
Learning Rules for Adaptive Planning

Dimitris Vrakas, Grigorios Tsoumakas, Nick Bassiliades and Ioannis Vlahavas

Dept. Of Informatics,
 Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
[dvrakas, greg, nbassili, vlahavas]@csd.auth.gr

Abstract
This paper presents a novel idea, which combines Planning,
Machine Learning and Knowledge-Based techniques. It is
concerned with the development of an adaptive planning
system that can fine-tune its planning parameters based on
the values of specific measurable characteristics of the given
planning problem. Adaptation is guided by a rule-based sys-
tem, whose knowledge has been acquired through machine
learning techniques. Specifically, the algorithm of classifi-
cation based on association rules was applied to a large
dataset produced by results from experiments on a large
number of problems used in the three AIPS Planning com-
petitions. The paper presents experimental results with the
adaptive planner, which demonstrate the boost in perform-
ance of the planning system.

Keywords: planning and learning, domain-independent
classical planning, machine learning, knowledge based sys-
tems

Introduction
In domain independent heuristic planning there is a number
of systems that their performance varies between best and
worse on a number of toy and real-world planning do-
mains. No planner has been proved yet to be the best for all
kinds of problems and domains. Similar instability in their
efficiency is also noted when different variations of the
same planner are tested on the same problems, when one or
more parameters of the planner are changed. Although
most planners claim that the default values for their options
guarantee a stable and averagely good performance, in
most cases, fine tuning the parameters by hand improves
the performance of the system for the problem in hand.
 Few attempts have been made to explain which are the
specific dynamics of a planning problem that favor a spe-
cific planning system and even more, which is the best
setup for a planning system given the characteristics of the
planning problem. This kind of knowledge would clearly
assist the planning community in producing flexible sys-
tems that could automatically adapt themselves to each
problem, achieving best performance.
 In this paper, we used a large dataset with results from
executions of our planning system, called HAP, on various
problems and we employed machine learning techniques to
discover knowledge that associates measurable characteris-

tics of the planning problems with specific values for the
parameters of the planning system. The knowledge, ac-
quired by the process of machine learning, was embedded
in the planner in a form of a rule-based system, which can
automatically change its configuration to best suit the cur-
rent problem.
 The resulting planning system was thoroughly tested on
a number of new problems and proved to work better than
any static configuration of the system. This actually shows
that there are implicit dependencies between the character-
istics of a problem and specific parameters of planning that
worth further investigation.
 The rest of the paper is organized as follows: Section 2
briefly sketches the steps of the complete methodology we
followed in this work. Section 3 presents the planning sys-
tem used for the purposes of our research. The next two
sections describe the two different analyses we performed
on the data from the experiments using statistics and ma-
chine learning respectively. Section 6 describes the imple-
mentation of the adaptive planner we developed based on
the knowledge acquired from the analyses and provides
experimental results. Finally, Section 7 discusses related
work and Section 8 presents conclusions and poses future
research directions.

Methodology

The methodology for building and testing our system is
shown in Figure 1. Here we will briefly sketch the steps we
have followed. Each step is thoroughly presented in the
sections to follow.
 Initially we have run a large number of planning prob-
lems (97) from multiple domains (Problem set A), using
many different configurations (432) on our HAP planner.
The results obtained from those runs along with the plan-
ner settings were statistically analyzed and the settings that
achieved the best results (on average) were obtained. These
best settings were then used in the planner to run new tests
on a different problem set (B) that included new problems
from both existing and new domains.
 Furthermore, the results obtained on the first problem set
(A) along with the planner settings and the problem char-
acteristics were used to discover associations between all

those attributes and the planner's performance. These asso-
ciations (rules) were used to embed a rule base that auto-
matically decides at run-time which is the best configura-
tion for our planner based merely on the input problem
characteristics. Since the rule base may not always have an
answer on how to optimally configure the planner's set-
tings, default values are assumed for un-configured pa-
rameters. These default values were obtained from the sta-
tistical analysis of the results of the first problem set.
 The rule-based configurable planner was also tested on
the new problem set (B) and the results were finally com-
pared to the ones obtained by the statistically "best" con-
figurations. The comparison showed that the rule-based
configuration is (on average) considerably faster, finds
plans with shorter length, and is equally stable.

Figure 1. Methodology for building and testing HAPRC

The Planner

Our planning system, called HAP, is highly adjustable and
can be customized by the user through a number of pa-
rameters, which are illustrated in Table 1 along with their
value sets. These parameters concern the type of search,
the quality of the heuristic and several other features that
affect the planning process. The HAP system is based on
the BP planning system (Vrakas and Vlahavas, 2001) and
uses an extended version of the ACE heuristic (Vrakas and
Vlahavas, 2002).

 HAP is capable of planning in both directions (progres-
sion and regression). The system is quite symmetric and
for each critical part of the planner, e.g. calculation of
mutexes, discovery of goal orderings, computation of the
heuristic, search strategies etc., there are implementations
for both directions. The direction of search is the first ad-
justable parameter of HAP used in tests, with the following
values: a) 0 (Regression or Backward chaining) and b) 1
(Progression or Forward chaining).

