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Abstract

This paper presents a novel idea, which combinasnitg,
Machine Learning and Knowledge-Based techniquess It
concerned with the development of an adaptive [itann
system that can fine-tune its planning parametased on
the values of specific measurable characterisfitiseogiven
planning problem. Adaptation is guided by a ruledzhsys-
tem, whose knowledge has been acquired throughineach
learning techniques. Specifically, the algorithmctdssifi-
cation based on association rules was applied targe
dataset produced by results from experiments oargel
number of problems used in the three AIPS Planoomg-
petitions. The paper presents experimental resuitts the
adaptive planner, which demonstrate the boost ifopa-
ance of the planning system.

Keywords: planning and learning, domain-independent
classical planning, machine learning, knowledgeetasys-
tems

I ntroduction

In domain independent heuristic planning thererisiamber
of systems that their performance varies betweah doed
worse on a number of toy and real-world planning do
mains. No planner has been proved yet to be thefdresl|
kinds of problems and domains. Similar instabiiitytheir
efficiency is also noted when different variatioos the
same planner are tested on the same problems, aviecor
more parameters of the planner are changed. Althoug
most planners claim that the default values foir thigtions
guarantee a stable and averagely good performance,
most cases, fine tuning the parameters by handowegr
the performance of the system for the problem imdha

Few attempts have been made to explain whichhare t
specific dynamics of a planning problem that fagospe-
cific planning system and even more, which is tlstb
setup for a planning system given the charactesisif the
planning problem. This kind of knowledge would clga
assist the planning community in producing flexilshes-
tems that could automatically adapt themselvesache
problem, achieving best performance.

In this paper, we used a large dataset with re$rdim
executions of our planning system, called HAP, arious
problems and we employed machine learning techsitpe
discover knowledge that associates measurableatham

tics of the planning problems with specific valdes the
parameters of the planning system. The knowledge, a
quired by the process of machine learning, was eliohdx

in the planner in a form of a rule-based systenickvican
automatically change its configuration to best st cur-
rent problem.

The resulting planning system was thoroughly tkste
a number of new problems and proved to work béittn
any static configuration of the system. This adyushows
that there are implicit dependencies between tlagacher-
istics of a problem and specific parameters of milag that
worth further investigation.

The rest of the paper is organized as followstiGe@
briefly sketches the steps of the complete mettogpoive
followed in this work. Section 3 presents the plagrsys-
tem used for the purposes of our research. The tmaxt
sections describe the two different analyses wépaed
on the data from the experiments using statistich raa-
chine learning respectively. Section 6 describesirtfple-
mentation of the adaptive planner we developeddase
the knowledge acquired from the analyses and pesvid
experimental results. Finally, Section 7 discussdated
work and Section 8 presents conclusions and pesgesef
research directions.

M ethodology

The methodology for building and testing our systesm
shown in Figure 1. Here we will briefly sketch thteps we
have followed. Each step is thoroughly presentedha
sections to follow.

Initially we have run a large number of planninglp
lems (97) from multiple domains (Problem set A)ings
many different configurations (432) on our HAP plan
The results obtained from those runs along withplam-
ner settings were statistically analyzed and tligngs that
achieved the best results (on average) were oltaitese
best settings were then used in the planner tmewntests
on a different problem set (B) that included newlpems
from both existing and new domains.

Furthermore, the results obtained on the firsbjenm set
(A) along with the planner settings and the problgrar-
acteristics were used to discover associations degtvall



those attributes and the planner's performanceserhsso-
ciations (rules) were used to embed a rule badeatita-

matically decides at run-time which is the bestficpma-

tion for our planner based merely on the input fob
characteristics. Since the rule base may not allsays an
answer on how to optimally configure the plannees-

tings, default values are assumed for un-configysed
rameters. These default values were obtained frensta-
tistical analysis of the results of the first prail set.

The rule-based configurable planner was also deste
the new problem set (B) and the results were finatim-
pared to the ones obtained by the statisticallyst'beon-
figurations. The comparison showed that the rukeba
configuration is (on average) considerably fasferds
plans with shorter length, and is equally stable.
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Figure 1. Methodology for building and testing HAP

ThePlanner
Our planning system, called HAP, is highly adjultamd

can be customized by the user through a numberaof p

rameters, which are illustrated irable 1along with their
value sets. These parameters concern the typeaoftse
the quality of the heuristic and several other e that
affect the planning process. The HAP system is dase
the BP planning system (Vrakas and Vlahavas, 260d)
uses an extended version of the ACE heuristic (8and
Vlahavas, 2002).

HAP is capable of planning in both directions (es-
sion and regression). The system is quite symmamit
for each critical part of the planner, e.g. caltiola of
mutexes, discovery of goal orderings, computatibithe
heuristic, search strategies etc., there are ingiations
for both directions. Thélirection of search is the first ad-
justable parameter of HAP used in tests, with tleing
values: a) O (Regression or Backward chaining) land
(Progression or Forward chaining).

