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This article presents ViTAPlan-2, a visual tool &taptive planning that is build on top of HAPRGuke-configurable
planning system, which automatically adapts to gaoblem, in order to achieve best performance rtfipam HAPRC,

ViTAPIlan can be interfaced with any other plannsygtem that supports the PDDL language. More thanljeing a
user friendly environment for executing the undedyplanner, the tool serves as a unified planmngironment for
encoding a new problem problem, solving it, viszialj the solution and monitoring its execution csiraulation of the
problem’s word. The tool consists of various subtems, each one accompanied by a graphical ingerfidat

collaborate with each other and assist the useethen he is a knowledge engineer, a domain expergcademic or
even an end user in industry, to carry out complarning tasks.
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1. Introduction

Automated Planning has been an active research topalmost 40 years and during this period atgrea
number of papers describing new methods, technignédsystems have been presented that mainly focus
on ways to improve the efficiency of planning sys$e However, there are not many successful examples
of planning systems adapting to industrial use.nff@ technical point of view, this can be mainly
explained by four reasons: a) There is a genesdletief of managers and workers in industry that Al
tools can really assist them, b) There is a neegystems that combine methods from many aread,of A
such as Planning, Scheduling and Optimization,hg ihdustry needs more sophisticated algorithms tha
can scale up to solve real-world problems and d)rtier for workers in industry to make use of these
intelligent systems, they must be equipped withr frsendly interfaces that: i) allow the user tadrvene

in certain points and ii) can reason about the igexi/ solution.

The greater problems that one faces when he wiestact companies and organizations for
installing a planning system, come from the workbesnselves. These problems concern two issuéis: a)
has been noticed that people find it hard to tawsbmated systems when it comes for crucial presess
There are a lot of people who still think that tleey do better than machines. b) The lack of inédiom
is the cause of a quite widespread phobia towardgpaters and automated machines. There are kil a
of people who think that they will be replaced ovgrned by machines and the try to defend theitspos
by rejecting everything new.

Although it is necessary for researchers to speeiah very specific parts of their research area,
commercial systems, dealing with real time probleh@sve to combine techniques and methods from



many areas. It has been shown that Al Planningntgoks for example, are inadequate to face with the
complexity and the generality of real world probterfror example, it has been proven that Scheduling
and Constraint solving techniques can handle ressumore efficiently. Commercial applications must
combine methods from many areas of Al and probfibiy other areas of computer science as well.

Another issue that must be dealt is the large gawden toy problems used by researcher for
developing and testing their algorithms and the@gbroblems faced be people in industry. Reseasche
are usually unaware of the size of real world peoid or they simplify these problems in order todban
with them. But these algorithms prove themselvagé@guate to be adopted by commercial softwaret So i
is a general conclusion that researcher should d&aling with more realistic problems. This resbar
direction was also given during the last AIPS Piagrcompetitions where there was a tendency to test
planners on problems closer to reality.

Last but certainly not least is the direct needaftware based on Al tools to be accompanied
with user friendly interfaces. Since the user Wwéla manager or even a simple worker in a compady a
not a computer scientist, the software must be ¢éasyse. Furthermore, it must enable the user to
intervene in certain points for two reasons: a) ddixnitiative systems can deal with real-world peofs
better and b) people in companies do not like ke @ommands and therefore a black box which can not
reason about its output will not do. So it is nsegyg for the software to cooperate with the usehe
process of solving the problem in hand, since pebple a more abstract model of the problem i thei
mind and are better in improvising, while computeas more efficiently deal with lower levels of the
problem.

This article describes ViTAPlan-2, a visual toot &maptive planning, which is equipped with a
rule system able to automatically fine-tune thenpt based on the morphology of the problem in hand
The tool has been developed for the HAP plannirggesy, but it can be used as a graphical platform fo
any other modern planner that supports the PDDguage. The tool consists of various sub-systents tha
collaborate in order to carry out several planniagks and provides the user with a large number of
functionalities that are of interest to both indystnd academia.

The rest of the article is organized as followbeThext section presents an overview of the
work related to automated planning systems andhigabenvironments for planning. Section 3 desaibe
the architecture of the visual tool and briefly ctéses the contained sub-systems. Sections 4 and 5
present the execution module that interfaces thealitool with the planning system and the knowéedg
module that is responsible for the automatic camfiion of the planning parameters respectively.
Section 6 analyzes the graphical tool for visuaizand designing problems and domains and illiestrat
the use of the sub-system with concrete examples. next section presents the two sub-systems that
visualize the plans and simulate their executiorvirtual worlds and finally section 8 concludes the
article and poses future directions.

2. Related Work

Two of the most promising trends in building fasihthin-independent planning systems were presented
over the last few years.



The first one consists of the transformation &f thassical search in the space of states to other
kinds of problems, which can be solved more eaBikamples of this category are the SATPL'AKNd
BLACKBOX' planning system, the evolutionary GRAPHPLANand certain extensions of
GRAPHPLAN as the famous STARplanner.

SATPLAN and BLACKBOX transform the planning probieinto a satisfiability problem,
which consists of a number of boolean variablesa@erthin clauses between these variables. Theafoal
the problem is to assign values to the variablesugh a way that establishes all of the clauses.
GRAPHPLAN on the other hand creates a concretetsire, called the planning graph, where the nodes
correspond to facts of the domain and edges toracthat either achieve or delete these facts. Tien
planner searches for solutions in the planning lyr&RAPHPLAN has the ability to produce parallel
plans, where the number of steps is guaranteed toibimum.

