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Abstract. Without doubt Prolog, as the most prominent member of
the logic programming (LP) approach, presents significant differences
from the mainstream programming paradigms. However, demonstrating
its flexibility to larger audiences can indeed be a challenging task, since
the declarative style of LP lies outside the mainstream programming
languages most are familiar with. In this paper, we demonstrate how
alternative implementations of a single list operation can prove to be a
rather helpful tool for demonstrating a plethora of Prolog programming
aspects and techniques, and some issues associated with these, such as
efficiency, readability and writability of code.
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1 Introduction and Motivation

Communicating the flexibility of the logic-based approach to problem solving
supported by Prolog, to wider audiences, such as students, programmers and in
general people less familiar with LP, can prove to be a somewhat complicated
task. Thus, the motivation behind this paper is to demonstrate the flexibility of
Prolog in coding a simple operation, commonly found in all programming envi-
ronments supporting lists, by employing a variety of programming techniques.
As educators, we have been teaching Prolog for many years, following a fairly
standard approach of introducing the language constructs and techniques that
differentiate it from other mainstream programming languages. By starting from
pure Prolog syntax, declarative and operational semantics, then moving towards
recursion and lists and concluding with extra-logical features and practical meta-
programming techniques, gave us the opportunity to teach Prolog through a good
number of examples of various complexity.
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What was missing was a standard reference to a single operation that could
be implemented in different ways, thus demonstrating the flexibility of the lan-
guage which, however, may raise issues for discussion around declarative versus
procedural approach, readability versus writability of code and simplicity versus
efficiency. We found that list_min predicate could serve this purpose. We fol-
lowed different approaches in our own institutions; either to present this example
throughout the semester as we introduce concepts together with other examples,
or to devote a revision session towards the end of the semester to summarise the
language potential before the final exam. Results were encouraging in both ap-
proaches.

Therefore, we demonstrate how a single list operation, i.e. the minimum of
a list, can prove to be a rather helpful tool to refer to a plethora of Prolog pro-
gramming aspects and techniques. The benefits are numerous: (a) it is a simple
operation, with which students are familiar with and thus presents no barriers
in understanding its specification, (b) it has a surprising number of alternative
implementations, (c) benchmarking of the alternatives is a straightforward task,
allowing discussion of complexity issues that arise. The current paper contributes
towards demonstrating Prolog flexibility, especially in audiences just getting fa-
miliar with Prolog, by:

– discussing how a single simple list operation can demonstrate a number of
programming techniques, through alternative implementations,

– presenting how such simple code can expose a number of lower level issues of
some techniques, such as garbage collection and tail recursion optimization.

The paper is not aimed to be a tutorial in Prolog, as this is presented earlier
in this book [14]. It is assumed that the reader has some knowledge of the
language. Additionally, our audience includes educators who would like to adopt
this example throughout their courses on top of all existing material they teach
as a single point of reference suitable for discussing the flexibility of the language.

2 The Challenges of Learning Prolog

Learning Prolog can indeed be a challenging task, usually attributed to the
declarative style of LP, which lies outside the mainstream programming lan-
guages. Indeed, in CS curricula, students are exposed early to concepts such
as while-for loops, destructive assignment variables, types, common functions
with a single return value, etc. in the usual first “Introduction to Programming”
course. This programming paradigm mindset is further deepened, for example
by object oriented programming courses that although they introduce new con-
cepts such as inheritance, still follow the well established procedural vein and
the usually OO focused software engineering courses. The distance between the
paradigms is further enlarged because students are normally instructed to avoid
as much as possible recursion due to inefficiency issues, present in most main-
stream languages that lack optimization support. Consequently, as educators we
must overcome a number of obstacles and in fact “reset” the way students think
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about programming. Although a number of classic introductory and advanced
books and tutorials exist, such as [3, 1, 12, 9, 10], the pedagogical issues faced
in class remain a great challenge [13, 11, 6], and require novel approaches and
environments [4, 8].