Name Value Set Best Setting
direction {0,1} 0

weights (w and vy) {0,1,2,3} 1

sof agenda {1,100,1000} 100

violation_penalty
heuristic_order
equal_estimation

{0,10,100} 10
{1,2,3} 1
{0,1} 1

Table 1. The value sets for planning parameters

As for the search itself, HAP adopts a weighted A*
strategy with two independent weights; for the esti-
mated cost for reaching the final state andor the accu-
mulated cost of reaching the current state fromstheting
state (initial or goals depending on the seleciegkcton).
For the tests with HAP, we used four different gssients
for the variableweightswhich correspond to different as-
signments fom; andw,: a) 0 (v, =1, w, =0), b) 1 (v; =3,
w, =1), ¢) 2 (v, =2, w, =1) and d) 3\, =1, w, =1).

The size of the planning agenda (denotegadisagendn
of HAP also affects the search strategy and italan be
set by the user. For example, if we set agendao 1 and
W, to 0, the search algorithm becomes pure Hill-Climgb
while by settingsof _agenddo 1,w; to 1 andw, to 1 the
search algorithm becomes A*. Generally, by incregishe
size of the agenda we reduce the risk of not figdirsolu-
tion, even if at least one exists, while by redgdhe size
of the agenda the search algorithm becomes fastewa
ensure that the planner will not run out of meméyr the
tests we used three different settings for the siz¢he
agenda: a) 1, b) 100 and c) 1000.

The OB and OB-R functions introduced in BP and ACE
respectively, are also adopted by HAP in orderearch
the states for violations of orderings between ftws of
either the initial state or the goals, dependingtendirec-
tion of the search. For each violation contained istate,
the estimated value of this state that is retutmethe heu-
ristic function, is increased by violation penalyhich is a
constant number supplied by the user. For the @xpets
of this work we tested the HAP system with threféedént
values ofviolation_penaltya) 0, b) 10 and c¢) 100.

The HAP system employs the heuristic function o t
ACE planner, plus two variations of it. There aneple-
mentations of the heuristic functions for both pliagy di-
rections. All the heuristic functions are constedactin a
pre-planning phase by performing a relaxed searcine



opposite direction of the one used in the searasg@hDur-
ing this relaxed search the heuristic function cotep es-
timations for the distances of all grounded actiohshe
problem. The initial heuristic function, i.e. theeoused in
the ACE planning system, is described by the falhmw

formula:
if prec(A)c |

11
dist( A = _ _
{1-'— ZXEMPS( pred A) dISt( X)l If pred A (e I

where MPS(S) returns a set of actions, with neaimmim
accumulated cost, achieving S and its algorithouitined
in Figure 1.

Function MPS(S)
Input: a set of factS

Output: a set of actions achieving S with near mim
accumulated dist
Set G=02
S=5 $
Repeat
f is the first fact in S

Let act(f) be the set of actions achieving f
for each action A in act(f) do
val(A) =dist(A) [ | add( An S
Let A’ be an action in act(f) that m ni m zes val
Set G=GuUA
Set S=S- add(A)n £
Until sS=¢@
Return G

Figure 2. Function MPS(S)

Apart from the initial heuristic function describabove,
HAP embodies two variations, which in general, m@e
fine-grained. The general idea behind these vaniatilies
in the fact that when we select a set of actionsrder to
achieve the preconditions of an actibpnwe also achieve
several other facts (denoted iaplied(A), which are not
mutually exclusive with the preconditions Af Supposing
that this set of actions was chosen in the plaorbes,
then after the application of, the facts inimplied(A)
would exist in the new state, along with the oneghie
add-list of A. Taking all these into account, we produce a
new list of facts for each action (namedriched_ady
which is the union of the add-list and the implied of
this action.

The first variation of the heuristic function usée en-
riched instead of the traditional add-list in thé>$!func-
tion but only in the second part of the functioattbpdates
state S. So the commarietS= S add M is al-

teredtoSetS= S enriched add

The second variation of the heuristic functiontmssthe
above ideas one step further. Témiched_addist is also
used in the first part of function MPS, which rartke

candidate actions. So, it additionally alters tleenmand
val(Adist(Ay|add( A S| to
val(Adist(AY |enriched_ add A~ .

The user may select the heuristic function by icnmf
ing the heuristic_order parameter. The three acceptable
values are: a) 1 for the initial heuristic, b) 2 tbe first
variation and c) 3 for the second variation.

