
A planning problem validator based on reachability
analysis

Moses Symeonidis
Department of Informatics,

Aristotle University of
Thessaloniki

Thessaloniki, Greece
mousisss@csd.auth.gr

Dimitris Giouroukis
Department of Informatics,

Aristotle University of
Thessaloniki

Thessaloniki, Greece
dgiourou@csd.auth.gr

Dimitris Vrakas
Department of Informatics,

Aristotle University of
Thessaloniki

Thessaloniki, Greece
dvrakas@csd.auth.gr

ABSTRACT
AI planning is the field that focuses on creating abstract
representations of various processes. As such, it is obvious
that it is a broad field and demands specialized tools to be
used in order to ease the process of designing domains and
problems. The literature shows that most of these tools do
not offer an option to re-examine and validate the result of
the aforementioned designing process.

This work presents a novel approach to validating a de-
scription of a problem as well as presenting information re-
lated to this validation process in an efficient way. It intro-
duces a proxy web service that implements the process of
finding invalid descriptions as well as the extension of the
relevant tool VLEPpO, that suited the needs of the visual-
ization process.

CCS Concepts
•General and reference → Validation; •Computing
methodologies→ Planning and scheduling; •Human-
centered computing → Visualization design and evalua-
tion methods;

Keywords
validation; planning; visualization; knowledge engineering;
artificial intelligence; web service; scheduling

1. INTRODUCTION
The process of writing and verifying planning problems is

a process that can be quite complex and demands a lot of
resources in order to produce or verify a satisfying solution.
For that reason, specialized software has been created with
the purpose of easing the whole process, either for experi-
enced and novice knowledge engineers alike. A brief inves-
tigation on the existing toolset shows that there is need for
further research and investigation concerning the ease of the
process of solving planning problems. This work focuses on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SETN ’16, May 18-20, 2016, Thessaloniki, Greece
c© 2016 ACM. ISBN 978-1-4503-3734-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903220.2903237

the creation of a new system that verifies planning domains
and problems through the development of a specialized web
service as well as through the extension of existing means
of visualization in order to better utilize the newly created
functions. To be more precise, through the use of the web
services we try to determine if a planning problem is solv-
able and if not present to the knowledge engineer the logical
problem(s). Finally, these services are tightly integrated into
VLEPpO [7], a platform for designing and validating plan-
ning problems in order to offer a desktop experience and
showcase a valid use for the aforementioned services.

2. RELATED WORK
In the related literature, many different tools that focus

on the planning domain exist. These tools are either ex-
perimental or industry-ready. All of them offer a variety of
designing and visualization features but none of them offers
a concrete solution to validating the abstract description of
a planning domain or a planning problem.

The GIPO system [9] is one of the most well known exam-
ples of presenting information regarding planning problems.
It is defined as an ”experimental environment for planning
domain knowledge engineering” by the authors of the fourth
release of the system. The main environment of the GIPO
system relies on an object oriented approach in order to rep-
resent domains, plans or other entities. Information for a
random object is propagated into the environment through
the use of other core components that observe and interact
with the object model component. Domain description is
done through a generic abstraction layer that can translate
graphical representations to specific language descriptions.
GIPO supports PDDL (until v2.2) or OCL (Object Cen-
tered Language) as targets. GIPO offers an API in order to
interface with external planners but the planners must use
OCL 2.1 or typed/conditional PDDL. The output or input
of GIPO is processed by Python scripts and every external
planner must implement its own set of scripts.

GIPO provides editors and accompanying visual tools for
domain creation/manipulation and planning preprocessing
or description. Since it is object oriented, there is a designer
made specifically for creating objects and specifying the un-
derlying relationships between them. In order to properly
design the various states of an object, the object life his-
tory editor can be used. A user can draw state machines
for an object which describe the transitions between states.
Another graphical editor, the coordination editor, is used
to present transitions with their respective states. The no-

http://dx.doi.org/10.1145/2903220.2903237
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2903220.2903237&domain=pdf&date_stamp=2016-05-18

tion of a constraint or a static fact is described using a non
graphical approach. For problem instances, GIPO uses a
list-view of objects that a user can assign specific values to
each one.