Name Value Set Best Setting
direction {0,1} 0
weights (w1 and w2) {0,1,2,3} 1
sof_agenda {1,100,1000} 100
violation_penalty {0,10,100} 10
heuristic_order {1,2,3} 1
equal_estimation {0,1} 1

Table 1. The value sets for planning parameters

 As for the search itself, HAP adopts a weighted A*
strategy with two independent weights: w1 for the esti-
mated cost for reaching the final state and w2 for the accu-
mulated cost of reaching the current state from the starting
state (initial or goals depending on the selected direction).
For the tests with HAP, we used four different assignments
for the variable weights which correspond to different as-
signments for w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3,
w2 =1), c) 2 (w1 =2, w2 =1) and d) 3 (w1 =1, w2 =1).

The size of the planning agenda (denoted as sof_agenda)
of HAP also affects the search strategy and it can also be
set by the user. For example, if we set sof_agenda to 1 and
w2 to 0, the search algorithm becomes pure Hill-Climbing,
while by setting sof_agenda to 1, w1 to 1 and w2 to 1 the
search algorithm becomes A*. Generally, by increasing the
size of the agenda we reduce the risk of not finding a solu-
tion, even if at least one exists, while by reducing the size
of the agenda the search algorithm becomes faster and we
ensure that the planner will not run out of memory. For the
tests we used three different settings for the size of the
agenda: a) 1, b) 100 and c) 1000.
 The OB and OB-R functions introduced in BP and ACE
respectively, are also adopted by HAP in order to search
the states for violations of orderings between the facts of
either the initial state or the goals, depending on the direc-
tion of the search. For each violation contained in a state,
the estimated value of this state that is returned by the heu-
ristic function, is increased by violation penalty, which is a
constant number supplied by the user. For the experiments
of this work we tested the HAP system with three different
values of violation_penalty: a) 0, b) 10 and c) 100.

 The HAP system employs the heuristic function of the
ACE planner, plus two variations of it. There are imple-
mentations of the heuristic functions for both planning di-
rections. All the heuristic functions are constructed in a
pre-planning phase by performing a relaxed search in the

Best (Default)
Settings

HAPMC Results

Problem set A

HAPMC Results

Problem set
�

HAPMC

Manual Configuration

Problem Characteristics
+

Planner Settings
Planner Settings

Statistical

Analysis

Machine

Learning

HAPRC

Rule-based Configuration

Rule Base

HAPMC

Manual Configuration

HAPRC Results

Problem set
�

Comparison

Best
Configurations

opposite direction of the one used in the search phase. Dur-
ing this relaxed search the heuristic function computes es-
timations for the distances of all grounded actions of the
problem. The initial heuristic function, i.e. the one used in
the ACE planning system, is described by the following
formula:

(())

1, ()
()

1 (), ()
X MPS prec A

if prec A I
dist A

dist X if prec A I
�

� � � �
�

� � � �

�
�
	

where MPS(S) returns a set of actions, with near minimum
accumulated cost, achieving S and its algorithm is outlined
in Figure 1.

Function MPS(S)
Input: a set of facts S

Output: a set of actions achieving S with near minimum
accumulated dist
Set G � �

S S S I� �

Repeat

 f is the first fact in S

 Let act(f) be the set of actions achieving f

 for each action A in act(f) do

 val(A) =dist(A) / | ()add A S
 |

Let A’ be an action in act(f) that minimizes val
Set 'G G A� �

 Set S = S - (')add A S

Until S � �

Return G

Figure 2. Function MPS(S)

 Apart from the initial heuristic function described above,
HAP embodies two variations, which in general, are more
fine-grained. The general idea behind these variations, lies
in the fact that when we select a set of actions in order to
achieve the preconditions of an action A, we also achieve
several other facts (denoted as implied(A)), which are not
mutually exclusive with the preconditions of A. Supposing
that this set of actions was chosen in the plan before A,
then after the application of A, the facts in implied(A)
would exist in the new state, along with the ones in the
add-list of A. Taking all these into account, we produce a
new list of facts for each action (named enriched_add)
which is the union of the add-list and the implied list of
this action.
 The first variation of the heuristic function uses the en-
riched instead of the traditional add-list in the MPS func-
tion but only in the second part of the function that updates
state S. So the command (')Set S S add A S� �
 is al-

tered to _ (')Set S S enriched add A S� �
 .

 The second variation of the heuristic function pushes the
above ideas one step further. The enriched_add list is also
used in the first part of function MPS, which ranks the

candidate actions. So, it additionally alters the command
val(A)=dist(A)/| ()add A S
 | to

val(A)=dist(A)/ | _ ()enriched add A S
 |.

 The user may select the heuristic function by configur-
ing the heuristic_order parameter. The three acceptable
values are: a) 1 for the initial heuristic, b) 2 for the first
variation and c) 3 for the second variation.
 The last parameter of HAP is equal_estimation, which
defines the way in which states with the same estimated
distances are treated. If equal_estimation is set to 0 then
between two states with the same value in the heuristic
function, the one with the largest distance from the starting
state (number of actions applied so far) is preferred. If
equal_estimation is set to 1, then the search strategy will
prefer the state, which is closer to the starting state.

