:

Now, since Aout = Wk , then aout ∈ Wk and ai ∈ Wki , and 
since � ∈ Wk and �i ∈ Wki as well, then action slices ai can 
replace �i in the original optimization problem:

(2)
argmax
�1,�2,…,�n

(
J1
(
M1(�1),P1

)
, J2

(
M2(�2),P2

)
,

… , Jn
(
Mn(�n),Pn

))

(3)f =
{
fi ∣ fi

(
Mout, Pout

)
= ai,∀i = 1, 2,… , n

}

(4)

argmax
�1,�2,…,�n

(
J1
(
M1(�1),P1

)
, J2

(
M2(�2),P2

)
,

… , Jn
(
Mn(�n),Pn

))

= argmax
a1,a2,…,an

(
J1
(
M1(a1),P1

)
, J2

(
M2(a2),P2

)
,

… , Jn
(
Mn(an),Pn

))

= argmax
��

(
J1
(
M1

(
f1
(
Mout

(
�
�
)
,Pout

))
,P1

)
,

… , Jn
(
Mn

(
fn
(
Mout

(
�
�
)
,Pout

))
,Pn

))

Fig. 1  The GENEREIT architecture. The  icon represents the 
meta-learner, while the  icon represents the inner-learners gener-
ated at every timestep tout



 Int. j. inf. tecnol.

1 3

which is essentially the optimization of the meta-learner’s 
parameters �′:

Equation 4 shows how the original optimization objective 
of finding optimal parameters �i for each model Mi has been 
transformed into finding the optimal parameters �′ of the 
meta-learner Mout . Thus, the meta-learner is able to generate 
actions that correspond to optimized parameters � of each 
inner-learner Mi that in turn solves each inner-environment.

3.2  GENEREIT system

The meta-learning concept of REIN-2 indicated that, instead 
of having a Deep RL agent learn how to behave optimally 
in an environment, a meta-learner can be trained to solve a 
different task, which is the generation of an optimal agent 
(inner-learner) that can in turn solve the original problem. 
By introducing more environments where the same type of 
inner-learner is used, the goal and complexity of the problem 
that the meta-learner has to solve remains the same, even 
though normally each inner-learner would have to develop 
a different type of optimal behavior.

The meta-learner is part of the top layer of our system, 
which is responsible for evaluating the performance scores 
of the different inner-learners, as well as generating new 
instances of them, in our case in the form of a set of neu-
ral network weights. This information transfer process is 
formulated as an RL problem, in which a conversion layer 
handles the proper processing of the contents sent by the 
inner-learners, and then forwards the action performed by 

(5)argmax
��

Ji
(
Mi

(
f
(
Mout

(
�
�
)
,Pout

))
,Pi

)

the meta-learner (i.e., the generation of new inner-learners) 
to the corresponding inner-environments.

The pseudo-algorithm of GENEREIT is presented in 
Algorithm 1. In each timestep in the outer environment, the 
meta-learner produces an inner-agent that corresponds to 
one of the inner-environments that are required to be solved. 
Each inner-learner is evaluated in that inner-environment, 
and its performance score defines the reward signal of the 
meta-learner. More precisely, the reward signal of an indi-
vidual inner-learner during its evaluation process is defined 
as the average reward received from a number of episodes, 
so as to ensure that there is no other information leak related 
to the environment dynamics that could bias the meta-
learner, as well as to avoid inaccuracies (e.g., a satisfying 
performance of an inner-learner that could be the result of 
stochasticity in the environment and not the inner-learner’s 
skills).

The outer environment defines an action space for the 
meta-learner that depends on the type of the learning algo-
rithm used for the inner-learners. An action of the meta-
learner corresponds to an inner-agent, i.e., to the neural 
network values that define each that agent. In our approach, 
we used DQN [2] as the learning algorithm for all inner-
learners in order to compare our findings with REIN-2. 
However, using the same model is not a restriction of our 
method, since with the appropriate configurations, different 
learning algorithms can be used for solving the different 
inner-environments.

The observation space used in the outer environment 
is similar as to that in the original REIN-2 implementa-
tion, which is defined as the space of differences between 
two consecutive inner-learners (i.e., the parameter space 
of the learning algorithm). In the generalized setting of 



Int. j. inf. tecnol. 