Students often ask the question “Why Prolog?” Some are convinced by typical
justifications that refer to foundations of the discipline as well as teaching pro-
gramming principles with a minimum set of constructs. It is expected, however,
that a tighter integration, both in terms of facilities and available examples, with
other programming languages and tools will be sought towards the perception
of students for its applicability. Additionally, the current growth of Knowledge
Graphs [7] and their associated Semantic Web technologies that rely mostly on
logic, raises some extra arguments in favor of learning LP.

For as long as Logic forms the foundations of Computer Science, LP, through
its main representative (Prolog) will remain current. It is no surprise that Prolog
is perhaps one of the few programming language that persists for many years
in Computer Science curricula; while other programming languages come and
go, Prolog remains as a paradigm for declarative thinking (programming) that
can be used to teach a plethora of programming principles and techniques. We
anticipate that this fact will also remain true in the future.

The power of simplicity (syntax and constructs) gives us, educators, the op-
portunity to focus on programming principles that span from purely declarative
to procedural. In this paper, we attempt to demonstrate a showcase on how this
is feasible through alternative implementations of a single operation that can be
referenced throughout the learning process or used to summarise and revise the
language abilities and flexibility.

3 Logic Programming Techniques

The term “programming technique” has been used in different contexts: we adopt
the definition that a technique is a pattern, applied to a wide range of problems
[2], as for example failure driven loops, generate-and-test and accumulator pairs,
among many others.

A schema is a representation of a technique that allows developers to repre-
sent a general structure solution code to a problem, so that, given the specific
context, the schema may be instantiated to executable code that solves the par-
ticular problem. The schema approach to teaching Prolog was introduced rather
early, as for instance in [5], where also a single example was used. Although we
follow the same approach, our focus is different, since we contend that the single
task used can serve to discuss a wider number of issues, as for example efficiency
and non-recursive techniques.

Probably the most widely used approach for logic programs is recursion. It is
derived through the mathematical concept of induction [15] and assumes that a
problem of a certain size, say N, can be solved if the same problem of a smaller
size, say N-1, is solvable. Although a powerful approach, that provides for sim-
ple solutions of rather complex problems even when considered in a procedural
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mindset, it is still a skill that most novice programmers lack, or have not been
exposed and exercised to a great extent.

4 One Problem - Many Solutions

The problem in question is to find the minimum element of a list of numbers,
what we refer to as list_min/2 predicate. We will show the recursive approach
first, and then we will explain some more complex non-recursive schemata. In the
following, in order to distinguish easily between the different implementations of
list_min/2, we adopt a numbering in the name of the predicate, i.e. list_minX/2
with X ranging from 1 to 9.

4.1 Recursive Super-Naive Declarative Implementation

The first attempt to a solution, focuses on presenting a rather simple view of
recursion, that reads as follows: “To find the minimum of a list of N elements,
assume that you know the minimum of its N-1 elements and compare with the
Nth”. This leads to a (super-naive) recursive implementation of the min_list
predicate, shown below as predicate (list_min1/2).

list_min1([Min],Min).

list_min1([H|T],H):-

list_min1(T,MinTail),

H =< MinTail.

list_min1([H|T],MinTail):-

list_min1(T,MinTail),

H > MinTail.

This implementation offers the grounds for raising a number of issues: (a) list
decomposition in the head of the clause, (b) an introduction to the structure of
a predicate definition with recursive and terminal cases (rules) and (c) plac-
ing alternative choices in separate rules, as a straightforward rule-of-thumb
instead of OR (;) within the body of the clause that leads to several concerns.
List decomposition on the head of the clause, provides a syntactically simple
list operation, whereas alternative cases in a definition enhance readability and
make the resulting code more extensible.