Statistical Analysis

In order to find out which is the best configuration for our
planner we have run a large number of planning problems
(97) from 8 domains (Problem Set A, see Table 2), using
432 different configurations (Table 1) on our HAP planner.
Then we tried to statistically analyze the results (plan
length Lij and planning time Tij, for the i-th problem and the
j-th configuration) obtained from those runs in order to
find out their potential relationship with the planner set-
tings.

Domain Source
Blocks-world (3 operators) Bibliography
Blocks-world (4 operators) AIPS 98, 2000
Driver AIPS 2002
Sokoban New domain
Gripper AIPS 98
Logistics AIPS 98, 2000
Miconic-10 AIPS 2000
Zeno AIPS 2002

Table 2. Domains for Problem Set A

We have performed the following:
� We found the shortest plan and minimum planning

time for each problem among the tested planner con-
figurations.

min min()
i ij

j

L L� , min min()
i ij

j

T T�

� We "normalized" the results by dividing the plan
length and planning time of each run with the corre-
sponding minimum problem value.

min

ijnorm

ij

i

L
L

L
� ,

min

ijnorm

ij

i

T
T

T
�

� We calculated the average "normalized" length & time
for each planner configuration.

1

norm

ij
avg i

j

i

L

L �

,

1

norm

ii
avg i

j

i

T

T �

� We counted for each planner configuration how many
times it failed to solve a problem (Fj).

 In order to find out which the best configurations are and
how good their average performance is, we have selected
those planner configurations that their Fj count is less than

5% of the total runs, the avg

j
L is less than 1.21 (21% worse

than the minimum) and the avg

j
T is less than 2.5 (150%

worse than the minimum). Those limits were obtained by
observing the actual results in order to obtain few (5) best
candidate configurations for comparison with the rule-
based configuration, which will be presented later in the
paper.
 Furthermore, we have repeated the above calculations
for each planner parameter individually, in order to find
out if there is a relationship between individual settings
and planner performance. This was done in order to decide
which the best default setting is for each planner parame-
ter, when the rule-based configuration cannot set one or
more parameters. The results are shown in the third column
of Table 1. We notice here that there was no clear winner

value for each parameter since some values had better avg

j
L

while others had better avg

j
T . The final selection of values

was based first on the minimum Fj count, then on the

smallest avg

j
L and finally on the smallest avg

j
T .

Machine Learning

The purpose of applying machine learning was to find in-
teresting knowledge that associates the characteristics of a
planning problem with the parameters of HAP and leads to
good performance. Therefore, a first necessary step that we
performed was a theoretical analysis of a planning prob-
lem, in order to discover salient characteristics that could
potentially influence the choice of parameters of HAP.
This resulted in an initial set of 26 measurable characteris-
tics, presented in Table 3.
 These attributes can be divided in three categories: The
first category (attributes A01-A13) refer to simple and
easy-to-sense-their-values characteristics of planning prob-
lems. The second category (attributes A14 – A20) consists
of more sophisticated characteristics that arise from fea-
tures of modern planners, such as mutexes, orderings (be-
tween goals and initial facts) and useless facts. The last
category (attributes A21-A26) contains attributes that can
be instantiated after the calculation of the heuristic func-
tions. Attributes A23 and A26 are general and can also be
used even with different heuristics. The other four attrib-

utes however, are tailored for the exact heuristics used by
HAP, since they use the notion of distance of action. How-
ever, in the case of different heuristics, they could be easily
replaced by other attributes such as average distance of
facts.

Name Explanation
A01 Number of facts in the initial state
A02 Number of dynamic facts in the initial state
A03 Number of static facts in the initial state
A04 Number of Goals
A05 Total number of grounded facts
A06 Total number of dynamic facts
A07 Total number of grounded actions
A08 Average number of facts per predicate
A09 Standard deviation of facts per predicate
A10 Average number of actions per operator
A11 Standard deviation of actions per operator
A12 Forward branching factor of the initial state
A13 Backward branching factor of the goals

A14 Average number of mutual exclusions per fact. A fact f
is mutually exclusive with fact q, if no valid state can
contain both of them. For example, empty(tank) and
full(tank) are mutually exclusive

A15 Standard deviation of mutual exclusions per fact
A16 Ratio between useless and total facts in the initial state.

A fact is useless if it can be safely removed without af-
fecting the planning process

A17 Number of orderings among the goals of the problem.
An ordering between goals g1 and g2 exists, if goal g1
must be achieved before g2

A18 Ratio between number of goal orderings and total num-
ber of goals

A19 Number of orderings among the facts of the initial state.
These are similar to the goal orderings but are used by
regression planners

A20 Ratio between number of fact orderings in the Initial
state and the total number of facts in the initial state

A21 Average distance of all actions for the forward direction
A22 Standard deviation of distances of all actions for the

forward direction
A23 Estimated distance between the goals and the initial state

moving forward
A24 Average distance of all actions for the backward direc-

tion
A25 Standard deviation of distances of all actions for the

backward direction
A26 Estimated distance between the initial state and the goals

moving backward

Table 3. Problem characteristics

 The next step was to study these attributes in order to
discover any useful transformations that could lead to at-
tributes carrying more meaningful and general information
about planning problems. For example, we decided to
transform attribute A02 (number of dynamic facts in the

initial state) into A02/A06 (A06 is the total number of dy-
namic facts in the problem). In addition, we studied the
histograms of the values of both the original and the trans-
formed attributes calculated for the 97 problems of set A,
in order to explore their distribution for interesting or triv-
ial patterns. These plots assisted the decision for the final
selection of 19 attributes (B01-B19), which are presented
in Table 4.

