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A B S T R A C T
Infusing autonomous artificial systems with knowledge about the physical world they inhabit is a
critical and long-held aim for the Artificial Intelligence community. Training systems with relevant
data is a typical approach; however, finding the data required is not always possible, especially
when much of this knowledge is commonsense. In this paper, we present a comparison of topology-
based and semantics-based methods for extracting information about object-action and object-state
association relations from knowledge graphs, such as ConceptNet, WordNet, ATOMIC, YAGO,
WebChild and DBpedia. Moreover, we propose a novel method for extracting information about
object-action and object-state associations from knowledge graphs. Our method is composed of a set of
techniques for locating, enriching, evaluating, cleaning and exposing knowledge from such resources,
relying on semantic similarity methods. Some important aspects of our method are the flexibility
in deciding how to deal with the noise that exists in the data, and the capability to determine the
importance of a path through training, rather than through manual annotation.

1. Introduction
Infusing autonomous artificial systems with knowledge

about the physical world they inhabit is a critical and long-
held aim for the Artificial Intelligence (AI) community.
Training systems with relevant data is a typical approach;
however, finding the data required is not always possible,
especially when much of this knowledge is commonsense.
A method that can correctly identify positive and negative
associations between entities by exploiting knowledge stored
in Knowledge Graphs (KGs) in the presence of noise can
increase the quality of data that a machine can utilize. This
can improve the performance of autonomous AI systems,
such as cognitive robotic systems operating in a household
environment, Computer Vision modules, and other AI ap-
plication domains. Yet, constructing a generic method for
extracting positive and negative associations seems a far
catch for the time being.
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Humans are able to identify meaningful associations, by
relying not only on observations, but also on their common-
sense knowledge. Machines, on the other hand, require a vast
amount of data, in order to be properly trained and learn the
various association relationships. KGs, such as ConceptNet
[1], WordNet [2], ATOMIC [3], WebChild [4], YAGO [5]
and DBpedia [6] contain to some extent knowledge about
association relations, which can help data-driven models
to train classifiers. The knowledge that exists in such KGs
though is typically inserted via crowd-sourced methods and
often contains a portion of inaccurate or noisy data. As a
result, when extracting or retrieving knowledge from such
KGs, evaluation procedures are critical [7].

In this paper, we compare a number of methods of
different nature that are commonly used in practice for
the extraction of associations from KGs, concentrating our
attention on the household application domain. We organize
the methods into topology-based and semantics-based ones,
and also introduce a novel semantics-based approach to
extract associations from KGs, which can achieve or improve
state-of-the-art performance, while offering flexibility in
ironing out noise. Its main characteristic is the exploitation
of patterns of relations, which carry important information
as to which associations to trust and which to dismiss.
Moreover, we evaluate the aforementioned methods over
various KGs, such as ConceptNet, ATOMIC, WebChild,
YAGO and DBpedia, which, to the best of our knowledge,
constitutes one of the most extensive evaluations of these
methods over association relations. Moreover, we compare
how data-driven models perform over the same task, i.e., that
of link prediction between two elements.

More specifically, the problem we investigate is, given a
directed KG, whether two nodes are associated or not, one
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of which relates to a household object class and the other to
an action or an object state class. The methods considered
in our study are domain-agnostic and are not confined to the
household domain; nonetheless, as we explain in the sequel,
their use is very popular for this particular domain, therefore
our choice helps obtain a common reference level for a
comparative analysis. Furthermore, the plethora of features
that this domain introduces makes the problem non-trivial.

The main contributions of this paper are the following:
• A comparative analysis of popular methods for ex-

tracting associations from KGs, focusing on the house-
hold domain.

• The proposal of a new, enhanced method that better
exploits the semantic knowledge that exists in the
KG, in order to extract object-action/state association
relations.

• An extensive analysis of the object-related informa-
tion existing in ConceptNet, ATOMIC, WebChild,
YAGO and DBpedia for association relations.

• The generation of a dataset of positive and negative
object-action and object-state relations, comprising
labels that are commonly used for benchmarking both
research and practical approaches.

Our method and the dataset are publicly available1.
This paper is based on and significantly extends the work

presented in [8], by: (a) studying methods for extracting
object-state (in addition to object-action) associations and
(b) considering a much broader set of KGs for the evalua-
tion of the different methods, whereas [8] concentrates on
ConceptNet, exclusively.

The rest of the paper is organized as follows: Section 2
presents the motivation of our study. Section 3 discusses
related work. The existing and proposed approaches for ex-
tracting object-action and object-state relations are presented
in Section 4. The experimental assessment is described in
Section 5, the results are discussed in Section 6, and the
study concludes in Section 7.

2. Motivation
Filtering information to infer associations from problem-

agnostic KGs in the presence of noise is a long-lasting goal
in many fields related to AI research. In this paper, we focus
on an instance of the problem pertaining to the identifica-
tion of associations among concepts that exists in a KG,
that of positive and negative object-action and object-state
association. We were motivated mostly by the plurality of
methods that are being used in practice for that purpose and
to that particular domain; therefore, we decided to compare
their performance, aiming to identify which characteristics
of each take advantage of the nature of the underlying data,
e.g., the structure, semantics, context etc.

1https://github.com/valexande/AssociationKG

The types of associations we are focusing on constitute
valuable information for a wide spectrum of application ar-
eas, especially in the field of Robotics. Cognitive and social
robots need to operate in environments populated by a wide
variety of objects; the identification of proper correlations
among the objects and the actions that the humans perform
on them or the states obtained by these objects can become
an important leverage in understanding how to classify or
even to operate novel appliances [9]. It can also signifi-
cantly enhance human-robot interactions and collaboration
[10, 11]. But even in the fields, such as Computer Vision or
Ambient Intelligence and smart spaces, the identification of
object-action-state associations can help address traditional
problems, such as action or activity recognition [12, 13, 14].

Finally, through this comparative analysis, we also wanted
to spot differences in the data that exist in some of the
most popular KGs, which may affect the performance of
the methods. For example, the overuse of certain properties,
as noticed for instance in ConceptNet with the RelatedTo
property, tends to work inversely to the semantic information
that it can offer. Our criteria for choosing which KGs
to consider were: (a) the KG has a taxonomy linked to
WordNet, as the relation with WordNet is needed in our
methodology, (b) the KG contains object-state relations OR
object-affordance relations (affordances of one object are
the real-world actions that can be performed on/with that
object), and (c) the KG is publicly available.

The challenge for the methods we consider mostly lies in
the existence of the noise in the KGs. As noise in a KG we
consider: (i) conflicting information, (ii) wrongly annotated
information (due to the crowdsourced nature of many knowl-
edge graphs), (iii) the heterogeneity of granularity of node
population in the KG, meaning that in some areas of the KG
there may exist many interconnected nodes about some sub-
domain, which leads to an over-fitting of knowledge for these
sub-domains, whereas in some other areas nodes describing
another sub-domain may be sparse, and (iv) the heterogene-
ity of granularity in properties, meaning that some properties
are used so often that they could be considered as super
properties, among others (see sub Section 5.3 and Section
6). Scalability is another challenge faced, especially since we
are contrasting the performance against generic repositories.

3. Related Work
This section first presents studies about general purpose

associations (i.e., the entities which are associated can be
of any type). Then, it proceeds to studies with object-action
associations, and concludes with studies about object-state
associations.
3.1. General Purpose Associations

Retrieving commonsense information from problem-
agnostic repositories has been used to tackle challenges
in a variety of AI-related disciplines. ConceptNet is used
by the authors of [15] to find word similarities, which
they subsequently utilize to improve the performance of
sentence-based picture retrieval methods. The authors use
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the labels detected in an image to retrieve information from
the ConceptNet triplets that contain the detected labels. In
[16], the authors use KGs to solve the problem of zero-shot
label learning in photos by building KGs based on labels
identified visually and correlations established in external
sources. The authors utilize WordNet to populate the graph
and Wu Palmer similarity2 to generate property labels.
The authors of [17], use Bayesian logic networks to give
labels to the objects in a picture and rely on commonsense
knowledge derived from WordNet and ConceptNet. With the
help of WordNet hypernyms, seed words are disambiguated.
ConceptNet attributes like LocatedAt and UsedFor, which
can help locate an object’s location, are also obtained. The
system can then construct a compact semantic knowledge
base using this method with only a limited number of
objects. In [18, 19], the authors infer the label of the room
through the objects that the cognitive robotic system per-
ceived from its vision module. The authors use the DBpedia
comment boxes of the objects in the room in order to infer
the label of the room.