The last parameter of HAP exqjual_estimationwhich
defines the way in which states with the same edéch
distances are treated. éfjual_estimatioris set to 0 then
between two states with the same value in the $isuri
function, the one with the largest distance from starting
state (number of actions applied so far) is preternf
equal_estimations set to 1, then the search strategy will
prefer the state, which is closer to the startiates

Statistical Analysis

In order to find out which is the best configuratifmr our
planner we have run a large number of planning lprod
(97) from 8 domainsRroblem Set Asee Table 2), using
432 different configurations (Table 1) on our HAGmer.
Then we tried to statistically analyze the resuyjtan
lengthL; and planning timdj, for thei-th problem and the
j-th configuration) obtained from those runs in orde
find out their potential relationship with the plear set-
tings.

Domain Source
Blocks-world (3 operators) Bibliography
Blocks-world (4 operators) AIPS 98, 2000
Driver AIPS 2002
Sokoban New domain
Gripper AIPS 98
Logistics AIPS 98, 2000
Miconic-10 AIPS 2000
Zeno AIPS 2002

Table 2. Domains for Problem Set A

We have performed the following:

e We found the shortest plan and minimum planning
time for each problem among the tested planner con-
figurations.

L™ =min(L, ), T™ = min(T,)
] ]

e We "normalized" the results by dividing the plan
length and planning time of each run with the corre
sponding minimum problem value.

Lnorm _ ij norm ij

ij me L] T min

e We calculated the average "normalized" length &etim
for each planner configuration.



It

avg _

z-l—”norm
— , T = —
i zl i zl
e We counted for each planner configuration how many
times it failed to solve a problerfJ.

In order to find out which the best configurati@e and
how good their average performance is, we havetsgle
those planner configurations that thgjrcount is less than

5% of the total runs, th&” is less than 1.21 (21% worse

than the minimum) and th@™ is less than 2.5 (150%

worse than the minimum). Those limits were obtaibgd
observing the actual results in order to obtain (Byvbest
candidate configurations for comparison with thde+u
based configuration, which will be presented latethe

paper.

Furthermore, we have repeated the above calcnfatio
for each planner parameter individually, in orderfind
out if there is a relationship between individuattigs
and planner performance. This was done in orddetide
which the best default setting is for each plarpeame-
ter, when the rule-based configuration cannot set or
more parameters. The results are shown in the ¢hidnn
of Table 1. We notice here that there was no cléaner

value for each parameter since some values hagr héﬁ

while others had bettef ™. The final selection of values
was based first on the minimuf count, then on the

avg

smallestL” and finally on the smallest™.

Machine Learning

The purpose of applying machine learning was td fir
teresting knowledge that associates the charamtsrisf a
planning problem with the parameters of HAP anddei®
good performance. Therefore, a first necessarythsgpve
performed was a theoretical analysis of a planmrgp-
lem, in order to discover salient characteristtest tcould
potentially influence the choice of parameters ohRH
This resulted in an initial set of 26 measurablarabteris-
tics, presented ifable 3

These attributes can be divided in three categofibe
first category (attributes A01-A13) refer to simpdad
easy-to-sense-their-values characteristics of phgnprob-
lems. The second category (attributes A14 — A2@sits
of more sophisticated characteristics that arisenffea-
tures of modern planners, such as mutexes, orde(er
tween goals and initial facts) andelessfacts. The last
category (attributes A21-A26) contains attributikeat tcan
be instantiated after the calculation of the heigriginc-
tions. Attributes A23 and A26 are general and dan be
used even with different heuristics. The other fattrib-

utes however, are tailored for the exact heurisigsd by
HAP, since they use the notion of distance of actidow-
ever, in the case of different heuristics, theylddae easily
replaced by other attributes such as average distan
facts.

Name |Explanation

A01 |Number of facts in the initial state

AO02 |[Number of dynamic facts in the initial state

AO03 |Number of static facts in the initial state

A04  |Number of Goals

AO05 |Total number of grounded facts

A06 |Total number of dynamic facts

AQ07 |Total number of grounded actions

A08 |Average number of facts per predicate

A09 |[Standard deviation of facts per predicate

A10 |Average number of actions per operator

All |[Standard deviation of actions per operator

Al12 |Forward branching factor of the initial state

A13 |Backward branching factor of the goals

Al4 |Average number of mutual exclusions per fact. A f;
is mutually exclusive with fact q, if noalid state cal
contain both of them. For exate, empty(tank) an
full(tank) are mutually exclusive

Al15 |Standard deviation of mutual exclusions per fact

A16 |Ratio between useless and total facts in the Irstate
A fact is useless if it can be safely removed withaf-
fecting the planning process

Al17 |[Number of orderings among the goals of the [enmi
An ordering between goals g1 and g2 exists, if gy
must be achieved before g2

Al18 [Ratio between number of goal orderings and totah-pnu
ber of goals

A19 [Number of orderings among the facts of théiahistate
These are similar to the goal orderings but arel sy
regression planners