The second category is based on a relatively sirg@a where a general domain independent
heuristic function is embodied in a heuristic shaatgorithm such as Hill Climbing, Best-First Sdaar
A*. Examples of planning systems in this categomy the ASP/HSP famify AltAlt*, FF, YAHSP?
and Macro FE

The planners of the latter category rely on thmes&ea to construct their heuristic function.
They relax the planning problem by ignoring theetiellists of the domain operators and startingeeith
from the Initial State or the Goals they constraid¢veled graph of facts, noting for every fadtd tevel
at which it was achieved L(f). In order to evaluatetate S, the heuristic function takes into antthe
values of L(f) for each £ S.

The systems presented above are examples ofastapfanners that are able to scale up to
quite difficult problems. However, there are stilen issues to be addressed that are crucial tstiyd
such as temporal planning or efficient handlingesfources. Although there has been an effort duhag
last few years to deal with these issues therélisorly a small number of systems capable of swv
near real world problems.

An example of this trend is the SGPlan systewhich won the won the first prize in the
suboptimal temporal metric track and a second prizihe suboptimal propositional track in the Fourt
International Planning Competition (IPC4). The baglea behind SGPlan is to partition problem
constraints by their subgoals into multiple subsstdve each subproblem individually, and resolve
inconsistent global constraints across subproblemsed on a penalty formulation.

Another system able to handle planning problenat thcorporate the notion of time and
consumable resources is the LPG-TD plafnehich is an extension of the LPG planning systeike
the previous version of LPG, the new version iseddasn a stochastic local search in the space of
particular “action graphs” derived from the plarmiproblem specification. In LPG-TD, this graph
representation has been extended to deal with ¢he features of PDDL2.2, as well to improve the
management of durative actions and of numericalesgions.

There are also some older systems that combinenipig with constraint satisfaction
techniques in order to deal with complex problenith wime and constraints. Such systems include the
Metric FF Planné?, the S-MER® and the SPN Neural Planning Methodolbgy

As far as user interfaces are concerned, there hegn several approaches from institutes and
researchers to create visual tools for definingfgnms and running planning systems, such as th®GIP



system®, the SIPE-Z and the ASPEN graphical user interfaces. Moreover, there is abrer of
approaches in building visual interfaces for spedifpplications of planning. The PacoPlan proféct
aims in building a web-based planning interface s$pecific domains. AsbruVieW is a visual user
interface for time-oriented skeletal plans représgncomplex medical procedures. Another example of
visual interfaces for planning is the work of theARLE research group at the university of Maryfnd
which concerns the implementations of a 3D graphitarface for representing hierarchical planshwit
many levels of abstractions and interactions anthegparts of the plan. Although these approaches ar
very interesting and provide the community withfuk®ols for planning, there is still a lot of woto be
done in order to create an integrated system tbatsithe needs of the potential users.

3. Tool’'s Architecture

The visual planning environment is based on thst fiersion of ViTAPlaf’'?® which has been extended
in several ways. The architecture of the tool, Whgoutlined in Figure 1, consists of the follogigub-
systems, which are discussed in more detail lat¢he article: a) designing, b) configuration, alving,

d) visualizing and e) simulating.

User |

!

ViTAPIlan

Visualizing
Configuration »  Solving <
/\ Designing Simulating

Rule Problem
System Analyzer

HAP

Figure 1. ViTAPlan's Architecture

The designing module provides visual represematiof planning domains and problems
through graphs that assist the user in comprehgrttiigir structure. Furthermore, the user is pravide
with graphical elements and tools for designing riemnains and new problems of existing domains.
This module communicates with the file system &f tiperating system, in order to save the desigas in
planner — readable format (i.e. PDBIplanning language) and also load and visualize g@sains and
problems.

The configuration module of ViTAPIlan-2 deals witte automatic fine-tuning of the planning
parameters. This task is performed through twossteat are implemented in different sub-system& Th
first one, called Problem Analyzer, reads the dpson of the problem from the input files, analgzé



and outputs a vector of numbers that correspotigetealues of 35 measurable attributes that quaité
morphology of the problem in hand. The rule systetnich is consulted after the analysis of the peabl
contains a number of rules that associate spegifiges or value ranges of the problems’ attribuih
configurations of the planning parameters that ginige good performance.

The solving module inputs the description of thelbjems (PDDL files of the domain and the
problem) along with the values of the planner’'sapaeters and executes the planner (HAP or any other
system attached to ViTAPlan) in order to obtain cdution (plan) to the problem. The planner’s
parameters can be adjusted either by hand or atitathavia the configuration module.

The last two sub-systems (visualization and sitmari present the plan that was inputted from
the execution module in several forms. The visadilin module presents the plan as a directed graph,
through which the user can identify the positived amegative interactions among the actions and
experiment with different orderings in which theapls steps should be executed. The second module
simulates the problem’s world presenting all therimediate states that occur after the executicgach
action.

4. Interface for Planning Systems

The main feature of ViTAPlan is to allow the usetloé underlying planning system in a friendlier and
more accurate way. This interface between the aisgérthe planning engine is carried out by the sglvi
module of the visual environment. The inputs thatstrbe supplied to the planning system are: a) the
domain file, b) the problem file and c) the valugsthe planning parameters, in case of adjustable
planners.