Automatic domain validation is not possible in the GIPO
environment but it offers automatic checks on the syntactic
level of the description of the domain. As a mean to ease
the debugging process of a problematic domain, GIPO uses
steppers where users can see the effects of the application
of an action step-by-step. The action has to be hand picked
by the user.

Another system for interactive planning and execution of
plans is SIPE-2 [12]. SIPE-2 focuses on the performance
of the creation of a plan, thus to address the problem effi-
ciently, SIPE-2 includes many heuristics in order to reduce
computational complexity.

The system has the ability to generate automatically or
under interactive control combined operators and creates
plans to achieve the desired goals in the given world. An
interesting part of the system is the monitoring of the plan
execution process. This feature provides the ability to the
user to feed more information to the system when there are
some changes in the world.

Moreover, the system utilizes graphical interfaces for knowl-
edge representation and has the ability of to visualize a plan.
Generally, SIPE-2 is a system with a wide range of features
and capabilities. Finally, it should be noted that the SIPE-2
uses ACT formalism, which does not correspond directly to
PDDL. However, this shortcoming makes almost impossible
to import or export domains or problems written in PDDL
to SIPE-2.

itSimple [10] constitutes an environment for knowledge,
planning and design engineering. The tool can ease the var-
ious processes of designing and solving planning problems. It
uses a variety of established and well-known languages, like
XML, UML, Petri Nets and PDDL for knowledge represen-
tation and it supports them interchangeably. This means
that itSimple can export or import from and to any of the
supported languages using internally maintained translators
that change every language in an intermediate XML format.
The language that is used for describing requirements in it-
Simple is UML but it also uses PDDL in order to validate
and verify the application domain model.

The main focus of itSimple is to help the user find infor-
mation in most stages of a planning application by using
various means of visual feedback. At its core, itSimple rep-
resents information in an object oriented manner. The base
modeling of a given problem is designed in UML, starting
from a more abstract representation to specific details, like
class diagrams, case diagrams and Petri nets.

Finally, plan verification is conducted in a simple PDDL
editor, where a problem and a domain are presented to the
user in text form. The domain and the problem are ex-
tracted from the UML diagrams. In order to facilitate the
steps that are needed in correcting a false plan, itSimple
uses Gantt and XY charts. The users have to examine the
generated charts in order to extract meaningful information
regarding their planning application.

EUROPA [1] is not just a stand-alone application for solv-
ing and visualizing planning problems but rather a whole
framework for creating custom planners. EUROPA is a work
of NASA and it licensed as an open source project.

The project focuses on flexible integration of new applica-

tions of planning problem solving. The client API provided
by the framework helps applications interface with the built-
in extensions and the kernel of EUROPA. The extensions
offer constraint management, resources management, solver
modules and a modeling language implementation. The lan-
guage that is used for modeling is NDDL, a version of PDDL
from NASA along with a parser for it. ANML can also be
used as a language.

The deepest layer of EUROPA consists of its kernel which
contains a constraint engine, a plan database, an engine for
rules and a model interpreter. The plan database is a sep-
arate module that can be used in external applications. It
helps represent information in a more abstract fashion.

In order to demonstrate the knowledge engineering ca-
pabilities of the platform, EUROPA also offers a modeling
and visualization platform. A modified version of Eclipse is
used as a basic NDDL editor that supports syntax highlight-
ing and an outline. The same features as well as more will
be utilized for ANML since there is an ongoing work for an
editor that will support visual representation of the core lan-
guage. Currently there is support for Gantt timeline charts,
resource charts and action visualizations. EUROPA also
offers an interactive console, for query execution onto the
plan database, solver initialization and step control as well
as to spawn helper windows for various object related ac-
tions. The visualizations can be run either through Eclipse,
as a plugin of the IDE, or in a stand-alone fashion.

Automatic translation between description languages is
already implemented but is very limited. Although the au-
thors recognize that PDDL support would be necessary since
it is the dominant modeling language in the research commu-
nity, EUROPA currently has no PDDL translator or editor
in its default configuration.