1 3

GENEREIT, this is expanded to include the differences of 
two consecutive inner-learners for all given environments.

Even though the Randomized Batch Vector (RBV) 
strategy introduced in REIN-2 can be used in our model 
so that only a fixed subset of an inner-learner’s total net-
work weights are tuned by the meta-learner (i.e., a fixed 
percentage of the total weights), we decided to randomly 
select a fixed (absolute) number of weights for all inner-
learners instead. This choice was made in order to simplify 
the action/observation spaces. More particularly, if the RBV 
method was used, then the meta-learner would have to work 
with a different number of weights for each inner-learner due 
to their different network total sizes. In that case, the solution 
would be to concatenate each of these vectors into a long one 
that would constitute a complete and longer action/observa-
tion vector. This, however, would pose an extra difficulty to 
the meta-learner since he would be required to learn which 
parts of that vector correspond to the different inner-learners 
and environments. By selecting the same number of weights 
to tune for each inner-learner, no concatenation is necessary 
and the meta-learner can focus only on adjusting properly 
all available weights to generate an efficient inner-learner, 
regardless of the environment.

3.3  GENEREIT learner characteristics

The meta-learner perceives the state space S ∈ ℝn from 
the outer environment, where n is the length of the vector 
that includes the network weight values of an inner-learner 
instance. In the more general case where a different learning 
algorithm is used for each inner-learner, n is the vector that 
contains the parameters of all algorithms. The action space 
of the meta-learner is defined as A ∈ ℝn , where an action 
vector contains the total of network weight values that are 
to be tuned and consequently realize an instance for each 
inner-learner.

Our framework works in a cyclic sequential fashion, 
which ultimately means that the meta-learner generates 
an inner-learner for a different inner-environment after k 
timesteps, where k is defined as a meta-batch, that is, the 
number of steps the meta-earner has to make in one environ-
ment before moving on to the next. This allows our model to 
be more robust than in the case of having all inner-learners 
deliver their results at once or having only one chance at 
interacting with one outer environment before moving to the 
next, since it improves its skills in noticing the specifics and 
dynamics of the given environment.

At timestep t, the meta-learner performs action at that 
corresponds to an inner-learner that will be evaluated in 
the current inner-environment. Given l environments to be 
solved, at that same timestep the meta-learner observes state 
st = at − at−w,w ∈ {1,… , k} ∪ {i ⋅ k‖i ∈ [1, l]} , that is, the 

difference between the current and previous sets of weight 
values for that particular inner-learner.

The evaluation process consists of several runs of each 
inner-learner within its respective inner environment to 
get an average performance score. The number of runs is a 
hyperparameter that can be modified and acts as a trade-off 
between model accuracy and wall-clock time.

4  Experimental results

To evaluate our model, we tested its ability to generalize in a 
different number of environments. The sequential method of 
training the model in each environment allowed us to track 
separately the average rewards of the different inner-learners, 
and thus evaluate GENEREIT performance without using a 
separate evaluation process for each environment.

We compared our model directly with REIN-2, therefore 
we used the same architecture parameters and environments. 
More particularly, we selected the CartPole-v1 [20], Acro-
bot-v1 [21] and MountainCar-v0 [21] for the inner envi-
ronments, and set A2C and PPO algorithms as the meta-
learners, while DQN [2] was used as the algorithm for the 
inner-learners. Each experiment was compared against the 
performance of REIN-2 (PPO) and REIN-2 (A2C) in each 
respective environment. The sets of experiments conducted 
are presented in detail in Table 1.

At each outer timestep, the inner-learner interacted with 
the inner-environment for N = 5 episodes to extract an aver-
age performance score, and the number of weights that were 
tuned for the inner-learners was set to n = 100 (which is 
roughly the 1% of the total network weights for every inner-
learner), in all experiments.

The meta-batch value for all experiments was set to 
k = 16 . For lower values of k (e.g., 1), we noticed slight 
performance drops, and in particular, slower convergence 
speed in relation to peak performance. Also, for higher val-
ues of k, we did not notice and significant improvement in 
neither peak performance or convergence speed.

For all experiments, we performed a slight fine-tuning 
procedure for our model, and evaluated the average per-
formance of the inner-learners per timestep of the meta-
learner, per environment, against the reported results of 
REIN-2.