Name Explanation Name Explanation
B01 A08 B11 A17-A23
B02 A09 B12 A18-A24
B03 A10 B13 A23/A26
B04 A11 B14 A12/A13
B05 A14 B15 A03/A05
B06 A15 B16 A02/A06
B07 A18 B17 A04/A06
B08 A20 B18 A02/A04
B09 A25 B19 A07/A06
B10 A18-A20

Table 4. Selected problem characteristics

 The data about the selected attributes for the 97 prob-
lems of set A were subsequently joined with the data about
the parameters and performance from the runs of HAP
with all possible 432 configurations on the same problems.
This led to a dataset of 41904 instances with 27 attributes:
19 problem characteristics (B01-B19), 6 parameters of
HAP (first column of Table 1) and its performance (number
of steps in plan Lij and execution time Tij).
 The next step was to select the type of learning task that
should be applied to discover a model of the dependencies
between problem characteristics, planner parameters and
good planning performance. A first requirement was the
interpretability of the model, so that the acquired knowl-
edge would be transparent and open to inquiries of a plan-
ning expert. Apart from developing an adaptive planner
with good performance to any given planning problem, we
were also interested in this work to study the resulting
model for interesting new knowledge and justifications for
its performance.
 Mining association rules from the resulting dataset was a
first idea, which however was turned down due to the fact
that it would produce too many rules making it extremely
difficult to produce all the relevant ones. Instead, we de-
cided to learn a rule-based classification model that would
discriminate between good and bad performance based on
the rest of the attributes. Then we could only select rules
that have both problem characteristics and planner settings
as antecedents and "good" performance as conclusion.
 This raised the issue of how to discriminate between
"good" and "bad" performance. It is known within the
planning community, that giving a solution quickly and
finding a short plan are contradicting directives for a plan-
ning system. There were two choices in dealing with this
problem: a) create two different models, one for fast plan-

ning and one for short plans, and then let the user decide
which one to use or b) find a way to combine these two
metrics and produce a single model which uses a trade-off
between planning time and length of plans. We tested both
scenarios and noticed that in the first one the outcome was
a planner that would either create short plans after too long
time, or create awfully large plans quickly. Since none of
these cases are acceptable in real-time situations, we de-
cided to adopt the second scenario.
 In order to combine the two metrics we first normalized
plan length and planning time according to the transforma-
tion presented in the previous section. We then created a
combined attribute about plan quality:

, 1.2, 1.3

,

norm norm

ij ij

ij

L T
Q

good

bad otherwise
�
� � �
�
	

This means that "a plan is good if it is at the most 20%
longer in steps than the minimum plan for the same prob-
lem and simultaneously it can be found in at most 30%
longer time than the minimum required time to find any
plan for the same problem". Given the above attribute,
34% of the runs had the value good and the rest bad.
 We decided to use the DMII program (Liu et al, 1999)
that performs classification based on association rules (Liu
et al, 1998) in order to discover useful and interpretable
rules from the data. DMII requires discrete data as it is
based on association rule mining. For the discretization of
the 19 numeric attributes that we had, we studied histo-
grams of the values of the attributes and split their domain
into 3 regions (small, medium and large) depending on
their distribution. There also exist automatic techniques for
discretization, but this could result to incomprehensible
rules, hence we performed manual discretization based on
statistics and planning expertise.
 The final dataset including the transformation of length
and time into a single categorical attribute and the discreti-
zation of the 19 problem attributes, had the format shown
in Table 5. DMII was run on this dataset and produced 249
rules characterizing a plan as good or bad based on the rest
of the attributes.

No Field Range of values
1 direction {0,1}
2 weights {0,1,2,3}
3 sof_agenda {1,100,1000}
4 violation_penalty {0,10,100}
5 heuristic_order {1,2,3}
6 equal_estimation {0,1}
7 B01 {small,medium,large}
8 B02 {small,medium,large}
 …….
25 B19 {small,medium,large}
26 quality {good,bad}

Table 5. Record format

The Adaptive Planner

This section describes how the results of machine learning
(classification rules) have been embedded in HAP as a
rule-based system that decides the optimal configuration of
planning parameters based on the characteristics of a given
problem. In addition, it presents experimental results that
illustrate the efficiency of the resulting planning system
and its superiority over the manually configurable version.