Modplan [2] is classified in the category of planning work-
benches. For representation of information ModPlan uses
PDDL. This fact makes it a tool that is more effective in the
hands of planning experts than designers of domain knowl-
edge. Moreover ModPlan utilizes VAL for plan validation
and the Vega animation system which in turn allows a user
to zoom in or out on a selected part of the plan.

In addition, the tool visualizes Gantt charts for temporal
plans. Every Gantt chart depicts the estimated duration of
every activity. Finally, plan animation is provided for some
benchmark domains and, through the usage of JABBAH
[6], shows output plans for business processes using another
Gantt diagram.

VisPlan [5] is a graphical tool that focuses on plan visu-
alization. VisPlan aims to visualize already existing plans
and present possible flows to an end-user. It should be men-
tioned that VisPlan supports STRIPS-like plans and tem-
poral plans. It recognizes these kind of plans automatically
and verifies them based on their type.

Moreover, the users can modify or repair manually a se-
lected plan. They can easily add, modify, remove or change
the order of actions of a plan. As a tool which also focuses
on plan validation and repair VisPlan has not any interface
to create or modify domain or problem files. For this reason,
the program demands that the domain and the problem are
written in PDDL and are already saved on the disk.

Vodrazka and Chrpa present the tool VIZ [11]. VIZ is
a simple, lightweight system which uses a straightforward
approach to modelling a planning domain. As is mentioned
in the release paper VIZ is inspired from the works of GIPO

and itSIMPLE. The main goal of the project is to be more
user friendly and less expert oriented. The users can create
simple diagrams which may represent a domain or a problem
and finally the tool can translate these diagrams to PDDL.
VIZ does not have any method to generate a solution plan.

InLPG [4] offers a system that approaches the concept
of planning in an abstract manner. It is a framework for
domain-independent plan generation and visualization that
is essentially a way to interact with a planner in a more dy-
namic way. It offers visual feedback and interaction during
the creation process of the plan.

VLEPpO [7] was designed in order to create a more user-
friendly interface than other solutions and it focuses on im-
plementing an accurate representation of PDDL and all of
its elements. A large number of these language constructs
can be visually manipulated by a user using only the inte-
grated visual editor.

Every user-made design can be exported to PDDL as well
as an efficient textual representation on files that use the
VVF extension. The same mechanism is used in order to
load files written in PDDL or saved in VVF. In order to
solve the occasional problem it uses an external planner,
specifically LPG-td [3] but other planners can be integrated
as well. Plans that are created through the external planner
can be visualized as well.

The system includes lots of features that provide useful
visual feedback. For example, a visual “map” is constructed
in order to present relations that only have two arguments
and these arguments are of the same type. This way, any
state of the problem is more readable by the user.

In conclusion, most of the aforementioned systems are use-
ful only to domain experts. They provide visual feedback for
a solution to a given problem but not for the whole process
of designing a domain and its corresponding problem. A so-
lution that would provide an easy to use visualization that
would abstract some of the information would be preferable
for newcomers to the planning field as well as students or
even domain experts.

Moreover, most of the systems tend to use an internally
developed way to represent information. Even though most
of them support input/output to PDDL, or even provide
an editor or basic visualization for PDDL objects, they do
not provide a straight-forward way to visually inspect every
aspect of the PDDL that is to be used which would help to
introduce someone to the field.

This work focuses on creating a validator for designing
domains or problems and easing the process of finding er-
rors in them. In order to achieve this, a web service was
created that provides the logic for such a task as well as an
appropriate graphical user interface. The validator was de-
veloped as an add-on to VLEPpO, facilitating the process of
discovering logical errors in planning domains and problems.

3. VALIDPLAN
As it was shown in the previous section, a significant num-

ber of tools for editing planning problems, was produced es-
pecially, after the adoption of PDDL, in 1998, as the domi-
nant language for defining planning problems. Most of these
tools offer a graphical user interface that assist the domain
engineer in designing, testing, checking the syntax and even
vizualizing planning domains and problems. However, very
little has been done in the area of validating domains and
problems in terms of logical correctness. It is a common

situation for users of PDDL based tools to design new plan-
ning problems that although they seem to be syntactically
correct, prove to be unsolvable when fed to planning sys-
tems. ValidPlan is an approach to create a system that
extracts information from unsolvable problems in order to
assist the domain engineer in debugging PDDL files from
logical errors. The proposed approach performs a reacha-
bility analysis on planning problems, by creating a series of
planning graphs, a construct proposed by Blum and Furst
in [2].

