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Abstract. The development and evolution of advanced energy system
technologies is one of the most important goals for the global commu-
nity in recent years. In this effort, the utilization and analysis of energy
time series is of decisive importance for the understanding of energy con-
sumption and production patterns. However, access to real data may be
limited due to the sensitivity of the information and the limited amount
of data already available. This has led to the use of methods to produce
artificial data in order to enrich existing datasets. Generative Adversarial
Networks or GANs are an approach to generative modeling using deep
learning methods based on the logic of adversarial learning, and consist of
two adversarial neural networks, a generator and a discriminator, which
work together to produce realistic and unbiased data. The subject of the
current paper is the creation of a GAN pipeline capable of producing
power time series that resemble those observed in the real world, pre-
serving the main characteristics and diversity of the observed electrical
devices. The proposed method shows promising results, outperforming
other state-of-the-art models in two calculated metrics.

Keywords: Synthetic Data, Deep Learning, Energy, Timeseries, GAN,
NILM, Generative AI

1 Introduction

The term synthetic data, also known as artificial data, refers to information that
has been generated using algorithms rather than from real-world monitoring.
Synthetic data is used in cases where the volume of available data does not satisfy
the requested requirements. Some of the most common techniques for generating
artificial data include using deep learning and neural networks. The generation
of synthetic data has been a key line of research in recent years, supporting
a multitude of applications in computer science and artificial intelligence. The
ever-increasing demand for large and diverse datasets, encompassing the range
of complexity seen in the real world, is the main motivation behind the creation
of synthetic data.

Using synthetic data has many benefits. Firstly, it can solve the problem of
lack of data, as collecting and processing real data is an expensive and time-
consuming process. Synthetic data also allows solving privacy problems, as real
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user information is not used directly. Data owners cannot share their data with-
out safeguards in place. Legal concerns aside, there is a general reluctance to
share sensitive data with non-experts before they have proven themselves trust-
worthy [1]. Finally, use of synthetic data allows control over the degree of com-
plexity and parameters of the final data generated. Artificial data can be used to
facilitate collaborations involving sensitive data. A good synthetic dataset has
two properties: it is representative of the original data, and it provides strong
privacy guarantees. Furthermore, to demonstrate that a method is robust to
biased data, synthetic datasets containing appropriate ’corner cases’ can be cre-
ated. Bias checking of decision-making systems is especially important in cases
where a ’black box’ algorithm is used [2, 3]. In cases such as medical applications,
data acquisition is a slow and expensive process, because usually the collection
and interpretation of data requires the involvement of highly trained experts. To
address such limitations, data augmentation, a set of techniques for increasing
the size of a data set without collecting and annotating additional real data, can
be performed [4].

Time series data, also known as dated data, is a series of data points that
are organized in chronological order. Typically, these data points consist of con-
secutive measurements taken from the same source at fixed time intervals and
are used to track changes that occur over time [5]. In recent years, several
datasets of energy time series have been created, at different levels of sampling
and amount of information. Some are available for free to the public [6, 7], while
others are available for research purposes or through payment [8]. The primary
objective of using synthetic data, in this context, is to employ it in the creation
and evaluation of algorithms for Non-Intrusive Load Monitoring (NILM).

Non-intrusive load monitoring is a process which, by analyzing the changes
in voltage and current of an electrical installation, infers which devices are being
used at a given time as well as the energy consumption of each one of them
[9]. NILM is considered a low-cost alternative to placing separate meters for
each individual device. Detailed analysis of energy consumption in real time
can lead to savings of up to 20% in energy consumption through detection of
faulty devices and poor electrical management strategies [10]. Thus, in the long
term, unnecessary waste of energy will be avoided, positively affecting the global
warming and the climate change problems.

The contribution of the current paper to the field research of synthetic data
for energy disaggregation could be summarized in three key points. To begin
with, providing a pipeline for synthetic data generation where multiple appli-
ances’ generation can be accomplished through individual electrical appliance
signal generations.The novelty is the proposed appliance signature preprocess-
ing. A common practice involves directly feeding the entire time series data into
neural networks and relying on the network to autonomously manage the learn-
ing process. In the presented approach, the network’s ability to learn signatures
more efficiently is facilitated by providing as input only the segments of the time
series that contain the most critical information. This targeted input strategy
enhances the learning process, enabling the network to discern relevant patterns



SGAN 3

more quickly. Moreover, a GAN architecture is proposed using convolutional
layers, leveraging technics used for synthetic image generation. A novel metric
called ”normalized total energy” or NTE is also proposed to assess the synthetic
data created from the neural networks. Lastly, a benchmark with 5 appliances
between existing networks and comparison of the proposed method is created,
while the code is provided on GitHub. The exploration of the proposed model
extends to often overlooked use cases, specifically addressing scenarios such as
Electric Vehicles (EV) and Air Conditioning (AC) signatures. These devices typ-
ically have limited available data but hold significant importance in the context
of Non-Intrusive Load Monitoring (NILM).