The studies listed above aim to incorporate knowledge
from general-purpose Web resources identified in a KG
without paying close attention to the veracity of the informa-
tion retrieved from such resources. Furthermore, they rely on
the simplistic premise that if two nodes are connected by an
edge, they are semantically related. On the other hand, we
are interested in techniques that may filter out the noise or
incorrect information that may exist in such Web resources,
before adding new knowledge to a KG. Furthermore, we
offer a mechanism for associating objects with actions and
states which is not covered in these studies. In contrast to the
prior studies, we evaluate several approaches across a larger
number of KGs.

The study of Zhou et al. [20] is more comparable to ours.
To anticipate a path between two nodes in the ConceptNet
graph, the authors train a Long Short-Term Memory (LSTM)
model. The authors collect the most qualitative pathways
for a set of node pairs, defining quality as the most natural
set of edges connecting two nodes. For instance, the path
Lead

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Toxic

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Lethal

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Poison is

considered the most natural among those connecting Lead
and Poison. The quality of paths is annotated manually by
a group of volunteers. A data-driven model predicts a path
between two ConceptNet nodes in [21, 22]. The quality of
a path is hand-coded by the authors. Our method, on the
other hand, uses training rather than manual annotation to
identify the relevance of a path. This has two advantages:
(𝑖) it considers the structural and semantic properties of
the underlying KG to a greater extent, and (𝑖𝑖) it is more
adaptable to changes in the KG or application domain.

Interesting studies in the area of explainable recom-
mendation over KGs are [23, 24, 25], where the notion of
patterns of relations is also introduced. Similarly to our study
a relation pattern is a specific sequence of relations that
contains semantically rich information for two entities. But

2https://www.nltk.org/howto/wordnet.html

as it is easily understood the problem we are addressing is
different than the one in the aforementioned studies, as in our
work we concentrate more on information retrieval for entity
linking. Also, even though the authors use various datasets
to prove the scalability of their method, they use the same
underlying KG, which is Amazon’s KG3.
3.2. Object-Action Associations

Many studies in the field of cognitive robotics have
focused on the representation and recognition of object-
action relations. The semantic correlation of physical entities
is captured in the KnowRob [26] and RoboSherlock [27]
projects, but object-action relations are either learnt entirely
through observed data or captured in a problem-specific
method. The authors integrate ConceptNet knowledge into
a KG in [28]. They build ConceptNet subgraphs with only
two properties given an object or action label in order to train
a data-driven model that can predict if an object is associated
to an activity. RoboCSE [29], which employs embeddings to
encode object and action labels and infer object-action links
based on the similarity of their vectors, follows a similar
method. Our proposed method combines both semantically
relevant and commonsense information stored in general-
purpose repositories, which can be used to supplement and
enhance the findings of the previous studies.

The studies [30, 31] propose a method where Markov
Logic Networks are used in order to relate real-world objects
with their affordances, in a zero-shot learning problem that
tackles the need of training classifiers. Even though their
method seems more scalable than a data-driven model, the
information that the method can utilize exists solely in
the Markov Logic Network, which cannot access external
knowledge (e.g., a Semantic Web KG). On the other hand,
our method is not restricted to a specific KG, as it can retrieve
information from any given KG, which has different types of
relations.
3.3. Object-State Associations

The problem of object-state association is referred in the
literature as state detection, and is mostly encountered in the
field of computer vision. The problem of state detection usu-
ally serves as a stepping stone to achieve action recognition.

In [32], state detection is studied in the context of
videos containing manipulation actions performed upon
seven classes of objects. The authors formulate state detec-
tion as a discriminative clustering problem and attempt to
address it by optimization methods. [33] represents state-
altering actions as concurrent and sequential object fluents
(states) and utilize a beam search algorithm for fluent de-
tection and action recognition. Similarly, [34] explores state
detection in tandem with action recognition. The method is
based on the learning of appearance models of objects and
their states from video frames which are used in conjunction
with a state transition matrix which maps action labels into a
pre-state and a post-state. In [35], the states and transforma-
tions of objects/scenes on image collections are studied and

3https://aws.amazon.com/neptune/knowledge-graphs-on-aws/
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the learned state representations are extended to different
object classes. [36, 37] examine the causal relations between
human actions and object fluent changes. [38] develops a
weakly supervised method to recognize actions and states of
manipulated objects before and after the action, proposing
a weakly supervised method for learning the object and
material state that are needed for recognizing daily actions.
[39] designs a Siamese network to model precondition
states, effect states and their associate actions. Jiang in
[40] defines a Multi-Agent System framework, where each
agent maintains an incomplete and noisy perspective of the
world. Jiang on top of the different perspectives that each
agent has, develops a graph neural network that exploits the
information in the various KGs to learn how to predict a
post-state for the objects when an action is performed on
them.

In most cases, state detection is a problem encoun-
tered in computer vision and is used as a means for action
recognition. Therefore, the amount of object-state relations
is restricted and classifiers are trained for each individual
object-state relation. We treat the identification of object-
state associations as a standalone problem and develop a
method to address it that relies only on information available
in a KG, which is more scalable than a classifier. Moreover,
our method can identify a greater amount of object-state
relations.

4. Methodology
In order to evaluate the performance of each method, we

follow a number of steps for preparing the data, shown in
Figure 1. The first two pre-processing steps in this pipeline
are described in Subsection 4.2, but first we start with the
formulation of the problem in Subsection 4.1. Then, we
analyze the methods that utilize the topological features of
the underlying KG (Subsection 4.3), and continue with the
methods that rely on the semantics of the nodes and their
connections (Subsection 4.4).

Our proposed Relation Pattern Method is included in
the latter group. Finally, the decision problem regarding a
given association, i.e., whether the association is positive or
negative (the ‘Conclusion’ step in Figure 1), can be answered
by comparing the confidence value of each method to a
threshold (subsection 4.5). This threshold can be learned
from the training data, as we explain in our experimental
evaluation.
4.1. Problem Formulation

The problem we aim to solve is: given a directed knowl-
edge graph 𝐺 = (𝐸,𝑅), where 𝐸 denotes the set of nodes
that correspond to entities, 𝑅 denotes the set of edges that
correspond to relations (i.e., 𝑅 contains triples of the form
(

𝑡1, 𝑟, 𝑡2
) where 𝑡1, 𝑡2 ∈ 𝐸 and 𝑟 denotes a relation between

𝑡1 and 𝑡2), and a pair of nodes (

𝑒1, 𝑒2
) with 𝑒1, 𝑒2 ∈ 𝐸,

where 𝑒1 represents an action or a state and 𝑒2 an object (𝐸
may contain other types of nodes as well), find whether 𝑒1and 𝑒2 are related. If 𝑒1 is an action and 𝑒2 is an object, we
consider these two nodes related if the following question

Figure 1: Pipeline of the Problem.

yields a positive answer: “Can the action 𝑒1 be performed
by/on the object 𝑒2?". For instance, the question “Can the
action Fold be performed by the object Knife?" should yield
a negative answer. Similarly, if 𝑒1 is a state and 𝑒2 an object,
we consider the two nodes 𝑒1 and 𝑒2 related if the following
question yields a positive answer: “Can object 𝑒2 be in the
state 𝑒1?". For example, the question “Can the object Knife
obtain the state Dirty?" should yield a positive answer.
4.2. Pre-processing of Subgraphs

We first describe how we can generate a graph 𝐺′ that
helps us answer the aforementioned questions, from a given
knowledge graph 𝐺 and a given collection of labels 𝐿 that
relate to real-world objects, actions, and states, and then,
we show the methods we assessed to tackle the aforemen-
tioned problem. We extract the object, action and state labels
from the Something-Something Dataset4, a dataset that is
commonly used by the Computer Vision community (see
Section 5.1 for more details); yet, any set of object, action,
state labels can be used to create 𝐺′. Moreover, notice that
for each KG (i.e., ConceptNet, ATOMIC, WebChild, YAGO
and DBpedia), we get a different 𝐺′ and a different set of
labels 𝐿 (see Section 5.1 for more details). Now, for every
𝐺 and 𝐿, we take every label 𝑙𝑖 ∈ 𝐿 and generate a graph
𝑆𝑖, by appending information relevant to 𝑙𝑖 from each KG 𝐺
that we have at hand. We construct 𝐺′ by unifying all |𝐿|
graphs 𝑆1, . . . , 𝑆

|𝐿|, i.e., every graph 𝑆𝑖 is a subgraph of 𝐺′.
Notice that for constructing 𝐺′, we do not omit any noise
(see Section 2).