A20 |Ratio between number of factrderings in the Initig
state and the total number of facts in the ingtate

A21 |Average distance of all actions for the forwardediion

A22 |Standard deviation of distances of all actions tiog
forward direction

A23 |Estimated distance between the goals and thialistate
moving forward

A24 |Average distance of all actions for the backwanedi
tion

A25 |[Standard deviation of distances of all actions tiog
backward direction

A26 |Estimated distance between the initial state aadytial
moving backward

Table 3. Problem characteristics

The next step was to study these attributes irrotal
discover any useful transformations that could leact-
tributes carrying more meaningful and general imfation
about planning problems. For example, we decided to
transform attributeAO2 (number of dynamic facts in the



initial state) intoA02/A06(A06 is the total number of dy-
namic facts in the problem). In addition, we stddibe
histograms of the values of both the original amal trans-
formed attributes calculated for the 97 problemsetf A,
in order to explore their distribution for interest or triv-
ial patterns. These plots assisted the decisiothiifinal
selection of 19 attributes (B01-B19), which arespraed
in Table 4

Name Explanation Name Explanation
BO1 A08 B11 Al7-A23
B02 A09 B12 Al18-A24
BO3 Al10 B13 A23/A26
B04 All B14 A12/A13
B0O5 Al4 B15 A03/A05
B06 Al5 B16 A02/A06
BO7 Al8 B17 A04/A06
B08 A20 B18 A02/A04
B09 A25 B19 A07/A06
B10 Al18-A20

Table 4. Selected problem characteristics

The data about the selected attributes for theréb-
lems of set A were subsequently joined with the dditout

the parameters and performance from the runs of HAP

with all possible 432 configurations on the samebfams.
This led to a dataset of 41904 instances with Ribates:
19 problem characteristics (B01-B19), 6 parametafrs
HAP (first column ofTable J and its performance (number
of steps in plah; and execution tima;).

The next step was to select the type of learrasg that
should be applied to discover a model of the depecids
between problem characteristics, planner parameteds
good planning performance. A first requirement waes
interpretability of the model, so that the acquitetwl-
edge would be transparent and open to inquiries ghn-
ning expert. Apart from developing an adaptive p&Em
with good performance to any given planning prohlem
were also interested in this work to study the ltegy
model for interesting new knowledge and justificat for
its performance.

Mining association rules from the resulting datasas a
first idea, which however was turned down due  fect
that it would produce too many rules making it ertely
difficult to produce all the relevant ones. Insteag de-
cided to learn a rule-based classification modat thould
discriminate between good and bad performance baised
the rest of the attributes. Then we could only ctetales
that have both problem characteristics and plasettings
as antecedents anddod' performance as conclusion.

This raised the issue of how to discriminate betwe
"good' and 'bad' performance. It is known within the
planning community, that giving a solution quickiynd
finding a short plan are contradicting directives & plan-
ning system. There were two choices in dealing ik
problem: a) create two different models, one fat falan-

ning and one for short plans, and then let the dserde
which one to use or b) find a way to combine thse
metrics and produce a single model which usesck todf
between planning time and length of plans. We tebtgh
scenarios and noticed that in the first one theaue was
a planner that would either create short plans #itelong
time, or create awfully large plans quickly. Sinuene of
these cases are acceptable in real-time situatisasje-
cided to adopt the second scenario.

In order to combine the two metrics we first nolized
plan length and planning time according to thegfamma-
tion presented in the previous section. We theatecea
combined attribute about plan quality:

{good, L <1.2, T""< 1.2

" |bad, otherwise

This means thatd' plan is good if it is at the most 20%
longer in steps than the minimum plan for the sgnad-
lem and simultaneously it can be found in at m@$o 3
longer time than the minimum required time to fanay
plan for the same problémGiven the above attribute,
34% of the runs had the valgeodand the resbad

We decided to use the DMII program (Liu et al, 999
that performs classification based on associatibesr(Liu
et al, 1998) in order to discover useful and intetgble
rules from the data. DMII requires discrete dataitais
based on association rule mining. For the disa#tn of
the 19 numeric attributes that we had, we studistbh
grams of the values of the attributes and spliir tthemain
into 3 regions (small, medium and large) depending
their distribution. There also exist automatic tggnes for
discretization, but this could result to incompnasible
rules, hence we performed manual discretizatiomrdam
statistics and planning expertise.

The final dataset including the transformationesfgth
and time into a single categorical attribute areldiscreti-
zation of the 19 problem attributes, had the forstawn
in Table 5. DMII was run on this dataset and predi249
rules characterizing a plan as good or bad basebeorest
of the attributes.