However, a number of other issues are eminent. Probably the one with “what
is hidden” in the previous implementation is the fact that there is a choice
point in the recursive rule embedded in the predicate; the choice between the
minimum among the head of the list and the minimum of the tail of the list, that
occurs after the recursive call, leads to inefficiency issues and provides a great
chance to discuss the execution tree and placing checks as early as possible.
The response to the obvious reaction for subgoal reorderding in the body
of the rules, leads to a discussion on the non-logical handling of numbers
in classical (non CLP) Prolog implementations, that expects ground variables
in any arithmetic expression. This discussion provides an excellent prompt to
introduce Constraint LP.
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4.2 Naive Declarative Implementation

The inefficiency issue manifested in the previous implementation, demands a
better recursive definition, that of “the minimum element of a list is the min-
imum among its head and the minimum of its tail”, implemented as predicate
list_min2/2, shown below.

list_min2([Min],Min).

list_min2([H|Tail],Min) :-

list_min2(Tail,MinTail),

min(H,MinTail,Min).

min(X,Y,X) :- X=<Y.

min(X,Y,Y) :- X>Y.

Although, arithmetic checks are delayed and placed “after” the recursive call,
committing to the min value is delayed, i.e. variable Min is instantiated at the
last call, after the arithmetic check. This leads to a linear complexity, albeit some
memory inefficiencies. A puzzling point to novice learners is that comparisons
take actually place backwards, from the last element of the list to the first,
usually referred to as building the solution “on the way up”.

This version offers itself to talk about the if-then-else construct (without
explicit reference to the hidden cut) by rewriting the code for min/2 as follows:

list_min21([Min],Min).

list_min21([H|Tail],Min) :-

list_min21(Tail,MinTail),

(H>MinTail -> Min=MinTail; Min=H).

Although, some may find that the above presents a more readable implemen-
tation, it does contain explicit unification, i.e. the use of the “=” operator, which
can be easily (mis)taken for assignment.

4.3 The “Standard” Algorithmic Implementation

Following the implementation of the “naive” program where numbers are com-
pared in the reverse order, this predicate allows for an explanation of its mem-
ory inefficiency, due to its inability to take advantage of recursion optimiza-
tion techniques. Having been exposed in Compiler and Computer Architecture
courses to the function call mechanisms, one can easily understand that having
to execute code after the recursive call, a lot of information must be kept in the
memory stack (i.e. values of variables at each recursive step), so this implemen-
tation is memory demanding. The latter offers an excellent chance to discuss
tail recursion optimization, and the need to place the recursive call last in
the body of the predicate.

The implementation shown below (predicate list_min3/2), is based on the
“standard” algorithm that is taught in programming courses. Thus, the accu-
mulator pair technique [2, 5], is introduced that offers a great opportunity
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to discuss single assignment variables in the Prolog programming context. The
technique of introducing an auxiliary predicate is common in Prolog. It is in-
teresting to notice that the auxiliary predicate may have the same functor name
as well since it has different arity.

list_min3([H|T],Min) :-

list_min3_aux(T,H,Min).

list_min3_aux([],Min,Min).

list_min3_aux([H|T],TempMin,Min) :-

min(H,TempMin,NextMin),

list_min3_aux(T,NextMin,Min).

Alternatively, since now the comparison is done before the recursive call,
we could avoid the use of the min/3 predicate and have instead two recur-
sive calls, without causing so much inefficiency this time, as shown in predicate
list_min4/2). However, to maintain efficiency, it is needed to explicitly insert
the cut operator leading to a check-and-commit technique.

list_min4([H|T],Min) :-

list_min4_aux(T,H,Min).

list_min4_aux([],MSF,MSF).

list_min4_aux([H|T],MSF,Min):-

H < MSF, !,

list_min4_aux(T,H,Min).

list_min4_aux([H|T],MSF,Min):-

H >= MSF, !,

list_min4_aux(T,MSF,Min).

Although the cut in the code above is inserted to take advantage of the
tail recursion optimization, since checks are mutually exclusive, the second
check could be eliminated, leading to a reduced number of checks in the code.
Alternatively, as mentioned above, cut can be implicitly replaced by the “more
declarative” if-then-else construct.

4.4 A Reduction Approach

The next implementation is in fact an ad-hoc application of the reduce op-
erator commonly found in functional languages and recently in many Prolog
implementations (predicate list_min5/2).

list_min5([M],M).

list_min5([H1,H2|T],Min):-

H1 > H2, !,

list_min5([H2|T],Min).

list_min5([H1,H2|T],Min):-
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H1 =< H2, !,

list_min5([H1|T],Min).

