
Vol.:(0123456789)

Automated Software Engineering (2024) 31:5
https://doi.org/10.1007/s10515-023-00403-y

1 3

Α tool for requirements engineering using ontologies
and boilerplates

Christina Antοniou1 · Nick Bassiliades1

Received: 13 April 2023 / Accepted: 28 October 2023
© The Author(s) 2023

Abstract
The most popular technique for specification requirements is natural language.
The disadvantage of natural language is ambiguity. Boilerplates are syntactic pat-
terns which limit the ambiguity problem associated with using natural language to
specify system/software requirements. Also, using boilerplates is considered a use-
ful tool for inexperienced engineers to define requirements. Using linguistic boiler-
plates, constrains the natural language syntactically. Furthermore, a domain-specific
ontology is used to constrain requirements semantically, as well. In requirements
specification, using ontologies helps to restrict the vocabulary to entities, proper-
ties, and property relationships which are semantically related. The above results
in avoiding or making fewer mistakes. This work makes use of the combination of
boilerplate and ontology. Usually, the attributes of boilerplates are completed with
the help of the ontology. The contribution of this paper is that the whole boilerplates
is stored in the ontology and attributes and fixed elements are part of the ontology.
This combination helps to correct semantically and syntactically requirement con-
struction. This paper proposes a tool based on a domain-specific ontology and a set
of predefined generic linguistic boilerplates for requirements engineering. We create
a domain-specific ontology and a minimal set of boilerplates for an ATM (Auto-
mated Teller Machine). We carried out an experiment in order to obtain evidence
for the effectiveness and efficiency of our method. The experiment took the form of
a case study for the ATM domain and our proposed method was evaluated by users.
The contribution and novelty of our methodology is that we created a tool for defin-
ing requirements that integrates boilerplate templates and an ontology. We exploit
the boilerplate language syntax, mapping them to Resource Description Framework
triples which have also a linguistic nature.

Keywords Boilerplates · Requirements specification · Ontology

 * Christina Antοniou
 antoniouc@csd.auth.gr

1 School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-023-00403-y&domain=pdf

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 2 of 34

1 Introduction

In order to successfully implement the development of a system, it is necessary to
determine the requirements of the system and to document them with the appropri-
ate technique. The documentation technique facilitates the communication between
stakeholders. It also improves the quality of requirements. Documentation of
requirements for a system can be done in three ways: requirements documentation
using natural language, requirements documentation using conceptual models and
hybrid requirements documents (Pohl and Rupp 2011).

Natural language, specifically prose, is considered the most well-known technique
for documentation. The most important advantage is that the stakeholders do not
need to learn anything new to use this technique. Also, the requirements engineer
can use this method to document any kind of requirement (Pohl and Rupp 2011).
But the downside of this technique is ambiguity (Arora et al. 2013, 2015).

On the other hand, conceptual models cannot be used for all kinds of require-
ments as the documentation using natural language. Nevertheless, conceptual mod-
els deal with the ambiguity of natural language. Hybrid requirements documents is
the third way of recording and a combination of the two above ways. The third way
takes advantage of the advantages of both and minimizes the disadvantages of both
techniques (Pohl and Rupp 2011).

Requirement templates is an approach for constructing requirements which
uses templates and glossaries. This way of documenting requirements is not diffi-
cult and helps to limit the disadvantages from the documentation using natural lan-
guage. Pohl and Rupp, state the following definition for the requirement template “a
requirement template is a blueprint for the syntactic structure of individual require-
ments.” The definition mentioned by Pohl and Rupp actually refers to boilerplates.
The boilerplates are also called requirement templates (Pohl and Rupp 2011).

Pohl and Rupp (2011) mention a process which consists of 5 steps in order to
create the requirement template. In the first step, the degree of legal obligation for
the requirement is determined. There are the following categories of the obligation
of requirements: legally obligatory, urgently recommended, future, and desirable.
The second step is the core of the requirement. In this step, the functionality of the
requirement is determined with < process > , for example the system store, prints etc.
The third step characterizes the activity of the system in three following categories:
(a) autonomous system activity, for example the process is performed autonomously
by the system (process verb), (b) user interaction, e.g., the process is provided as a
service for the user by the system (provide), and (c) the interface requirement, e.g.,
an external event triggers the system to execute the process (be able to), i.e., the
system is waiting for a message or data to react. In the fourth step, the process-verbs
are completed with objects. Some verbs can have more than one object. In the fifth
step, logical and temporal conditions are determined. The system executes processes
under these conditions. Figure 1 shows the diagram of the boilerplates of Pohl and
Rupp.

Other popular types of boilerplates are EARS templates or boilerplates (Mavin
et al. 2009). The EARS boilerplates are distinguished in (a) ubiquitous requirements:

1 3

Automated Software Engineering (2024) 31:5 Page 3 of 34 5

these constitute the simplest structure (b) event-driven requirements: these are trig-
gered when an event is detected, (c) unwanted behavior requirements (if then) handle
unwanted situations, (d) state-driven requirements (while) are used for a specified
state, or (e) optional feature requirements (where) are used when a certain feature
appears. Figure 2 shows the diagram of boilerplates by Arora et al., (2014).

Hull et al., (2010) called requirements templates as boilerplates. Boilerplates
are an easy and simple approach to standardize the natural language. To formulate
a requirement with a boilerplate, it is necessary to select the appropriate boiler-
plate from a collection and fill in the blanks (attributes) with data. To understand
the above, suppose there is a collection of templates like the following: "The < sys-
tem > shall be able to < function > < object > of type < qualification > within < per-
formance > < units > ", The < system > shall be able to < function > < object > not
less than < performance > times per < units > ", The < system > shall < func-
tion > < object > every < performance > < units > ". A requirement engineer chooses
the appropriate template and fills in the words in angle brackets with data. For exam-
ple, the last template can become as follows: The < coffee machine > shall < pro-
duce > < a cold drink > every < 5 > < seconds > ". A boilerplate consists of some
fixed elements and some attributes that the requirements engineer completes in
order to create a requirement (as shown in Table 1).

[When? Under
what

conditions?]

THE SYSTEM
<system name>

SHOULD
<process verb>

PROVIDE <whom?>
WITH THE ABILITY

TO <process verb>

BE ABLE TO <process>

WILL

MAY

<object>

SHALL

<additional details
about the object>

Fig. 1 Boilerplates of Pohl and Rupp

SHALLTHE SYSTEM
<system name>

IF <Optional
Precondition>

<in a specific state>WHILE

WHERE

<trigger>WHEN

<system
response>

<featured is included>

<Optional
Precondition>

<trigger> Then

Optional Condition

Fig. 2 EARS Boilerplates

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 4 of 34

Ta
bl

e
1

 E
xa

m
pl

es
 o

f fi
xe

d
an

d
at

tri
bu

te
s e

le
m

en
ts

 o
f b

oi
le

rp
la

te

B
oi

le
rp

la
te

Fi
xe

d
el

em
en

ts
A

ttr
ib

ut
es

 e
le

m
en

ts
Ex

am
pl

e
co

m
pl

et
ed

 B
oi

le
rp

la
te

Th
e <

 sy
ste

m
 >

 sh
al

l b
e

ab
le

 to
 <

 fu
nc

-
tio

n >
 <

 ob
je

ct
 >

 of
 ty

pe
 <

 qu
al

ifi
ca

-
tio

n >
 w

ith
in

 <
 pe

rf
or

m
an

ce
 >

 <
 un

its
 >

H

ul
l e

t a
l.,

 (2
01

0)

Th
e,

 sh
al

l b
e

ab
le

 to
, o

f
ty

pe
, w

ith
in

 <
 sy

ste
m

 >
 ,

 <
 fu

nc
tio

n >
 , <

 ob
je

ct
 >

 ,
 <

 qu
al

ifi
ca

tio
n >

 ,
 <

 un
its

 >

Th
e <

 co
ffe

e
m

ac
hi

ne
 >

 sh
al

l <
 pr

o-
du

ce
 >

 <
 a

co
ld

dr

in
k >

 ev
er

y <
 5

>
 <

 se
co

nd
s >

Th
e <

 sy
ste

m
 n

am
e >

 sh
al

l <
 sy

ste
m

 re
sp

on
se

 >

(M
av

in
 e

t a
l.

20
09

)
Th

e,
sh

al
l

 <
 sy

ste
m

 n
am

e >
 ,

 <
 sy

ste
m

 re
sp

on
se

 >

Th
e

co
nt

ro
l s

ys
te

m
 sh

al
l p

re
ve

nt
 e

ng
in

e
ov

er
sp

ee
d

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

O

ur
 b

oi
le

rp
la

te
 <

 su
bj

ec
t >

 <
 ve

rb
 >

 <
 ob

je
ct

 >

 <
 A

TM
 >

 <
 re

tu
rn

s >
 <

 C
as

hC
ar

d >

 <
 su

bj
ec

t >
 <

 se
nd

s >
 <

 ob
je

ct
 >

 To
 <

 en
tit

y >

O
ur

 b
oi

le
rp

la
te

To
 <

 su
bj

ec
t >

 <
 se

nd
s >

 <
 ob

je
ct

 >
 <

 en
tit

y >

 <
 A

TM
 >

 se
nd

s <
 ty

pe
dp

as
s-

wo
rd

 >
 of

 <
 C

us
to

m
er

 >
 To

 <
 B

an
k-

C
om

pu
te

r >

1 3

Automated Software Engineering (2024) 31:5 Page 5 of 34 5

The advantages of boilerplates are the following: (a) changes related to the
expression of requirements affect only the corresponding boilerplate (Hull et al.
2010), (b) the processing of system information is very easy (for example to filter
and sort a specific attribute) (Hull et al. 2010), (c) important information may be
hidden (Hull et al. 2010), (d) flexibility can be maintained even in a small number of
boilerplates (Farfeleder, Moser, Krall, Stålhane, Omoronyia & Zojer, 2011), (e) they
are useful for the inexperienced engineers (Daramola, Sindre & Moser, 2012),
(f) improve the creation of high quality requirements (Farfeleder, Moser, Krall, Stål-
hane, Zojer & Panis, 2011; Anuar et al. 2015), (g) reduce the natural effects such as
ambiguity (Mahmud et al. 2015), (h) they are reusable (Ibrahim et al. 2009; Mah-
mud et al. 2016), (i) it is a simple and easy to understand method and you don’t need
to learn anything new to use them (Warnier & Condamines 2017), (j) new boiler-
plates can be created from the existing ones (Daramola et al. 2011; Do et al. 2020),
(k) a repository can be created which will be updated with new categories, which is
useful for the inexperienced engineers (Daramola et al. 2011), (l) help in creation to
requirement models for verification (Zichler & Helke 2019), and finally, (m) they
are also used in formalization (Zaki-Ismail et al. 2020) (n) they create coherent and
concise requirement sentences (Haris & Kurniawan 2020).