The anatomy of this paper is as follows. For starters, there is a brief presen-
tation of the related work on GANs, NILM and related datasets. Secondly, the
data analysis and preprocessing process is analyzed. Section 5 contains informa-
tion on the GAN topologies created and compared. The most important of the
results are presented in section 6. Finally, conclusions and outlines of proposals
for future work are presented.

2 Related Work

Generative Adversarial Networks (GANs) are an approach to generative mod-
eling using deep learning methods. In a GAN network, two neural networks
compete against each other in the form of a zero-sum game, where one agent’s
gain corresponds to another agent’s loss. This concept was developed by Ian
Goodfellow and his colleagues in 2014 [11]. The problem is framed as a su-
pervised learning problem with two networks know as the Generator and the
Discriminator. The generator model is trained to generate new realistic signals
by taking random noise as input, and the discriminator model tries to classify
signals as real (from the application domain) or fake (created by the generator).

GANs train the two networks alternately, completing one or more training
epochs for one network and then switching to the opposing network for a similar
duration. This process is repeated until the training process is completed. The
weights of one network are held constant during the training of the opposing
network. Otherwise, the generator would behave as if it were trying to achieve
an ever-changing target and may never converge. The GAN game reaches equi-
librium when the generator can create signals that are indistinguishable from
real ones, rendering even a flawless discriminator unable to differentiate between
them. For a GAN, convergence is often a fleeting, rather than a stable, state.

To enhance both the ultimate result and the stability of GAN training, nu-
merous adaptations such as label smoothing, historical averaging, and minibatch
discrimination have been introduced [12]. Another technique that was proposed
by Metz et al. [13] is Unrolled GANs that use a generator loss function that
incorporates not only the outputs of the current discriminator network, but
also the outputs of future versions of it. This way, the generator cannot over-
optimize for a single discriminator network. Arjovsky et al. [14] examines usual
problems such as instability and saturation and introduces solutions. In [15] a
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new regularization approach with low computational cost is proposed to achieve
a stable GAN training process. An algorithm named WGAN, an alternative
to traditional GAN training, is proposed in [16]. They demonstrated that the
KL divergence between the discriminator’s outputs for real and fake samples, a
frequently employed loss function in GAN training, faced issues with vanishing
gradients. Wasserstein distance is also recommended as an alternative in [17].

It’s worth mentioning that the generator architecture employed in GANs
shows little substantial divergence from alternative methods, such as Variational
Autoencoders [18]. In the context of VAEs, one network focuses on discovering
more effective methods for encoding raw data into a lower-dimensional space,
while the second network, known as the decoder, seeks to convert these rep-
resentations into new data. Another variation is Progressive GAN, where the
first layers of the generator generate low-resolution samples, while the subse-
quent layers gradually add finer details. This approach enables GANs to train
faster than comparable non-progressive networks and produce higher resolution
samples [19, 20]. Conditional Gans [21] are conditionally trained on a labeled
dataset, and allow a label to be specified for each new sample generated.

The first to propose neural networks designed explicitly for Non-Intrusive
Load Monitoring (NILM) were Kelly and Knottenbelt [22]. Numerous tech-
niques have been proposed to achieve this goal, ranging from conventional signal
processing approaches to advanced engineering algorithms rooted in machine
learning [23–27]. In [28] the authors aim is to consolidate the autoencoder and
GAN architectures into a unified framework, in which the autoencoder achieves
a non-linear separation of the power signal source. A generalizable energy disag-
gregation pipeline is proposed in [29] and aims to address both the performance
and efficiency aspects of Non-Intrusive Load Monitoring (NILM) models.

3 Datasets

While the generation of labeled real-world data for NILM applications is a labor-
intensive and expensive endeavor, there are publicly available datasets that could
be used of training machine learning models. The selected datasets include UK-
DALE [30], a dataset consisting of 5 UK households, providing high frequency
current and voltage measurements sampling. Another dataset used is REFIT
[31], which includes full load recording of household activity and measurements of
9 individual devices, at 8 second intervals per house, collected continuously over
a period of two years from 20 houses. Also, appliances from Pecan Street [8] were
utilized, one of the largest and well-known datasets used for NILM procedures,
offering data from both residential and commercial sources, gathered by the
Pecan Street Research Institute from Austin, Texas, USA. These encompass
various types of appliances commonly found in households, including washing
machines, dishwashers, air conditioners and kettles.
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Table 1. Table of selected appliances and their sources.