Selecting two elements instead of a single from the list supports an early arith-
metic comparison, leading to an immediate pruning of the non-successful
branch. What is left to be decided is the repeated execution of the operation
for the rest of the elements, achieved by “pushing” the result (i.e. the minimum
between the two) elements to the top of the list for the next recursive call.

Alternatively, an even more compact version of the predicate relies on the
min/3 predicate mentioned previously (predicate list_min6/2).

list_min6([Min],Min).

list_min6([H1,H2|T],Min):-

min(H1,H2,M),

list_min6([M|T],Min).

The introduction of the latter provides the necessary ground to demonstrate
the implementation of the reduce operator using variable call, that can work
on any binary operation (e.g. min, max, etc.). The latter is achieved by simply
adding one more argument to hold the predicate name of the operation and the
term construction subgoal using the univ/2 operator, as shown below:

list_reduce([Value],_,Value).

list_reduce([H1,H2|T],Operation,Value):-

C =.. [Operation,H1,H2,Next],

call(C),

list_reduce([Next|T],Operation,Value).

We usually call this implementation an elegant, declarative “hack”, taking
advantage of the list itself to deliver the temporary result to the end. Although
novice learners find this implementation rather ingenious, they rarely reproduce
it in future programming tasks. This is probably due to the fact that they are not
used to a functional style of programming; rather they prefer the more traditional
“array” style of iterating the list and keeping the temporary result in a separate
variable as an extra argument.

4.5 A non-recursive Declarative Definition

A verbal description of a complete definition of list_min/2 could be the min-
imum of a list, is a member of the list such that no other member of the same
list exists smaller than it. Interestingly enough this can be directly implemented
in Prolog (predicate list_min7/2).

list_min7(List,Min):-

member(Min,List),

not((member(X,List), X < Min)).
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This is probably the most declarative version of list_min/2, reported here,
and is in fact an application of the generate-and-test technique. Understand-
ing, however, the operation of the predicate presents significant challenges. First
of all, it demands a good understanding of backtracking and negation, i.e.
the fact that once an element smaller than the current Min is found then the
second subgoal fails, leading to a re-instantiation of the Min to the next element
of the list. The process is repeated until the argument inside the negation in the
second subgoal fails, for all instantiations of X, leading to the solution.

However, this elegant indeed definition suffers from high computational com-
plexity. It does not take long to realize that it has O(N2) complexity whereas all
other previous solutions (except the “super-naive” one) have linear complexity.

4.6 Using Solution Gathering Predicates

Another version (list_min8/2) mainly used for illustrating the operation of the
setof solution gathering predicate, stressing that it is a clever trick, but with
higher-than-needed computational cost.

list_min8(List,Min) :-

setof(X,member(X,List),[Min|_]).

This version exploits the builtin predicate setof and follows the naive al-
gorithmic thinking of sorting a list in ascending order to return its first ele-
ment. However, one needs to realize that sorting has a larger average complexity
O(n log n) than finding the minimum O(n), so in general it should be avoided.

4.7 Using assert/retract and failure-driven loops: The one to avoid

No matter how simple a programming language can be, some of its features may
be used to create the “unthinkable”. The same happens with Prolog’s ability to
alter its program while the program is executed, i.e. asserting and retracting
clauses on the fly. We refer to this version (predicate list_min9) as the “one
to avoid”, since it relies on a “global” variable implemented as a separate
dynamic predicate, to simulate destructive assignment. It offers the opportunity
to present a number of issues regarding assert/retract, as well as the necessity
of side-effects inside a failure-driven loop.

list_min9([H|_T],_Min) :-

assert(temp_min(H)),

fail.

list_min9(List,_Min) :-

member(X,List),

retract(temp_min(TmpMin)),

min(X,TmpMin,NextMin),

assert(temp_min(NextMin)),

fail.

list_min9(_List,Min) :-

retract(temp_min(Min)).
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We do not present this as a technique that someone should adopt. We just
mention it as an an extreme example of how flexible and “dirty” Prolog program-
ming can get!