Step 1: For each object, action or state label, we search
for a node with the same lemmatized label in the KG at
hand and extract a subgraph containing a set of the properties
found that are considered relevant to the domain of interest.
More specifically, for ConceptNet we hand-picked the rela-
tions shown below. ConceptNet, due to its very good doc-
umentation5, enabled us to comprehend what each relation
represents and we omitted only 2 relations: Desires, which,
while seemingly relevant, is human centric and explains
the emotions that are elicited in humans as a result of an

4https://paperswithcode.com/dataset/something-something-v1
5https://github.com/commonsense/conceptnet5/wiki/Relations
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event, and ExternalURL, to avoid appending information
from external sites other than WordNet.

The edge types for ConceptNet that we consider are:
{𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇 𝑜, 𝑈𝑠𝑒𝑑𝐹𝑜𝑟, 𝐶𝑎𝑝𝑎𝑏𝑙𝑒𝑂𝑓,𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐴𝑡,𝐻𝑎𝑠𝐴,
𝐼𝑠𝐴, 𝑆𝑦𝑛𝑜𝑛𝑦𝑚,𝐴𝑛𝑡𝑜𝑛𝑦𝑚,𝐷𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑠, 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇 𝑜, 𝑃 𝑎𝑟𝑡𝑂𝑓,
𝐸𝑡𝑦𝑚𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇 𝑜, 𝐸𝑡𝑦𝑚𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦𝐷𝑒𝑟𝑖𝑣𝑒𝑑𝐹 𝑟𝑜𝑚,
𝐻𝑎𝑠𝐿𝑎𝑠𝑡𝑆𝑢𝑏𝑒𝑣𝑒𝑛𝑡,𝐻𝑎𝑠𝑃 𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒, 𝐶𝑟𝑒𝑎𝑡𝑒𝑑𝐵𝑦, 𝐶𝑎𝑢𝑠𝑒𝑠,
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑠𝐴𝑐𝑡𝑖𝑜𝑛,𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐹 𝑟𝑜𝑚,𝐷𝑒𝑟𝑖𝑣𝑒𝑑𝐹 𝑟𝑜𝑚,𝑀𝑎𝑑𝑒𝑂𝑓,
𝑀𝑎𝑛𝑛𝑒𝑟𝑂𝑓, 𝐹𝑜𝑟𝑚𝑂𝑓,𝐻𝑎𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡,𝐻𝑎𝑠𝐹 𝑖𝑟𝑠𝑡𝑆𝑢𝑏𝑒𝑣𝑒𝑛𝑡,
𝐴𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝐻𝑎𝑠𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦,𝐻𝑎𝑠𝑆𝑢𝑏𝑒𝑣𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝑁𝑒𝑎𝑟,
𝑆𝑦𝑚𝑏𝑜𝑙𝑂𝑓}

For DBpedia, we also omitted some properties in order
for the subgraphs which are created to reflect the nature of
our problem. We give some examples here, but notice that
more properties than the ones mentioned here were omitted
(a complete list existing in our documentation). The property
wikiPageWikiLink was omitted because we did not want
information that does not belong into the DBpedia ontol-
ogy. The property wikiPageRedirects was omitted because
in most cases Wikipedia redirection lists contain noise, as
they relate entities with other contextually irrelevant entities.
For instance, the object pan is related, among others, with
Pediatric acute-onset neuropsychiatric syndrome (PANS),
Peter Pan, and Pan the God.

The other three KGs we considered, i.e., ATOMIC,
YAGO, and WebChild, do not provide a detailed documen-
tation for the relations they contain and we therefore decided
to use all the relations.

The subgraphs contain either 1-hop or 2-hop paths from
the object, action, or state label (see Section 5 for more
details).

Step 2: In this step, we include context information. We
collect information from WordNet by examining the super-
classes of each node in the subgraph formed in Step 1; if any
super-class of a node fits into a domain-specific category of
super-classes, the node is kept in the graph; otherwise, it is
deleted. The super-classes we consider are:
{𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑒𝑛𝑡𝑖𝑡𝑦, 𝑡ℎ𝑖𝑛𝑔, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑔𝑟𝑜𝑢𝑝,
𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 𝑠𝑒𝑡, 𝑐𝑎𝑢𝑠𝑎𝑙_𝑎𝑔𝑒𝑛𝑡, 𝑚𝑎𝑡𝑡𝑒𝑟, 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠,
𝑐ℎ𝑎𝑛𝑔𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑜𝑟𝑙𝑑, 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒, 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛}

We have chosen this set of classes based on the find-
ings of [41] that practically every node in the WordNet
directed acyclic graph that refers to a real-world object,
action, or state has at least one of these as a super-class.
When interested in household appliances, for example, this
enrichment based on WordNet super-classes can provide
domain-specific notions. Figure 2 is a portion of the sub-
graph produced from the ConceptNet KG for the label Knife.
The node that was pruned in Step 2 is highlighted in red,
which was omitted because it was considered out of context.

After creating a subgraph for each object, action and
state label, as described in Steps 1 and 2, we end up with

Figure 2: Part of the subgraph for the label Knife. The red
node is pruned in Step 2.

a set of graphs {𝑆1,… , 𝑆𝑛}, such that 𝑆𝑖 =
(

𝐸𝑖, 𝑅𝑖
) for 𝑖 =

1,… , 𝑛, where 𝐸𝑖 is the set of nodes and 𝑅𝑖 the set of edges
in 𝑆𝑖. Thus, the final graph is defined as 𝐺′ =

(

𝐸′ , 𝑅′
)

,
where 𝐸′ =

𝑛
⋃

𝑖=1
𝐸𝑖 and 𝑅′ =

𝑛
⋃

𝑖=1
𝑅𝑖.

4.3. Topology-based Relevance
In order to determine whether two nodes are related, we

consider two of the most popular methods found in relevant
literature [42, 43] that exploit the topology of a graph.

Connecting Paths Method: This method considers each
sequence of edges that starts at the object node and ends at
the action or state node after a finite number of steps, or vice
versa . The method omits paths that contain loops, but does
not take into account the type of edges a path contains. Given
two subgraphs 𝑆1 and 𝑆2, which correspond to an object
node and an action (or state) node, respectively, as stated in
Section 4.1, the connectPath metric for 𝑆1 and 𝑆2 is defined
as:

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑃 𝑎𝑡ℎ(𝑆1, 𝑆2) =
|𝐶1 ∪ 𝐶2|

|𝑃1 ∪ 𝑃2|
(1)

where 𝐶1 is the set of paths that start from the object node
and reach the action (or state) node, 𝐶2 is the set of paths
that start from the action (or state) node and reach the object
node, 𝑃1 is the set of all paths that start from the object
node and 𝑃2 the set of all paths that start from the action
(or state) node. Since (𝐶1 ∪ 𝐶2) ⊆ (𝑃1 ∪ 𝑃2), it follows that
0 ≤ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑃 𝑎𝑡ℎ ≤ 1.
Example 1. Let 𝑆𝑘𝑛𝑖𝑓𝑒 be the subgraph for the object node
knife and 𝑆𝑓𝑜𝑙𝑑 be the subgraph for the action node fold,
created from the ConceptNet KG and let 𝑆𝑘𝑛𝑖𝑓𝑒 have two

paths that start from the node knife, namely Knife
CapableOf
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Cut and Knife
LocatedAt
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Pocket

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Wallet

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Fold and 𝑆𝑓𝑜𝑙𝑑 have only one path, Fold
HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Cooking

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Spatula

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Knife. Then, the connectPath

metric will return

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑃 𝑎𝑡ℎ(𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑓𝑜𝑙𝑑) =
|𝐶𝑘𝑛𝑖𝑓𝑒 ∪ 𝐶𝑓𝑜𝑙𝑑|

|𝑃𝑘𝑛𝑖𝑓𝑒 ∪ 𝑃𝑓𝑜𝑙𝑑|
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= 1 + 1
2 + 1

= 0.667

Recent studies using this method, with minor adjust-
ments, have focused on inferring object-action relations
[16, 21] as well as object identification [15, 20].