Appliance Dataset Country

Washing Machine REFIT, UK-DALE, Dataport UK, USA
Dishwasher REFIT, UK-DALE UK

Aircon Dataport USA
Kettle REFIT, UK-DALE UK

Electric car Dataport USA

4 Data Preparation

In this chapter, a detailed explanation is provided regarding the steps and
methodologies involved in the analysis and processing of the data. The avail-
able time series data from the datasets used, are initially separated into 6 hour
windows. This length was chosen as it allows to easily create synthetic data for
a whole day by creating 4 such windows. The technique applied here was to
isolate the device signature by pre-processing the time series, and then produce
the final synthetic data in two phases. Essentially, this separates the data gen-
eration problem into two sub-problems. One problem is the shape of a device’s
signature (duration, number of pulses, pulse format). The second problem is
when the device will operate during the day. It can be observed that these are
two independent problems, since the signature of a device does not change with
the time of day. A similar method is used in [32] where a synthetic dataset is
created, by combining parts of observed appliances collected by them. Thus, the
problem can be divided into two phases to solve it. This also allows for multi-
ple devices to be easily added, which can be generated by different generator
networks, while another network will coordinate when each device is turned on.
This method also offers the ability to take into account the relationship between
devices that tend to be used together or in a serial manner.

Following the generation of the relevant 6-hour windows from the input data,
a series of data cleaning procedures is executed before proceeding to utilize and
feed this data into the networks. The first step is to exclude the 6 hours that
contain no appliance uses or contain exclusively noise. Windows with a very
small energy sum are removed. In a next phase, the negative values that may
be present in the samples, due to meter error, are removed. If any point is
missing from a window, that window is excluded as well, due to missing values.
Another step of the data preprocessing is the normalization of the values of the
samples. This is done in order to help the network training and limit the range of
possible values that the samples can have. For this transformation, the Min-Max
normalization method is employed, and the features are rescaled to lie with the
range of 0 to 1. The equation used can be seen in equation 1. Finally, in order
to disregard samples containing a lot of noise, the variance of each time series is
calculated and used to filter the samples further.
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x′ =
x− xmin

xmax − xmin
(1)

To isolate the part of the time series containing the signature of the device
from the rest of the series, appropriate pre-processing of the data is performed.
More specifically, initially the point where the first use of the device begins in
the specific six-hour sample is found, i.e. the first point with energy greater
than a minimum limit. This was chosen so that very small meter noises would
not be detected as the beginning of device use. Subsequently, the last point of
device usage in the 6-hour window is detected. In order to determine whether the
examined part of the time series requires further subdivision into independent
usages, convolution is employed. More specifically, a window with uniform values
of 1 is convolved with the selected part of the time series. Through this approach,
the identification of the appropriate point for further division in the series is
determined, if such a point exists. Then, each newly created series is analyzed
with the same algorithm recursively. If a series subpart only contains noise, it is
discarded and not considered further. This trimming step is repeated until there
are no more splits to be done, or a specified number of repetitions is reached.
This is how the different uses are separated, and any meter noise is removed, as
a set of points containing noise will be isolated from the rest.

5 GAN topologies

5.1 GanNilm

One of the architectures implemented is that of GanNilm [33], which has been
adapted to generate data for a single device. The original model proposed aimed
to achieve non-intrusive load monitoring through the use of generative adver-
sarial networks. Specifically, the generator network produces an output for each
aggregate input measurement, which represents the detailed measurement of a
device. This generated output is subsequently combined with the correspond-
ing actual aggregate measurement and is fed into the discriminator network to
determine if it is a real sample. To ensure network stability, the techniques of
feature matching and output-input concatenation are employed. In this manner,
the generator network learns how total consumption is distributed among indi-
vidual devices, while the discriminator indirectly learns the loss function. Below
the architecture of GanNilm is shown (see Fig. 1).
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Fig. 1. The architecture of GanNilm network for performing NILM

5.2 DCGAN

The proposed architecture consists of two convolutional networks, a generator
and a discriminator. The generator network consists of a series of convolutional
layers at its initial stage. These layers take as input the random noise provided
to the network and, through the use of activation function leaky ReLU, propa-
gate the information through the network. Subsequently, the following layers are
inverse convolutional layers, meaning they expand the size of the current time
series generated. The final layers of this network consist of linear layers, which
ultimately yield the desired time series length as the output. Dropout layers
and batch normalization are used to increase training stability. Convolutional
layers were chosen as they are fast, suitable for time series data, and effective
at feature extraction. Batch normalization plays an important role in mitigating
the internal covariate shift issue in deep neural networks. It standardizes the
intermediate outputs of each layer within a batch during training, enhancing the
stability and speed of the optimization process [34].