Additionally, we present the learning curves achieved 
by PPO and A2C in each environment during training, for 
comparison purposes. It should be noted that PPO and 
A2C were trained in each environment individually.

Initially, we trained our model to solve two environ-
ments (CartPole, Acrobot) simultaneously. Results indi-
cate that not only generalization abilities are existent, but 
the sample-efficiency and high-performance skills from the 



 Int. j. inf. tecnol.

1 3

original REIN-2 model are maintained to a great degree 
(Fig. 2). It is also evident that both versions of GENER-
EIT achieve overall roughly equal or superior performance 
against PPO and A2C, which is another indicator of the 
models’ property to maintain the strong performance even 
after being trained on generalization tasks.

Then we proceeded into feeding three environments 
(CartPole, Acrobot, MountainCar) to our system, which 
still managed to learn how to generate high-performance 
Deep RL agents (Fig. 3). It should be highlighted that nei-
ther convergence speed or peak performance was shriveled 
due to the higher number of environments that the meta-
learner had to solve, compared to its performance in the 
single-environment case. This also applies when compared 
to PPO and A2C, which fail to learn faster than GENER-
EIT, even though they are trained on each environment 
individually.

5  Discussion

GENEREIT showed notable ability in learning to dis-
tinguish the different environments by simply using 
the average rewards received, as well as the differences 
between consecutive inner-learners that were generated. 
Therefore, the necessity to have a complete interaction 
with the task in hand was replaced with a method of using 

compressed knowledge, subsequently allowing for greater 
learning capacity and avoiding issues such as catastrophic 
forgetting.

Experiments also showed that the tradeoff between per-
formance of the REIN-2 implementation and our mod-
el’s generalization skills is relatively low, but it could be 
potentially tackled with a slightly different state/action 
space representation, a different strategy for agent subset 
selection, or a modified data flow in relation to the meta-
learning process, instead of the cyclic sequential method 
with meta-batches that we used.

The fact that GENEREIT managed to perform roughly 
as well as REIN-2 is highly encouraging, since it provides 
grounds for building a scaled-up generalization system 
that also has high performance. As such, there is plenty of 
space for further investigation with respect to the complete 
GENEREIT architecture, or specific configurations of it.

6  Conclusion

In this paper we presented an extension of the REIN-2 algo-
rithm, namely GENEREIT, which allows the original meth-
odology to be used in the multi-environment setting for the 
purpose of developing a generalized model. Our proposed 
architecture allows a Deep RL agent (the meta-learner) to 
generate other Deep RL agents (inner-learners) and assess 

Table 1  Experiment 
configurations for evaluating 
GENEREIT

Set Environments Meta-learner Inner-learner Evaluation against

1 [CartPole-v1, Acrobot-v1] PPO DQN REIN-2 (PPO), REIN-2 (A2C)
A2C

2 [CartPole-v1, Acrobot-v1, 
MountainCar-v0]

PPO DQN
A2C

Fig. 2  Performance of a single 
GENEREIT model trained 
on 2 environments (CartPole 
and Acrobot), compared to the 
performance of two REIN-2 
models trained separately on the 
same environments



Int. j. inf. tecnol. 

1 3

their performance in each given environment in a sequence. 
We trained and evaluated our model in two settings that 
included a different number of OpenAI Gym environments 
each time (2 and 3 environments), with the produced results 
being highly satisfactory. More particularly, after training, 
a single GENEREIT agent was able to perform optimally or 
near-optimally in all environments, while the performance 
drop in comparison to the original REIN-2 model was slight 
and provided the model with the required generalization 
skills. This was also evident when compared to PPO and 
A2C agents trained in each environment individually. Our 
proposed methodology is highly customizable and scalable, 
which is suitable for further experimentation in more com-
plex environments as well.

7  Future scope

Our work allowed us to visit an unexplored space of meta-
learning schemes. We implemented a promising model that 
can be further customized in various ways, such as by intro-
ducing more levels of hierarchy and integrating multiple 
meta-learners. This would potentially increase even more 
the learning capacity of the whole architecture and maintain 
the generalization abilities as well, plus allow learning in 
highly complex environments. Additionally, using a vari-
ety of learning algorithms for the different environments is 
an option that should provide more insights regarding the 
model’s abilities.