Common Nodes Method: Given two subgraphs, the
Common Nodes Method divides the number of common
nodes by the total number of nodes. When two nodes refer to
the same entity in the KG at hand (ConceptNet, ATOMIC,
YAGO, DBpedia and WebChild), i.e., the nodes have the
same label, they are called common. Duplicate nodes are
removed, leaving each node with only one instance. The
commonNodes metric between two subgraphs 𝑆1 and 𝑆2 is
defined as

𝑐𝑜𝑚𝑚𝑜𝑛𝑁𝑜𝑑𝑒𝑠(𝑆1, 𝑆2) =
|𝐸1 ∩ 𝐸2|

|𝐸1 ∪ 𝐸2|
(2)

where𝐸𝑖 is the set of nodes in𝑆𝑖. Essentially, the commonN-
odes metric between two graphs is the Jaccard similarity of
the sets of nodes in these graphs. Example 2 shows how the
commonNodes metric works.
Example 2. Let 𝑆𝑘𝑛𝑖𝑓𝑒 and 𝑆𝑓𝑜𝑙𝑑 be the subgraphs from
Example 1, for the nodes knife and fold, respectively. These
two subgraphs have no common node, and 7 distinct nodes
in total.

𝑐𝑜𝑚𝑚𝑜𝑛𝑁𝑜𝑑𝑒𝑠(𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑓𝑜𝑙𝑑) =
|𝐸𝑘𝑛𝑖𝑓𝑒 ∩ 𝐸𝑓𝑜𝑙𝑑|

|𝐸𝑘𝑛𝑖𝑓𝑒 ∪ 𝐸𝑓𝑜𝑙𝑑|
=

|{𝐾𝑛𝑖𝑓𝑒, 𝐶𝑢𝑡, 𝑃 𝑜𝑐𝑘𝑒𝑡,𝑊 𝑎𝑙𝑙𝑒𝑡} ∩ {𝐹𝑜𝑙𝑑, 𝐶𝑜𝑜𝑘𝑖𝑛𝑔, 𝑆𝑝𝑎𝑡𝑢𝑙𝑎}|
|{𝐾𝑛𝑖𝑓𝑒, 𝐶𝑢𝑡, 𝑃 𝑜𝑐𝑘𝑒𝑡,𝑊 𝑎𝑙𝑙𝑒𝑡} ∪ {𝐹𝑜𝑙𝑑, 𝐶𝑜𝑜𝑘𝑖𝑛𝑔, 𝑆𝑝𝑎𝑡𝑢𝑙𝑎}|

= 0
7
= 0

where 𝐸𝑘𝑛𝑖𝑓𝑒 is the set of nodes in the 𝑆𝑘𝑛𝑖𝑓𝑒 subgraph and
𝐸𝑓𝑜𝑙𝑑 is the set of nodes in the 𝑆𝑓𝑜𝑙𝑑 subgraph.

Recent studies using this method, with minor adjust-
ments, have focused on object identification and on finding
the similarity of two nodes in a knowledge graph [15, 44, 45].
4.4. Semantics-based Relevance

We first describe the very popular Wu-Palmer similarity
measure (WUP), which was introduced in [46, 47]. Then,
we introduce our Related Pattern Method, which uses
a KG’s path pattern to determine whether two nodes are
semantically related.

Wu-Palmer Similarity Measure: WUP calculates re-
latedness using WordNet’s acyclic graph, which takes into
account the depth of two nodes in WordNet taxonomies, as
well as the depth of their Least Common Subsumer (LCS).
The LCS of two nodes in the WordNet acyclic graph is
the most specific common ancestor of these nodes. This
metric calculates similarity based on how near nodes in
the WordNet acyclic network are to one another. The WUP
similarity between an object node (𝑛𝑜) and an action (or
state) node (𝑛𝑎) is defined as

WUP(𝑛𝑜, 𝑛𝑎) = 2 ∗
depth(LCS(𝑛𝑜,𝑛𝑎))

depth(𝑛𝑜) + depth(𝑛𝑎)
, (3)

where 𝑑𝑒𝑝𝑡ℎ(⋅) is the depth of an entity in the WordNet
graph. Moreover, the depth of the LCS is never 0, thus the
score can never be zero (the depth of the root of the taxonomy
is one).
Example 3. The WUP similarity for the object knife and the
action fold is

WUP(𝑘𝑛𝑖𝑓𝑒, 𝑓𝑜𝑙𝑑) = 2 ∗
𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆(𝑘𝑛𝑖𝑓𝑒, 𝑓𝑜𝑙𝑑))
𝑑𝑒𝑝𝑡ℎ(𝑘𝑛𝑖𝑓𝑒) + 𝑑𝑒𝑝𝑡ℎ(𝑓𝑜𝑙𝑑)

= 2 ∗
𝑑𝑒𝑝𝑡ℎ(𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑒𝑛𝑡𝑖𝑡𝑦)

𝑑𝑒𝑝𝑡ℎ(𝑘𝑛𝑖𝑓𝑒) + 𝑑𝑒𝑝𝑡ℎ(𝑓𝑜𝑙𝑑)

= 2 ∗ 2
12 + 6

= 0.221

Many studies use the WUP similarity in a wide spectrum
of domains. Recent studies, such as [16, 41], use WUP scores
to infer object-action relations and object identification.

Relation Pattern Method: We next propose a new
method, which is based on the idea that some paths con-
necting two nodes carry semantically more meaningful
information than others. The example 4 presents such a case.
Example 4. The path knife Synonym

←←←←←←←←←←←←←←←←←←←←←←←←→ node0 ReceivesAction
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

cut may appear more often in the knife-cut object-action
pair compared to paths composed of other relations, in the
ConceptNet KG. Because the relation 𝑆𝑦𝑛𝑜𝑛𝑦𝑚 may relate
the knife with a similar object which may receive the same
set of actions that knife receives.

On the other hand, the path knife RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ node0

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ cut may not contain the same semantically mean-
ingful information, as it may connect through the property
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇 𝑜 the knife with a completely irrelevant entity in
the KG, on which the action cut cannot be performed.

Similar examples can be given for ATOMIC, YAGO,
WebChild and DBpedia. An important aspect of our pro-
posed method is the flexibility in deciding how to deal
with the noise that exists in the data, and the capability to
determine the importance of a path through training, rather
than through manual annotation.

Notice, that although in the KGs we can find both bi-
directional relations (e.g., RelatedTo, Synonym) and uni-
directional ones (e.g., UsedFor), we decided not to take into
account the directionality of the edges, in order to keep the
pattern generation method generic. Of course, more fine-
grained patterns can also be considered.

A relation pattern is any connecting path that is com-
posed of at least one of the relations that one can consider as
important for the problem at hand. We regard the presence
of a relation pattern between an object-action or an object-
state pair in the KG to be an indication that the two nodes
are related. If  = {𝑝𝑎𝑡𝑡𝑒𝑟𝑛1,… , 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑛} is the set of all
relation patterns, the goal is to assign a weight of importance
𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 to each 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 ∈  , indicating how certain we are
that the pattern yields proper associations.

For the Relation Pattern method, we consider path pat-
terns based on their frequency of appearances in a set of pos-
itive and negative object-action/state relations. For instance,
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given the relation pattern RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→we would count

its appearances in the positive object-action/state (𝐴) rela-
tions and in the negative object-action/state relations (𝐵).
Next, we would compute the score 𝐶 = 𝐴 − 𝐵. We would
do this for each path pattern that was found at least once in
an object-action/state relations, and we would short based
on the number 𝐶 of each path pattern. Here, notice that the
procedure is separate for object-action and for object-state.
Moreover, we have to comment that we usually would cut at
the first 100 path patterns, because after the 100 first the 𝐶
numbers would start to have negative values.

Next, we describe the process of assigning weights to the
relation patterns. For a relation pattern 𝑝, we characterize
the results as True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) according to the
following definitions:

• TP is when a pair of object-action/state nodes is both
present in the ground truth and connected through 𝑝.

• FP is when a pair of object-action/state nodes is not
present in the ground truth, but connected through 𝑝.

• TN is when a pair of object-action/state nodes is nei-
ther present in the ground truth nor connected through
𝑝.

• FN is when a pair of object-action/state nodes is
present in the ground truth, but not connected through
𝑝.

Then, we define the weight of importance 𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 for
𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 as the F1-score

𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 = 2 𝑃 ⋅ 𝑅
𝑃 + 𝑅

, (4)

where 𝑃 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ) and 𝑅 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁).
Example 5 shows how the weight of importance𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖works in practice for a relation pattern. The example uses

ConceptNet as an underlying KG.
Example 5. Consider the relation pattern
(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←→

)

and the set of subgraphs

{𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑐𝑢𝑡, 𝑆𝑠𝑡𝑎𝑏, 𝑆𝑓𝑜𝑙𝑑}, which represent the nodes knife,
cut, stab and fold, respectively. For this example, let the
knowledge graph 𝐺′ be composed only from the subgraphs
{𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑐𝑢𝑡, 𝑆𝑠𝑡𝑎𝑏, 𝑆𝑓𝑜𝑙𝑑}. The knife is related with cut
and stab, but not with fold, according to the ground truth.
For each such pair of object-action nodes, we search for

a relation path
(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←→

)

connecting the two

nodes (see Section 4.3).
TP is 2 because the pairs knife-cut and knife-stab are

related in the ground truth and the relation path
(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←→

)

is a connecting path in both. FP is 1

because the pair knife-fold is not related in the ground truth

and the relation path
(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←→

)

is a connecting

path. FN is 0 because we do not have a pair that is related in

our ground truth and does not have
(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←→

)

as a connecting path. Using this information, we get the
following scores.