Domain |: \phd\PlarF ace\demai.padl

Problem |
- 2
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Figure 2. Selecting the input files

From the initial screen of the interface, whichsiown in Figure 2, the user uses common
dialogues and graphical elements in order to brdaisthe domain and problem files that will be itheal
to the planner. From the same screen the userlsamgecute the planner and obtain the solutican(pl



among with statistics concerning the executionhs@agthe planning time and the length of the pldme
way the results of the planner are presented tasbeis shown in Figure 3.
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Figure 3. Solving the problem

There are three ways for tuning the planner’s ipaters in ViTAPlan: a) using the default
values provided by the system, b) let the usergasiie values by hand or c¢) use the configuration
module in order to have the parameters set autoatigti The user can select among the first two ways
through the settings window presented in Figuréhe parameters presented in this window correspond
to the HAP planner which is embodied in ViTAPIlan.

|
Direction IBan:kwald hd
Heuristic IB -
Weights for search IWW =2, w2=1 d

Penalty for violating orderings  [Medium -

Agenda Size
Closer ‘res d
Remove achieved goals ‘es -
Default
Executable IC.\th\P\anFaCE\BF'Z.exe Ea—
Working |c “phd'PlarFace

Figure 4. Setting the planning parameters



4.1. Hap planner

HAP, is a highly adjustable planning system that ba customized by the user through a number of
parameters. These parameters concern the typeanthse¢he quality of the heuristic and several othe
features that affect the planning process. The ld¢pflem is based on the BP (Bi-directional Planner)
planning systefi and uses an extended version of the AGEction Evaluation) heuristic.

HAP is capable of planning in both directions @ression and regression). The system is quite
symmetric and for each critical part of the plannelg. calculation of mutexes, discovery of goal
orderings, computation of the heuristic, searclatsyiies etc., there are implementations for both
directions. Thedirection of search is the first adjustable parameter of HAged in tests, with the
following values: a) O (Regression or Backward ohraj) and b) 1 (Progression or Forward chaining).

As for the search itself, HAP adopts a weighteds&ategy with two independent weights:
for the estimated cost for reaching the final statdw, for the accumulated cost of reaching the current
state from the starting state (initial or goalsetagting on the selected direction). For the tesths H#WAP,
we used four different assignments for the varialgights which correspond to different assignments for
w; andw,: a) 0 (v, =1,w, =0), b) 1 (v; =3,w, =1), ¢) 2 (v; =2, w, =1) and d) 3\, =1, w, =1).

The size of the planning agenda (denotedsaisagenda) of HAP also affects the search
strategy and it can also be set by the user. Fample, if we sesof agendato 1 andw, to O, the search
algorithm becomes pure Hill-Climbing, while by segtsof agendato 1,w; to 1 andw, to 1 the search
algorithm becomes A*. Generally, by increasing skee of the agenda we reduce the risk of not figpdin
solution, even if at least one exists, while byuadg the size of the agenda the search algorithm
becomes faster and we ensure that the plannenatilfun out of memory. For the tests we used three
different settings for the size of the agenda:,d)1.00 and c) 1000

The OB andOB-R functions introduced in BP and ACE respectivelg also adopted by HAP
in order to search the states of the search fdatiwms of orderings between the facts of eitheritiitial
state or the goals, depending on the directiorhefdearch. For each violation contained in a sthte,
estimated value of this state that is returnedheyheuristic function, is increased by violatiomalgy,
which is a constant number supplied by the user.tii® experiments of this work we tested the HAP
system with three different valueswiblation_penalty: a) 0, b) 10 and c) 100.

The HAP system employs the heuristic functionhaf ACE planner, plus two variations of it,
which are in general more fine-grained. There amplémentations of the heuristic functions for both
planning directions. All the heuristic functionsasonstructed in a pre-planning phase by perforraing
relaxed search in the opposite direction of the usel in the search phase. During this relaxedisehe
heuristic function computes estimations for theadises of all grounded actions of the problem.

The user may select the heuristic function by iguming theheuristic_order parameter. The
three acceptable values are: a) 1 for the inigairistic, b) 2 for the first variation and c) 3 the second
variation.

HAP also embodies a technique for simplifying dedinition of the sub-problem in hand. This
technique eliminates from the definition of the gubblem (current state and goals) all the goadd th
have already been achieved in the current statedlanbt interfere in any way with the achievemeint o
the remaining goals. In order to do this the teghes performs, off-line before the search procass,



dependency analysis on the goals of the problers. fdrameteremove subgoals is used to turn on
(value 1) and off (value 0) this feature of thenpiimg system.

The last parameter of HAP égual_estimation, which defines the way in which states with the
same estimated distances are treateatjudl _estimation is set to 0 then between two states with the same
value in the heuristic function, the one with thegkest distance from the starting state (hnumbectbns
applied so far) is preferred. ¢fual_estimation is set to 1, then the search strategy will prefier dtate,
which is closer to the starting state.

4.2. Embedding other planning systems

The current version of ViTAPlan embodies the HABtegn, but the environment is open and the user can
easily attach any other planner that reads the PBRhguage. The communication protocol between the
visual environment and the planner (including HA®utlined in Figure 5.

| ViTAPlan -2 Environment

Descriptig Plan in ViTAPlan's format
D Settings
Problem D i
(POSE'_? Plan Pre-processo
Descriptio\ \/ Planin X's
Planner
X

Figure 5. Communication with the planner

As already discussed the data that should benhitiesl between ViTAPlan and the planning
system are: a) the description of the domain aedotbblem, b) optionally the settings for the plkarm
parameters and c) the plan that solves the problem.