Embedding knowledge in the Planner
In order to create a rule-based system and embed it in the
HAP planning system, certain issues had to be addressed:
i) Should all the rules be included?
The rules that could actually be used for adaptive planning
are those that associated, at the same time, problem charac-
teristics, planning parameters and the quality field. So, the
first step was to filter out the rules that included only prob-
lem characteristics or only planning parameters as their
andecedents. This process filtered out 13 rules from the
initial set of 249 rules.
 Within the remaining 236 rules there were 167 rules
modeling "bad" performance and 69 modeling "good" per-
formance. Although the rules modeling bad performance
contain knowledge that could possibly be used by the plan-
er, they were not considered in the current work.
 The rules modeling good performance were subse-
quently transformed so that only the attributes concerning
problem characteristics remained as andecedents and the
planning parameters were moved on the right-hand side of
the rule as conclusions, omitting the rule quality attribute.
In this way, a rule decides one or more planning parame-
ters based on one or more problem characteristics.
 The 69 rules that were finally selected mainly tune the
direction and weights parameters, but there were also rules
affecting all the rest of the parameters. Table 6 shows the
number of rules affecting each planning parameter.

Parameter Number of rules
direction 59
weights 31
Sof_agenda 2
violation_penalty 2
heuristic_order 15
equal_estimation 6

Table 6. Distribution of rules over parameters

ii) What conflict resolution strategy should be adopted
for firing the rules?
Each rule was accompanied by two metrics (confidence
and support) used in association rules. The confidence fac-
tor indicates how valid a rule is, i.e. what percentage of the
relevant data in the condition confirms the conclusion-
action of the rule. A 100% confidence indicates that it is
absolutely certain that when the condition is met, then the
action should be taken. The support factor indicates how

often the pattern in the condition and the conclusion of the
rule is met compared to the complete data set. A low sup-
port indicates that the rule describes a rare situation.
 The performance of the rule-based system is one con-
cern, but it occupies only a tiny fragment of the planning
procedure, therefore it is not a primary concern. That is
why the conflict resolution strategy used in our rule-based
system is based on the total ordering of rules according
first to the confidence and then on the support factors, both
in descending order. This decision was based on our pri-
mary concern to use the most certain (confident) rules for
configuring the planner, because these rules will most
likely lead to a better planning performance. Then, among
rules with the same confidence we prefer to first examine a
rule with better support, i.e. a rule that describes a more
frequent pattern, because this rule is more likely to apply to
a random situation, than the rest.
 Rules are appropriately encoded so that when a rule fires
and sets one or more parameters, then all the other rules
that might also set one (or more) of these parameters are
“disabled”. In this way, each parameter is set by the most
confident rule (examined first), while the rest of the rules
that might affect this parameter are skipped.
iii) What should we do with parameters not affected by
the rule system?
The experiments with the system showed that on average
the rule based system would affect 2.7 planning parame-
ters, leaving at the same time 3.3 parameters unset. Ac-
cording to the knowledge model, if a parameter is left un-
set, its value should not affect the performance of the plan-
ning system. However, since the model is not complete,
this behavior could also be interpreted as an inability of the
learning process to extract a rule for the specific case. In
order to deal with this problem we used statistics to find
the best settings for each independent parameter. These
settings are illustrated in Table 1.

Figure 3. HAPRC Architecture

Problem file Domain file

Parser

Problem Analyzer

Rule system

Planner

Problem representation

Values of B01 to B19

Values of planning parameters

 The rule configurable version of HAP, which is outlined
in Figure 3 contains two additional modules, compared to
the manually configurable version of the system, that are
run in a pre-planning phase. The first module, noted as
Problem Analyzer, uses the problem’s representation, con-
structed by the Parser, to calculate the values of the 19
problem characteristics (B01-B19) used by the rules. These
values are then passed in the Rule System module, which
tunes the planning parameters based on the embedded rule
base and the default values for unset parameters. The val-
ues of the planning parameters along with the problem’s
representation are then passed in the planning module, in
order to solve the problem.

Experimental Results
In order to test the efficiency of HAPRC and the boost in
performance offered by the adaptive way in which the pa-
rameters are configured, we decided to run it on two dif-
ferent sets of problems: Problem set A, which was used in
the statistical analysis and in the Machine Learning process
and Problem set B, which contains 50 new problems; 30
from domains in set A (Blocks, Logistics, MIC-10) and 20
from new domains (puzzle, hanoi, mystery). The experi-
ments with problem set A, aim at verifying the correct im-
plementation of the rule system in HAPRC and testing
whether there is actual need for different setups for differ-
ent problems, while problem set B aims at showing if the
learned model can generalize effectively to new problems
and domains.
 All the runs of HAPRC and HAPMC, including those used
in the statistical analysis and the machine learning process,
were performed on a SUN Enterprise Server 450 with 4
ULTRA-2 processors at 400 MHz and 2 GB of shared
memory. The Operating system of the computer was SUN
Solaris 8. For all experiments we counted CPU clocks and
we had an upper limit of 60 sec, beyond which the planner
would stop and report that the problem is unsolvable.

 Table 7 presents the average "normalized" length (avg

j
L)

and planning time (avg

j
T) for the best five manual configu-

rations of HAPMC and for the HAPRC system over the prob-
lems of set A. It is worth noting here that the five configu-
rations presented in Table 7 are the best of those being at
the same time good (length of plans), fast (planning time)
and stable (failures). This means that there were other con-
figurations, not included in this table, which achieved bet-
ter performance for one factor but performed very bad for

the other two. For example, the absolute minimum avg

j
L

(1.043) was achieved by a configuration that exhibited

very bad avg

j
T (42.890) and managed to solve less than

65% of the problems. Similarly the fastest configuration

had avg

j
T =1.530, but exhibited avg

j
L =1.223 and did not find

a solution for more than 22% of the tested problems.