Another way of documenting requirements is the formal specification. Due to its
high degree of formality, it addresses the difficulties arising from the use of natural
language (Pohl and Rupp 2011). Mahmud et al., (2015) report that the formal speci-
fication is "… the expression in some formal language and at some level of abstrac-
tion, of a collection of properties some system should satisfy".

Well-written requirements are created from the combination of boilerplates and
ontologies (Fanmuy et al. 2012). Also, requirements specification effort for the
security domain is reduced because of the combination of ontology and boilerplates
(Daramola, Sindre & Moser, 2012; Daramola, Sindre & Stalhane 2012). This com-
bination seems useful to non-experienced engineers and the quality of requirements
is improved. Gap filling can be done with the help of ontology as well as the com-
bination helps to discover relationships between requirements (Daramola, Sindre &
Stalhane, 2012).

In many cases, as we have seen so far, the combination of boilerplates with the
ontology is used to fill in the gaps from the ontology. Although there are tools and
methods such as Too et al., (2022), Kravari et al., (2021), Mokos & Katsaros (2020),
Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Omoronyia, I., & Zojer, H. (2011),
Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., & Panis, C. (2011) that
make use of the advantages offered by combining boilerplates with the ontology for
the purpose of defining requirements. However, these works make use of the ontol-
ogy to fill only the attributes of boilerplates by ontology. Our contribution, which
constitutes an innovation, the whole boilerplate is stored in the ontology. More spe-
cifically, both fixed elements and attributes are part of the ontology. Our method
built into the tool leads the user to semantically correct requirement construction.

In this paper, we present the use of boilerplates with the ontology. The boiler-
plates exploit the linguistic nature of Resource Description Framework (RDF)
(Richard et al., 2014) triples and create the boilerplate syntax. The use of both ontol-
ogy and boilerplate help to limit the ambiguity caused by natural language. RDF

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 6 of 34

describes resources and the relationships between them in triplet form. It is a data
model that contains statements such as subject—predicate (verb)—object much alike
the boilerplate language. The classification of our boilerplates is: a) basic boiler-
plate template and extended form of basic boilerplate template and b) and boiler-
plate template with temporal or logical conditions. The basic boilerplate template
consists of subject verb object, much the same as an RDF triple. The complex
boilerplate template consists of a small number of RDF triples (a small semantic
graph). Also, we develop a tool in which the engineer creates boilerplates which
are based on Resource Description Framework triples. The user enters the require-
ment and selects the appropriate boilerplate template. The tool with the help of natu-
ral language processing and a domain ontology, suggests the appropriate values for
attributes to the user. The purpose of this research is the development of a tool for
constructing requirements based on the proposed combination of ontology and boil-
erplates. Our method incorporated into the tool aims to alleviate from the semantical
ambiguity associated with natural language. Finally, we conduct an experiment in
the form of a case study with users in order to evaluate our method.

The rest of the paper is organized as follows. In Sect. 2, we first briefly present
related work. In Sect. 3, we present the boilerplates based on the linguistic nature of
RDF triples that is similar to the syntax of the boilerplates. Also, we present and dis-
cuss the domain ontology. Section 4 introduces our tool based on ontology and natu-
ral language processing guidance. Section 5 presents the evaluation of our method.
Finally, we present the conclusions in Sect. 4.

2 Related work

Pasquariello et al., (2022) propose a framework using boilerplates for syntactically
correct requirements specification. The purpose is the quality of the requirements,
which can be verified promptly on time based on predefined criteria such as clarity,
singularity, conformity, and descriptiveness. Also, they implemented a requirement
tool which helps the user to create correct requirements during construction.

Too et al., (2022) suggest a requirement tool which is called UReST. This tool was
created to enhance and assist the engineer in requirement engineering (RE) activi-
ties. The combination of ontology and boilerplates was incorporated in UReST. This
approach support and guides the engineer in order to create the requirements.

Fritz et al., extract information automatically from text-based requirements. Ini-
tially, with the help of a database, the requirements are distinguished from non-
requirements as long as the requirement document is transferred with little effort to
the requirements database. Then, the necessary features or components of the sys-
tem, which are recorded in the document, are detected. This method helps to clarify
the requirements that are relevant for placeholders. Completeness of requirements
is achieved by extracting semantic roles and using boilerplates in order to reduce
errors (Fritz et al. 2021).

Kravari et al., (2020) state that for the implementation of a system an important
step is the documenting of the requirements. Βy extension, the success or the fail-
ure in the development of a system largely depends on well-defined specifications.

1 3

Automated Software Engineering (2024) 31:5 Page 7 of 34 5

Semantics, natural language processing, ontology and boilerplates are included in
the new approach that they propose. Furthermore, Kravari et al., (2021) in order to
generate high-quality requirements, they developed a tool, which is called SENSE,
for constructing requirements. This tool integrates template-language, specifically
boilerplates, semantics, natural language processing and ontology. After processing
a set of boilerplates, this framework suggests the appropriate boilerplate depending
on the type of requirement. The requirement engineer can use the SENSE, which is
considered a simple and easily understandable approach in order to construct well-
defined requirements. Also, the tool can perform verification by using SPARQL
(SPIN) queries.

The research of Mokos & Katsaros (2020) was related to formalization of require-
ments and their validation. Specifically, they mention that an ontology is used to
requirements specification. Requirements describe a system, and requirements spec-
ifications can be implemented by mapping concepts to semantic roles. In order to
avoid ambiguity, they mention as a solution the languages which are based on tem-
plates such as boilerplates. Also, they examined the derivation of formal properties
from the requirements.

The work of Do et al., (2019) is about a new approach which promotes, launches
creativity in software so that the software development companies become competi-
tive. This approach can be used in both new and existing systems. Creative require-
ments are extracted with the help of reusable requirements, natural language pro-
cessing, machine learning and boilerplates. Boilerplates play an important role in
the novel framework.

Ahmad et al., (2018) proposed a tool which helps to improve the quality of Soft-
ware Requirements Specification. This particular tool-based boilerplate was evalu-
ated for the quality that offers in the terms of comprehensibility, correctness and
consistency. The central idea behind the tool is to discover the basic, essential
requirements for an information management system and turn them into statements
about requirement specification.

The creation of high-level requirements of a system are important to avoid errors
in subsequent stages as well as in the verification and validation phase. The most
well-known technique for specification requirements is natural language. The disad-
vantage of natural language is ambiguity. Boilerplates reduce ambiguity and do not
require special training to use them. So far, we have seen the combination of ontol-
ogy and boilerplates for the specification of requirements. Regarding the creation or
the use of boilerplates, the variants of Hull (Pasquariello et al., (2022); Daramola
et al., (2011); Daramola, O., Sindre, G., & Moser, T. (2012)), EARS (Mavin et al.
2009; Arora et al. 2015) and Rupp and Pohl (Arora et al. 2015) boilerplates have
been mainly used by the literature. We also notice in the above works (where there
is a combination of boilerplate and ontology) that the completion of the attributes of
boilerplate is done via an ontology.

In this work, we developed a tool based on the boilerplate language and ontology.
The tool accepts the requirement from the engineer in natural language and the user
selects the appropriate boilerplate according to the syntactic structure of the require-
ment. The options of attributes result from natural language processing and ontol-
ogy. The syntax of boilerplate is subject-verb-object. Similarly, the RDF triples also

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 8 of 34

follow the same syntax subject-predicate (verb)-object. We exploit the syntax of the
boilerplate language, mapping them to RDF triples. This constitutes the contribution
and novelty of this work. Therefore, not only the attributes of the boilerplates are
completed by the ontology but the whole boilerplate and the corresponding fixed
elements are part of the ontology. Taking into account this advantage, namely the
linguistic nature of both, we integrated all of the boilerplates into the ontology and
not just the blanks of attributes that the engineer filled. Generally, boilerplates have
some fixed word and some attributes which are completed manually from engineer
or with help of ontology. Our tool suggests options for attributes with the help of the
ontology and via natural language processing. Finally, we conducted a user-based
experiment in the form of a case study in order to evaluate our method.

3 Ontology and boilerplates

3.1 Ontology

In this article, we developed a tool that accepts a requirement and suggests appropri-
ate attributes of boilerplates that correspond to the specific requirement typed by
the user. For the appropriate suggestion for the user, the tool uses the help of natural
language processing as well as the ontology we have created for the ATM use case.
In this section we will discuss and present the ontology for the ATM use case.

Gruber mentions that an ontology is “an explicit specification of a conceptual-
ization” (Gruber 1993, 1995). Antoniou et al., (2011) refer that the ontology is “a
model of a particular domain built for a particular purpose”. Guarino et al., (2009)
define that ontologies are “a means to formally model the structure of a system”.
Ontology represents the knowledge of a domain i.e., concepts that exist in the real
world and defines entities of the domain and relationships between entities of the
domain. The cornerstone of an ontology rests on the hierarchy of concepts (Guarino
et al. 2009).

Some basic components of an ontology are classes, attributes or data proper-
ties, relations or object properties, and individuals. RDF describes resources and
the relationships between them in a triplet form (RDF triplet). It is a data model
that contains statements such as subject—predicate (or verb phrase)—object much
alike the boilerplate language, especially its most basic form, namely subject-verb-
object. Class is a set of objects that share some common properties with the other
members of the set. Data properties are attributes or properties of classes. Relations
are relationships between classes of the knowledge domain. The domain of a prop-
erty/predicate indicates the class of the subject in a triplet. The range of a prop-
erty/predicate indicates the class of the object in a triplet. Individuals are instances
of classes (Staab & Studer, 2009). We created an ontology for the ΑΤΜ domain,
namely classes, class hierarchies, object properties, data properties using the Protégé
ontology editor (Musen 2015).

First, we mention the most basic concepts for the case study are the following:
Account, ATM, Bank, BankComputer, CashCard, Customer, and Transaction. The
bank has customers and offers products. One of the products that Bank offers is the

1 3

Automated Software Engineering (2024) 31:5 Page 9 of 34 5

Account. The Account is used for the various transactions that the customer needs.
It is possible for a customer to have more than one Account. Figure 3 shows the
main classes of the ontology. Figure 3 shows examples of relationships among the
main classes of the ontology, such as ATM returns CashCard, ATM reads Card-
SerialNumberOfCashCard, ATM displays NormalDisplay, ATM displays ErrorDis-
play, ATM prints Receipt. The classes (Receipt, NormalDisplay, Receipt, CashCard,
ErrorDisplay, CardSerial Number ofCashCard) are related to each other by object
properties (displays, prints, returns, reads).