No | Fied Range of values

1 direction {0,1}

2 weights {0,1,2,3}

3 sof agenda {1,100,1000}

4 violation_penalty | {0,10,100}

5 heuristic_order | {1,2,3}

6 equal_estimation| {0,1}

7 BO1 {small,medium,large}
8 B02 {small,medium,large}
25 B19 {small,medium,large}
26 quality {good,bad}

Table 5. Record format



The Adaptive Planner

This section describes how the results of mactéaening
(classification rules) have been embedded in HAPaas
rule-based system that decides the optimal cordgtgur of
planning parameters based on the characteristiaggofen
problem. In addition, it presents experimental issthat
illustrate the efficiency of the resulting plannisgstem
and its superiority over the manually configuraigesion.

Embedding knowledgein the Planner

In order to create a rule-based system and embadtie
HAP planning system, certain issues had to be addde
i) Should all therulesbeincluded?

The rules that could actually be used for adaptie@ning
are those that associated, at the same time, pnafflarac-
teristics, planning parameters and the qualitydfi€lo, the
first step was to filter out the rules that inclddmnly prob-
lem characteristics or only planning parametersthesr
andecedents. This process filtered out 13 rules ftohe
initial set of 249 rules.

Within the remaining 236 rules there were 167 sule
modeling 'bad' performance and 69 modelingdod' per-
formance. Although the rules modeling bad perforoean
contain knowledge that could possibly be used kypian-
er, they were not considered in the current work.

The rules modeling good performance were subse-

quently transformed so that only the attributesceoning
problem characteristics remained as andecedentshend
planning parameters were moved on the right-hathel cf
the rule as conclusions, omitting the rule quaditiribute.
In this way, a rule decides one or more planningumpe-
ters based on one or more problem characteristics.

The 69 rules that were finally selected mainlyetuhe
direction andweightsparameters, but there were also rules
affecting all the rest of the parameterable 6 shows the
number of rules affecting each planning parameter.

Par ameter Number of rules
direction 59

weights 31

Sof agenda 2

violation_penalty | 2
heuristic_order 15
equal_estimation | 6

Table 6. Distribution of rules over parameters

ii) What conflict resolution strategy should be adopted

for firing therules?

Each rule was accompanied by two metrics (confidenc
and support) used in association rules. The condieldéac-
tor indicates how valid a rule is, i.e. what petege of the
relevant data in the condition confirms the corics
action of the rule. A 100% confidence indicates tihas
absolutely certain that when the condition is rtie¢n the
action should be taken. The support factor indicdtew

often the pattern in the condition and the conclusif the
rule is met compared to the complete data set.wAdop-
port indicates that the rule describes a rare tiitna

The performance of the rule-based system is ome co
cern, but it occupies only a tiny fragment of tHanming
procedure, therefore it is not a primary concerhatTis
why the conflict resolution strategy used in ouefoased
system is based on the total ordering of rules raicg
first to the confidence and then on the suppotbfac both
in descending order. This decision was based onpdur
mary concern to use the most certain (confidern8sréor
configuring the planner, because these rules witlstm
likely lead to a better planning performance. Thrempng
rules with the same confidence we prefer to fixstreine a
rule with better support, i.e. a rule that desilaemore
frequent pattern, because this rule is more likelgpply to
a random situation, than the rest.

Rules are appropriately encoded so that whenedfirels
and sets one or more parameters, then all the otifes
that might also set one (or more) of these parasete
“disabled”. In this way, each parameter is set ey ost
confident rule (examined first), while the resttbé rules
that might affect this parameter are skipped.

iii) What should we do with parameters not affected by
therule system?

The experiments with the system showed that onageer
the rule based system would affect 2.7 planningupar
ters, leaving at the same time 3.3 parameters .uAset
cording to the knowledge model, if a parameteefs Uin-
set, its value should not affect the performancthefplan-
ning system. However, since the model is not cotaple
this behavior could also be interpreted as an lityaloif the
learning process to extract a rule for the spedafise. In
order to deal with this problem we used statistadind
the best settings for each independent parametexser
settings are illustrated ifable 1

Problem file
/

| Parser |

Problem representation

Problem Analyzer

Values of BO1 to B19

Rule system

v Values of planning parameters

Planner

Figure 3.HAPgc Architecture



The rule configurable version of HAP, which is lmed
in Figure 3contains two additional modules, compared to
the manually configurable version of the systenat tre
run in a pre-planning phase. The first module, shots
Problem Analyzeruses the problem’s representation, con-
structed by theParser, to calculate the values of the 19
problem characteristics (B01-B19) used by the ruléese
values are then passed in tRale Systenmodule, which
tunes the planning parameters based on the embediged
base and the default values for unset parametées val-
ues of the planning parameters along with the perotd
representation are then passed in the planning leooiu
order to solve the problem.