In Fig. 2 the architecture for the DCGAN Generator is shown, where the pa-
rameter k stands for the kernel size of the layer, ch is for the number of channels
and s represents the stride used in the specific layer. The kernel size refers to
the dimensions of the filter or convolutional kernel used during the convolution
operation. In this case, where the convolution is done in 1 dimension, the size
k dictates the width of the filter used. The stride is a parameter that dictates
the movement of the kernel, across the input data, determining how many el-
ements the convolutional filter moves at each step along the input sequence.
Finally, the channels’ parameter refers to the number of channels produced by
the convolution operation.
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Fig. 2. The architecture of DCGAN Generator network

The Discriminator network consists of convolutional layers, interspersed with
dropout layers. The final two layers are linear, utilizing the Sigmoid activation
function to produce the final result. In Fig. 3 the architecture for the DCGAN
Discriminator is shown.

Fig. 3. The architecture of DCGAN Discriminator network

5.3 SGAN (Signature GAN)

A similar architecture as described above for DCGAN is employed in this model,
with the difference that signature isolation as described in Data Preparation
Chapter is used before feeding the data into the neural network. The GAN is
trained on the signatures of each one of the appliances, while a new generator
network is produced for each one of them. To generate synthetic data, the Gen-
erator produces a signature specific to the appliance. In the subsequent phase,
the starting point of the generated appliance is established based on the specified
6-hour window that needs to be created. As the final step, this information is
utilized to generate the complete time series.

In Fig. 4, the pipeline architecture for the SGAN network is shown. The
initial step involves feeding the raw energy time series from the utilized datasets,
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mentioned in section 3, into the signature isolation preprocessing algorithm.
This process aims to extract the specific appliance signature by employing the
method detailed in section 4. This output is then used as ground truth for the
discriminator during the training phase. As shown in Fig. 4 the discriminator
network then is also utilized to update the generator network weights during the
training phase. The generator network takes as input latent code, in order to
produce realist appliance signatures based on its current training phase and the
feedback from the discriminator. Once appliance signatures are generated, the
subsequent stage involves finalizing the synthetic time series. In this step, the
device operation starting time is defined, and the final time series is constructed
using this information and the output of the generator, resulting in the final
appliance operation window. It should be noted that the dashed lines in the figure
denote operations exclusive to the training phase and are directed backwards.

Fig. 4. The architecture of SGAN network for synthetic time series generation

The utilization of the signature isolation method in this architecture is demon-
strated to enhance the final results of the GAN, as shown by the calculated
metrics in the subsequent chapter. Despite sharing a similar architecture with
DCGAN involving convolutional layers, this instance employs a reduced number
of layers with fewer parameters. This not only contributes to an improvement
in training efficiency by reducing the time required for model training but also
results in a lighter neural network due to a smaller input size and reduced pa-
rameter count.

6 Experiments

This chapter presents results and analyzes the methods and models developed in
this work. The key pieces of code were developed in the Python language version
3.10.12. To train the algorithms and perform the experiments, Google Colab-T4
GPU and Titan X Nvidia GPU were used. For the visualization of the results,
WanDB 0.15.10 was utilized.

Three key evaluation methods are employed to assess the network’s perfor-
mance. The first method involves comparing the total energy predicted by the
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network to the total energy of the actual samples. The second technique involves
an empirical analysis of the results. The third method utilizes the FID (Fréchet
Inception Distance) score to measure the similarity of synthetic samples in com-
parison to real samples. The FID score [35] was created as a metric for assessing
the similarity between two sets of image data. It has been demonstrated to have
a strong correlation with human evaluations of visual quality, and is frequently
employed to evaluate the quality of samples produced by Generative Adversar-
ial Networks. FID is computed by measuring the Fréchet distance between two
Gaussian distributions that are fitted to representations obtained from the In-
ception network. A smaller metric value indicates a superior evaluation of the
synthetic network data in comparison to the real data.