ATM is a service that enables customers to perform transactions. We defined
the main ATM class in the ontology as a subclass of the class Service as shown
in Fig. 3. Also, the ATM is the link between the customer and the bank computer
(BankComputer). For this communication it is necessary for the customer to insert
the cash card in order to make the necessary transactions. We set the CashCard class
as subclaas of Card class and the Transaction entity is a top-level class, as shown
in Fig. 4. Specifically, the Customer selects the service options through the ATM
and these are transferred to the BankComputer which approves or rejects the cus-
tomer’s applications. For example, the Customer requests a withdrawal of 50 euros,
the request is transferred to the BankComputer and if there are any available in the
customer’s Account, the money is made available to the Customer.

According to the above, there is an interaction between the customer and the
ATM and also between the ATM and the bank computer. Basically, the interaction
is related to the request made by the customer through the ATM and the response
received from the bank computer through the ATM. For this reason, we created an
interaction class that has two subclasses, Request and Response as shown in Fig. 4.

3.2 Boilerplates

We were inspired by the most popular boilerplates-templates such as the ones
of Pohl and Rupp (2011), EARS (Mavin et al. 2009) and Hull et al., (2010). The
common ground in the aforementioned boilerplates is the following syntax:

Fig. 3 Relationships among the main classes of the ontology

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 10 of 34

subject-verb-object. We exploited the boilerplate syntax which is similar to the lin-
guistic nature syntax of RDF triples. Both RDF and boilerplates have a similar syn-
tax, in the form of subject-predicate-object triples. Taking advantage of this syn-
tax, we incorporated all of the boilerplates into the ontology and not just the blanks
(attributes) to be filled. According to Hull et al., (2010) boilerplates can be extended
and reused. Also, Hull et al., mention that when you have a requirement and look for
the appropriate boilerplate from the collection and don’t find it then a new boiler-
plate must be created. Boilerplates can be extended-adapted to fit the requirements.

In terms of compulsion of the requirements, it can be represented in the template
as a detail, for example < ATM > [shall] < returns > < CashCard > . Also, since we

Fig. 4 Hierarchy of the main classes of the ontology

1 3

Automated Software Engineering (2024) 31:5 Page 11 of 34 5

have integrated the whole boilerplate requirements into the ontology and not just
the attributes, we represent the obligation of the requirement as a datatype property.
The compulsion of the requirements is orthogonal to the rest of the representation.
Each boilerplate instance (which is actually a requirement) has a compulsion data-
type property whose value is one of the words used in the requirements standards
(e.g., shall, may, etc.). The boilerplate syntax also includes these words as optional
before the verb. Our tool then gives access to this compliance property to subse-
quent tools that will use the requirements stored in the ontology for further process-
ing. The Τable 2 below shows the similarities and differences of EARS, Pohl and
Rupp with our boilerplates.

In terms of the methodology for our boilerplates, the requirements engineer can
select values for the attributes of boilerplates, only those related to the domain/range
of the properties, i.e. the verbs that connect the requirements. The methodology for
the creation of bοilerplates aimed to limit semantic errors during the design phase.
That is why the introduction of entities, i.e. the completion of the attributes of boil-
erplates, was limited and is done according to those entities that are semantically
related to the appropriate verbs (object properties). Some pre-existing boilerplates,
such as EARS (Mavin et al. 2009) or Pohl and Rupp (Pohl and Rupp 2011), may
match the syntax or semantics of the ATM requirements. Of course, in cases where
the pre-existing boilerplates do not match the requirements, they must be adapted in
order to capture complex relationships between entities that are important to formu-
late independent of the ATM domain.

In general, when the requirements of the new field or new requirements do not
match on the pre-existing ones then it is necessary to create new ones or adapt the
pre-existing ones. It is observed that the basic assumption of the pre-existing boil-
erplate is the following: “subject verb object”. Our methodology took advantage of
the fact that the basic structure of pre-existing boilerplate is similar to the structure
of the RDF triplet (subject-predicate-object). The complex boilerplate template con-
sists of a small number of RDF triples (a small semantic graph). We have expanded
with temporal and logical conditions the basic structure as well as with subordi-
nate clauses and attributes accompanying the subject and object (Table 2). So, more
complex requirements are implemented or modelled with complex boilerplates and
by extension modelled as sets of connected RDF triples known as semantic graphs.
The classification of our boilerplates is: (a) basic boilerplate template and extended
form of basic boilerplate template (b) and boilerplate template with temporal or log-
ical conditions. Also, Table 3 shows the classification.

Regarding the categories of boilerplates, the basic and simplest structure follows
the RDF triples and has the following syntax < subject > < verb > < object > . Exam-
ples of the basic boilerplate and the extended basic boilerplate are shown in Figs. 5
and 6 respectively. Table 4 presents requirements in natural language and the respec-
tive requirements of basic and extended boilerplates (Table 5). Table 6 depicts the
attributes of boilerplates and examples of values.

As we defined above, the basic template is as follows: < sub-
ject > < verb > < object > . An example of a requirement is: ATM returns the
CashCard and the corresponding boilerplate is the basic boilerplate (< sub-
ject > < verb > < object >) which corresponds to the following boilerplate

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 12 of 34

Ta
bl

e
2

 C
om

pa
ris

on
 o

f E
A

R
S,

 P
oh

l a
nd

 R
up

p
an

d
ou

r b
oi

le
rp

la
te

s

B
oi

le
rp

la
te

s o
f P

oh
l a

nd
 R

up
p

(P
oh

l a
nd

 R
up

p
20

11
)

EA
R

S
bo

ile
rp

la
te

s (
M

av
in

 e
t a

l.
20

09
)

O
ur

 b
oi

le
rp

la
te

s

Ba
si

c:
 <

 Sy
ste

m
 n

am
e >

 sh
al

l/
sh

ou
ld

/w
ill

/m
ay

 <
 pr

oc
es

s v
er

b >

G
en

er
ic

 re
qu

ire
m

en
ts

 sy
nt

ax
:

 <
 op

tio
na

l p
re

co
nd

iti
on

s >
 <

 op
tio

na
l t

ri
gg

er
 >

 th
e

 <
 sy

ste
m

 n
am

e >
 sh

al
l <

 sy
ste

m
 re

sp
on

se
 >

Ba
si

c:
<

su
bj

ec
t>

 <
ve

rb
>

 <
ob

je
ct

>

C
om

pl
et

e
pr

oc
es

s v
er

b:
 <

 Sy
ste

m
 n

am
e >

 sh
al

l/
sh

ou
ld

/w
ill

/m
ay

 <
 pr

oc
es

s
ve

rb
 >

 <
 ob

je
ct

 >
 <

 ad
di

tio
na

l d
et

ai
ls

 a
bo

ut
 o

bj
ec

t >

U
bi

qu
ito

us
 re

qu
ire

m
en

ts
:

Th
e <

 sy
ste

m
 n

am
e >

 sh
al

l <
 sy

ste
m

 re
sp

on
se

 >

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te
:

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 [o
f

en
tit

y]
 +

 To
 <

 en
tit

y >

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 [o
f

en
tit

y]
 +

 F
ro

m
 <

 en
tit

y >

Lo
gi

ca
l a

nd
 te

m
po

ra
l c

on
di

tio
n:

 <
 W

he
n >

 <
 Sy

ste
m

 n
am

e >
 sh

al
l/

sh
ou

ld
/w

ill
/m

ay
 <

 pr
oc

es
s

ve
rb

 >
 <

 ob
je

ct
 >

 <
 ad

di
tio

na
l d

et
ai

ls
 a

bo
ut

 o
bj

ec
t >

Ev
en

t-d
ri

ve
n

re
qu

ire
m

en
ts

:
W

H
EN

 <
 op

tio
na

l p
re

co
nd

iti
on

s >
 <

 tr
ig

ge
r >

 th
e

 <
 sy

ste
m

 n
am

e >
 sh

al
l <

 sy
ste

m
 re

sp
on

se
 >

Lo
gi

ca
l a

nd
 te

m
po

ra
l c

on
di

tio
n:

Ba
si

c
lo

gi
ca

l c
on

di
tio

n
bo

ile
rp

la
te

:
if

ba
si

c
bo

ile
rp

la
te

 +
 th

en
 b

as
ic

 b
oi

le
rp

la
te

 +

Ex
te

nd
ed

 lo
gi

ca
l c

on
di

tio
n

bo
ile

rp
la

te
:

if
ba

si
c

bo
ile

rp
la

te
 +

 th
en

 b
as

ic
 b

oi
le

rp
la

te
 +

el

se
ba

si
c

bo
ile

rp
la

te
 +

Ne

ste
d

if
co

nd
iti

on
 b

oi
le

rp
la

te
:

if
ba

si
c

bo
ile

rp
la

te
 +

 th
en

if
ba

si
c

bo
ile

rp
la

te
 +

 th
en

ba
si

c
bo

ile
rp

la
te

 +

Te
m

po
ra

l c
on

di
tio

n
bo

ile
rp

la
te

:
Af

te
r b

as
ic

 b
oi

le
rp

la
te

, b
as

ic
 b

oi
le

rp
la

te
W

he
n

ba
si

c
bo

ile
rp

la
te

, b
as

ic
 b

oi
le

rp
la

te
U

nw
an

te
d

be
ha

vi
ou

rs
:

IF
 <

 op
tio

na
l p

re
co

nd
iti

on
s >

 <
 tr

ig
ge

r >
 , T

H
EN

 th
e

 <
 sy

ste
m

 n
am

e >
 sh

al
l <

 sy
ste

m
 re

sp
on

se
 >

1 3

Automated Software Engineering (2024) 31:5 Page 13 of 34 5

Ta
bl

e
3

 C
at

eg
or

ie
s o

f o
ur

 b
oi

le
rp

la
te

s

C
at

eg
or

y
B

oi
le

rp
la

te
D

es
cr

ip
tio

n

1.
 B

as
ic

 b
oi

le
rp

la
te

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

Th

is
 b

oi
le

rp
la

te
 is

 c
al

le
d

ba
si

c
bo

ile
rp

la
te

1.
1

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te
 w

ith
 d

et
ai

ls
 <

 su
bj

ec
t >

 <
 ve

rb
 >

 <
 ob

je
ct

 >

[d
et

ai
ls

] <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 ,
 <

 su
bj

ec
t >

 [d
et

ai
ls

] <
 ve

rb
 >

 <
 ob

je
ct

 >
 ,

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 [d

et
ai

ls
] <

 ob
je

ct
 >

 ,
 <

 su
bj

ec
t >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 [d

et
ai

ls
],

[d
et

ai
ls

] <
 su

b-
je

ct
 >

 [d
et

ai
ls

] <
 ve

rb
 >

 [d
et

ai
ls

] <
 ob

je
ct

 >
 [d

et
ai

ls
]