Concerning the description of the problem, ViTAPIa able to extract PDDL files, which is
the standard definition language for all modermpdas. Therefore it is trivial to submit the prahléo
any new planning system.

For each configurable parameter, ViTAPlan needkescription, the option used to set this
parameter in the planner and the domain of valieis information must be specified by the user in
order to add a new planner in the environment. dureent version of ViTAPlan supports only discrete
values for the domains of the parameters, but dhis very easily be extended to support continuous
values or other data types (e.g. booleans). Fompba Table 1 presents part of the information that
should be inputted to ViTAPlan-2 in order to cortriewith the LPG planning systéin



Table 1. Specification of LPG’s parameters

Parameter Option Values
Heuristic identifier -h 1,2
Max number of restarts -restarts 1,2,3,4,5,6,7,8,9....

Noise added to Walksat -noise 0,0.1,0.2,0.3....

The output of any planner to a given problem iseguence of actions that achieve the
predefined goals. However, since there has not bestandard for describing plans yet, each plamagr
present the sequences of actions in a different Wagrefore a necessary step in order to attach a
different planning systeX on ViTAPIlan-2, is to format its output, either bydifying the system, or by
adding a pre-processor that reads the plafigriormat and transforms it. Figure 6 presents>an®le of
a plan in ViTAPIlan’s format.

Begin of Plan

1: (drive truckO distributorl distributor0)
2: (lift hoist1 crateO palletl distributor0)
3: (load hoist1 crate0 truckO distributor0)

11: (drop hoistl cratel palletl distributor0)
End of Plan

Figure 6. A plan’s excerpt in ViTAPlan’s format

5. Configuration Module

The Configuration module of ViTAPlan is a sub-systable to adjust the planning parameters in
automatic manner. This feature is currently avédlabnly for use with the HAP planning system,
although the methodology for the automatic configion of planning parameters is general and can be
applied to other planners as w&ll

The automatic configuration is based on HAP*R@vhich uses a rule system in order to
automatically select the best settings for eachrpry parameter, based on the morphology of the
problem in hand. HAP-RC, whose architecture isioetl in Figure 7 is actually HAP with two additidna
modules (Problem Analyzer and Rule System) whick atilized off-line, just after reading the
representation of the problem in order to fine ttheeplanning parameters of HAP.
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Figure 7. HAP-RC Architecture

The role of the Problem Analyzer is to identifyethalues of a specific set of 35 problem
characteristics (noted as Al to A35). These charistics include measurable attributes of planning
problems, such as number of facts per predicatatetranching factor of the problem that preskat t
internal structure of the problems in a quantifisdy. After the identification of the values of the
attributes, which may requires a limited searctha problem, the analyzer feeds the Rule systeim avit
vector containing the values for the 35 problemitaites.

The Rule system contains a number of rules ofdtewing format:

If preconditions list Then actions list

The preconditions of the rules check if the valwdsthe problem’s attributes comply with some
constraints on them, while the actions set one orenplanning parameters to specific values. For
example, the rule:

If A24<1.8 and A17<9.7 Then direction=1 and closer=yes
will trigger in a given problem if the values of AZratio between the branching factors of the two
directions) and A17 (standard deviation of the agernumber of actions deleting a fact) are smtiken
1.8 and larger than 9.7 respectively. If this rigleventually fired, then the planning directiorl\we set
to forward and the search algorithm will use thehtéque for overcoming plateaus.

What these rules actually do, is to propose setopshe planning parameters that worked
efficiently in similar problems in the past. Thiadwledge has been extracted from Machine Learning
techniques on data produced by thorough experimtitsthe HAP system. More specifically, we tested
all the possible combinations of the parameteddA® on a large set of problems from various domains
and for each run we kept record of the values @ftfoblem attributes, the specific setup for HAR tre
value for a metric combining planning time and plangth. The data set was then fed to a Machine
Learning tool in order to learn a rule-based cfasdion model that would discriminate between good
and bad value of the metric based on the resteoéttibutes.
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The Configuration module of ViTAPIlan-2 also prosgdthe user with the option to use the
Problem Analyzer and the Rule System of HAP-RC ilideo to automatically fine-tune the planning
parameters of HAP. The relevant window of the iiatez is shown in Figure 8. This window is divided i
three parts: a) the first part shows the discrdtizmues for the 35 problem characteristics, adywced by
the Problem analyzer, b) the second part providesiser with the list of the rules that comprise ¢bre
knowledge of the system and c) the last part pesvithe user with the proposed values for the phanni
parameters of HAP.

The values of the problem’s attributes are preskit order to check for the triggered rules,
but more importantly to assist the knowledge erginar the domain expert in decoding the internal
structure of the problem and extract useful ingghdtm it. The tool presents the following informoat
for each one of the 35 attributes: a) the code nérgA07), b) a description of the attribute (e.g.
Sandard deviation of the number of facts per predicate), c) the arithmetic value, d) a discretized value
(e.g.small) and e) the usual upper and lower limit for ittuea

The rules are shown in the appropriate frame @feifivironment sorted by decreasing order of
their confidence, as this was calculated by theniag algorithm. ViTAPlan presents all the rulesf the
user is able to control the viewable part of thiesuhrough two controls that select only the teiggl
rules or the rules that affect a specific param@sey. heuristic function).