3.1 Planning Graphs
A planning graph is a leveled acyclic graph that interleaves

levels of facts and actions. The graph starts with fact level
f0 containing the initial state, and then proceeds with: a)
action level a0 with all the problem actions that have their
preconditions in f0 and b) fact level f1 that contains f0 plus
all the positive effects of actions in a0 . Planning graphs also
stores information concerning mutual exclusions (mutexes).

A mutual exclusion between two facts in level fk indicates
that there is no state containing both of them that is reach-
able from the initial state after executing ≤ k parallel steps.
Similarly a mutual exclusion between two actions in level
am indicates that these two actions cannot be executed in
parallel at step m of a parallel plan.

The process of building a planning graph contains the iter-
ative expansion of the graph by adding new fact and action
levels and by calculating mutex relations in any new level.
The expansion stops when it reaches a fact level fn which
contains all the problem goals and there are no mutual ex-
clusions among them (possible solution level).

Since the planning graphs expand monotonically, level i
has equal or less nodes and equal or more mutex relations
than level i+1, it is easily shown that even for unsolvable
problems the graph will eventually reach a fact level z (level-
off), which will contain the maximum number of facts and
the minimum number of mutexes and therefore further ex-
pansion of the graph will be pointless.

3.2 Overview of the proposed methodology
ValidPlan takes the PDDL files of the planning domain

and problem and builds a planning graph until it reaches a
possible solution level or the graph levels-off. In the first
case the problem is considered to be solvable and ValidPlan
terminates. In the second case the problem is certainly un-
solvable and ValidPlan uses the information stored in the
graph in order to help the user understand why.

Initially, ValidPlan uses the final level of the graph in
order to divide the goals of the problem in two distinct sets:
reachable and unreachable. If a goal gk is present at the
final level of the graph, it can be proven that there is at
least one serial plan achieving it and thus gk is reachable
from the initial state. On the other hand, if gk is absent
from the final level of the graph it can also be proven that
there is no serial plan achieving it and therefore gk is not
reachable from the initial state.

The second task of ValidPlan is to check in the last fact
level for possible mutexes among the reachable goals. If two
goals are marked as mutexed at the final level of a graph
that it has leveled-off, it means that there is no state in the
search space in which both of them hold.

Using the information from these tasks ValidPlan is able
to identify three possible reasons for the problem to be un-

solvable: a) There is at least one unreachable goal gk and
there is no action in the problem having gk in its add list. b)
There is at least one unreachable goal gk and although there
are actions in the problem having gk in their add list, these
actions were not included in the planning graph. c) There
is at least one set of reachable goals gk and gm, that are
marked as mutual exclusive in the final level of the graph.

Case a is simple to identify and it is easy to communicate
the logical error to the user, since a simple message “There
is no action adding gk” is enough for the domain engineer to
point the error out (e.g. he forgot to define an operator, or
to add the relevant predicate to an existing operator).

Case b is also relatively simple because the logical error
of the problem is related to the reasons why the actions
achieving gk were not included in the planning graph. In
order for an action to be included in level ai of the planning
graph, two conditions must hold: a) all the preconditions
of the action must be present in fi and there is no mutex
in fi between any pair of its preconditions. Since the last
level of the graph fz contains the maximum number of facts
and the minimum number of mutexes, these two conditions
are checked over fz. The user is presented with a list of ac-
tions achieving gk and is asked to select one of them. Then
ValidPlan checks the preconditions of the action over fz and
the user is informed about the result (e.g. some precondi-
tion(s) of the selected action are not reachable, or there is
one or more mutex(es) among them). If this information is
not sufficient for the user, he has the ability to re-execute
ValidPlan recursively using the preconditions of the selected
action as goals in order to look deeper for the reasons.