[D
et

ai
ls

] c
an

 a
ls

o
be

 a
pp

lie
d

an
yw

he
re

. [
D

et
ai

ls
] a

re

ex
pl

an
at

or
y

co
m

m
en

ts

1.
2

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te
 w

ith
su

bj
ec

ts
 a

s p
ro

pe
rt

ie
s o

f c
la

ss
es

 <
 su

bj
ec

t >
 of

 <
 en

tit
y >

 <
 ve

rb
 >

 <
 ob

je
ct

 >

su
bj

ec
ts

 a
s p

ro
pe

rt
ie

s o
f c

la
ss

es
: <

 su
b-

je
ct

 >
 of

 <
 en

tit
y >

 <
 ve

rb
 >

 <
 ob

je
ct

 >

1.
3

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te
 w

ith
ob

je
ct

s a
s p

ro
pe

rt
ie

s o
f c

la
ss

es

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 of
 <

 en
tit

y >

ob
je

ct
s a

s p
ro

pe
rt

ie
s o

f c
la

ss
es

: <
 su

b-
je

ct
 >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 of

 <
 en

tit
y >

1.
4

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te
 w

ith
su

bj
ec

ts
 a

s p
ro

pe
rt

ie
s o

f c
la

ss
es

an
d

ob
je

ct
s a

s p
ro

pe
rt

ie
s o

f c
la

ss
es

 <
 su

bj
ec

t >
 of

 <
 en

tit
y >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 of

 <
 en

tit
y >

ob

je
ct

s a
s p

ro
pe

rt
ie

s o
f c

la
ss

es
, s

ub
je

ct
s a

s p
ro

pe
rt

ie
s o

f
cl

as
se

s
 <

 su
bj

ec
t >

 of
 <

 en
tit

y >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 of
 <

 en
tit

y >

1,
5

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te
 w

ith
 in

te
ra

ct
io

na
nd

m

an
y

ob
je

ct
s

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 +
 F

ro
m

 <
 en

tit
y >

 <

 su
bj

ec
t >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 +

 To
 <

 en
tit

y
 <

 su
bj

ec
t >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 +

 F
ro

m
 <

 en
tit

y >

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 +
 To

 <
 en

tit
y

1,
6

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te
 w

ith
 in

te
ra

ct
io

na
nd

ob

je
ct

s a
s p

ro
pe

rt
ie

s o
f c

la
ss

es

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 of
 <

 en
tit

y >
 +

 To
 <

 en
tit

y >

 <
 su

b-
je

ct
 >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 of

 <
 en

tit
y >

 +
 F

ro
m

 <
 en

tit
y >

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 of
 <

 en
tit

y >
 +

 To
 <

 en
tit

y >

 <
 su

b-
je

ct
 >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 of

 <
 en

tit
y >

 +
 F

ro
m

 <
 en

tit
y >

U

su
al

ly
. t

he
 in

te
ra

ct
io

n
is

 a
cc

om
pa

ni
ed

 b
y

ob
je

ct
s a

s
pr

op
er

tie
s o

f c
la

ss
es

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 14 of 34

Ta
bl

e
3

 (c
on

tin
ue

d)

C
at

eg
or

y
B

oi
le

rp
la

te
D

es
cr

ip
tio

n

2 Ba
si

c
lo

gi
ca

l c
on

di
tio

n
bo

ile
rp

la
te

if
ba

si
c

bo
ile

rp
la

te
 +

 th
en

 b
as

ic
 b

oi
le

rp
la

te
 +

Ex

te
nd

s t
he

 b
as

ic
 te

m
pl

at
e

w
ith

 th
e

if
st

at
em

en
t.

Th
is

bo

ile
rp

la
te

 is
 c

al
le

d
co

nd
iti

on
al

 b
oi

le
rp

la
te

. A
fte

r i
f

w
e

ca
n

ha
ve

 m
or

e
th

an
 o

ne
 b

as
ic

 b
oi

le
rp

la
te

 w
hi

ch
 a

re

se
pa

ra
te

d
by

 lo
gi

ca
l o

pe
ra

to
rs

. A
ls

o,
 a

fte
r t

he
n

w
e

ca
n

ha
ve

 m
or

e
th

an
 o

ne
 b

as
ic

 b
oi

le
rp

la
te

s
2.

1
Ex

te
nd

ed
 lo

gi
ca

l c
on

di
tio

n
bo

ile
rp

la
te

if
ba

si
c

bo
ile

rp
la

te
 +

 th
en

 b
as

ic
 b

oi
le

rp
la

te
 +

el

se
ba

si
c

bo
ile

rp
la

te
 +

if
th

e
co

nd
iti

on
 is

 fa
ls

e,
 th

e
el

se
 st

at
em

en
t b

oi
le

rp
la

te
 w

ill

be
 e

xe
cu

te
d

2.
2

N
es

te
d

if
C

on
di

tio
n

bo
ile

rp
la

te

if
ba

si
c

bo
ile

rp
la

te
 +

 th
en

if
ba

si
c

bo
ile

rp
la

te
 +

 th
en

ba
si

c
bo

ile
rp

la
te

 +

N
es

te
d

if
fu

nc
tio

ns
 b

oi
le

rp
la

te
s

3 Te
m

po
ra

l c
on

di
tio

n
(A

fte
r o

r W
he

n)
Af

te
r b

as
ic

 b
oi

le
rp

la
te

, b
as

ic
 b

oi
le

rp
la

te
W

he
n

ba
si

c
bo

ile
rp

la
te

, b
as

ic
 b

oi
le

rp
la

te
Ex

te
nd

s t
he

 b
as

ic
 te

m
pl

at
e

w
ith

 te
m

po
ra

l c
on

ne
ct

iv
es

 to

cr
ea

te
 se

nt
en

ce
s t

ha
t i

nv
ol

ve
 te

m
po

ra
l r

el
at

io
ns

 b
et

w
ee

n
en

tit
ie

s.
Th

is
 b

oi
le

rp
la

te
 is

 c
al

le
d

te
m

po
ra

l b
oi

le
rp

la
te

1 3

Automated Software Engineering (2024) 31:5 Page 15 of 34 5

instantiation: < ATM > < returns > < CashCard > . The verb (or predicate or
object property in RDF syntax) is the returns. The domain of the object property
in the ontology is class ATM which is the subject in the boilerplate. The range of
the object property in the ontology is class CashCard which is the object in the
boilerplate. In both cases, domain and range, we notice that ATM and Card are
classes in our ontology.

However, there are cases where the object of the verb cannot be a class. For
example, the following requirement: The bank’s computer records the serial num-
ber of the card. The serial number in the ontology cannot be defined as a class but
as a data property with domain CashCard, because it is a data property. For this
purpose, it is useful to define a class CardSerialNumberOfCashCard. We also
created a new object property which is called ofCashCard. This object property
(predicate) has as domain the class CardSerialNumberOfCashCard and as range
the class CashCard. The data property cardSerialNumber has as domain the class
CardSerialNumberOfCashCard. The class CardSerialNumberOfCashCard we
created is called metaclass. So, the RDF triple is represented in the ontology as
subject-predicate-object, such as BankComputer records CardSerialNumberOf-
CashCard, because the above triple cannot have as object the data property card-
SerialNumber. Table 5 shows an example of an extended boilerplate with ele-
ments from the ontology. We have followed the same rationale for the subject.

Α large part of the requirements has verbs which have as objects data proper-
ties or have as subject data properties. That’s why we expanded the basic structure

Fig. 5 Example of Basic Boil-
erplate

Fig. 6 Example of the extended template 1

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 16 of 34

Ta
bl

e
4

 E
xa

m
pl

es
 o

f b
as

ic
 a

nd
 e

xt
en

de
d

bo
ile

rp
la

te
s

N
o

Re
qu

ire
m

en
ts

 e
xp

re
ss

ed
 in

na

tu
ra

l l
an

gu
ag

e
Re

qu
ire

m
en

ts
 e

xp
re

ss
ed

 u
si

ng
 th

e
B

as
ic

bo

ile
rp

la
te

C
at

eg
or

y
or

 te
m

pl
at

e
of

 b
as

ic
 b

oi
le

rp
la

te
D

es
cr

ip
tio

n

1
Re

tu
rn

 c
as

h
ca

rd
 <

 A
TM

 >
 <

 re
tu

rn
s >

 <
 C

as
hC

ar
d >

 <

 su
bj

ec
t >

 <
 ve

rb
 >

 <
 ob

je
ct

 >

Ba
si

c
bo

ile
rp

la
tte

2
Th

e
se

ria
l n

um
be

r s
ho

ul
d

be

lo
gg

ed
 <

 B
an

kC
om

pu
te

r >
 <

 re
co

rd
s >

 <
 ca

rd
-

Se
ri

al
nu

m
be

r >
 of

 <
 C

as
hC

ar
d >

 <

 su
bj

ec
t >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 of

 <
 en

tit
y >

Ex

te
nd

ed
 b

as
ic

 b
oi

le
rp

la
te

ob

je
ct

s a
s p

ro
pe

rt
ie

s o
f

cl
as

se
s

3
Se

nd
 se

ria
l n

um
be

r a
nd

 p
as

s-
w

or
d

to
 b

an
k

co
m

pu
te

r
 <

 A
TM

 >
 <

 se
nd

s >
 <

 ty
pe

dp
as

s-
wo

rd
 >

 of
 <

 C
us

to
m

er
 >

 <
 ca

rd
Se

ri
al

-
N

um
be

r >
 of

 <
 C

as
hC

ar
d >

 To
 <

 B
an

k-
C

om
pu

te
r >

 <
 su

bj
ec

t >
 <

 ve
rb

 >
 <

 ob
je

ct
 >

 of
 <

 en
tit

y >
 +

 To
 <

 en
tit

y >

Ex
te

nd
ed

 b
as

ic
 b

oi
le

rp
la

te

w
ith

 in
te

ra
ct

io
n

an
d

ob
je

ct
s

as
 p

ro
pe

rt
ie

s o
f c

la
ss

es

4
Th

e
am

ou
nt

 o
f c

as
h

is
 le

ss

th
an

 t
 <

 tr
an

sa
ct

io
n-

Am
ou

nt
 >

 of
 <

 Α
ΤΜ

Tr
an

sa
ct

io
n >

 <
 is

_
le

ss
_t

ha
n_

or
_e

qu
al

s_
to

 >
 <

 ac
co

un
t-

M
ax

W
ith

dr
aw

al
Pe

rD
ay

An
dA

c-
co

un
t >

 of
 <

 A
cc

ou
nt

 >

 <
 su

bj
ec

t >
 of

 <
 en

tit
y >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 of

 <
 en

tit
y >

Ex

te
nd

ed
 b

as
ic

 b
oi

le
rp

la
te

su

bj
ec

ts
 a

s p
ro

pe
rt

ie
s o

f
cl

as
se

s a
nd

 o
bj

ec
ts

 a
s p

ro
p-

er
tie

s o
f c

la
ss

es

5
Re

ce
iv

e
re

sp
on

se
 fr

om
 b

an
k

(a
bo

ut
 a

ut
ho

riz
at

io
n)