From the set of triggered rules, ViTAPlan-2 ma&asnitial choice, selecting the rules with the
highest confidence factor that are not in confligth any other already selected rule. We say tivat t
rules are in conflict, if they propose differentuges for the same parameter. The configuration rieodu
uses the initial subset of selected rules in otdealculate the values of the parameters and iprésem
to the user, leaving each unset parameter to itailleralue.

== x]
Problem Analyzer

a1 [21.00 02 [32.00 a03 [18.00 04 [1-20 ans [1.67 06 [11.57 07 [11376
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¥ IF a01>3 and &12¢=2.8517 and a08>5.25 and 233¢=70.2644 and a34<=81.3125 THEN direction=1 and closer=1 and agenta=100 (3] = &J
™ IF a24¢=07012 and a3 15 THEN direction=0 (48]
Triggered -
= IF al1>20 and 527<=0.1429 and 519535 and 235>0. 7498 and a30>0 0072 and 427>-0.0832 and 530<=0.0358 and a30>0.008 THEN agenta=100 and closer=1 and
remave=T and dirsction=1 (7
IR

I IF a11<=10.393 and 15767381 and a194.333% and a04<=1,2727 and 206¢=16.2 THEN heuistic=2 and dicction=0 and closer=0 (98]

[ IF 235c=1, 3136 and a05:1,6529 and a26¢-016265 and a09c=108 253 and 33204356 and a27>-0.1071 and a0%22 2681 and 231<=0,1408 THEN hewiste=2 and

agenta=100 and search_stialeay=3 and closer=D and remove=0 and drection=0 [188]
™ IF aD4¢=1.875 and a24¢=0.7778 THEN remove=1 and search_strateqy=0 and closer=0 [271]
Total Rules: 1483
I IF a1850.9167 and 425¢-0.1146 and 320,591 and a195.5 THEM search,_stiateay=2 and direction=0 and remave=1 and heuristie=3 and closei=1 (30) Triggered: 145
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Planner Settings
Direction || Heuristic 2 Weights for search |2 Closer |1
Penalty for violating orderings Agenda Size 100 Remove achieved goals |0
Cancel | Ok

Figure 8. The rule system
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Instead of just accepting or rejecting the propggsarameter setting, the user has the ability to
interfere with the rule system, modifying so thepted conflict resolution strategy. More specifigal
the user may either include a new rule in the dirset, or request the removal of a selected ondharsd
alter the firing set and therefore the setup oftheameters. Each time the user request the fifirgnew
rule R, the module automatically checks the resultinigdirset for conflicts and removes all the ruleg tha
propose contradictory values for the parameteectdtl by R
Consider for example the case in Figure 9, whigs@nts a portion of the triggered rules, i.e. thbaé
require values for the attributes A01 to A35 thed aompatible with the problem in hand. The initial
selection contains rules 49, 74 and 154 that defirevalues 100, 2, 3 and 0O for the paramegienalty,
heuristic, search_strategy anddirection respectively.

-Rules
IF 225204 and a27<=0.1429 and a34> 33.0208 and 523<=23.0556 and a27>-0.2793 and a34>42.0017 and a34<=47.9245 and al2¢<=21 and a27>-0.0675 THEN |
iclasar=1 and penaly=500 and heuristic=2 [35]

v IF a25:0.4 and a35<=1.2941 and a27>-0.1452 and al2:=21 and a30>0.0269 and 229>0.5882 and a30:0.0355 and a27>-0.0213 THEN penalty=100 and heuristic=2
[45)

™ IF a25:04933 and a26<=0.5682 and al4<=1.4667 THEN heuristic=2 and search_strateqy=3 [57)

WV IF a114=32.7421 and al4>1.2857 and a25<=0.6885 and a25:-0.0068 and al5<=7.5385 and a29<=0.6957 and a27<=0.034 and a34<=47.9245 and a25>0.4 and
a33¢=61.3745 THEMN heuriztic=2 and search_strateqy=3 and direction=0[74]

I IFa23:13.1111 and a08<=98 THEN hewistic=3 and direction=0 and search_stratequ=2 [95]
I IF a29: 006429 and a33<=59.7317 and a33: 48.7617 and a05¢=3.6364 THEN heuristic=2 and penaly=500 and search_strateqy=2 and closer=0[102)
I IF a29:065 and a15-97.4232 and al7<=173 786 and a25:0.3571 THEN heuristic=2 and penalty=500 {153)

IV IF a29: 06429 and al2<=23 and a35>1,1458 and 433¢=55.2284 THEN heuristic=2 and penalty=100 and search_shateqy=3 [154]

Figure 9. The initial firing set

Lets also suppose that the user requests rule et (the first rule in Figure 9) to be
included in the firing set. Rule 35 is in contragtio with rule 49, since the first sgisnalty to 500 while
the second sets it to 100 and with rule 154 forghmme reason. There is no contradiction with rdle 7
since the only common parametehéiristic and they propose the same value (2) for it. Tloeechfter
the inclusion of rule 35, rules 49 and 154 are nadoform the firing set as shown in Figure 10. The
proposed setup of the planner’s parameters bectme®llowing: closer=1, penalty=500, heuristic=2,
search_strategy=3 anddirection=0.
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-Rules
" AF 2253 0.4 and 527¢=0.1429 and 234> 330208 and a23<=23.055E and 527>-0.2793 and 234> 42.0011 and a34<=47.9245 and a02¢=21 and a27>-0.0675 THEN
icloser=1 and penalty=500 and heuristic=2 [35]

