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This article presents ViTAPlan-2, a visual tool for adaptive planning that is build on top of HAPRC, a rule-configurable 
planning system, which automatically adapts to each problem, in order to achieve best performance. Apart from HAPRC, 
ViTAPlan can be interfaced with any other planning system that supports the PDDL language. More than just being a 
user friendly environment for executing the underlying planner, the tool serves as a unified planning environment for 
encoding a new problem problem, solving it, visualizing the solution and monitoring its execution on a simulation of the 
problem’s word. The tool consists of various sub-systems, each one accompanied by a graphical interface, that 
collaborate with each other and assist the user, whether he is a knowledge engineer, a domain expert, an academic or 
even an end user in industry, to carry out complex planning tasks. 
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1. Introduction 

Automated Planning has been an active research topic for almost 40 years and during this period a great 
number of papers describing new methods, techniques and systems have been presented that mainly focus 
on ways to improve the efficiency of planning systems. However, there are not many successful examples 
of planning systems adapting to industrial use. From a technical point of view, this can be mainly 
explained by four reasons: a) There is a general disbelief of managers and workers in industry that AI 
tools can really assist them, b) There is a need for systems that combine methods from many areas of AI, 
such as Planning, Scheduling and Optimization, c) The industry needs more sophisticated algorithms than 
can scale up to solve real-world problems and d) In order for workers in industry to make use of these 
intelligent systems, they must be equipped with user friendly interfaces that: i) allow the user to intervene 
in certain points and ii) can reason about the provided solution. 

The greater problems that one faces when he tries to contact companies and organizations for 
installing a planning system, come from the workers themselves. These problems concern two issues: a) It 
has been noticed that people find it hard to trust automated systems when it comes for crucial processes. 
There are a lot of people who still think that they can do better than machines. b) The lack of information 
is the cause of a quite widespread phobia towards computers and automated machines. There are still a lot 
of people who think that they will be replaced or governed by machines and the try to defend their posts 
by rejecting everything new. 

Although it is necessary for researchers to specialize in very specific parts of their research area, 
commercial systems, dealing with real time problems, have to combine techniques and methods from 
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many areas. It has been shown that AI Planning techniques for example, are inadequate to face with the 
complexity and the generality of real world problems. For example, it has been proven that Scheduling 
and Constraint solving techniques can handle resources more efficiently. Commercial applications must 
combine methods from many areas of AI and probably from other areas of computer science as well. 

Another issue that must be dealt is the large gap between toy problems used by researcher for 
developing and testing their algorithms and the actual problems faced be people in industry. Researchers 
are usually unaware of the size of real world problems or they simplify these problems in order to handle 
with them. But these algorithms prove themselves inadequate to be adopted by commercial software. So it 
is a general conclusion that researcher should start dealing with more realistic problems. This research 
direction was also given during the last AIPS Planning competitions where there was a tendency to test 
planners on problems closer to reality. 

Last but certainly not least is the direct need of software based on AI tools to be accompanied 
with user friendly interfaces. Since the user will be a manager or even a simple worker in a company and 
not a computer scientist, the software must be easy to use. Furthermore, it must enable the user to 
intervene in certain points for two reasons: a) Mixed initiative systems can deal with real-world problems 
better and b) people in companies do not like to take commands and therefore a black box which can not 
reason about its output will not do. So it is necessary for the software to cooperate with the user in the 
process of solving the problem in hand, since people have a more abstract model of the problem in their 
mind and are better in improvising, while computers can more efficiently deal with lower levels of the 
problem. 

This article describes ViTAPlan-2, a visual tool for adaptive planning, which is equipped with a 
rule system able to automatically fine-tune the planner based on the morphology of the problem in hand. 
The tool has been developed for the HAP planning system, but it can be used as a graphical platform for 
any other modern planner that supports the PDDL language. The tool consists of various sub-systems that 
collaborate in order to carry out several planning tasks and provides the user with a large number of 
functionalities that are of interest to both industry and academia. 