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

= 2
2 + 1

= 0.666 and
𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 2

2 + 0
= 1

𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛( RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←→

)
= 4

5
= 0.8

The final score of Example 5 shows that the weight of
importance 𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛( RelatedTo

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,
UsedFor

←←←←←←←←←←←←←←←←←←←←←←←→
)

can predict 80% of

the positive and negative object action relations. In other
words, it shows the proportion of object-action pairs that
can be classified correctly (i.e., related or not related), by
this relation pattern.

Other heuristics can, of course, be employed instead.
Since it is appropriate to examine multiple patterns be-
fore deciding on a relationship between two labels, pat-
terns can be grouped together based on their performance,
domain-specific importance, or other factors. For example,
the weighted sum of the weights of each individual pattern
or other heuristics-based metrics can be used to quantify the
performance of a cluster 𝑊𝐶 . As a baseline, we use an even
simpler method in our analysis, treating any patterns with
weights above a certain threshold as equally important.

For the Relation Pattern method with Clusters based on
the procedure that we computed for the Relation Pattern
method, we compute all the possible combinations that pro-
vide groups of path patterns that are composed of the same
type(s) of relations. For example, if we have 5 path patterns
that are composed only from the RelatedTo property then
that would result in cluster, similarly if we 3 path patterns
composed form the relations RelatedTo and UsedFor then
this would be another path pattern.
4.5. Answering the Decision Problem

All the methods described in Sections 4.3 and 4.4, except
our Relation Pattern Method, result in a relevance score
𝑠𝑟. Thus, to answer the decision problem of Section 4.1,
we can simply compare this score to a relevance threshold
𝑡 and yield a positive answer, if 𝑠𝑟 ≥ 𝑡, or a negative
answer, otherwise. This threshold 𝑡 can be pre-determined by
experts, or learned by using a training set of labeled samples.
In this paper, we evaluate those methods assuming that this
threshold 𝑡 is learned.

Our Relation Pattern Method does not yield a relevance
score, but instead, it suggests relation patterns that can be
exploited to answer the decision problem of Section 4.1. To
suggest which patterns, among all possible options, should
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be exploited, it relies on the weight computation of Equa-
tion 4. Specifically, it computes the average pattern weight
𝑤𝑎𝑣𝑔 from a training set of labeled samples, and suggests
those patterns that yield a weight 𝑤 ≥ 𝑤𝑎𝑣𝑔 .

5. Evaluation
This section describes how we constructed the ground

truth from the Something-Something Dataset, followed by
an explanation of the experimental setup and the findings
obtained by the evaluation of each method.
5.1. Data Collection

We decided to extract the set of labels for our evaluation
from the Something-Something Dataset rather than using a
random collection of action, state and object labels in order
to get appropriate coverage of entities for the household
domain. Something-Something is a big collection of short
video clips (about 108k) depicting actions done on and
with everyday objects. The activities involve either one type
of object (for example, opening a bottle) or two different
types of objects (for example, putting coins inside a box).
The Something-Something Dataset has become a de-facto
benchmark for the evaluation of systems addressing the task
of action recognition due to its large number of sample
videos. The dataset includes a brief description for each clip
that includes action, state, and object(s) labels.

Ground Truth Creation: We initially extracted all
object-action-state labels. All plural object labels were
changed to their singular counterparts, for example notes
was replaced with note. Then, we removed certain object
and action labels that were not relevant to the context, as
they were not household objects, and ended up with 148
object labels, 25 action labels and 24 state labels. Notice that
these labels, apart from being relevant, were not randomly
selected. We counted the number of appearances of the
object-action and object-state associations that each pair
produces in the video descriptions of Something-Something.
Therefore, the 148*25 object-action relations appear in
39514 different video descriptions, and the 148*24 object-
state relations appear in 39019 different video descriptions.
Out of the total 108499 video descriptions that Something-
Something has, we considered these portions a normal
coverage of object-action and object-state relations, over
(maybe) the largest dataset when it comes to object-action
and object-state relations.

Next, for the remaining action, object and state labels,
we issued a query to each KG that we evaluated, in order
to identify which labels are indeed part of the graph. For
the ConceptNet KG, we used the ConceptNet Web API6,
for DBpedia, we used the Virtuoso SPARQL endpoint7
(the SPARQL query can be found in Listing 1), while for
ATOMIC, WebChild and YAGO, we developed our own
Python script to search for each label. All the KGs contained
148 object labels, 25 action labels, and 24 state labels, except

6https://pypi.org/project/ConceptNet/
7https://dbpedia.org/sparql

ATOMIC and DBpedia which contained 24 action labels.
Finally, since some actions have the same label with some
objects (3 in total), we renamed these labels as follows: (a)
pile → pileO and pile → pileV, (b) stack → stackO and stack
→ stackV, and (c) cover → coverO and cover → coverV, to
refer to the object and action label, respectively.

Eventually, the object-action and object-state pairs that
existed in the description of at least one video in the
Something-Something Dataset were automatically charac-
terized as positive pairs. The remaining were manually
annotated, in order to determine if they are negative or if
they are positive.

Listing 1: SPARQL query for DBpedia
PREFIX dbpr: <http :// dbpedia.org/resource/>

PREFIX dbpo: <http :// dbpedia.org/ontology/>

PREFIX owl: <http ://www.w3.org /2002/07/ >

SELECT ?property1 ?entity1 ?property2 ?entity2

WHERE {

{

dbpr:<Input> ?property1 ?entity1.

?entity1 rdf:type owl:Thing

OPTIONAL {

?entity1 ?property2 ?entity2.

?entity2 rdf:type owl:Thing. }

FILTER (? property1 != dbpo:wikiPageRedirects

&& ?property1 != dbpo:wikiPageWikiLink

&& ?property2 != dbpo:wikiPageRedirects

&& ?property2 != dbpo:wikiPageWikiLink)

}

UNION

{

?entity1 ?property1 dbpr:<Input>.

?entity1 rdf:type owl:Thing.

OPTIONAL {? entity2 ?property2 ?entity1.

?entity2 rdf:type owl:Thing.}

FILTER (? property1 != dbpo:wikiPageRedirects

&& ?property1 != dbpo:wikiPageWikiLink

&& ?property2 != dbpo:wikiPageRedirects

&& ?property2 != dbpo:wikiPageWikiLink)

}

}

5.2. Experimental Setup
The methods described in Section 4 were evaluated for

each KG using 10-fold cross validation over the total number
of positive and negative relations captured by each KG, as
detailed in Section 5.1. We used Sklearn8 to split our data
into 10 folds.

To train the multiple models, each iteration of the 10-
fold cross-validation method was used. The training folds
specifically helped to identify the appropriate threshold for
each method that optimizes the F1 score (see Example 6)
for the Connecting Path Method, the WUP similarity and
the Common Node Method. The training phase of the Re-
lation Pattern Method assisted in calculating the weights of

8https://scikit-learn.org/stable/modules/cross_validation.html
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importance 𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 of each relation pattern 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 ∈  ,
as explained in Section 4.4. During testing, we evaluated
each method’s performance using the given thresholds and
weights. Patterns that did not perform well throughout train-
ing were completely removed.
Example 6. Consider the thresholds 𝑡ℎ𝑟𝑐𝑝 = 0.6, 𝑡ℎ𝑟𝑐𝑛 =
0.5 and 𝑡ℎ𝑟𝑤𝑢𝑝 = 0.47 for the Connecting Path, Common
Node and WUP similarity, respectively, the negative object-
action relation knife-fold and the corresponding subgraphs
𝑆𝑘𝑛𝑖𝑓𝑒 and 𝑆𝑓𝑜𝑙𝑑 . The Connecting Path score for this pair
is 0.66 (see Example 1), it is therefore classified as a False
Positive pair (if the score was below 0.6 then it would be
classified as a True Negative). Similarly, the Common Node
and WUP similarity scores are, 0 and 0.22, respectively, (see
Example 2 and Example 3), therefore they classify the pair
as a True Negative.