Case c refers to the situation where there are two goals
gk and gm , which are marked as mutexed in fz . Two facts
gk and gm are marked as mutexed in level fz if: a) one is
the negation of the other, or b) any action at level az−1

achieving gk is marked as mutexed with all the actions at
az−1 achieving gm and vice versa. Therefore, the rationale
behind the unsolvability of the problem can be regressed to
the reason why gk and gm are marked as mutexed. Valid-
Plan will present the user with the list of reachable actions
achieving gk and the list of reachable actions achieving gm
and give him the option to select one action from each list.
Based on the user’s selection and the information from the
planning graph it will inform the user for the reason why
these specific actions are mutually exclusive (e.g. the first
one is deleting a precondition of the second one). In case
the reason for the mutex is Competing Needs (e.g. the pre-
conditions of the two actions are mutexed), then ValidPlan
will be recursively investigate the reason for that.

4. CASE STUDY
ValidPlan facilitates the debugging of logical errors in

planning domains and problems through three distinct op-
erations on the user’s PDDL files. These three operations,
namely Predicate Categorization, Atomic Goal Reachability
and Group Reachability, will be exemplified in this section
using a case study on a simple transportation domain with
a robot carrying objects between connected rooms, which is
a slightly modified version of the Gripper Domain.

4.1 The Domain
This domain consists of a number of rooms (that are

treated as single points for simplicity), a number of ob-
jects (balls) that need to be transported and a robot moving

Operator Preconditions Add Delete
move atRobby(X) atRobby(Y) atRobby(X)

connected(X, Y)
move2 atRobby(X) atRobby(Y) atRobby(X)

connected(Y, X)
pick atRobby(X) holds(B) at(B, X)

at(B,X) handsempty
handsempty

drop atRobby(X) at(B, X) holds(B)
holds(B) handsemty

Table 1: Domain Operators

Operator Preconditions Add Delete
move atRobby(X) atRobby(Y) atRobby(X)

connected(X, Y) connected(X,
Y)

move2 atRobby(X) atRobby(Y) atRobby(X)
connected(Y, X) connected(Y,

X)
pick atRobby(X) holds(B) at(B, X)

at(B,X) handsempty
handsempty

drop atRobby(X) at(B, X) holds(B)
holds(B) handsemty

Table 2: Domain Operators with faulty move and
move2

across rooms (when it is permitted) and carrying balls (one
at a time) . By modeling this domain in PDDL, one gets
the following predicates: room(R), connected(R1,R2),
ball(B), at(B,R), atRobby(R), handsempty, holds(B).

There are three operators in the domain, move, pick and
drop and their STRIPS-like encoding is presented in Table
1.

4.2 Predicate Categorization
Consider the case where the robot has to go from room A

to room B, get a ball and return to A and by accident the
domain expert has included the predicate connected/2 in
the delete list of the move operator. Note that this is a
common mistake in visualization tools like VLEPpO, where
the operators are designed using a state transition mode,
where one defines explicitly what holds both states, rather
than an add/delete list mode. The “faulty” operators are
presented in Table 2, while the initial state and the goals
are as follows:

• I={room(r1), room(r2), atRobby(r1), ball(b),
at(b, r2), handsempty, connected(r1,r2)}

• G={atRobby(r1), at(b,r1)}

This problem is obviously unsolvable, because once the
robot moves from r1 to r2 the fact connected(r1,r2) will
be deleted from the state representation and therefore after
the robot picks the ball there will be no way for returning
back to r1.

The basic idea behind the validator is to find unreachable
goals and to allow the user to traceback actions achieving
each goal separately until he reaches the initial state or face
a dead-end, which will hopefully provide him with enough

Operator Preconditions Add Delete
move atRobby(X) atRobby(Y) atRobby(X)

connected(X, Y)
pick atRobby(X) holds(B) at(B, X)

at(B,X) handsempty
handsempty

drop atRobby(X) at(B, X) holds(B)
holds(B) handsemty

Table 3: Domain Operators

information for sorting the logical error out. This process
will be elaborated in the following sections.

For common errors like the one mentioned above, how-
ever, the validator offers a simpler solution that consists
of presenting the user with a classification of the domain
predicates in two categories: static vs dynamic. The predi-
cates that lead to facts that hold their value (true or false)
throughout the whole problem’s search space are considered
to be static, while the rest of them are dynamic. For exam-
ple the predicate ball/1 is a static one, while atRobby/1 is
obviously dynamic.