Planner avg

j
L

avg

j
T Failures

MC1 1,180 2,390 2%
MC2 1,205 2,310 2%
MC3 1,205 2,465 2%
MC4 1,206 2,396 2%
MC5 1,208 2,200 3%
HAPRC 1,098 2,131 2%

Table 7. Comparative Results for Problem set A

 From the configurations being at the same time good in
all criteria, HAPRC was the fastest and managed to find
much shorter plans. It is clear from these results that there
is no such thing as a generally best configuration and the
best configuration for a specific problem seems to depend
on the problem characteristics traced by HAPRC.

Problem MC1 MC2 MC3 MC4 MC5 HAPRC
B1 10 10 10 10 10 10
B2 24 24 24 24 24 22
B3 20 20 20 20 20 20
B4 40 40 36 36 40 28
B5 42 42 42 42 42 32
B6 30 34 30 34 30 30
B7 64 64 64 64 64 44
B8 62 62 56
B9 42 42 38 38 42 48
B10 106 114 116 106
L1 51 51 49 49 51 43
L2 71 71 76 76 71 63
L3 84 84 84 84 84 72
L4 87 87 76 76 85 66
L5 90 90 98 98 90 76
L6 86 86 93 93 86 71
L7 114 114 104 104 112 104
L8 122 122 134 134 114 134
L9 107 107 107 107 99 107
L10 112 112 113 110 114 113
S1 35 35 34 34 35 35
S2 38 38 40 40 38 40
S3 42 42 42 42 42 41
S4 47 47 48 48 47 47
S5 52 52 52 52 52 51
S6 54 54 54 54 54 54
S7 58 58 58 58 58 59
S8 58 58 59 59 58 57
S9 64 64 61 61 64 64
S10 68 68 68 68 68 68

avg

j
L 1.120 1.128 1.082 1.122 1.114 1.006

Table 8. Plan length for new problems

 The next step was to test whether the knowledge learned
by the planning system from problem set A could be used
to effectively guide the system for other problems and do-

mains not included in the learning set. For this reason, we
tested HAPRC and the best five configurations of HAPMC
on the problems of set B and recorded for each run the time
needed to solve the problem and the plan length.
 Table 8 and Table 9 present the length of found plans and
the planning time needed by the six planners to solve the
30 new problems of the previously used domains. The last
rows present the average normalized length and time over
the 30 problems. A planner that did not find a plan has a
void result. Best results are emphasized.
 With respect to plan length we notice that HAPRC is the
best planner on average; it is only 0.6% worse than the best
configurations for each problem and had the best plan
length for 21 out of 30 problems. The second best manual
configuration on average MC3 was 8.2% worse than the
best configurations and had the best plan for 8 out of the 30
problems. The results for planning time were similar.
HAPRC was the best planner being this time 8.4% worse
than the best configurations and being the best in 16 out of
30 problems. The second best planner was this time MC1.

Problem MC1 MC2 MC3 MC4 MC5 HAPRC
B1 50 50 60 50 60 50
B2 70 70 70 70 70 60
B3 90 90 100 90 90 90
B4 110 120 120 110 120 110
B5 190 210 280 260 210 160
B6 240 240 240 230 240 230
B7 540 580 1860 570 590 360
B8 48900 62490 890
B9 540 550 540 530 560 550
B10 87810 118320 40410 112640
L1 280 290 280 270 280 290
L2 310 310 320 310 320 320
L3 330 330 320 300 330 330
L4 580 600 570 590 650 610
L5 640 660 1080 930 670 670
L6 610 610 920 760 660 690
L7 2660 2760 1240 1200 2160 1240
L8 1340 1360 2390 2290 1200 2400
L9 1150 1180 2390 2000 1150 2400
L10 1460 1490 1380 1350 1650 1380
S1 290 310 290 280 300 280
S2 360 360 360 360 370 370
S3 450 460 460 440 460 430
S4 540 570 600 570 560 530
S5 670 690 700 670 690 660
S6 790 790 820 800 810 780
S7 980 990 980 970 1010 950
S8 1150 1140 1160 1140 1160 1120
S9 1410 1420 1360 1350 1460 1310
S10 1640 1660 1650 1660 1690 1650

avg

j
T 1.158 1.212 3.109 3.467 1.204 1.084

Table 9. Planning time for new problems

 Table 10 and Table 11 present the length of found plans
and the planning time needed by the six planners to solve
the 20 problems of the three new domains. The formatting
of the tables is similar to the previous ones.