5 Evaluation of Efficiency vs. Perception

An interesting aspect of demonstrating the list_min operation in many different
versions is that it leads to commenting on the efficiency of each version using
automatically generated lists of random integers, best and worst case scenarios,
e.g ordered or reverse ordered lists, and Prolog statistics. Thus, a novice learner
can see how each technique affects the performance.

Having completed all the classes, we requested our students to conduct ex-
periments with all versions of list_min, with lists of various sizes in ascending,
descending and random order. Having gathered the results in terms of cputime
and number of inferences, they were asked to express their opinion which are the
best three versions, by reconciling efficiency, readability and writability of code.

The results obtained by different lists sizes, ranging from 1000 to 100000
elements (1K, 30K, 60K, 100K), present some interesting aspects regarding the
different predicate versions. All experiments were conducted using SWI Prolog.
With respect to efficiency, we have found that the predicates above can be clas-
sified in three groups: The first group contains list_min1, which in fact fails to
report a solution for large lists in descending order; for instance, the execution
time for a list of only 30 elements is 218.6 seconds. Obviously, results for ascend-
ing lists are comparable with those of other predicates; however, the decision
was to exclude the predicate from further testing since it would not provide any
significant results with respect to random and descending lists.

The fully declarative solution (list_min7, second group), although it per-
forms better, it still follows the generate and test strategy, yielding high execution
times and a large number of inferences to reach a solution for the descending
worst case: starting with 5.3 seconds for a list of 10K elements up to 548 seconds
approximately for the list of 100K elements. This is expected, since in the de-
scending case, the solution generator (member/2) produces the correct solution
last, yielding the highest number of iterations. For the same reason, best results
are obtained for lists in ascending order, followed by those for the random.

The third group contains all other predicates. We avoided reporting execution
times, since, even for 100K lists, the former are less than a quarter of a second,
across all predicates in the group, yielding no interesting (or safe) results for
comparison. Instead we opted to measure number of inferences per list element,
just to give an indication how close in terms of performance versions are. Results
averaged between all tests, for each predicate are presented in Figure 1. Finally,
list_min8 is not included in the figure, since setof is implemented at a lower
level, so the exact number of inferences is not correctly reported by SWI-Prolog.

All predicates we tested (most of them recursive) scan the whole list once
no matter the type of list. So, with minor deviations in any of the ascending,
descending, or random order, the number of inferences is more or less the same
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Fig. 1. Results showing Inferences/List Element on the third group of predicates.

(the extra lines from one predicate to the other cause the extra inferences but
play a minor role). Thus, performance is independent of the type of list.

Minor differences among predicates in the figure are attributed to the order
of checks. For instance, in list_min2 arithmetic comparisons occur “backwards”,
whereas in list_min3 occur on the “way down” to the base recursive case, thus
showing slightly different behaviour on the extreme cases (ascending/descending
order). It should be noted that the assert/retract version seems to be unaf-
fected by the order of elements in the list and yields the higher number of
inferences, due to constantly accessing Prolog memory.

Regarding student perception, the definitions of list_min8, list_min2 and
list_min7 were among the first three preferences, gathering 72%, 48% and 40%
respectively of the students who preferred them in their top-three choices, al-
though the last one requires a considerable number of inferences compared to
all the rest. All other versions were roughly equally preferred. It was surprising
that 16% of the students declared as a top-three choice list_min1; it takes an
enormous amount of cputime to complete which makes it practically useless but
it was preferred for its readability. Even more surprising is that 20% included
list_min9 in their best three choices; it is extremely complex and far from pu-
rity but it may match the programming style that learners have been exposed
to in previous courses.

6 Conclusions

We presented the flexibility of Prolog by using a single operation and multiple
programming techniques that result in different implementations. Each version of
the predicate list_min allows space to discuss all interesting features of Prolog.
The code variations gave us the opportunity to discuss declarativeness versus
efficiency issues as well as readability, purity and dirty characteristics of the
language. As educators, we make use of those examples in our class of novice
Prolog learners and we showed their perceptions and evaluations.
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