 The rest of the article is organized as follows: The next section presents an overview of the 
work related to automated planning systems and graphical environments for planning. Section 3 describes 
the architecture of the visual tool and briefly describes the contained sub-systems. Sections 4 and 5 
present the execution module that interfaces the visual tool with the planning system and the knowledge 
module that is responsible for the automatic configuration of the planning parameters respectively. 
Section 6 analyzes the graphical tool for visualizing and designing problems and domains and illustrates 
the use of the sub-system with concrete examples. The next section presents the two sub-systems that 
visualize the plans and simulate their execution in virtual worlds and finally section 8 concludes the 
article and poses future directions. 

2. Related Work 

Two of the most promising trends in building fast domain-independent planning systems were presented 
over the last few years.  
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 The first one consists of the transformation of the classical search in the space of states to other 
kinds of problems, which can be solved more easily. Examples of this category are the SATPLAN13 and 
BLACKBOX 14 planning system, the evolutionary GRAPHPLAN1 and certain extensions of 
GRAPHPLAN as the famous STAN17 planner. 
 SATPLAN and BLACKBOX transform the planning problem into a satisfiability problem, 
which consists of a number of boolean variables and certain clauses between these variables. The goal of 
the problem is to assign values to the variables in such a way that establishes all of the clauses.  
GRAPHPLAN on the other hand creates a concrete structure, called the planning graph, where the nodes 
correspond to facts of the domain and edges to actions that either achieve or delete these facts. Then the 
planner searches for solutions in the planning graph. GRAPHPLAN has the ability to produce parallel 
plans, where the number of steps is guaranteed to be minimum. 
 The second category is based on a relatively simple idea where a general domain independent 
heuristic function is embodied in a heuristic search algorithm such as Hill Climbing, Best-First Search or 
A*. Examples of planning systems in this category are the ASP/HSP family2, AltAlt 19, FF11, YAHSP22 
and Macro FF3. 
 The planners of the latter category rely on the same idea to construct their heuristic function. 
They relax the planning problem by ignoring the delete lists of the domain operators and starting either 
from the Initial State or the Goals they construct a leveled graph of facts, noting for every fact f the level 
at which it was achieved L(f). In order to evaluate a state S, the heuristic function takes into account the 
values of L(f) for each  f ∈  S. 
 The systems presented above are examples of real fast planners that are able to scale up to 
quite difficult problems. However, there are still open issues to be addressed that are crucial to industry, 
such as temporal planning or efficient handling of resources. Although there has been an effort during the 
last few years to deal with these issues there is still only a small number of systems capable of solving 
near real world problems. 
 An example of this trend is the SGPlan system5, which won the won the first prize in the 
suboptimal temporal metric track and a second prize in the suboptimal propositional track in the Fourth 
International Planning Competition (IPC4). The basic idea behind SGPlan is to partition problem 
constraints by their subgoals into multiple subsets, solve each subproblem individually, and resolve 
inconsistent global constraints across subproblems based on a penalty formulation. 
 Another system able to handle planning problems that incorporate the notion of time and 
consumable resources is the LPG-TD planner9, which is an extension of the LPG planning system. Like 
the previous version of LPG, the new version is based on a stochastic local search in the space of 
particular “action graphs” derived from the planning problem specification. In LPG-TD, this graph 
representation has been extended to deal with the new features of PDDL2.2, as well to improve the 
management of durative actions and of numerical expressions. 

 There are also some older systems that combine planning with constraint satisfaction 
techniques in order to deal with complex problems with time and constraints. Such systems include the 
Metric FF Planner12, the S-MEP20 and the SPN Neural Planning Methodology4. 

 As far as user interfaces are concerned, there have been several approaches from institutes and 
researchers to create visual tools for defining problems and running planning systems, such as the GIPO 
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system18, the SIPE-229 and the ASPEN1 graphical user interfaces. Moreover, there is a number of 
approaches in building visual interfaces for specific applications of planning. The PacoPlan project 24 
aims in building a web-based planning interface for specific domains. AsbruView15 is a visual user 
interface for time-oriented skeletal plans representing complex medical procedures. Another example of 
visual interfaces for planning is the work of the MAPLE research group at the university of Maryland16, 
which concerns the implementations of a 3D graphical interface for representing hierarchical plans with 
many levels of abstractions and interactions among the parts of the plan. Although these approaches are 
very interesting and provide the community with useful tools for planning, there is still a lot of work to be 
done in order to create an integrated system that meets the needs of the potential users. 