In order to determine whether a predicate is dynamic or
not, the validator uses the following rule that can be easily
checked with a simple iteration among the domain’s opera-
tors:

Predicates appearing in the add list or in the delete list of
any of the domain’soperators are marked as dynamic, while
the rest of them are marked as static.

Applying the above rule for the domain predicates using
the operators presented in Table 2 one would get the follow-
ing lists:

• Static: room/1, ball/1

• Dynamic: connected/2, at/2, atRobby/1, handsempty/0,
holds/1

For the knowledge engineer the fact that connected/2 is
marked as dynamic is a certain alarm and upon request the
validator will inform him for the reason why it is marked as
dynamic (delete list of operator move/move2).

4.3 Atomic Goal Reachability
As it was outlined in the previous section, the main idea

behind the proposed validator is to analyze the reachabil-
ity of goals and sub-goals and use the information from this
analysis in order to guide the domain expert to identify pos-
sible logical errors.

For instance let us consider the problem instance pre-
sented in a previous subsection, where:

• I={room(r1), room(r2), atRobby(r1), ball(b),
at(b, r2), handsempty, connected(r1,r2)}

• G={atRobby(r1), at(b,r1)}

Suppose now that the operators in hand are those pre-
sented in Table 3, where the domain expert failed to deal
with the symmetric relation of the connected predicate.

Once again the problem is unsolvable because the fact
at(b,r1) is unreachable, since the robot can go from r1 to
r2 in order to pick the ball but not from r2 to r1 in order

to drop it. In such cases (Atomic Goal Reachability prob-
lems) ValidPlan can assist the domain expert by giving him
a tool for tracing from the unreachable goal back to the ini-
tial state. By clicking on the problem’s goals the validator
provides the user with a list of the problem’s actions that
have the goal in their add list, using color coding in order
to show if each action is reachable from the initial state or
not. In this case, the only suitable action is drop(b,r1). The
validator presents the user with all the preconditions of the
selected action, using color coding in order to discriminate
the reachable from the unreachable ones. By investigating
the preconditions of drop(b,r1) the knowledge engineer will
be informed that move(r2,r1) is not achievable from the ini-
tial state due to its preconditionconnected(r2,r1) that is ab-
sent from the initial state, enabling him to understand the
domain’s error and fix it.

4.4 Group Reachability
This function of the validator deals with goals (or sub-

goals) that cannot be achieved simultaneously due to the
mutual exclusions. Mutexes are a key component in plan-
ning graphs, although the kind of mutexes stored by Graph-
Plan have a temporal annotation, i.e. two facts of actions
are marked as mutexed for a specific level of the graph but
this mutex may be lifted as the graph continues to expand.
These temporal mutexes may be misleading for the purpose
of a domain validator but it is safe to consider that when
the graph has leveled-off, all the mutexes at the final level
are static and can be used to assist the knowledge engineer
in the debugging of the domain.

Group reachability issues are the most common reason for
unsolvable problems and the knowledge engineer might have
to trace back a few (or more than a few) levels before he is
presented with the actual root of the error. However, we
will present a rather simple scenario in order to show how
the validator deals with cases like that.

Consider the full set of operators presented in Table 1 and
the following initial stateand goals:

• I={room(r1), atRobby(r1), ball(b1), ball(b2),
at(b1, r1), at(b2, r1), handsempty}

• G={holds(b1), holds(b2)}

This problem is clearly unsolvable because although both
goals are atomically reachable they are mutually exclusive,
unless of course the domain is enriched with multiple gripper
support.

When the problem is submitted to the validator, the latter
will inform the user that the problem is unsolvable because
the two goals are mutually exclusive. By investigating the
reason for the mutual exclusion one can get a clear view of
the reasons behind the unsolvability of the problem.

For example, when the validator is executed on the above
problem instance it will report that the set of goals is un-
solvable because holds(b1) is mutexed to holds(b2). It will
then present to the user a visual tool from which he can se-
lect for each goal one of the actions achieving it. Every time
the user selects a pair of actions achieving G the tool will
provide information regarding why the selected pair of ac-
tions is mutually exclusive. In the specific problem in hand,
the reason is that both actions have handsempty in their
precondition along with their delete list (interference) and
therefore there is no possible serialization of pick(b1,r1) and

pick(b2,r1) because handsempty will not hold for the second
action.