Analogously, given the positive object-action relation
knife-cut and the corresponding subgraphs 𝑆𝑘𝑛𝑖𝑓𝑒 and 𝑆𝑐𝑢𝑡,
and for the sake of the example let the Connecting Path score
for this pair be 0.56, while for the Common Node and the
WUP similarity the scores be 0.67 and 0.71, respectively.
Then, the Connecting Path metric classifies the knife-cut pair
as a False Negative (if the score was above the threshold it
would classify them as a True Positive). But, the Common
Node and WUP similarity metrics classify the pair as a True
Positive.

Another variant of this method would have been to
limit the anticipated results to those with a confidence score
greater than a certain threshold, i.e., restrict the anticipated
results only to these that are above/below a threshold. How-
ever, we found that this method works best when the minimal
confidence criterion is 0 (confidence ratings are extremely
low in far too many cases), thus we decided to not report
results for this variation.

Of course, when such similar paths are viewed as a group
rather than as individuals, they gain practical importance. As
a result, for each knowledge graph, we additionally present
the performance of two or three (if there exist as many)
clusters of patterns. We take a straightforward technique
to determine what a cluster is: any pattern that its weight
exceeds a certain threshold is considered relevant. As a
result, even if a single pattern is detected in the graph,
the object-action or object-state pair associated with it, is
considered related. We chose a relatively broad threshold for
including patterns in the cluster, namely any pattern with a
weight greater than 0.1, because we simply want to evaluate
a baseline scenario.

More complex methods can be used, such as taking into
account the weight of importance among the patterns in
each cluster or using domain-specific criteria. Even with
this as a starting point, we can see that grouping pathways
can enhance F1-scores. However, by neglecting the relative
relevance of each individual pattern, we introduce noise, as
evidenced by the precision scores when compared to the
highest performing patterns, an issue that may be addressed
with a more advanced approach.

KG Embedding-based Baseline. Recent works in the
field of KG embeddings for the task of link prediction [48]
represent nodes of a KG as vectors in a low-dimensional
space, which are generated by considering both textual (e.g.,
through word/sentence embeddings) and structural (e.g.,
through graph traversals) features of those nodes.

As an indicative method for this family of algorithms,
in this work we employ AllenAI-CommonSense [49] as a
baseline, which constitutes the state of the art for link pre-
diction in ConceptNet. This method employs a pre-trained
BERT [50] model that is fine-tuned on ConceptNet, using
Graph Convolutional Networks (GCN) [51] for embedding
the ConceptNet graph. This model returns a list of possi-
ble relations between a given pair of ConceptNet nodes,
ranked in descending order of likelihood. We consider that
the answer to the object-action problem formulated in Sec-
tion 4.1 is positive for two query nodes, when the relation
“ReceivesAction” is within the top-𝑘 answers for those query
nodes (for 𝑘 ∈ {1, 3, 5}).

5.3. Results
Next, we summarize the overall performance measure-

ments for each method, over the knowledge graphs of Con-
ceptNet, YAGO, WebChild, ATOMIC and DBpedia. More-
over, we compare the performance of ConceptNet using only
the object, action and state labels which exist in YAGO,
WebChild, ATOMIC and DBpedia, respectively.

In the following tables, we display the accuracy, preci-
sion, recall and F1-score for the Connecting Path, Common
Node and WUP similarity metrics, as well as for the Relation
Pattern Method and Relation Pattern Method with clusters.
Notice that due to the plurality of relation patterns we display
only the Top-5 relation patterns with respect to F1-score
performance (i.e., the Top-5 relation patterns that achieved
the best F1-score). Analogously, we display only the Top-3
clusters of relation patterns with respect to F1-score, if there
exist as many.

In general, the differences among the Connecting Path,
Common Node and WUP similarity metrics, with respect
to their F1-score are small for each KG, when evaluating
object-action relations. The same does not hold when eval-
uating object-state relations, as the Connecting Path method
achieves worse scores with respect to F1-score than the
Common Node and WUP metrics. On the other hand, in
almost all cases either the Relation Pattern Method or the
Relation Pattern Method with clusters outperform the three
aforementioned methods in regard to F1-score. Moreover,
when evaluating the DBpedia KG, the nodes in DBpedia
(i.e., the URIs) are not single word labels, but instead they
are small descriptions or phrases. In this case, we can see that
the WUP similarity metric achieves its worst performance.
The reason for that is because the WUP similarity metric
needs single word labels in order to provide a similarity
measure, instead of small phrases. We elaborate more on our
results in Section 6.

One may notice that we evaluate ConceptNet two times.
Table 1 and Table 3 for object-action relations, and Table 2
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Table 1
ConceptNet Knowledge Graph and Object-Action Relations
from Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.534 0.752 0.552 0.637
WUP 0.555 0.951 0.551 0.698
Common Node 0.551 0.956 0.548 0.697
AllenAI-Commonsense (top-1) 0.502 0.191 0.596 0.289
AllenAI-Commonsense (top-3) 0.582 0.599 0.608 0.603
AllenAI-Commonsense (top-5) 0.596 0.748 0.595 0.663

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.695

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601

Table 2
ConceptNet Knowledge Graph and Object-State Relations
from Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684

and Table 4 for object-state relations. The reason was that,
although not explicitly stated in the ConceptNet documen-
tation, RelatedTo plays the role of a super-property, i.e., it
subsumes the other relations. Thus, we wanted to see the
performance of ConceptNet with and without the RelatedTo
property.

The AllenAI-CommonSense (top-𝑘) methods (Table 1),
despite their high accuracy, underperform in F1 scores,
compared to the other methods. This is due to a considerable
difference noticed in the accuracy for positive pairs (.19)
with respect to that for negative pairs (.854).

As mentioned, not all graphs have the same number
of object, action and state labels. For this reason, we did
a second round of experiments where we used the labels
that each KG has and evaluated the ConceptNet KG only
on the object-action and object-state relations formed from
these labels. The reason for this was that ConceptNet is
our baseline KG, and we wanted to see how ConceptNet
performs on the same batch of labels that each KG has in
order to compare performances.

Notice that WebChild and YAGO have the same number
of object and action labels with ConceptNet. Therefore,
when we evaluate ConceptNet with the labels existing in
WebChild and YAGO, the results will be the same as if we
evaluated ConceptNet with its own labels. The same holds

Table 3
ConceptNet Knowledge Graph and Object-Action Relations
from Something-Something (without RelatedTo).

Method Accuracy Recall Precision F1 Score
Connecting Path 0.554 0.879 0.552 0.678
WUP 0.549 0.942 0.539 0.685
Common Node 0.543 0.905 0.535 0.672

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.532 0.398 0.58 0.472

IsA
←←←←←←→

IsA
←←←←←←→ 0.521 0.303 0.565 0.394

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.503 0.243 0.558 0.339

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.52 0.245 0.515 0.332

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.518 0.233 0.482 0.314

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
HasContext-AtLocation-DerivedFrom 0.588 0.791 0.577 0.667
IsA-HasContext-Antonym 0.57 0.672 0.575 0.62
IsA-HasContext-Antonym 0.564 0.38 0.595 0.464

Table 4
ConceptNet Knowledge Graph and Object-State Relations
from Something-Something (without RelatedTo).

Method Accuracy Recall Precision F1 Score
Connecting Path 0.524 0.324 0.347 0.335
WUP 0.478 0.519 0.426 0.467
Common Node 0.542 0.564 0.519 0.540

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

ReceivesAction
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

ReceivesAction
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.478 0.413 0.598 0.489

Antonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.481 0.506 0.467 0.486

DistinctFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.481 0.506 0.467 0.486

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.465 0.513 0.391 0.444

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.479 0.505 0.38 0.434

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
AtLocation-IsA-HasContext 0.643 0.672 0.716 0.693
AtLocation-UsedFor-ReceivesAction 0.64 0.49 0.756 0.595
AtLocation-HasProperty 0.555 0.467 0.714 0.565

for each KG when considering object state relations. Either
way, we display a table for these cases even though the
results are the same with ConceptNet when using its own
labels.

Also, notice that the subgraphs of WebChild and YAGO
which are described in Section 4 have depth 1, and the sub-
graphs of ConceptNet, ATOMIC and DBpedia have depth
2. The reason for that was two-fold: (a) we wanted the
subgraphs of each KG to have almost the same number of
nodes, approximately 1000 (as 1000 nodes gave us adequate
information) and (b) the subgraphs of WebChild and YAGO
contained approximately 1000 nodes having only depth 1
paths.