Problem MC1 MC2 MC3 MC4 MC5 HAPRC
P1 47 47 47 47 47 43
P2 47 47 47 47 47 35
P3 46 46 46 72 46 90
P4 46 46 36 36 46 22
P5 132 132 110 106 122 110
P6 194 194 166 180 202 166
H1 7 7 7 7 7 7
H2 15 15 15 18 15 15
H3 47 47 47 47 47 47
H4 86 86 79 82 86 77
H5 182 182 190 196 182 133
H6 354 354 363 396 354 275
M1 5 5 5 5 5 5
M2 8 8 10 10 8 8
M3 7 7 7 7 7 9
M4
M5 4 4 4 4 4 4
M6 7 7 7 7 7 5
M7
M8 8 6 7 9 7 6

avg

j
L 1.250 1.231 1.204 1.281 1.240 1.125

Table 10. Plan length for new domains

Problem MC1 MC2 MC3 MC4 MC5 HAPRC
P1 230 240 260 230 240 210
P2 230 240 260 230 230 210
P3 230 240 230 300 240 260
P4 380 410 210 210 390 200
P5 32450 33020 61230 14410 79060 63620
P6 9690 9980 12630 6660 5040 7900
H1 40 40 40 40 40 30
H2 40 50 60 40 50 50
H3 70 80 100 70 70 90
H4 170 200 220 140 190 130
H5 600 670 740 590 690 900
H6 4130 4390 4960 4380 4590 4350
M1 210 210 220 200 200 210
M2 1540 1570 1980 4120 1540 950
M3 420 430 440 430 390 390
M4
M5 160 160 160 160 150 170
M6 940 950 920 1360 1110 1010
M7
M8 800 790 500 600 1000 340

avg

j
T 1.390 1.462 1.587 1.387 1.600 1.365

Table 11. Planning time for new domains

 With respect to plan length we notice that HAPRC is
again the best planner on average, being 12.5% worse than
the best configurations for each problem and had the best
plan length for 16 out of 20 problems. The second best
manual configuration on average was again MC3 which
was 20.4% worse than the best configurations and had the
best plan for 6 out of the 20 problems. The results for
planning time were again similar. HAPRC was the best
planner being this time 36.5% worse than the best configu-
rations and being the best in 8 out of 20 problems. The
second best planner was again MC1, being 39% worse than
the best configurations.
 It is clear from these results that HAPRC is able to adapt
itself and use the configuration that best fits each problem.
It was on average faster than all the other configurations in
problems from "known" domains and it was also able to
create shorter plans. The generality of the learned knowl-
edge was also empirically shown, as HAPRC was on aver-
age better in both planning time and plan length even on
problems of new domains.
 The superiority of HAPRC over the static configurations
can be better noticed from the overall results of problem
set B, including old and new domains, in Table 12 that
support our main argument: "There might be a specific
configuration which bests HAPRC in a problem or in a few
problems of the same domain. However, in the large pic-
ture, where the planners are tested on many problems from
various domains, HAPRC is clearly better than any static
configuration".

Planner avg

j
L

avg

j
T Failures

MC1 1.169 1.245 6%
MC2 1.166 1.305 6%
MC3 1.127 2.550 6%
MC4 1.180 2.702 4%
MC5 1.160 1.350 6%
HAPRC 1.050 1.187 6%

Table 12. Overall results for problem set B

 An interesting point that rises from studying the results
is that the difference in performance of HAPRC with the
manual configurations is greater in plan length than in
planning time, especially for the 20 problems of the new
domains. This could be associated with the fact that we
were more strict with the plan length (< 1.2) than with the
planning time (< 1.3) in the definition of the quality attrib-
ute. It seems that the definition of the plan quality attribute
that combines the two metrics is influencing the learning
process and the final rule-base, and thus can be used for
biasing the system towards better plan lengths or fastest
planning. Our configuration ensures the best of both with a
leaning to plan length, which reflects the general truism in
planning that one is willing to sacrifice a little more time in
order to achieve a much better plan.

 Furthermore, we notice that the difference of HAPRC
performance in comparison to the best configurations is
smaller in the problems of the previously used domains
than in the problems of the new domains. This was ex-
pected as the number of problems used for learning is in
general small and the learned knowledge is biased towards
the domains of these problems. Still the rules were able to
generalize to the new domains with acceptable perform-
ance. Using more problems for the learning process is ex-
pected to increase the stability and quality of the rule-base.
 Finally we notice that from the manual configurations
MC3 was consistently better in plan length and MC1 better
in planning time than the other manual configurations. This
is an indication that static configurations either favor plan
length or planning time, while an adaptive planner like
HAPRC can perform best in both given a specific problem.