5. IMPLEMENTATION
ValidPlan was implemented as a SOAP web service in or-

der to offer its functionality over the web and to allow any
visual or textual tool for editing PDDL files to use it for
validation. For the implementation of the web service, Java
was chosen as the programming language and the JSON
representation for encoding the output of the program. Our
work also incorporates the PDDL4j library 1 as well as the
implementation of Graphplan from the JavaGP library [8].
It should be mentioned that a proxy web service was cre-
ated, based on WSDL prototype for having a description of
the whole service readily available to clients. For the im-
plementation of the service, the programming language that
was chosen is PHP. PHP is responsible for calling the Java
executable to generate the results of the processes of valida-
tion.

In order to test the validator and come up with an in-
tegrated tool for editing planning problems, ValidPlan was
implemented in VLEPpO. VLEPpO is a visual tool for edit-
ing and designing planning problems and therefore the op-
erations of the ValidPlan web service were accompanied by
relevant visual aids.

The current VLEPpO implementation utilizes the Swing
Framework for UI creation as well as the Java2D library for
the implementation of trivial graphics. No external libraries
were needed. From VLEPpO the user has the ability to use
ValidPlan either as a standalone plugin for users working
offline or as a web service (in order for the user to benefit
from future updates of the validator).

Since ValidPlan is implemented as a web service the pro-
cess of incorporating it to other tools is relatively simple
(loosely coupling). The service already offers a WSDL def-
inition of itself. Messages are propagated in SOAP and the
payload is encoded in JSON format.

The core functionality of ValidPlan through VLEPpO is
composed of the following functions: a) dynamic/static lit-
erals discovery and b) domain/problem validation.

Figure 1: A window showing the dynamic and static
facts of a problem description.

In order to represent the discovered dynamic or static facts
in the description of a problem, our solution employs two
textual lists on a pop-up box. The first one lists the set
of the dynamic facts and the second one is used for the
static ones. This type of information, although important

1https://sourceforge.net/projects/pdd4j

for debugging the design process, does not require a complex
visualization and thus, the straightforward way of present-
ing two different lists was chosen. The basic window that
presents the information to the users is shown in Figure 1.

The validation process requires a lot of different pieces of
information to be visualized. First, a user may require the
service to return reachable and non-reachable goals. They
are also presented in an interactive fashion where users can
select any non-reachable goal from the respective list and
then investigate these goals further. Each of the non-reachable
goals is re-inserted into the process and then is presented
along with the respective action and its preconditions. Pre-
conditions are colored according to whether they can be
achieved or not. Every non-reachable precondition can be
selected with a right-click from a point and the process can
be re-run recursively, with the selected precondition as in-
put. This way, it is easier to pinpoint a problematic descrip-
tion and correct it, from the standpoint of a user.

The process of validation also involves the discovery of
mutexes. The implemented system can identify and return
a list of mutexed goals as well as the reasons for why a pair of
goals is mutexed. There is a lot of information that has to be
presented and to keep the visual clutter low our implemented
visualization follows the following logic: for every mutexed
pair of goals, with a fixed/selected first goal, the user can
select a pair of actions from their respective list and from
there, a specific type of conflict. Since every type of conflict
is different in nature, these types have to be presented in a
separate manner. The problematic parts of the description
are highlighted in red color. The mutexed goals that have
been selected by the user are represented by red nodes. Our
implementation not only manages to present why a pair of
goals is mutexed but can represent every possible reason in
the same space, thus minimizing the effort put by the user
to understand why a mutex exists in the first place.

Since ValidPlan was created as an educational tool, per-
formance or scalability were never top priorities since the
needs that the tool addresses are small in size and require a
small amount of resources.

6. CONCLUSION AND FUTURE WORK
This paper presented ongoing work on creating a validator

for planning domains and problems using reachability anal-
ysis. The proposed system, namely ValidPlan determines
successfully if a planning problem is unsolvable and it suf-
ficiently presents to the user the cause (or causes) of the
problem, i.e. the logical errors in the design of the problem.
ValidPlan was also integrated in VLEPpO, a visual tool for
designing and visualizing planning problems and the first re-
sults of an experimental analysis using the enhanced visual
tool are more than promising.