- IF a25:0.4 and a35<=1.2941 and a27>-0.1452 and a02<=21 and a30:0.0269 and a29:0.5882 and a30:0.0355 and a27>-0.0213 THEM penalty=100 and hewristic=2
[45)

I~ IF 225504933 and a26<=0 5698 and a04<=1 4667 THEM heuristic=3 and search_strategy=3 [67]

v IF al1<=32.7421 and a04:1.2857 and a25<=0.6885 and a255-0.0068 and alb<=7.5385 and a23<=0.6357 and a27<=0.034 and a34<=47.9245 and 225:0.4 and
433¢=61.3745 THEM heuristic=2 and search_shrategy=3 and direction=0[74)

™ IF a23:131111 and a08<=98 THEN heuwistic=3 and direction=0 and search_strategy=2 (35)
I~ IF a29:0.6429 and 233¢=53.7317 and 233> 487617 and a05¢=3.6364 THEN heristic=2 and penalty=500 and search_strateqy=2 and closer=0[102)
I IF a29:0.65 and a15>97.4232 and al7<=173.786 and a25:0.3571 THEN heuristic=2 and penalty=500 {153]

I~ IF a29:0.6429 and a02¢=23 and 23511458 and a33<=55.2284 THEM hewristic=2 and penalty=100 and search_shateqy=3 [154]

Figure 10.The final firing set

6. Designing Module

The designing module of ViTAPlan-2 is able to praggraphical visualizations of planning domains and
specific problems that assist the users in betierpcehension of their structure. The environmest al
enables the user to modify existing domains anthlpros and even create new using pre-designed visual
elements and simple mouse movements.

6.1. Visualization of domains

The graphical visualization of planning domainst tisaadopted by ViTAPlan-2 consists of the entities
relations diagram and the definition of the opamato

6.1.1. Entitiesrelationsdiagram

The entities-relations diagram is a directed graphtaining two types of nodes and one type of arcs
connecting the nodes. The first type of nodesgedadintity, is represented in the design as a cacte
corresponds to an object class of the domain. Huwersl type is presented by the visual tool as a
parallelogram and is used to specify relations betwthe domain’'s classes. The edges connect
rectangular with circular nodes and are used toigpehich classes take part in each relation.

Consider the gripper domain for example, whereetlie a robot wittN grippers that moves in
a space, composed léfrooms that are all connected with each otherthIrooms are modeled as points
and there are connections between each pair ofgpaid therefore the robot is able to reach alim®o
starting from any one of them with a simple movemémnthe gripper domain there drenumbered balls
which the robot must carry from their initial pasit to their destination.

The diagram for th&ripper domain, which was used in the AIPS-98 planning petition, is
illustrated in Figure 11. There are three objeatsks in the domain, nametom, ball andgripper that
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are represented with circles. There is no clasgheffor the robot, since the domain assumes the
presence of only one instance of it and therefoeeetis no need for an explicit definition.

Domain  Problem  Cesign Other

room

ball
E ] 1

Figure 11.Entities-relations diagram fgripper

gripper

The domain has four predicates:a&yobby, which specifies the position of the robot anis it
connected only with one instancerabm, b) at which specifies the room in which each ball residad
therefore is connected with an instancebafl and an instance afoom, c) carry which defines the
alternative position of a ball, i.e it is hold Hyetrobot and therefore it is connected with anaims¢ of
ball and an instance @fipper and d)free which is connected only with an instancegoifpper and states
that the current gripper does not hold any ball.

Note here that although PDDL, requires only thieydor each predicate and not the type of
objects for the arguments, the interface obligesuber to connect each predicate with specificabbje
classes and this is used for the consistency obieitle domain design. According to the design guFé
11, the arity of predicatbolding, for example, is two and the specific predicate oaly be connected
with one object of cladsall and one object of claggipper.

6.1.2. Operators

The definition of operators in ViTAPlan follows aedarative schema, which is different from the
classical STRIPS approach, although there is atdway to transform definitions from one approagh t
the other. More specifically, an operator in theual environment is represented with two lists, elgm
Pre andPost, that contain: a) the facts that must hold inates$; in order to apply the operator and b) the
facts that will be true in sta® which will result from the application of the opésr onS,. The relations
between these lists and the three liBre¢, Add, Del) of the STRIPS notation are the following:

From STRIPSto ViTAPlan:
Pre(A) = Prec(A)
Post(A) = Add(A) U (Prec(A) —Del(A))
From ViTAPlan to STRIPS.
Prec(A) = Pre(A)
Add(A) = Post(A) - Pre(A)
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Del(A) = Pre(A) — Post(A)

Each operator, in the interface, is representdd aviabeled frame, which contains a column of
object classes in the middle, two columns of prateis at the two sides of it and connections betwleen
object classes and the predicates. The un-groufaldd that are generated by the classes and the
predicates in the left column define tRee list of the operator while th@€ost list is defined by the
predicates in the right column.