 <
 A

TM
 >

 <
 re

ce
iv

es
 >

 <
 re

je
ct

io
nA

ut
or

i-
za

tio
n >

 F
ro

m
 <

 B
an

kC
om

pu
te

r >

 <
 su

b-
je

ct
 >

 <
 ve

rb
 >

 <
 ob

je
ct

 >
 of

 <
 en

tit
y >

 +
 F

ro
m

 <
 en

tit
y >

Ex

te
nd

ed
 b

as
ic

 b
oi

le
rp

la
te

w

ith
 in

te
ra

ct
io

n

1 3

Automated Software Engineering (2024) 31:5 Page 17 of 34 5

boilerplate, in order to have the basic boilerplate with objects as properties of
classes and subjects as properties of classes, such as the following:

 < subject > < verb > < object > of < entity >
 < subject > of < entity > < verb > < object >
 < subject > of < entity > < verb > < object > of < entity >
Pohl and Rupp (2011) refer to the interaction between systems or interface

requirement that is, a system performs an activity that depends on other systems.
More specifically when a system receives a message and according to it, it must
perform a function or perform the appropriate behavior. They suggest an appro-
priate template which is related to interface requirement:

The < system name > shall/should/will/may be able to < process
verb > < object > .

According to the requirements of the ATM domain, we observed that the inter-
action between computer-system occupies a large part of the requirements such
as: ATM sending serial number for checking to bank computer. The bank’s pro-
cessor sends an authorization to withdraw money. The ATM receives the authori-
zation to withdraw and proceeds with the corresponding behavior or operation. In
general, in the specific case study, we observe that there is an interaction between

Table 5 Example of an extended boilerplate with elements from the ontology

Requirement Computer records the cardserialNumber

Category Extended basic boilerplate
Boilerplate < subject > < verb > < object > of < entity >
RDF triplet in ontology BankComputer records CardSerialNumberOfCashCard
objectOfEntity (class) CardSerialNumberOfCashCard
Object property ofCashCard
Domain of object property (OfCashCard) CardSerialNumberOfCashCard
Range of object property (OfCashCard) CashCard
Domain of data property
(cardSerialNumber)

CardSerialNumberOfCashCard

Table 6 Boilerplates attributes with values

Boilerplate attribute Description Example of values from ontology

 < subject > Class, data property (in case
of subject of entity)

ATM, Customer, CashCard, Maintainer

 < verb > predicate returns, displays, sends
 < object > instances, data property (in

case of object of entity),
class

CashCard, cardSerialNumber (data
property), has_no_money (instances)

 of < entity > class Customer, CashCard
 To < entity > class ATM, BankComputer
From < entity > class ATM, BankComputer

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 18 of 34

the ATM and the bank’s computer. For this reason, we created the corresponding
template for interaction. Specifically, we extended the basic boilerplate template
with interaction and many objects and created the templates below:

 < subject > < verb > < object > of < entity > + To < entity >
 < subject > < verb > < object > of < entity > + From < entity >
 < subject > < verb > < object > + From < entity >
 < subject > < verb > < object > + To < entity
Figure 5 gives a simple example of an instantiation of the basic boilerplate < sub-

ject > < verb > < object > , namely < ATM > < returns > < CashCard > . The object
property returns has domain the class ATM and range the class CashCard.

An example of the template < subject > < verb > < object > of < entity > is < Bank-
Computer > < records > < cardSerialnumber > of < CashCard > , which is depicted
in Fig. 6. The BankComputer is a class, records is an object property. The card-
Serialnumber is a datatype property. Object properties links classes. In this case,
cardSerialnumber is a datatype property with domain the class CardSerialNumber-
OfCashCard. The object property records has domain the class BankComputer and
range the class CardSerialNumberOfCashCard. Also, we have created the object
property ofCashCard, which has domain the class CardSerialNumberOfCashCard
and range the class CashCard.

An extended form of the basic boilerplate with interaction and object (data
property) of entity is < subject > < verb > < object > of < entity > + To < entity > .
This example is shown in Fig. 7. The following example < ATM > < sends >
< typedpassword > of < Customer > < cardSerialNumber > of < Cash-
Card > To < BankComputer > is an instance of the above template. The object
property sends has domain the class ATM and range the class TypedPass-
wordOfCustomerCardSerialNumberOfCashCardToBankComputer. Typed-
password is a data property with domain TypedPasswordOfCustomerCard-
SerialNumberOfCashCardToBankComputer. The cardSerialnumber is a

Fig. 7 Example of the extended template 2

1 3

Automated Software Engineering (2024) 31:5 Page 19 of 34 5

datatype property with domain Typed PasswordOfCustomer CardSerial-
NumberOfCashCardToBankComputer. The object property ofCashCard has
domain the class TypedPasswordOfCustomerCardSerialNumberOfCashCard-
ToBankComputer and range the class CashCard. The object property ofCus-
tomer has domain the class TypedPasswordOfCustomerCardSerialNum-
berOfCashCardToBankComputer and range the class Customer. The object
property sends has domain the class BankComputer and range the class
TypedPasswordOfCustomerCardSerialNumberOfCashCardToBankComputer.

Figure 8, below, shows the following boilerplate < subject > of < entity >
< verb > < object > of < entity > . An example of this boilerplate is the < transac-
tionAmount > of < ΑΤΜTransaction > < is_less_than_or_equals_to > < account-
MaxWithdrawalPerDayAndAccount > of < Account > . The object property is_
less_than_or_equals_to has domain the class TransactionAmountOfTransaction
and range the class AccountMaxWithdrawalPerDayAndAccountOfAccount. The
datatype property accountMaxWithdrawalPerDayAndAccount has domain the
class AccountMaxWithdrawalPerDayAndAccountOfAccount. The transaction-
Amount is a datatype property with domain TransactionAmountOfTransaction.
The object property ofTransaction has domain the class TransactionAmountOf-
Transaction and range the class ATMTransaction. The object property ofAccount
has domain the class AccountMaxWithdrawalPerDayAndAccountOfAccount and
range the class Account. Table 7 shows an example of an extended boilerplate
with elements from the ontology.

Another example of an extended template of the basic boilerplate is the fol-
lowing: < subject > < verbs > < object > + From < entity > . Figure 9 describes
its instantiation < ATM > < receives > < rejectionAutorization > From < Bank-
Computer > . The object property receives has domain the class ATM and range
the class InteractionFromBankComputer. The entity rejectionAutorization is an
individual of class Negative, which is subclass of Response. The class Response
is subclass of Interaction. The object property fromBankComputer has domain
the class InteractionFromBankComputer and range the class BankComputer.

Fig. 8 Example of the extended template 3

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 20 of 34

4 A tool based on boilerplate and ontology for specifying
requirements

In this work, we created a tool which is used to record the requirements using ontol-
ogy and boilerplates. So far, in many systems that use boilerplates to document
requirements and the attributes of boilerplates are completed by the ontology. In our
case, whole boilerplates and requirements are stored in the ontology. The require-
ments engineer types the requirement in natural language and selects the appropri-
ate boilerplate template. The tool accepts the requirement and performs parsing to
detect the relation-verb of the sentence. The tool gives options (attributes) for its
components of boilerplates. The user selects the appropriate resources to create boil-
erplates-based requirement. The purpose of the tool is to suggest possible values for
the attributes of boilerplates. Figure 10 depicts the architecture of our tool.

First, it accepts the requirement in natural language and the parser searches for
the verb of the requirement. The object property extractor accepts the result of the
parser and looks for a corresponding or similar object property in the ontology. The
algorithm is shown in Listing 1.

Table 7 Example of an extended boilerplate with elements from the ontology

Category Extended BasicBoilerplate

Boilerplate < subject > of < entity > < verb > < object > of < entity >
Completed from ontology < transactionAmount > of < ΑΤΜTransaction > < is_less_

than_or_equals_to > < accountMaxWithdrawalPerDay-
AndAccount > of < Account >

RDF triplet TrancactionAmoutofTransaction is_less_than_or_equals_to
AccountMaxWithdrawalDayandAccountOfAccount

Object of entity (class) AccountMaxWithdrawalDayandAccountOfAccount
Object property ofAccount
Domain of object property AccountMaxWithdrawalDayandAccountOfAccount
Range of object property Account
Data property accountMaxWithdrawalDayandAccount
Domain of data property AccountMaxWithdrawalDayandAccountOfAccount

Fig. 9 Example of the extended
template 4

1 3

Automated Software Engineering (2024) 31:5 Page 21 of 34 5

The range extractor accepts the object property and returns the range of prop-
erty. Depending on the boilerplate which is chosen by the user for the requirement,
the method, range extractor, is different depending on the cases we mentioned in
the previous paragraph. For the basic boilerplate < subject > < verb > < object > ,
such as < ATM > < returns > < CashCard > or < ATM > < displays > < has_no_
money > whose < object > -part is an instance; for such cases, we have also created
the corresponding module, namely the instances extractor. The algorithm is shown
in Listing 2.

Also, one of the extended templates of the basic boilerplate is: < sub-
ject > < verb > < object > of < entity > . For example, the following require-
ment < BankComputer > < records > < cardSerialNumber > of < CashCard > is an

Fig. 10 Tool for constructing requirements based on ontology and boilerplates

objectPropertyExtractor(String verb){
listOfObjectProperties=instatiate from ontology();
String i="";
String nameOfObjectProperty;
while(listOfObjectProperties not null){

i=currentObjectProperty. istOfObjectProperties();
if (i.equals(verb){

nameOfObjectProperty=verb;
}

}
return listOfObjectProperties;

}

Listing 1 Algorithm of the object property extractor

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 22 of 34

instantiation of the above template. The object property is records. This object prop-
erty has range CardSerialNumberOfCashCard class. Also, there is another object
property, ofCashCard which has domain the CardSerialNumberOfCashCard and
range the CashCard class. Additionally, for this kind of template we had to define
as range of the datatype property cardSerialNumber the CardSerialNumberOfCash-
Card class. In this case, the object is not a class or an instance in the basic template,
but it essentially has a metaclass as described above. So that’s why we created the
extractor objectOfEntity.