Finally, it is true that the relation patterns which achieved
high scores in YAGO are quite obscure, in how they could
help in inferring object-action and object-state association
relations. For this reason, we present 3 examples for each
case. Example 7 shows 3 examples of object-action associ-
ation relations, and Example 8 shows 3 examples of object-
state association relations.
Example 7. Object-action association relations for the re-
lation patterns which achieved high F1-scores in YAGO.

lift inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ english_language, french_language,

korean_language, japanese_language
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ bucket
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Table 5
Atomic Knowledge Graph and Object-Action Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.558 0.923 0.557 0.695
WUP 0.523 0.992 0.521 0.683
Common Node 0.519 0.987 0.52 0.681

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.568 0.923 0.587 0.718

xAttr
←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.588 0.943 0.579 0.717

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.558 0.91 0.577 0.706

xAttr
←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→ 0.528 0.899 0.523 0.661

xAttr
←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.519 0.889 0.513 0.653

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
xAttr-prefix 0.531 0.995 0.586 0.738
prefix 0.536 0.966 0.549 0.701
xAttr 0.531 0.938 0.528 0.676

Table 6
Atomic Knowledge Graph and Object-State Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.45 0.461 0.6 0.521
WUP 0.526 0.863 0.527 0.654
Common Node 0.546 0.891 0.55 0.68

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

xAttr
←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.58 0.92 0.74 0.821

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.58 0.92 0.74 0.821

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→ 0.56 0.89 0.69 0.78

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→ 0.56 0.85 0.67 0.75

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←←→ 0.56 0.84 0.65 0.732

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
xAttr-prefix 0.6 0.6 0.6 0.6
prefix 0.615 0.592 0.6 0.596
xAttr 0.53 0.584 0.6 0.592

spill knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ english_language,

french_language, irish_language, german_language,
norwegian_language inlanguage

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ perfume

close inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ english_language,

french_language, irish_language, german_language,
norwegian_language knowslanguage

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ cap
Example 8. Object-state association relations for the rela-
tion patterns which achieved high F1-scores in YAGO.

lift inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ english_language,

american_language inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ money

lift genre
←←←←←←←←←←←←←→ country_music,

Table 7
ConceptNet Knowledge Graph and Object-Action Relations
only existing in ATOMIC.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.561 0.938 0.563 0.704
WUP 0.522 0.934 0.524 0.671
Common Node 0.528 0.941 0.53 0.678

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.681 0.71 0.685 0.697

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.681 0.695 0.685 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.653 0.669 0.687 0.678

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.667 0.702 0.588 0.64

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.624 0.711 0.521 0.601

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo-Synonym 0.545 0.955 0.571 0.715
UsedFor-Synonym 0.531 0.991 0.527 0.688

Table 8
ConceptNet Knowledge Graph and Object-State Relations only
existing in ATOMIC.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684

dance_music, rock_music, punk_music,
spoken_word, satire
genre
←←←←←←←←←←←←←→ coat

lift inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ english_language,

american_language knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ speaker

6. Discussion
We start this section with a discussion over the results

by comparing how the exploitation (and non exploitation)
of the semantics of a KG helps in inferring the answer
to a specific set of commonsense questions. Table 21 lists
the cases that the simple Relation Pattern Method (without
clusters) outperforms (w.r.t. F1 score) the other three meth-
ods in identifying object-action (column 1) and object-state
(column 2) relations. The Table shows the difference in F1-
performance in each case, highlighting the cases where this
is the largest (see Equation 5).

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑚𝑒𝑡ℎ𝑜𝑑
−𝑚𝑎𝑥{𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑛𝑜𝑑𝑒,

𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑝𝑎𝑡ℎ, 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑤𝑢𝑝}
(5)
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Table 9
YAGO Knowledge Graph and Object-Action Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.574 0.901 0.562 0.692
WUP 0.534 0.911 0.539 0.677
Common Node 0.54 0.936 0.541 0.685

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.66 0.708 0.689 0.698

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.656 0.684 0.679 0.681

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.656 0.654 0.659 0.656

genre
←←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←←→ 0.619 0.627 0.623 0.625

hasoccupation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hasoccupation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.577 0.575 0.58 0.577

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
inlanguage-knowslanguage 0.534 0.896 0.636 0.744
sport-about 0.518 0.601 0.327 0.424
familyname-givenname-parenttaxon 0.536 0.72 0.218 0.335

Table 10
YAGO Knowledge Graph and Object-State Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.48 0.334 0.432 0.377
WUP 0.529 0.752 0.556 0.639
Common Node 0.532 0.773 0.554 0.645

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.518 0.665 0.548 0.601

genre
←←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←←→ 0.532 0.594 0.55 0.571

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.51 0.574 0.548 0.561

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.51 0.574 0.548 0.561

taxonrank
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

taxonrank
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.485 0.238 0.388 0.295

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
inlanguage-knowslanguage 0.548 0.9 0.541 0.677
genre-alumniof-memberof 0.566 0.745 0.545 0.63
birthplace-deathplace-homelocation 0.471 0.7 0.45 0.55

Table 22 presents the same results for the Relation Pat-
tern with Clusters method (see Equation 6). We also provide
the best performance when we use ConceptNet as an under-
lying KG, but with the subset of labels that exist in each of
ATOMIC, YAGO, WebChild and DBpedia, respectively, 3rd
column for object-action relations and 4th column for object-
state relations.

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑚𝑒𝑡ℎ𝑜𝑑_𝑤𝑖𝑡ℎ_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
−𝑚𝑎𝑥{𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑛𝑜𝑑𝑒,

𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑝𝑎𝑡ℎ, 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑤𝑢𝑝}
(6)

The negative scores in Table 21 and Table 22 imply
that our semantics-based method did not achieve better F1
score than any one of the compared methods. As one can
notice our Relation Pattern Method without Clusters has
performed better when using the ATOMIC KG. The reason
for that is because ATOMIC has fewer types of relations
(only 3 relation types in the subgraphs that we created) than
the other KGs. Therefore, it is expected that there will not
exist too many different relation patterns, and those that exist
will appear more frequently in object-action and object-state
pairs.

Table 11
ConceptNet Knowledge Graph and Object-Action Relations
only existing in YAGO.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.534 0.752 0.552 0.636
WUP 0.555 0.951 0.551 0.697
Common Node 0.551 0.956 0.548 0.696

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.694

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601

Table 12
ConceptNet Knowledge Graph and Object-State Relations only
existing in YAGO.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684

On the other hand, one can see that the Relation Pattern
Method with Clusters achieves the best score over YAGO
when we evaluate object-action association, and the best
score over WebChild when we evaluate object-state associ-
ations. This is also expected as YAGO and WebChild have
the biggest number of different relation types (both close to
1200 relations) which leads to many relation patterns that
appear less oftenly in object-action or object-state relations,
and that is what a cluster of relation patterns needs in order to
achieve big F1 scores. In other words, a cluster with relation
patterns needs every relation pattern that exists in it to appear
in an adequate number of object-action, or object-state pairs,
instead of having just some relation patterns to appear in
almost all object-action or object-state pairs.

A more detailed analysis on the results reveals that the
exploitation of the semantics in a KG, can show when a rela-
tion in a KG can be considered as super property of other re-
lations. In more detail, if we see a specific relation appearing
in almost all relation patterns that achieve the biggest scores,
with respect to F1, we can confidently conclude that this
property connects too much information, which may lead to
noise in the KG. This conclusion is quite important because
an appropriate usage of the semantics in a KG can show
insights on when a refinement of the properties is needed.
This conclusion becomes quite clear with the RelatedTo
property of ConceptNet. Almost all relation patterns contain
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Table 13
WebChild Knowledge Graph and Object-Action Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.437 0.777 0.434 0.557
WUP 0.435 0.841 0.458 0.593
Common Node 0.434 0.84 0.457 0.591

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

quality
←←←←←←←←←←←←←←←←←←→

quality
←←←←←←←←←←←←←←←←←←→ 0.458 0.911 0.458 0.61

haspart
←←←←←←←←←←←←←←←←←←←←→

haspart
←←←←←←←←←←←←←←←←←←←←→ 0.463 0.88 0.46 0.604

size
←←←←←←←→

size
←←←←←←←→ 0.461 0.807 0.455 0.582

state
←←←←←←←←←←←←→

state
←←←←←←←←←←←←→ 0.45 0.785 0.449 0.571

age
←←←←←←←→

age
←←←←←←←→ 0.47 0.668 0.468 0.55

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
quality-state 0.458 0.912 0.459 0.611
haspart-size 0.458 0.895 0.458 0.606
state-weight-motion 0.449 0.862 0.452 0.593