For example, in the gripper domain there are tbperators: ajnove which allows the robot to
move between rooms, pjck which is used in order to lift a ball using a gép@nd c)rop which is the
direct opposite of pick and is used to leave admlihe ground

The move operator is related with two instance of the rodasg (ooml and room2) which
correspond to the initial and the destination rooirthe robot's move. Th€re and Post lists of the
operator contain only one instance of #teobby relation. In thePre list the at-robby is connected to
rooml, while thelatter is replaced byoom2 in the Post list. The definition of the move operator is
presented in Figure 12.

rmove

rgum1

room?2

Figure 12.The move operator

The second operatopi€k), which is presented in Figure 13, contains orstaimce from three
entities, namelpall1, rooml andgripperl that correspond to the ball that resided on tlenrand was
picked by a robot's gripper. There list defines that both the ball and the robot ningstn the same room
and that the gripper must be free. The new fadtitheontained in th@ost list is that the gripper holds
the ball, while the freedom of the gripper and fhet that the ball resides on the room are del€lee.
fact that the robot is irooml is contained in both list$2¢e andPost) since it is not deleted.

rpick
balll
at balll room
carry balll gripperl
Btesby o] L4
gripperl
|

Figure 13.The pick operator
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Similarly we define thedrop operator which is presented in Figure 14. This ajmeris the
direct opposite of thpick operator and in fact it is produced by exchangiefrec andPost lists of the
latter.

~drop
halll
1 at balll room1
carry balll gripper]
rogh
gripperl _
|

Figure 14.The drop operator

6.2. Problems

The designing of problems in the interface folloavsimilar model with that of operators. Problems ca
be formed by creating a list of objects, two listgpredicates and a number of connections amonyg.the
The list which is created by the predicates inléifiecolumn and the objects correspond to thedhgtate
of the problem, while the goals are formed by thedlcates of the right column.

Figure 15 presents a problem of the gripper domahich contains two roomgdoma and
roomb), three ballskalll, ball2 kot ball3) and the robot has two grippetsf{ andright). The initial state
of the problem defines the starting locations efithbot and the balls and that both grippers ae. ffhe
goals specify the destinations of the three balls.

One of the key enhancements of ViTAPlan-2 overghst versions concerns the ability to use
a predefined chain of objects that can be utilifordhe definition of many kinds of facts. Consider
example the case where in gripper the moves ofdbet are restricted by a relation (eognnected)
which specifies which movements are feasible. If suppose that the map of the rooms is the one
presented in Figure 16, then this would require uber to add theonnected relation 7 times in the
problem’s definition and each time to make the appgate connections (see Figure 17). This can becom
a severe problem for large and complex maps.
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~Problem

rooma
roomb

- at ball3 roomkb
ball3

hall? at ball? roomky)

at ball3 rooma

left at balll roomb)
at balll rooma right
||

Figure 15. A Problem of thegripper domain

o

S

Figure 16. A map for agripper problem

There is a number of cases where similar mapseangred. For example in th@noi domain,
according to the definition adopted by the planntognmunity, the problem file must specify for each
possible pair of pegs and discs which of the twsnimller. For a simple problem with three pegs and
discs, this yields to 39 smaller relations.

oml

\I

room?2

room3

room4

Figure 17.The connections between the rooms
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In order to deal with this problem, ViTAPlan-2 taims a tool for building maps which makes
it easier for the user to define multiple relatidoetween pairs of objects that belong to the samigye
The user can use simple drag ‘n drop operationsder to define single and duplex connections betwe
them. For example, the case described in Figureah7be easily encoded in ViTAPIlan-2 using the map
tool as shown in Figure 18.

rProblem
room]

room?2

[MAP rooml room roamd roomd

om3

rMAP

room?2

room room3

room4

Figure 18.The map tool

6.3. Validity checking

The visual environment besides the automation d&edcbnvenient way in which new domains and
problems are designed, it also performs a numbenlidity checks in the definitions, in order tosiess
the user | this really complex task. The entitielstions diagram, which is probably the most imgotrt
part of the design of new domains is further use¥id APlan-2 as a reference model for the checks.

Each time the user tries to connect an instaneam @htityE to an instance of a relatié® the tool checks
if:

i. This specific connection generates a fact thatl@ady been defined in the same operator or in
the problem. In that case the connection is refecmce PDDL does not allow redefinitions of
the same fact inside the same scope.

ii. The definition of the relation in the entities-t&@s diagram contains a connection to the entity
in which theE belongs.

iii. There is an empty slot R which according to the diagram should be conneittebjects of the
same class &8's.

The checks listed above are performed dynamicakdp at each attempted change in the
entities-relations diagram. For example, if therdmetes a connection between an entity and saeja
ViTAPlan will automatically delete any instance tifis connection from all the operators and the
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definition of the problem. A similar update willsal take place in the definition of the operators ianthe
problem, if the user deletes an entire relatioaroentity.

Finally, a number of checks are also performednguthe compilation of the design in PDDL.
More specifically these checks contain:

e The case where no operator is defined

e The definition of empty operators

e The definition of void operators, i.e. operatorsrtvémptyPre andPost lists
e The definition of effect less operatoRré = Post)

e The definition of any empty problem

e Semi-connected edges which lead to incomplete facts

6.4. Translation to pddl

The domains and the problems that are designedTiARian are automatically compiled to the PDDL
definition language, in order to allow their solginising different planning systems. The environment
contains a PDDL editor which enables the user ¢oasel even modify the PDDL files of his designs. Fo
example, the gripper domain and the specific prollsed in this section are presented in Figurentd a
Figure 20 respectively.