Experimental Results

In order to test the efficiency of HAP and the boost in
performance offered by the adaptive way in which pla-
rameters are configured, we decided to run it oo thi-
ferent sets of problems: Problem set A, which wseduin
the statistical analysis and in the Machine Leaymirocess
and Problem set B, which contains 50 new proble3fs;
from domains in set A (Blocks, Logistics, MIC-10)ca20
from new domains (puzzle, hanoi, mystery). The expe
ments with problem set A, aim at verifying the eotrim-
plementation of the rule system in HAPand testing
whether there is actual need for different setgpdiffer-
ent problems, while problem set B aims at showinte
learned model can generalize effectively to newbfams
and domains.

All the runs of HARc and HAR,c, including those used
in the statistical analysis and the machine legrpirocess,
were performed on a SUN Enterprise Server 450 dith
ULTRA-2 processors at 400 MHz and 2 GB of shared
memory. The Operating system of the computer wald SU
Solaris 8. For all experiments we counted CPU cakd
we had an upper limit of 60 sec, beyond which tlaamer
would stop and report that the problem is unsokvabl

Table 7 presents the average "normalized" lengtfi*(

avg

and planning time T ™) for the best five manual configu-

rations of HAR)c and for the HAR: system over the prob-
lems of set A. It is worth noting here that theefisonfigu-
rations presented imable 7 are the best of those being at
the same time good (length of plans), fast (plagrime)
and stable (failures). This means that there wtreraon-
figurations, not included in this table, which amréd bet-
ter performance for one factor but performed veay for

the other two. For example, the absolute minimu?}ﬁ
(1.043) was achieved by a configuration that exbdi

avg

very bad T (42.890) and managed to solve less than
65% of the problems. Similarly the fastest confajion
had T™*=1.530, but exhibited"* =1.223 and did not find

a solution for more than 22% of the tested problems

Planner Lo T2 Failures
] ]
MC1 1,180 2,390 2%
MC2 1,205 2,310 2%
MC3 1,205 2,465 2%
MC4 1,206 2,396 2%
MC5 1,208 2,200 3%
HAPgc 1,098 2,131 2%

Table 7. Comparative Results for Problem set A

From the configurations being at the same timedgaoo
all criteria, HARyc was the fastest and managed to find
much shorter plans. It is clear from these redtts there
is no such thing as a generally best configurasiod the
best configuration for a specific problem seemslépend
on the problem characteristics traced by HAP

Problem|MC1 |[MC2 |[MC3 [MC4 [MC5 |[HAPgc
B1 10 10 10 10 10 10
B2 24/ 24| 24 24 24 22
B3 20 20 20 200 20 20
B4 40 40 36/ 36/ 40 28
B5 42| 42 42 42 42 32
B6 30 34| 30| 34 30 30
B7 64 64 64| 64 64 44
B8 62 62 56
B9 42| 42| 38 38| 42 48
B10 106 114 11 106

L1 51/ 51| 49| 49 51 43
L2 71 71 76| 76| 71 63
L3 84/ 84 84 84 84 72
L4 871 871 76| 76 85 66
L5 90 90| 98 98 90 76
L6 86| 86 93] 93 86 71
L7 114 114 104 104 112 104
L8 122 1220 134 134 114 134
L9 107] 107 107] 107 99 107
L10 112 112| 113 110 114 113
S1 35 35 34| 34 35 35
S2 38 38| 400 40| 38 40
S3 42| 42 420 42 42 41
sS4 47| 47| 48] 48 47 47
S5 52| 52| 521 52 52 51
S6 54| 54 54/ 54/ 54 54
S7 58 58 58 58| 58 59
S8 58/ 58 59| 59 58 57
S9 64 64 61 61| 64 64
S10 68 68 68 68| 68 68
Lj“g 1.120 1.128 1.083 1.122 1.114 1.006

Table 8. Plan length for new problems

The next step was to test whether the knowledaméel
by the planning system from problem set A couldubed
to effectively guide the system for other problesns do-



mains not included in the learning set. For thasom, we Table 10 and Table 11present the length of found plans