Table 14
WebChild Knowledge Graph and Object-State Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.462 0.34 0.292 0.314
WUP 0.437 0.568 0.414 0.479
Common Node 0.429 0.578 0.404 0.475

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

haspart
←←←←←←←←←←←←←←←←←←←←→

haspart
←←←←←←←←←←←←←←←←←←←←→ 0.451 0.575 0.324 0.414

state
←←←←←←←←←←←←→

state
←←←←←←←←←←←←→ 0.467 0.388 0.424 0.405

quality
←←←←←←←←←←←←←←←←←←→

quality
←←←←←←←←←←←←←←←←←←→ 0.459 0.434 0.292 0.349

haspart
←←←←←←←←←←←←←←←←←←←←→

size
←←←←←←←→ 0.488 0.366 0.356 0.361

size
←←←←←←←→

haspart
←←←←←←←←←←←←←←←←←←←←→ 0.474 0.38 0.316 0.345

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
haspart-quality-state 0.459 0.874 0.664 0.755
size-weight-age 0.487 0.742 0.458 0.567

the RelatedTo. This is because, despite not being stated di-
rectly in the ConceptNet specification, RelatedTo serves as a
super-property, i.e. it encompasses all other relations. While
it might seem that less abstract node-to-node relationships,
such as UsedFor, would yield better results, this is not the
case. The main reason is that the Relation Pattern method
is based on the frequency that a property appears in paths
that connect a set of object-action/state pairs. Therefore,
some properties such as UsedFor which we would expect
(based on our commonsense), to achieve bigger scores did
not, because it was not so common, regarding the frequency
of appearance in connecting paths. The reason for properties
like this, i.e., these that based on our commonsense we would
expect to appear more in connecting paths, not achieving
bigger scores can be many. Basically, our understanding was
that there was a preference on using more general properties
such as RelatedTo. Our method can help to tackle this fact by
pointing for which properties there might be a need to define
sub properties.

We also observe that certain longer paths, such as
( RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)

in ConceptNet,
achieve better performance than shorter paths involving the

Table 15
ConceptNet Knowledge Graph and Object-Action Relations
only existing in WebChild.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.534 0.752 0.552 0.636
WUP 0.555 0.951 0.551 0.697
Common Node 0.551 0.956 0.548 0.696

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.694

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601

Table 16
ConceptNet Knowledge Graph and Object-State Relations only
existing in WebChild.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684

same type of relations, e.g.,
( RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)

. Similar
is the case in ATOMIC and DBpedia KGs, and if we did
not construct the subgraphs of YAGO and WebChild with
depth 1 then most probably the last two KGs would have
revealed the same characteristic. This may appear strange
at first, because one would anticipate that the closer two
nodes in a graph are, the more semantically linked they are.
This result is most likely due to the nature of our problem.
Unlike entity resolution, for example, the nodes with which
we are attempting to find a connection are of a different
type, namely object and action (or state). But what is even
more interesting is that any given KG with this characteristic
(i.e., has too many connections among its entities) leads
to an “over-fitting" of knowledge to the point that it may
contain noisy and conflicting information. Therefore, the
exploitation of semantic information from a KG, can give
us a hint that the knowledge in the KG needs refinement, or
pruning.

Overall, the freedom in deciding how to deal with noise
in the data is perhaps the most important benefit of em-
ploying the semantics of a KG. When importing new data,
one can decide where to focus by carefully selecting which
semantics to trust. Due to the domain-agnostic way of ad-
dressing the KG, other methods, such as data-driven models,
which are more prone to noisy data, do not offer such
adaptive behavior. This aspect is supported by the fact that

Vassiliades et al.: Preprint submitted to Elsevier Page 13 of 16



Association Extraction from Knowledge Graphs

Table 17
DBpedia Knowledge Graph and Object-Action Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.553 0.727 0.45 0.556
WUP 0.492 0.252 0.534 0.342
Common Node 0.496 0.258 0.508 0.342

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←←→ 0.494 0.441 0.63 0.519

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.489 0.495 0.508 0.501

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←←→ 0.486 0.425 0.532 0.473

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.484 0.43 0.468 0.448

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

occupation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.487 0.406 0.4 0.403

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
wikiPageDisambiguates-other 0.496 0.618 0.548 0.581

Table 18
DBpedia Knowledge Graph and Object-State Relations from
Something-Something.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.538 0.388 0.314 0.347
WUP 0.495 0.264 0.489 0.343
Common Node 0.499 0.182 0.508 0.268

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.49 0.442 0.533 0.483

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←←→ 0.472 0.439 0.536 0.482

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.489 0.436 0.327 0.374

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

language
←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

language
←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.487 0.425 0.275 0.334

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←←→ 0.478 0.413 0.233 0.298

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
wikiPageDisambiguates-other 0.489 0.423 0.599 0.495

our semantics-based method achieves better F1-scores, than
the other commonly used methodologies over the KG of
DBpedia and ConceptNet which are known for their noisy
data.

Additionally, another important advantage when exploit-
ing the semantics inside a KG is the generality scalability
over different knowledge graphs, to find object-action and
object-state relations. Table 21 and Table 22 show that our
Relation Pattern Method with and without clusters, which
exploit the semantics in a KG, achieved better F1-scores than
the other methods, over six different KGs. A fact that entails
that methods which exploit the semantics in a KG are more
generic, and they could be used on any KG that has different
types of relations.

Notice that in our previous study [8] we compared some
baseline deep learning methods with our method. More
specifically, we used AllenAI-CommonSense [52], which
constitutes the state of the art for link prediction in Con-
ceptNet, by employing a pre-trained BERT [53] model that
is fine-tuned on ConceptNet, using Graph Convolutional
Networks (GCN) [54] for embedding the ConceptNet graph.
This model returns a list of possible relations between a
given pair of ConceptNet nodes, ranked in descending order
of likelihood (aka confidence score).

The evaluation for AllenAI-CommonSense was per-
formed only on ConceptNet, but the results even for one KG
were not the expected ones, as the AllenAI-CommonSense
(Top-k) methods, for Top-1 returned an F1-score of 0.289
compared to 0.699 of our method.

Table 19
ConceptNet Knowledge Graph and Object-Action Relations
only existing in DBpedia.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.534 0.752 0.552 0.636
WUP 0.555 0.951 0.551 0.697
Common Node 0.551 0.956 0.548 0.696

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.694

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601

Table 20
ConceptNet Knowledge Graph and Object-State Relations only
existing in DBpedia.

Method Accuracy Recall Precision F1 Score
Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision
F1 Score
(𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(𝑊𝐶)
RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684

Table 21
The difference in performance for the relation pattern without
clusters over the KGs.

KG Object-Action Object-State Subset Object-Action Subset Object-State
ConceptNet 0.001 0.001 - -
ConceptNet (no RelatedTo) -0.213 -0.051 - -
ATOMIC 0.011 0.141 0.03 0.01
YAGO 0.006 0.032 0.002 0.01
WebChild 0.008 0.017 0.002 0.01
DBpedia -0.037 0.136 0.001 0.01

Table 22
The difference in performance for the relation pattern with
clusters over the KGs.

KG Object-Action Object-State Subset Object-Action Subset Object-State
ConceptNet 0.006 0.017 - -
ConceptNet (no RelatedTo) -0.018 0.152 - -
ATOMIC 0.017 -0.08 0.03 0.017
YAGO 0.036 0.032 0.007 0.017
WebChild 0.008 0.28 0.007 0.017
DBpedia 0.021 0.148 0.006 0.017

7. Conclusion
In this paper, we compared topology- and semantics-

based methods for extracting object-action and object-state
associations from knowledge graphs such as ConceptNet,
WordNet, ATOMIC, YAGO, WebChild and DBpedia. We
also presented a novel method for extracting and analyz-
ing relationships between objects-actions and objects-states
from knowledge graphs. In terms of F1-score, our method
can improve current state-of-the-art performance. The flex-
ibility in deciding how to deal with the noise in the data,
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as well as the capacity to assess the importance of a path
through training rather than manual annotation, are two key
features of our method. In the future, we plan to use our
method in order to evaluate causal relations (i.e., in which
states can the object be before and after we perform an action
on it), which is a sensible next step that will build on the
results of object-action and object-state associations that we
present in this paper. A semantics-based method for identi-
fying causal relations would be a significant contribution to
AI systems, as it would be more generic and scalable than
data-driven models, which are trained on specific datasets.
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