Acknowledgements The authors would like to thank Christos Per-
chanidis for his help in preparing the video demonstration for the 
GENEREIT system.

Funding Open access funding provided by HEAL-Link Greece.

Declarations 

 Competing interests The authors have no competing interests to 
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Sutton RS, Barto AG (2018) Reinforcement learning: An intro-
duction. MIT press, Cambridge

 2. Mnih V et al (2015) Human-level control through deep reinforce-
ment learning. Nature 518(7540):529–533

 3. Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The 
arcade learning environment: An evaluation platform for general 
agents. J Artif Intell Res 47:253–279

Fig. 3  Performance of a single GENEREIT model trained on 3 envi-
ronments (CartPole, Acrobot and Mountain Car), compared to the 
performance of three REIN-2 models trained separately on the same 
environments. GENEREIT has a relatively small performance drop in 

terms of convergence speed to the optimal (or near-optimal) solutions 
as reached by REIN-2, which could be considered as the trade-off for 
its generalization abilities

http://creativecommons.org/licenses/by/4.0/


 Int. j. inf. tecnol.

1 3

 4. Rani G, Pandey U, Wagde AA, Dhaka VS (2022) A deep rein-
forcement learning technique for bug detection in video games. 
Int J Info Technol 1–13

 5. Khurana S, Upadhayaya S (2020) Spectrum management in cog-
nitive radio ad-hoc network using q-learning. Int J Info Technol 
12(2):599–604

 6. Rajyaguru V, Vithalani C, Thanki R (2020) A literature review: 
various learning techniques and its applications for eye disease 
identification using retinal images. Int J Info Technol 1–12

 7. Saini M, Sharma K, Doriya R (2022) An empirical analysis of 
cloud based robotics: challenges and applications. Int J Info Tech-
nol 14(2):801–810

 8. Hessel M et al. (2018) Rainbow: Combining improvements in 
deep reinforcement learning

 9. Mnih V, et al. (2016) Asynchronous methods for deep reinforce-
ment learning, 1928–1937. PMLR

 10. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) 
Proximal policy optimization algorithms. arXiv preprint: arXiv: 
1707. 06347

 11. Hessel M, van Hasselt H, Modayil J, Silver D (2019) On inductive 
biases in deep reinforcement learning. arXiv preprint: arXiv: 1907. 
02908

 12. Lazaridis A, Fachantidis A, Vlahavas I (2020) Deep reinforce-
ment learning: A state-of-the-art walkthrough. J Artif Intell Res 
69:1421–1471

 13. Lazaridis A, Vlahavas I (2022) Rein-2: Giving birth to prepared 
reinforcement learning agents using reinforcement learning 
agents. Neurocomputing

 14. Hessel M et al. (2019) Multi-task deep reinforcement learning 
with popart vol. 33, 3796–3803

 15. van Hasselt HP, Guez A, Hessel M, Mnih V, Silver D (2016) 
Learning values across many orders of magnitude. Adv Neural 
Inf Process Syst 29:4287–4295

 16. Espeholt L et al. (2018) Impala: Scalable distributed deep-rl with 
importance weighted actor-learner architectures, 1407–1416 
PMLR

 17. Fernando C et al. (2017) Pathnet: Evolution channels gradient 
descent in super neural networks. arXiv preprint: arXiv: 1701. 
08734

 18. Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M (2009) Natural 
actor-critic algorithms. Automatica 45(11):2471–2482

 19. Hill A (2018) et al. Stable baselines. github repository
 20. Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive 

elements that can solve difficult learning control problems. IEEE 
Trans Syst Man Cybernet 5:834–846

 21. Geramifard A, Dann C, Klein RH, Dabney W, How JP (2015) 
Rlpy: a value-function-based reinforcement learning framework 
for education and research. J Mach Learn Res 16(1):1573–1578

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734

	GENEREIT: generating multi-talented reinforcement learning agents
	Abstract 
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Problem formulation
	3.2 GENEREIT system
	3.3 GENEREIT learner characteristics

	4 Experimental results
	5 Discussion
	6 Conclusion
	7 Future scope
	Acknowledgements 
	References