tested HARc and the best five configurations of HAP and the planning time needed by the six plannesotee
on the problems of set B and recorded for eachh@itime the 20 problems of the three new domains. The ftiinga
needed to solve the problem and the plan length. of the tables is similar to the previous ones.
Table 8 andTable 9 present the length of found plans and
the planning time needed by the six planners teestie Problem|MC1 |[MC2 |[MC3 |[MC4 |[MC5 |HAPgc
30 new problems of the previously used domains. [&ke P1 47 47| 47 471 47 43
rows present the average normalized length and dvee P2 47 47| 47 471 47 35
the 30 problems. A planner that did not find a ptas a P3 46 46| 46 72| 46 90,
void result. Best results are emphasized. P4 46 46 36 36| 46 22
With respect to plan length we notice that HARS the P5 132 1320 110 106 122 110
best planner on average; it is only 0.6% worse tharbest P6 194 194 166 180 202 166
configurations for each problem and had the beanh pl H1 7 7 7 7 7 7
length for 21 out of 30 problems. The second bestual H2 15 15 15 18 15 15
configuration on average MC3 was 8.2% worse than th H3 47 47 47 47 47 47
best configurations and had the best plan for &btite 30 H4 86 86 79 82 86 77
problems. The results for planning time were simila H5 182 182 190 196 182 133
HAPgc was the best planner being this time 8.4% worse H6 354 354 363 396 354 275
than the best configurations and being the be$6iout of M1 5 5 5 5 5 5
30 problems. The second best planner was thisNM@z. M2 8 8 10 10 8 8
M3 7 7 7 7 7 9
Problem [MC1 |[MC2 |[MC3 |MC4 |[MC5 |HAPgc M4
Bl 50 50 60 50 60 50 M5 4 4 4 4 4 4
B2 70 70 70 70 70 60 M6 7 7 7 7 7 5
B3 90 90 100 90 90 90 M7
B4 110 120 1200 110 120 110 M8 8 6 7 9 7 6
BS 190 210 289 269 219 160 1| 1.250 1.23] 1.204 1.281 1.24Q 1125
B6 240 240 240 230 240 230 !
B7 540 580 1860 570 590 360 Table 10. Plan length for new domains
B8 48900 62490 890
B9 540 550 540 530 560 550
B10 8781011832 40410|11264( Problem|(MC1 [MC2 |[MC3 |[MC4 |[MC5 |[HAPgc
L1 280 290 280 270 280l 290 P1 230 2400 260 230 240 210
L5 640l 660 108d 93d 670 670 P5 32450 33020 61230 14410| 79060 63620
L6 610l 610 92d 76d 660 690 P6 9690 9980 12630 6660 5040 7900
L7 2660 2760 1240 1200 2160 1240 H1 40| 40| 40 40 40 30
L8 1340 1360 2390 2290 1200] 2400 H2 40| 50| 60 40, 50 0
L9 1150] 118q 2399 2004 1150] 2400 H3 70| 80 100 70| 70 90
L10 1460 1490 1380 1350, 1650  138(Q H4 170 200 220 140 190 130
S1 290 310 200 280 300 280 H5 600 670 740 590 690 900
52 360 360 360 360 370 370 H6 4130| 4390 4960 4380 4590 4350
s3 4500 460 460 440 460 430 M1 210 210 220 200] 200] 210
S5 670 690 700 679 690 660 M3 420 430 440 430 390 390
S6 790 790 829 800 819 780 M4
s7 980 990 98q 979 1010 950 M5 160 160 160 160 150 170
S8 115 114d 1160 1149 1164 1120 M6 940 950 920| 1360 1119 1019
S9 1410 1420 1360 1350 1460 1310 M7
S10 1640 1660 1650 1660 1690 1650 M8 800 790 500 600 1000 340
T 1154 1.213 3.109 3.467 1.204 1.084 T7"| 1390 1.467 1.587 1.387 1.600 1.365

Table 9. Planning time for new problems Table 11. Planning time for new domains



With respect to plan length we notice that HARs
again the best planner on average, being 12.5%ewbes
the best configurations for each problem and hadbést
plan length for 16 out of 20 problems. The secoedtb
manual configuration on average was again MC3 which
was 20.4% worse than the best configurations addthe
best plan for 6 out of the 20 problems. The restdts
planning time were again similar. HAP was the best
planner being this time 36.5% worse than the bastigu-
rations and being the best in 8 out of 20 problefise
second best planner was again MC1, being 39% wbase
the best configurations.

It is clear from these results that HAHs able to adapt
itself and use the configuration that best fitshepmblem.
It was on average faster than all the other cordions in
problems from "known" domains and it was also able
create shorter plans. The generality of the leakrenvl-
edge was also empirically shown, as HARvas on aver-
age better in both planning time and plan lengthneon
problems of new domains.

The superiority of HAR: over the static configurations
can be better noticed from the overall results @bfEm
set B, including old and new domains, in Table hatt
support our main argumentTHere might be a specific
configuration which bests HARIn a problem or in a few
problems of the same domain. However, in the Igige
ture, where the planners are tested on many prableom
various domains, HAR is clearly better than any static
configuratiori.

Planner ng T s | Failures
MC1 1.169 1.245 6%
MC2 1.166 1.305 6%
MC3 1.127 2.550 6%
MC4 1.180 2.702 4%
MC5 1.160 1.350 6%
HAPRc 1.050 1.187 6%

Table 12. Overall results for problem set B

An interesting point that rises from studying tlesults
is that the difference in performance of HAPwith the
manual configurations is greater in plan lengthntha
planning time, especially for the 20 problems o tiew
domains. This could be associated with the fact tna
were more strict with the plan length (< 1.2) theith the
planning time (< 1.3) in the definition of the qityalattrib-
ute. It seems that the definition of the plan gyalitribute
that combines the two metrics is influencing tharmhéng
process and the final rule-base, and thus can éé i
biasing the system towards better plan lengthsasteft
planning. Our configuration ensures the best ofi lvgth a
leaning to plan length, which reflects the genémtgbm in
planning that one is willing to sacrifice a littheore time in
order to achieve a much better plan.