. Domain - C:\phd’ Domains' Gripper'idomain.pddl 1'
File

ldefing [domain aripper-stiips) -
[.predicates [room 7]
[ball 7]
[aripper 7]
[at-robby ?1]
[at ?b ™)
[free ?g)
[eany 20 7))

[ action move
:parameters [Prom Pta)
:precondition [and (room ?from) [room ?to) [at-rabby Pram])
seffect [and [at-obby ?to)
[not [at-robby Pfom]]]]

[ action pick
:parameters [Pabj Yroom Pgripper)
:precondtion [and (ball Zobi] raom Froom) [aripper ?gripper)
[at Pabj room] (atrobby Proom) [free aripper))
ceffect [and [canmy Yob) Tgrpper]
[not [t ?abj Proom]]
[nat (free ?aripper)]]]

[:action drap
:patameters [?obj Proom ?aripper]
:precondtion [and (ball Zobi] raom room) [aripper aripper)
[carmy ?obj Tgripper] [at-robby 7room])
:effect [and [at ?obj Proom)
(free Paripper] —
[nat (carmy Tabi Paripper]))

Cancel | Ok

Figure 19.Thegripper domain in PDDL
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. C\phd', Domains' Gripper'proba.pdd| 5[
File

[define [problem TEST)
[:domain TEST-strips)
[:abjects rooma roomb ball3 ball2 ball1 left right)
Linit
[raom rooma)
[roam roomb]
[ball ball3)
[ball balz)
[ball bal1)
[aripper left)
[aripper right]
[at-rabby rooma)
[free left]
[free right]
[at ball3 rooma])
[at ball2 rooma]
[at balll rooma]

[:goal [and
[at ball3 roomb]
[at ball2 roomb]
[at balll roomb])
]
)

Cancel |

Figure 20.The PDDL file of agripper's problem

7. Plan Visualization

There are two modules for visualizing the plan¥ifAPlan: the execution simulation which simulates
the execution of the plan in a virtual world and gteps visualization that presents the plan ascton

graph.

7.1. Execution simulation

This module of ViTAPlan-2 allows the user to exectiie plan that was acquired from the execution sub
system and trace the changes that occur to thelwvasrthe actions of the plan are sequentially agpli
Figure 21 presents the simulation module, whichsiste of three parts. The first one is a scroll, bar
through which the user can browse for a specifioa®f the plan. The other two parts present thges

of the world before the application of the seledetion (left part) and after it (right part) respeely.

=
Initial State [1] pick balll rooma left
canry balll left
at ball3,rooma t ball3.rooma
at ball2,raoma 2t ball2 roma
at ballf raoma

D Static fact D Deleted fact D Added fact D Propagated fact

Figure 21.Execution simulation
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In the example presented in Figure 21 the firtibacof the plan is selected and therefore the
state presented in the left part is the initial ,onhile the one in the right part is the first imtediate
state. The tool uses proper color coding in ordatiscriminate the facts in four categories:

i. facts of the preceding state that are deleted dwuthion
ii. new facts that are added to the new state
iii. propagated facts
iv. static facts

7.2. Step graph

The second option for the user is to view theoadtiof the plan on a timeline, as shown in
Figure 22. The timeline for the plan presents facteaction the point in which it is scheduled to be
executed and the facts in its precondition andlistil Moreover, the visualization shows the intdiens
between the actions in the plan. More specificdlly,each actiorA the user is able to see connections
between:

i. each precondition o4 and the most recent action that achieved it
ii. each fact that is deleted Byand the most recent action that established it
iii. each fact that is added Byand the following actions that have it in theiegponditions

s, Step viewer == x|

1
Initial

4

5

pick balll rooma left
flat balll roomd [Eamy Balll e

Figure 22. Step graph

The connections represented by the arcs in thehgmesent in graphical way all the
interactions (positive and negative) between thpssbf the plan and therefore allow the user to:
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i. Comprehend the specific sorting in which the stegpge been ordered and why a specific action
should be placed before (or after) another one.

ii. Replace an action or a set of actions with otlaking care as not to violate the interactions, and
thus produce modified or alternative plans.

iii. Find parallelizations in the plan execution and¢fare reduce the total execution time and the
cost of its application.

8. Conclusions and Future Work

This article presented ViTAPlan-2 a unified envimeent for automated planning which contains several
modules with user friendly interfaces. One of they Keatures of the environment is the use of the
configuration module that can automatically fingaé the planning parameters based on rules, extract
from Machine Learning techniques, that associaarphg parameters with problem attributes.

The current version of the environment has fouimnfianctions: a) using the planning system
through a number of windows, controls and commaodiues, which makes it much easier for a non —
programmer to use the planner and experiment \ifittreint setups of the planning parameters, b)tise
Problem analyzer and the Rule system of HAP-RC roleloto acquire useful knowledge about the
morphology of each problem and automatically fimeetthe planner with the most appropriate values fo
the planning parameters c) generating new domaidspaoblems using a visual tool which saves the
domain expert from the strict syntactic rules ofRD makes the definition of domains and problems
more understandable, even for a non-planning-exped makes a number of consistency checks on the
designs in order to generate PDDL files with adlelitlaws as possible and d) produce visual
representations of the plans found by the planaysiem, which enable the user to better understacd
step in the plan and also intervene and alter lidoe gt will.

In the future we plan to improve the interfacalinfunctions of it and introduce others that will
make it a complete tool for planning both for agadeand industrial use. It is in our direct plans t
enhance the tool for designing domains and probleitis the ability to handle advanced aspects of the
PDDL2.7, such as treatment of numerical values, explieipresentation of time and duration,
conditional effects e.t.c.
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