The following (extractor objectOfEntity) works with the assumption that the
range extractor is implemented. To complete the relation, we use the range extrac-
tor and to complete the subject the domain extractor. There is the domain extractor,
which accepts an object property and finds its domain. In the above case, it looks for
an object property (e.g. ofCashCard) and a data property (e.g. cardSerialNumber)
which have the same domain (e.g. cardSerialNumberOfCashCard) with the range
(e.g. cardSerialNumberOfCashCard) of the relation, in this case records. After they
are found, then we take the range (e.g. CashCard) of the object property to insert
it in the position of the attribute of < entity > . Also, in the position < object > , we
insert the data property.

Α second example of the extended template is: < sub-
ject > < verb > < object > of < entity > + To < entity > . An instantiation for
this template is as follows: < ATM > < sends > < typedpassword > of < Cus-

RangeExtractor(Object Property){
listRangeOfProperty=instatiate from ontology();
String nameRange="";
String range;
String instances;
listNameofRange;

while(listRangeOfProperty not null){
range =currentRange.listRangeOfProperty ();
if (range is only one class){

nameRange =getName();
listNameofRange .add(nameRange);
if (nameRange has instances){

instances.getInstances();
}

}
else{

while (range not null){
nameRange =getName();
listNameofRange .add(nameRange);
if (nameRange has instances){

instances.getInstances();
}

}
}

retun listRangeOfProperty;
}

Listing 2 Algorithm of the range extractor

1 3

Automated Software Engineering (2024) 31:5 Page 23 of 34 5

tomer > Τo < BankComputer > . It is similar to the above example. Besides the data-
type property typedpassword and the object property ofCustomer it also has one
more object property (ToBankComputer This object property has range TypedPas-
sowordOfCustomerToBankComputer class. Also, there is another object property,
ofCustomer which has domain the TypedPassowordOfCustomerToBankComputer
and range the Customer class. Additionally, for this kind of template we had to
define as range of the typedpassword datatype property the TypedPassowordOf-
CustomerToBankComputer class. A third example of the extended template is the
following: < subject > < verbs > < object > of < entity > From < entity > which is
similar to the previous one, but it has additional object property fromSomething.
One example requirement that follows this boilerplate is the following: < BankCom-
puter > receives < transactionAmount > of < Transaction > From < ATM > .

To complete the relation, we use the range extractor and to complete the sub-
ject the domain extractor. In the above case, it looks for two object properties
(ofCustomer), (ToBankComputer) and a data property (typedpassword) which
have the same domain (typedPasswordofCustomerToBankComputer) with the
range of the relation, in this case sends. After they are found, then we take the
range (e.g. Customer) of the object property to insert it in the position of the attrib-
ute of < entity > and we e.g. take the range (e.g. BankComputer) of the second
object property (e.g. ToBankComputer) to insert it in the position of the attribute
To < entity > . Also, in the position < object > , we insert the data property. To com-
plete the < object > of < entity > To < entity > we use the extractor objectOfEntity.
The algorithm for the above extended case is shown in Listing 3.

Note that the code inside “else{}” is similar to the one in “if (ontclass and
ontclass2 only one class){“, the only difference being that the domain of ontoclass2
is not just one class but many classes (e.g. in the case of union of classes). In this
case an iterator must be used which each time takes the current class to check it. All
modules are illustrated in Fig. 11.

A fourth example of the extended template is the following: < sub-
ject > < verb > < object > of < entity > + From < entity > or sub-
ject > < sends > < object > of < entity > + To < entity > . The difference with the
previous ones is that the verb (object property) has more than one objects. For
example, this boilerplate: < BankComputer > receives < typedpassword > of < Cus-
tomer > < cardSerialNumber > of < CashCard > From < ATM > has two objects
(typedpassword and cardSerialNumber). Otherwise, it is similar to the above
examples.

So far, we have seen that the datatype property ofSomething is in the object-
part of the boilerplate. For this reason, we use extractor objectOfEntity, but it
is also possible to be in the subject-part. The following are examples of such
an extended boilerplate: < subject > of < entity > < verb > < object > or < sub-
ject > of < entity > < verb > < object > of < entity > . For example, the require-
ment < transactionAmount > of < Transaction > < is_less_than_or_equals_
to > < accountMaxWithdrawalPerDayAndAccount > of < Account > has the
is_less_than_or_equals_to as object property. This object property has domain
TransactionAmountOfTransaction class. Also, there is another object property
ofTransaction, which has domain the TransactionAmountOfTransaction class and

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 24 of 34

ExtractorObjectOfEntity(int found){ //found=1 for one object property, 2 for two objects
properties.

HashMap <String, ArrayList<String>> ObjectOfEntity = new HashMap <String,
ArrayList <String>>();

RangeListFromEntity;
String nameRange;
String nameObject;
String nameOfEntity;
OntResource ontclass;
OntResource ontclass2;
OntResource ontclass3;
while(listRange not null){

nameRange=currentRange. listRange();
listDataProperties=instatiate from ontology();
while(listDataProperties not null){

dataProperty=current.listDataProperties();
listObjectProperties=instatiate from ontology();
while(listObjectProperties not null){
objectProperty=current. listObjectProperties();
ontclass=dataProperty.getDomain();
ontclass2=objectProperty.getDomain();
if (ontclass and ontclass2 only one class){

if (found==1){
if (ontclass and ontclass2 has same domain){

nameObject=dataProperty;
nameOfEntity=objectProperty.getRange();
ObjectOfEntity.put(nameObject, new ArrayList<String>());
ObjectOfEntity.get(nameObject).add(nameOfEntity);

}
}

else //(found==2){
if (ontclass and onclass2 has same domain){

listObjectProperties2=instatiate from ontology();
while(list listObjectProperties2){

objectProperty2=current. listObjectProperties2();
ontclass3= objectProperty2.getDomain();
if(onclass2 and ontclass3 has same domain){

nameObject=dataProperty;
nameOfEntity=objectProperty.getRange();
ObjectOfEntity.put(nameObject, new ArrayList<String>());

ObjectOfEntity.get(nameObject).add(nameOfEntity);
nameToORFromEntity=objectProperty.getRange();

RangeListFromEntity.add(nameToORFromEntity);

}
}

}
}

}
else {}
}

}
}

return ObjectOfEntity;
}

Listing 3 Algorithm of the extractor of Object of Entity

1 3

Automated Software Engineering (2024) 31:5 Page 25 of 34 5

range the Transaction class. Additionally, the transactionAmount datatype property
has domain the TransactionAmountOfTransaction class.

To complete the relation (is_less_than_or_equals_to), we use the range extrac-
tor. To complete the object of entity, it looks for an object property (e.g. ofAccount),

Fig.11 Workflow of our tool

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 26 of 34

and a data property (e.g. accountMaxWithdrawalPerDayAndAccount) which have
the same domain (accountMaxWithdrawalPerDayAndAccountOfAccount) with the
range of the relation, in this case is_less_than_or_equals_to. After they are found,
then we take the range (Account) of the object property (e.g. ofAccount) to insert it
in the position of the attribute (object) of < entity > . Also, in the position < object > ,
we insert the data property. To complete the < object > of < entity > we use the
extractor objectOfEntity.

To complete the subject of entity, we look for an object property (e.g. ofTransac-
tion), and a data property (e.g. transactionAmount) which have the same domain
(TransactionAmountOfTransaction) with the domain of the relation, in this case is_
less_than_or_equals_to. After they are found, then we take the range (Transaction)
of the object property (e.g. ofTransaction) to insert it in the position of the attribute
(subject) of < entity > . Also, in the position < subject > , we insert the data property
(transactionAmount). To complete the < subject > of < entity > , we use the extractor
subjectOfEntity. Therefore, apart from the extractor objectOfEntity, there is also the
extractor subject of entity. Figure 11 presents the workflow of our tool.

5 Evaluation

We developed the tool in order to be useful for the requirement engineers in the pro-
cess of specification of requirements. The tool is based on the methodology we pro-
posed, namely we exploit the natural language syntax of boilerplates mapping them
to RDF triples. Τhis tool uses the domain-specific ontology as well as a minimal set
of boilerplates which we developed. Regarding the use of the tool, we have to clarify
that it does not require any learning about ontology technology but neither do engi-
neers need to learn anything new to use this type of requirements, the boilerplates.

The functionality of the tool enables the user to add and edit a requirement based
on the existing domain-specific ontology. The user types the requirement in natu-
ral language and selects the appropriate boilerplate template according to the lan-
guage used in the requirement, so there is no need to know the boilerplate template
in advance. The user selects the appropriate values of attributes coming from the
ontology, from a list of options.

The user can choose the template of a basic boilerplate, or the extended template
of a basic boilerplate or a complex boilerplate. The latter can contain logical and
temporal constraints. In the case that a complex template is selected then the user
needs to select from the first list the content of the complex template i.e., basic tem-
plate or extended template. The processing of the tool for the choices of the attrib-
utes of boilerplates are based on the relation or the verb that the user types. The verb
is derived from natural language processing. The tool detects relations with the use
of Stanford Parser.1

After the user selects the appropriate boilerplate, options for each attribute
are displayed in the window after being processed by the tool. Also, the user can

1 https:// stanf ordnlp. github. io/ CoreN LP/

https://stanfordnlp.github.io/CoreNLP/

1 3

Automated Software Engineering (2024) 31:5 Page 27 of 34 5

choose between classes, instances, object properties and datatype properties. The
user interface includes editing and adding requirements. The attributes (such as
classes, instances, object properties and data properties) of boilerplates are based on
a domain-specific ontology.

In order to assess the efficiency and effectiveness of the proposed methodology,
an experiment was conducted on engineering software for an ATM. The experiment
is an observational case study, and the design was carried out according to the tem-
plate of Runeson et al.

6 Research questions

The experiment we are conducting aims to evaluate the effectiveness and efficiency
of our method from the side of requirement engineers. This specific experiment is
conducted in order to answer the following three research questions: (1) Are there
discrepancies regarding the completion time of the engineers for a requirement spec-
ification using our method/tool? (2) How effective is the proposed methodology so
that all participants have the same expectations for the tool?