In the future we plan to conduct a thorough experimental
analysis of how experienced and novice knowledge engineers
can benefit from a validator like ValidPlan in the processes
of: a) designing new domains and problems and b) debug-
ging faulty domains and problems, initially created by third
parties. Apart from the experimental analysis, one of the
direct goals is to extend the notion of mutual exclusions
used in the reachability analysis in order to cover mutexes
of higher order, since the current version of ValidPlan can-
not deal with problems sourcing from triangular mutexes, or
mutexes involving more parties. Finally, although the mech-
anism for Group Reachability seems to be working, there are

specific cases where we have identified tailored solutions that
could improve the efficiency of the system and the compre-
hensiveness of the messages to the user.

7. REFERENCES
[1] J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro,

T. Kichkaylo, P. Morris, J. Ong, E. Remolina,
T. Smith, et al. Europa: A platform for ai planning,
scheduling, constraint programming, and
optimization. In Proceedings of the 22nd International
Conference on Automated Planning & Scheduling
(ICAPS-12)–The 4th International Competition on
Knowledge Engineering for Planning and Scheduling,
2012.

[2] S. Edelkamp and T. Mehler. Knowledge acquisition
and knowledge engineering in the modplan workbench.
International Competition on Knowledge Engineering
for Planning and Scheduling, pages 26–33, 2005.

[3] A. Gerevini, A. Saetti, I. Serina, and P. Toninelli.
Lpg-td: a fully automated planner for pddl2. 2
domains. In In Proc. of the 14th Int. Conference on
Automated Planning and Scheduling (ICAPS-04)
International Planning Competition abstracts.
Citeseer, 2004.

[4] A. E. Gerevini and A. Saetti. An interactive
environment for plan visualization and generation:
Inlpg. In Working notes of Eighteenth International
Conference on Automated Planning & Scheduling
(ICAPS-08)-System Demonstration, Sydney
(Australia), 2008.

[5] R. Glinskỳ and R. Barták. Visplan–interactive
visualisation and verification of plans. KEPS 2011,

page 134, 2011.

[6] A. González-Ferrer, J. Fernández-Olivares, L. Castillo,
et al. Jabbah: a java application framework for the
translation between business process models and htn.
Proceedings of the 3rd International Competition on
Knowledge Engineering for Planning and Scheduling
(ICKEPSŠ09), 2009.

[7] O. Hatzi, D. Vrakas, N. Bassiliades,
D. Anagnostopoulos, and I. Vlahavas. Vleppo: A
visual language for problem representation. PlanSIG,
7:60–66, 2007.

[8] F. Meneguzzi and M. Luck. Leveraging new plans in
agentspeak (pl). In Declarative Agent Languages and
Technologies VI, pages 111–127. Springer, 2009.

[9] R. Simpson. Structural domain definition using gipo
iv. Proceedings of the Second International
Competition on Knowledge Engineering for Planning
and Scheduling, 2007.

[10] T. Vaquero, R. Tonaco, G. Costa, F. Tonidandel, J. R.
Silva, and J. C. Beck. itsimple4. 0: Enhancing the
modeling experience of planning problems. In System
Demonstration–Proceedings of the 22nd International
Conference on Automated Planning & Scheduling
(ICAPS-12), 2012.

[11] J. Vodrázka and L. Chrpa. Visual design of planning
domains. In Proceedings of ICAPS 2010 workshop on
Scheduling and Knowledge Engineering for Planning
and Scheduling (KEPS), pages 68–69, 2010.

[12] D. E. Wilkins and A. I. Center. Using the sipe-2
planning system. Artificial Intelligence Center, SRI
International, Menlo Park, CA, 1999.

	Introduction
	Related Work
	ValidPlan
	Planning Graphs
	Overview of the proposed methodology

	Case Study
	The Domain
	Predicate Categorization
	Atomic Goal Reachability
	Group Reachability

	Implementation
	Conclusion and Future Work
	References