Furthermore, we notice that the difference of HAP
performance in comparison to the best configuratien
smaller in the problems of the previously used doma
than in the problems of the new domains. This was e
pected as the number of problems used for learisirig
general small and the learned knowledge is biasedrtls
the domains of these problems. Sitill the rules vedrle to
generalize to the new domains with acceptable parfo
ance. Using more problems for the learning proteex-
pected to increase the stability and quality ofrtile-base.

Finally we notice that from the manual configurat
MC3 was consistently better in plan length and M@tter
in planning time than the other manual configurraior his
is an indication that static configurations eitfevor plan
length or planning time, while an adaptive planfike
HAPgc can perform best in both given a specific problem.

Related work

Machine Learning has been exploited in the pasPfan-
ning, mainly in order to learn control rules. THR®DIGY
Architecture (Veloso et al, 1995) was the main espnta-
tive of this trend. This architecture, supportedvayious
learning modules, focuses on learning the necessary
knowledge that guides a planner to decide whabmadt
take next during plan execution.

Machine Learning has also been utilized for autéma
cally extracting rules for plan rewriting (Ambiténoblock
and Minton, 2000). Plan rewriting rules are usedifo-
proving easy-to-generate low quality plans.

Approaches towards exploiting domain and problem
characteristics in a pre-planning phase have bessepted
in the past by Fox and Long (Long and Fox, 199% &b
al, 2001). Their research is mainly focused onestaialy-
sis and its use by automated planning systems, asch
STAN (Long and Fox, 1998) and Hybrid STAN (Fox and
Long, 2000).

Hoffman (Hoffman, 2001) discusses the matter oémvh
a specific planner will behave well and when notpey-
forming domain analysis. He created taxonomy oftnoés
the planning domains based on the existence ofifgpec
characteristics such as local minima and dead ienttiese
domains. With this taxonomy he is able to expldie t
variations in performance of some of the statehefdrt
planning systems.

Probably, the only approach to the direction dcdive
planning done in the past is the work presente(Hmwe
and Dahlman, 1993, Howe et al, 1999). They havatede
a system called BUS, which incorporates six stéte-
art planners (STAN, IPP, SGP, BlackBox, UCPOP and
Prodigy) and runs them using a round-robin schamél
one of them finds a solution. BUS is adaptabléhengense
of deciding the ordering of the six planners anel dlira-
tion of the time slices dynamically based on thieies of
five problem characteristics and some rules extthétom



a statistical analysis on past runs. The systenieaet
more stable behavior but it was not as fast asmaehave
expected.

MULTI-TAC (Minton, 1996) is a learning system whic
uses a library of heuristics and generic algorithemsl
automatically fine tunes itself in order to synizesthe
most appropriate constraint satisfaction programsotoe a
problem. The methodology we followed in this papes-
sents some similarities with MULTI-TAC.

Conclusions and Future Work

This paper reported on ongoing research in thel fadl
applying Machine Learning and Rule-based technigqures
Planning in order to build an adaptive planningesysthat
can automatically fine-tune its parameters basedhen
values of measurable characteristics of each pmablée
adaptable planner we created was tested on anargber
of problems from various domains and the experialent
results have proven that there is no static condigpn,
adopted by statistical methods, of the planner tlatsuch
a stably good performance over different problemd a
domains.

The rule-based configuration approach we have ldeve
oped produces better results than the best coafigns
and the best individual settings, because we platner
parameters as associations of the problem chaistitter
whereas the statistical analysis tries to assogétrner
performance with planner settings, ignoring problemar-
acteristics.

In the future we plan to expand the applicatiorvi-
chine Learning to include more measurable problaar-c
acteristics in order to come up with vectors ofueal that
represent the problems in a unique way and mamagap:
ture all the hidden dynamics. We also plan to adidem
configurable parameters of planning, such as pamme
for time and resource handling and enrich the Hpdesn
with other heuristics from state-of-the-art plariays-
tems.

In addition, we will explore the applicability different
rule-learning algorithms, such as decision-treenieg that
could potentially provide knowledge of better gtyaliWe
will also investigate the use of automatic featseection
techniques that could prune the vector of inputhattes
thus giving the learning algorithm the ability tohéeve
better results. The interpretability of the resigtimodel
and its analysis by planning experts will also hgoat of
greater focus in the future.
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