Regarding the first research question, we measured the time that it takes for
the participants to write a requirement in the system, to give the options and save
the requirement instance in the system. The time to record the requirement is the
answer to the question and the specific research question concerns the efficiency of
our method. In the second research question, we assess the difficulty of choosing
the appropriate boilerplate template and attribute values from the ontology given
a description of the tool in natural language. The content of the research only con-
cerns the evaluation of the proposed method which includes the tool used by the
participants.

6.1 Description of the experiment

The developed tool is used to define requirements based on an ontology and boiler-
plates. Participants typed the requirement for the ATM system in natural language,
selected the appropriate boilerplate template, the tool processed the users’ choices
and provided options of attributes boilerplates.

The three participants were given a brief description of the ATM ontology, the
syntax of requirement boilerplates, examples of requirement boilerplates and the
case study. Participants studied the above and were given access to our tool. They
were not given any help while using the tool.

6.1.1 Data collection

After the participants completed defining the requirements with the tool given to
them, qualitative data for research questions had to be collected. For the above
reason, they were asked to answer a questionnaire in the form of a personal inter-
view in order to collect qualitative data. The participants answered the Likert scale

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 28 of 34

questionnaire but also justified their answers. Table 8 presents the questionnaire.
Finally, the evaluator asked for more information on the result of the requirements
specification. The interviews were not recorded but the evaluator kept the data in the
form of notes. The evaluator of the interviews is the same person who designed the
tool, the syntax of the boilerplate and the ontology.

6.2 Data analysis

To draw conclusions about the experiment, the quantitative and qualitative data were
analysed. Regarding the qualitative data, the values from the questionnaire among
the participants were compared. In the quantitative analysis, the specification of the
requirements that the participants were asked to implement through the tool was the
subject of the evaluator’s study. The evaluator counted the numbers of common boil-
erplates that were defined by the participants and the errors that occurred during the
specification of the requirements.

6.3 Semantic analysis through SPARQL queries

In order to ensure the validity and correctness of the requirements we have created
some SPARQL queries that detect inconsistencies that would lead to semantic errors
or detect possible requirements that have been omitted. SPARQL query is a query
language for RDF data (graphs). In Listings 4 and 5, two such queries for checking
requirements’ incompleteness are presented. The first query looks for object proper-
ties whose domain is class ATM that do not have (yet) corresponding requirements.
Indicatively, Fig. 12 shows the results from the first query. The second query looks

Table 8 Questionnaire Time for initial specification (in hours)

Overall understanding (0 not understanding -5 fully understood)
Boilerplate identification difficulty (0 not difficult – 5 very difficult)
Placeholder identification difficulty (0 not difficult – 5 very difficult)

SELECT DISTINCT ?c ?p
WHERE {

?p rdf:type/rdfs:subClassOf* owl:ObjectProperty .
?c rdf:type owl:Class .
?p rdfs:domain :ATM .
FILTER NOT EXISTS {

?r rdf:type/rdfs:subClassOf* :Requirement .
?r :verb ?p.
?r :subject :ATM .

}
}

Listing 4 SPARQL query

1 3

Automated Software Engineering (2024) 31:5 Page 29 of 34 5

for object properties whose domain is class BankComputer and as object has meta-
class (class) as in Fig. 6. Thus, the requirement engineer should continue to provide
requirements for these properties returned by both queries (Table 9).

7 Results

The quantitative results, regarding the difficulty of identifying the correct boilerplate
type, are recorded in Table 10. These results come from specifying the requirements
implemented by the participants. Also, Table 10 contains the remaining quantitative

Fig.12 Answers of first query

SELECT DISTINCT ?s ?p ?dp ?en
WHERE {

?p rdf:type/rdfs:subClassOf* owl:ObjectProperty .
?o rdf:type owl:Class .
?p rdfs:range ?o .
?p rdfs:domain :BankComputer .
?of rdf:type/rdfs:subClassOf* owl:ObjectProperty .
?of rdfs:domain ?o.
?en rdf:type owl:Class .
?of rdfs:range ?en.
?dp rdf:type/rdfs:subClassOf* owl:DataProperty.
?dp rdfs:domain ?o .
FILTER NOT EXISTS {

?r rdf:type/rdfs:subClassOf* :Requirement .
?r :subject :BankComputer.
?r :verb ?p.
?r :ofEntity ?en .
?r :object ?dp

}
}

Listing 5 SPARQL query

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 30 of 34

results which are related to the overall understanding of the system and the difficulty
of choosing values for attributes.

Regarding the proposed method as well as its tool, the participants did not
encounter any particular difficulty and found them understandable and easy. Another
reason that enhances the ease of use of the tool is that the ontology describes the
ATM software, and by extension the boilerplate language is embedded in ATM con-
cepts and relationships, so it was expected that basic knowledge of the specific soft-
ware, ATM would facilitate its use. It is worth noting that once the ontology descrip-
tion was given, subjects showed familiarity with the concepts and relationships. This
resulted in participants specifying requirements without the support of the grammar.
Generally, in terms of the boilerplate language, participants reported that it is quite
intelligible and expressive. Also, the participants mentioned during interviews that
they do not need to learn anything new to understand and use it. They had no diffi-
culty in choosing the correct boilerplate template nor they encountered any difficulty
in choosing values for the attributes. Also, the participants have little experience in
specifying requirements as well as little experience in the ATM domain. Neverthe-
less, they had no difficulty in choosing the right instances. It was also found during
time recording that the participants needed more time on complex requirements as
shown in Table 9. Finding the right instances is a time-consuming task and they also
made mistakes until they found the right instances. Also, regarding the validity of
the evaluation, I mention the following cases such as the very small sample and the
homogeneity of the sample.

The first research question relates to whether there are differences in the comple-
tion time of requirements between engineers using our method. From the quantita-
tive data, we observe that there are no large discrepancies between the participants.
Nevertheless, there are differences in completion time between basic requirements
and complex requirements.

Table 10 Quantitative results

Question Engineer1 Engineer2 Engineer3

Overall understanding 0 1 1
Boilerplate identification difficulty 1 1 1
Placeholder identification difficulty 0 0 1

Table 9 Time in hours for requirements specification using our method

Time for initial specification (in hours) Engineer1 Engineer2 Engineer3

 < subject > < verb > < object > 00:19:71 00:48:88 00:20:43
 < subject > < verb > < object > of < entity > 00:28:85 00:25:05 00:25:32
 < subject > of < entity > < verb > < object > of < entity > 00:41:72 00:45:05 00:42:49
 < subject > < receives > < object > of < entity > + From < entity > 01:15:19 00:56:39 00:54:12
Complex boilerplate 01:48:43 02:06:92 03:09:25

1 3

Automated Software Engineering (2024) 31:5 Page 31 of 34 5

The second research question refers to the evaluation of the effectiveness of
the proposed methodology by the users. The participants did not face difficulties
in understanding and using the methodology, nor difficulty in choosing boilerplate
template, nor in choosing values for attributes.

8 Conclusions

We developed an tool that allows the requirements engineer to define require-
ments using natural language processing, a domain ontology and boilerplates. We
have presented the proposed methodology that is embedded in the tool based on
the ontology and the corresponding boilerplate language. We took advantage of the
linguistic structure of RDF and have discussed the boilerplate language syntax and
the classification of boilerplates. The most famous boilerplates templates are EARS
and those of Pohl and Rupp from which we were inspired the categories of our boil-
erplate templates. In this paper, we focus on the following categories of boilerplates:
(a) basic boilerplate template and extended form of basic boilerplate template and
(b) and boilerplate template with temporal or logical conditions. We point out that
the boilerplate syntax is similar to the linguistic structure of RDF. The above is what
makes our methodology unique. For the development of the ontology and by exten-
sion the creation of boilerplates the ATM domain was used.

To avoid errors in subsequent stages of verification and validation of require-
ments, the creation of high-level requirements of a system are important. Natural
language is still considered the most popular technique for specification require-
ments. Alas, natural language is ambiguous. Boilerplates deal with the ambiguity.
Also, requirement engineers do not need special training to use boilerplates. So far,
for the specification of requirements, we have seen the use of ontologies and boiler-
plates in combination. In several cases, the completion of the attributes of a boiler-
plate is done by entities from the ontology. The variants of Hull and EARS boiler-
plates have been mostly used.

Using our tool, the user or the requirement engineer types a requirement using
natural language and selects the appropriate boilerplate template according to the
linguistic structure of the requirement. The tool proposes options for the values of
attributes. This is achieved by processing the requirement in natural language. Based
on this process, the tool provides to the user matching boilerplate templates and then
the user selects one of them and fill the templates placeholders with values from the
ontology. The syntax of boilerplates is subject – verb—object. Similarly, the RDF
triples also follow the same syntax subject—predicate (verb phrase)—object. The
contribution and novelty of this work is that we exploit the syntax of the boilerplate
language, mapping them to RDF triples. Therefore, not only the attributes of the
boilerplates are completed by the ontology but the whole boilerplate is part of the
ontology.

It is worth noting at this point that boilerplates have some fixed word and some
attributes which are completed manually from the engineer or with help of the
ontology. In this work, the tool, which we developed, based on the boilerplate
language and the ontology, suggests options for attributes with the help of the

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 32 of 34

ontology and via natural language processing. We exploit the syntax of the boil-
erplate language, mapping them to RDF triples. Mostly in other works, where
they incorporate the combination of boilerplates and ontology, the attributes of
boilerplates are completed with the help of ontology. This paper is that the whole
boilerplate is stored in the ontology and attributes and fixed elements are part of
the ontology. This constitutes the contribution and novelty of this work.

In order to ensure the quality and correctness of requirements, the combination
of ontology and boilerplates is a useful tool for requirements engineers during
requirements definition. Also, for non-experienced requirements engineers it is a
good tool and guide them to formulate requirements. This combination has other
advantages as well, such as reducing the ambiguity caused by natural language
and the editing requirement specification. The reuse and renewal of the ontology
and boilerplates are characterized as an advantage of the combination.

The proposed tool was evaluated for effectiveness and efficiency through the
experiment conducted. The users who participated in the experiment had no dif-
ficulty in choosing the appropriate template boilerplate or choosing the attrib-
ute values. Also, they have no difficulty in understanding and using the proposed
methodology. As future work, we will evaluate this tool using more participants
and in the context of real-word software production.

Author contributions All authors wrote the manuscript.