The equation used for calculating the FID score is the following where (Mt,Ct)
and (Mg,Cg) represent the mean and variance of real and synthetic features re-
spectively:

FID = ||Mt −Mg||22 + Tr(Ct + Cg − 2(CtCg)
1/2

) (2)

In table 2 the results for the fid score comparison between the real data
and the generated data from the compared architectures are shown. It can be
observed that for the 4 out of 5 appliances the proposed architecture achieves
better results. Specifically, for the dishwasher and washing machine, the proposed
method achieves 80% lower FID score compared to the GANNilm architecture.
On the other hand, for the electric car GANNilm achieves 70% better FID score.
For the aircon appliance, the biggest difference is observed, with the SGAN
architecture achieving better results than the other networks.

Table 2. Results from fid score comparison between generated appliances.

fid score *10−3

appliance/network SGAN GANNilm DCGAN

dishwasher 0.0874 0.22 31
washingmachine 0.118 0.3 0.2

aircon 0.18 3.6 4.4
kettle 0.12 0.92 0.77

electric car 1.3 0.6 1.2

Another metric employed is the ”normalized total energy”, which is calcu-
lated as the average total energy of the synthetic and real time series, after
they have been normalized. This metric helps assess the energy distribution and
characteristics of the data in both synthetic and real datasets.

Table 3 displays the percentage deviation in the average total energy between
the real and synthetic data. This deviation is calculated separately for each
method and for each device, providing insights into the differences in energy
characteristics between the two types of data. A smaller deviation signifies a
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Table 3. Results from normalized total energy comparison between generated appli-
ances.

NTE perc diff %

appliance/network SGAN GANNilm DCGAN

dishwasher 14.21 65.52 221.11
washingmachine 1.36 85.07 31.61

aircon 28.21 5.34 45.09
kettle 19.39 121.02 82.13

electric car 7.43 17.81 56.46

better result, aligning with the findings of previous evaluation methods. As is
evident from the visual representation of the results, models that introduce a
significant amount of noise in their output tend to exhibit greater variability in
the average energy of a time series. This additional noise contributes unwanted
energy to the waveform. Models that produce less noise in their output tend
to achieve a total energy of the time series that closely aligns with that of the
real dataset. Of course, the total energy used can fluctuate depending on the
duration of device usage.

For certain appliances like air conditioners, where the pulse duration is de-
termined by the user, there can be significant variations in total energy across all
the waveforms, even within the actual data. Moreover, for the washing machine,
the proposed method achieves a much lower NTE score compared to the GAN-
Nilm architecture and the DCGAN architecture. As the washing machine has a
distinctive signature, the total energy of the synthetic time series achieves a close
approximation of real-world data. More specifically, as it can be seen in table 3,
the generated time series for washing machine and dishwasher have a low NTE
score for SGAN achieving a deviation of only 1.4% and 14% when compared to
the real time series from the utilized datasets. The higher deviations of 19% and
28% are observed for the kettle and aircon appliances, both of which have a total
energy consumption which depends highly on each usage duration.

Figure 5 displays a sample of generated signals for each of the trained appli-
ances from SGAN, alongside corresponding real power traces. It’s evident that
the generated signals exhibit highly comparable behaviors and contain all the
key characteristics of each appliance category.



12 Christina Gkoutroumpi et al.

Fig. 5. Visual comparison of generated appliances (left column) and real appliances
(right column) using the SGAN approach.

7 Conclusions and Proposals for Future Work

The presented paper incorporates a novel technique known as signature isolation
into a neural network to improve its performance. Preliminary results showcase
the capability of the introduced GAN architecture to generate synthetic energy
data that closely mimics the characteristics of real-world energy consumption
across a diverse range of appliances. It is observed that appliances exhibiting
high variance in usage duration, show substantial disparities between usages
and may impact the results of the calculated metrics.
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Comparing the results of the proposed method to existing architectures leads
to promising conclusions. Notably, devices with more distinct signatures, like
washing machines and dishwashers, exhibit better results in both calculated
metrics and visual assessments. Conversely, devices such as air conditioners or
electric vehicle chargers, where pulse duration depends on user behavior, show-
case greater diversity in consumed energy and signature shape. Experiments on
a wider range of target devices may provide more insights on this topic.

Importantly, this method can be applied to generate synthetic data for an
entire household by selecting the devices to be included and aggregating the re-
sults from each GAN generator for individual devices. For this purpose, a second
network could be developed to facilitate the integration of generated signatures
from multiple devices. This capability enables the generation of synthetic data
for an entire household, giving users the flexibility to select the devices to be in-
cluded in the aggregated dataset. Such a model could extend its input to not only
include historical information about when a device starts operating, as currently
implemented, but also consider multiple device activation times. This approach
would leverage existing correlations between device startup times, such as those
between a washer and dryer, to generate more realistic data. Furthermore, the
technique of signature isolation could be applied to other networks with the goal
of enhancing their performance.
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