Related work

Machine Learning has been exploited in the past for Plan-
ning, mainly in order to learn control rules. The PRODIGY
Architecture (Veloso et al, 1995) was the main representa-
tive of this trend. This architecture, supported by various
learning modules, focuses on learning the necessary
knowledge that guides a planner to decide what action to
take next during plan execution.
 Machine Learning has also been utilized for automati-
cally extracting rules for plan rewriting (Ambite, Knoblock
and Minton, 2000). Plan rewriting rules are used for im-
proving easy-to-generate low quality plans.
 Approaches towards exploiting domain and problem
characteristics in a pre-planning phase have been presented
in the past by Fox and Long (Long and Fox, 1999, Fox et
al, 2001). Their research is mainly focused on state analy-
sis and its use by automated planning systems, such as
STAN (Long and Fox, 1998) and Hybrid STAN (Fox and
Long, 2000).
 Hoffman (Hoffman, 2001) discusses the matter of when
a specific planner will behave well and when not by per-
forming domain analysis. He created taxonomy of most of
the planning domains based on the existence of specific
characteristics such as local minima and dead ends in these
domains. With this taxonomy he is able to explain the
variations in performance of some of the state-of-the-art
planning systems.
 Probably, the only approach to the direction of adaptive
planning done in the past is the work presented in (Howe
and Dahlman, 1993, Howe et al, 1999). They have created
a system called BUS, which incorporates six state-of-the-
art planners (STAN, IPP, SGP, BlackBox, UCPOP and
Prodigy) and runs them using a round-robin schema, until
one of them finds a solution. BUS is adaptable in the sense
of deciding the ordering of the six planners and the dura-
tion of the time slices dynamically based on the values of
five problem characteristics and some rules extracted from

a statistical analysis on past runs. The system achieved
more stable behavior but it was not as fast as one may have
expected.
 MULTI-TAC (Minton, 1996) is a learning system which
uses a library of heuristics and generic algorithms and
automatically fine tunes itself in order to synthesize the
most appropriate constraint satisfaction program to solve a
problem. The methodology we followed in this paper pre-
sents some similarities with MULTI-TAC.

Conclusions and Future Work

This paper reported on ongoing research in the field of
applying Machine Learning and Rule-based techniques on
Planning in order to build an adaptive planning system that
can automatically fine-tune its parameters based on the
values of measurable characteristics of each problem. The
adaptable planner we created was tested on a large number
of problems from various domains and the experimental
results have proven that there is no static configuration,
adopted by statistical methods, of the planner that has such
a stably good performance over different problems and
domains.
 The rule-based configuration approach we have devel-
oped produces better results than the best configurations
and the best individual settings, because we treat planner
parameters as associations of the problem characteristics,
whereas the statistical analysis tries to associate planner
performance with planner settings, ignoring problem char-
acteristics.
 In the future we plan to expand the application of Ma-
chine Learning to include more measurable problem char-
acteristics in order to come up with vectors of values that
represent the problems in a unique way and manage to cap-
ture all the hidden dynamics. We also plan to add more
configurable parameters of planning, such as parameters
for time and resource handling and enrich the HAP system
with other heuristics from state-of-the-art planning sys-
tems.
 In addition, we will explore the applicability of different
rule-learning algorithms, such as decision-tree learning that
could potentially provide knowledge of better quality. We
will also investigate the use of automatic feature selection
techniques that could prune the vector of input attributes
thus giving the learning algorithm the ability to achieve
better results. The interpretability of the resulting model
and its analysis by planning experts will also be a point of
greater focus in the future.

Acknowledgments

This project has been partially supported by SUN Micro-
systems, grant number: EDUD-7832-010326-GR.

References

Ambite, J. L., Knoblock, C., and Minton, S., 2000. Learn-
ing Plan Rewriting Rules. In Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling Systems.

Fox, M., and Long, D., 2000. Hybrid Stan: Identifying and
managing combinatorial sub-problems in planning. In Pro-
ceedings of the 19th UK Planning and Scheduling SIG
workshop.

Fox, M., Long, D., Bradley, S., and McKinna, J., 2001.
Using model checking for pre-planning analysis. In Pro-
ceedings of the AAAI Symposium on Model–based Vali-
dation of Intelligence.

Hoffman, J., 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proceedings of the
17th International Joint Conference on Artificial Intelli-
gence.

Howe, A., and Dahlman, E., 1993. A critical assessment of
Benchmark comparison in Planning. Journal of Artificial
Intelligence Research 1:1-15.

Howe, A., et al. 1999. Exploiting Competitive Planner Per-
formance. In Proceedings of the 5th European Conference
on Planning.

Liu, B., Hsu, W., and Ma, Y., 1998. Integrating Classifica-
tion and Association Rule Mining. In Proceedings of the 4th
International Conference on Knowledge Discovery and
Data Mining (Plenary Presentation).

Liu, B., Hsu, W., Ma, Y., and Chen, S., 1999. Discovering
Interesting Knowledge using DM-II. In Proceedings of the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Industrial Track).

Long, D., and Fox, M., 1998. Efficient implementation of
the plan graph in stan. Journal of Artificial Intelligence
Research 10:87-115.

Long, D. and Fox, M., 1999. Automatic synthesis and use
of generic types in planning. Technical Report.

Minton, S., 1996. Automatically Configuring Constraint
Satisfaction Programs: A Case Study. Constraints 1(1).

Veloso, M., et. al 1995. Integrating planning and learning:
The prodigy architecture. Journal of Experimetnal and
Theoretical Artificial Intelligence 7(1):81-120.

Vrakas, D., and Vlahavas, I., 2001. Combining progression
and regression in state-space heuristic planning. In Pro-
ceedings of the 6th European Conference on Planning.

Vrakas, D. and Vlahavas, I. A heuristic for planning based
on action evaluation. In Proceedings of the 10th Interna-
tional Conference on Artificial Intelligence: Methodology,
Systems and Applications.