Funding Open access funding provided by HEAL-Link Greece.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Ahmad, S., Anuar, U., Emran, N.A.: A tool-based boilerplate technique to improve SRS quality: an
evaluation. J. Telecommun. Electron. Comput. Eng. (JTEC) 10(27), 111–114 (2018)

Antoniou, G., Groth, P., Van Harmelen, F., Hoekstra, H.: A Semantic Web Primer (3rd edn.) MIT
press (2011)

Anuar, U., Ahmad, S., Emran, N.A.: A simplified systematic literature review: improving software
requirements specification quality with boilerplates. In: 2015 9th Malaysian Software Engineer-
ing Conference (MySEC), 99–105. IEEE. (2015) https:// doi. org/ 10. 1109/ MySEC. 2015. 74752 03

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MySEC.2015.7475203

1 3

Automated Software Engineering (2024) 31:5 Page 33 of 34 5

Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of conformance to require-
ments templates using natural language processing. IEEE Trans. Softw. Eng. 41(10), 944–968
(2015). https:// doi. org/ 10. 1109/ TSE. 2015. 24287 09

Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F., Gnaga, R.: Automatic checking of conformance to
requirement boilerplates via text chunking: an industrial case study. In: 2013 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, (pp. 35–44). IEEE.
(2013) https:// doi. org/ 10. 1109/ ESEM. 2013. 13

Arora, C., Sabetzadeh, M., Briand, L. C., Zimmer, F.: Requirement boilerplates: transition from man-
ually enforced to automatically verifiable natural language patterns. In: 2014 IEEE 4th Interna-
tional Workshop on Requirements Patterns (RePa), (pp. 1–8) IEEE. (2014). https:// doi. org/ 10.
1109/ RePa. 2014. 68948 37

Daramola, O., Stålhane, T., Sindre, G., Omoronyia, I.: Enabling hazard identification from requirements
and reuse-oriented HAZOP analysis. In: 2011 4th International Workshop on Managing Require-
ments Knowledge (pp. 3–11). IEEE. (2011) https:// doi. org/ 10. 1109/ MARK. 2011. 60465 55

Daramola, O., Sindre, G., Moser, T.: Ontology-based support for security requirements specification pro-
cess. In: OTM Confederated International Conferences On the Move to Meaningful Internet Sys-
tems. (pp. 194–206). Springer, Berlin, Heidelberg. (2012) https:// doi. org/ 10. 1007/ 978-3- 642- 33618-
8_ 28

Daramola, O., Sindre, G., Stalhane, T.: Pattern-based security requirements specification using ontologies
and boilerplates. In: 2012 Second IEEE International Workshop on Requirements Patterns (RePa),
(pp. 54–59). (2012) https:// doi. org/ 10. 1109/ RePa. 2012. 63599 73

Do, Q.A., Bhowmik, T., Bradshaw, G.L.: Capturing creative requirements via requirements reuse: a
machine learning-based approach. J. Syst. Softw. 170, 110730 (2020). https:// doi. org/ 10. 1016/j. jss.
2020. 110730

Do, Q. A., Chekuri, S. R., & Bhowmik, T.: Automated support to capture 1 creative requirements via
requirements reuse. In: International Conference on 2 Software and Systems Reuse, (pp. 47–63).
Springer, Cham. (2019) https:// doi. org/ 10. 1007/ 978-3- 030- 22888-0_4

Fanmuy, G., Fraga, A., Llorens, J.: Requirements verification in the industry. In: Complex Systems
Design & Management (pp. 145–160). Springer, Berlin, Heidelberg. (2012). https:// doi. org/ 10.
1007/ 978-3- 642- 25203-7_ 10

Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Omoronyia, I., Zojer, H.: Ontology-driven guidance for
requirements elicitation. In: Extended Semantic Web Conference (pp. 212–226). Springer, Berlin,
Heidelberg. (2011) https:// doi. org/ 10. 1007/ 978-3- 642- 21064-8_ 15

Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT: Increasing requirements for-
malism using domain ontologies for improved embedded systems development. In: 14th IEEE Inter-
national Symposium on Design and Diagnostics of Electronic Circuits and Systems (pp. 271–274).
IEEE. (2011). https:// doi. org/ 10. 1109/ DDECS. 2011. 57830 92

Fritz, S., Srikanthan, V., Arbai, R., Sun, C., Ovtcharova, J., Wicaksono, H.: Automatic information
extraction from text-based requirements. Int. J. Knowl. Eng. 7(1), 8–13 (2021)

Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220
(1993). https:// doi. org/ 10. 1006/ knac. 1993. 1008

Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum.
Comput. Stud. 43(5–6), 907–928 (1995). https:// doi. org/ 10. 1006/ ijhc. 1995. 1081

Guarino, N., Oberle, D., Staab, S.: What is an ontology?. Handbook on ontologies, (pp. 1–17). (2009)
Haris, M.S., Kurniawan, T.A.: Automated requirement sentences extraction from software requirement

specification document. In: Proceedings of the 5th International Conference on Sustainable Infor-
mation Engineering and Technology (pp. 142–147), (2020)

Hull, E., Jackson, K., Dick, J.: Requirements engineering. Springer Science & Business Media, (2010)
Ibrahim, N., Kadir, W.M.W., Deris, S.: Propagating requirement change into software high level designs

towards resilient software evolution. In: 2009 16th Asia-Pacific Software Engineering Confer-
ence (pp. 347–354). IEEE. (2009) https:// doi. org/ 10. 1109/ APSEC. 2009. 55

Kravari, K., Antoniou, C., Bassiliades, N.: SENSE: a flow-down semantics-based requirements engineer-
ing framework. Algorithms 14(10), 298 (2021). https:// doi. org/ 10. 3390/ a1410 0298

Kravari, K., Antoniou, C., Bassiliades, N.: Towards a requirements engineering framework based on
semantics. In: 24th Pan-Hellenic Conference on Informatics (pp. 72–76). (2020) https:// doi. org/ 10.
1145/ 34371 20. 34372 78

https://doi.org/10.1109/TSE.2015.2428709
https://doi.org/10.1109/ESEM.2013.13
https://doi.org/10.1109/RePa.2014.6894837
https://doi.org/10.1109/RePa.2014.6894837
https://doi.org/10.1109/MARK.2011.6046555
https://doi.org/10.1007/978-3-642-33618-8_28
https://doi.org/10.1007/978-3-642-33618-8_28
https://doi.org/10.1109/RePa.2012.6359973
https://doi.org/10.1016/j.jss.2020.110730
https://doi.org/10.1016/j.jss.2020.110730
https://doi.org/10.1007/978-3-030-22888-0_4
https://doi.org/10.1007/978-3-642-25203-7_10
https://doi.org/10.1007/978-3-642-25203-7_10
https://doi.org/10.1007/978-3-642-21064-8_15
https://doi.org/10.1109/DDECS.2011.5783092
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1109/APSEC.2009.55
https://doi.org/10.3390/a14100298
https://doi.org/10.1145/3437120.3437278
https://doi.org/10.1145/3437120.3437278

 Automated Software Engineering (2024) 31:5

1 3

 5 Page 34 of 34

Mahmud, N., Seceleanu, C., Ljungkrantz, O.: ReSA: an ontology-based requirement specification lan-
guage tailored to automotive systems. In: 10th IEEE International Symposium on Industrial Embed-
ded Systems (SIES), (pp. 1–10). IEEE. (2015) https:// doi. org/ 10. 1109/ SIES. 2015. 71850 35

Mahmud, N., Seceleanu, C., Ljungkrantz, O.: ReSA tool: structured requirements specification and SAT-
based consistency-checking. In: 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS), (pp. 1737–1746). IEEE. (2016) https:// doi. org/ 10. 15439/ 2016F 404

Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements syntax (EARS).
In: 2009 17th IEEE International Requirements Engineering Conference, 317–322. IEEE. (2009)
https:// doi. org/ 10. 1109/ RE. 2009.9

Mokos, K., Katsaros, P.: A survey on the formalisation of system requirements and their validation. Array
7, 100030 (2020). https:// doi. org/ 10. 1016/j. array. 2020. 100030

Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)
Pasquariello, A., Vitolo, F., Patalano, S.: Systems and requirements engineering: an approach and a soft-

ware tool for the interactive and consistent functional requirement specification. In: International
Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (pp. 491–502).
Springer, Cham (2022)

Pohl, K., Rupp, C.: Requirements engineering fundamentals, (1st edn.), Rocky Nook Richard Cyganiak,
David Wood, Markus Lanthaler, (eds.), RDF 1.1 Concepts and Abstract Syntax, W3C Recommen-
dation (2011) http:// www. w3. org/ TR/ rdf11- conce pts/

Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering: Guidelines
and Examples, 1st edn. Wiley, Hoboken (2012)

Staab, S., Studer, R. (eds.): Handbook on Ontologies (2nd edn). Springer. (2009) https:// doi. org/ 10. 1007/
978-3- 540- 92673-3_0

Too, C.W., Hoo, M.H., Yen, W.W., Khor, K.C.: UReST: A knowledge-based usability requirements spec-
ification support tool. In: 2022 International Conference on Decision Aid Sciences and Applications
(DASA) (pp. 1455–1459). IEEE. (2022)

Warnier, M., Condamines, A.: Improving requirement boilerplates using sequential pattern mining. In:
Europhras Conference, November 2017, London. (2017). https:// doi. org/ 10. 26615/ 978-2- 97010
95-2- 5_ 013

Zaki-Ismail, A., Osama, M., Abdelrazek, M., Grundy, J., Ibrahim, A.: Rcm: requirement capturing model
for automated requirements formalisation. (2020) https:// doi. org/ 10. 48550/ arXiv. 2009. 14683

Zichler, K., Helke, S.: R2BC: Tool-Based Requirements Preparation for Delta Analyses by Conversion
into Boilerplates. In: Software Engineering (Workshops), ASE 2019: 16th Workshop on Automo-
tive Software Engineering @ SE19, Stuttgart, Germany, pp. 45–52. (2019) http:// ceur- ws. org/ Vol-
2308/ ase20 19pap er03. pdf

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/SIES.2015.7185035
https://doi.org/10.15439/2016F404
https://doi.org/10.1109/RE.2009.9
https://doi.org/10.1016/j.array.2020.100030
http://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.26615/978-2-9701095-2-5_013
https://doi.org/10.26615/978-2-9701095-2-5_013
https://doi.org/10.48550/arXiv.2009.14683
http://ceur-ws.org/Vol-2308/ase2019paper03.pdf
http://ceur-ws.org/Vol-2308/ase2019paper03.pdf

	Α tool for requirements engineering using ontologies and boilerplates
	Abstract
	1 Introduction
	2 Related work
	3 Ontology and boilerplates
	3.1 Ontology
	3.2 Boilerplates

	4 A tool based on boilerplate and ontology for specifying requirements
	5 Evaluation
	6 Research questions
	6.1 Description of the experiment
	6.1.1 Data collection

	6.2 Data analysis
	6.3 Semantic analysis through SPARQL queries

	7 Results
	8 Conclusions
	References