3. Tool’s Architecture 

The visual planning environment is based on the first version of ViTAPlan27,28, which has been extended 
in several ways. The architecture of the tool, which is outlined in Figure 1, consists of the following sub-
systems, which are discussed in more detail later in the article: a) designing, b) configuration, c) solving, 
d) visualizing and e) simulating. 

 

Figure 1. ViTAPlan's Architecture 

 The designing module provides visual representations of planning domains and problems 
through graphs that assist the user in comprehending their structure. Furthermore, the user is provided 
with graphical elements and tools for designing new domains and new problems of existing domains. 
This module communicates with the file system of the operating system, in order to save the designs in a 
planner – readable format (i.e. PDDL10 planning language) and also load and visualize past domains and 
problems. 
 The configuration module of ViTAPlan-2 deals with the automatic fine-tuning of the planning 
parameters. This task is performed through two steps that are implemented in different sub-systems. The 
first one, called Problem Analyzer, reads the description of the problem from the input files, analyzes it 
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and outputs a vector of numbers that correspond to the values of 35 measurable attributes that quantify the 
morphology of the problem in hand. The rule system, which is consulted after the analysis of the problem, 
contains a number of rules that associate specific values or value ranges of the problems’ attributes with 
configurations of the planning parameters that guarantee good performance. 
 The solving module inputs the description of the problems (PDDL files of the domain and the 
problem) along with the values of the planner’s parameters and executes the planner (HAP or any other 
system attached to ViTAPlan) in order to obtain a solution (plan) to the problem. The planner’s 
parameters can be adjusted either by hand or automatically via the configuration module.  
 The last two sub-systems (visualization and simulation) present the plan that was inputted from 
the execution module in several forms. The visualization module presents the plan as a directed graph, 
through which the user can identify the positive and negative interactions among the actions and 
experiment with different orderings in which the plan’s steps should be executed. The second module 
simulates the problem’s world presenting all the intermediate states that occur after the execution of each 
action. 

4. Interface for Planning Systems  

The main feature of ViTAPlan is to allow the use of the underlying planning system in a friendlier and 
more accurate way. This interface between the user and the planning engine is carried out by the solving 
module of the visual environment. The inputs that must be supplied to the planning system are: a) the 
domain file, b) the problem file and c) the values of the planning parameters, in case of adjustable 
planners.  

 

Figure 2. Selecting the input files  

 From the initial screen of the interface, which is shown in Figure 2, the user uses common 
dialogues and graphical elements in order to browse for the domain and problem files that will be inputted 
to the planner. From the same screen the user can also execute the planner and obtain the solution (plan), 
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among with statistics concerning the execution, such as the planning time and the length of the plan. The 
way the results of the planner are presented to the user is shown in Figure 3. 

 

 

Figure 3. Solving the problem 

 There are three ways for tuning the planner’s parameters in ViTAPlan: a) using the default 
values provided by the system, b) let the user assign the values by hand or c) use the configuration 
module in order to have the parameters set automatically. The user can select among the first two ways 
through the settings window presented in Figure 4. The parameters presented in this window correspond 
to the HAP planner which is embodied in ViTAPlan. 

 

 

Figure 4. Setting the planning parameters 
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4.1. Hap planner 

HAP, is a highly adjustable planning system that can be customized by the user through a number of 
parameters. These parameters concern the type of search, the quality of the heuristic and several other 
features that affect the planning process. The HAP system is based on the BP (Bi-directional Planner) 
planning system23 and uses an extended version of the ACE25 (Action Evaluation) heuristic. 
 HAP is capable of planning in both directions (progression and regression). The system is quite 
symmetric and for each critical part of the planner, e.g. calculation of mutexes, discovery of goal 
orderings, computation of the heuristic, search strategies etc., there are implementations for both 
directions. The direction of search is the first adjustable parameter of HAP used in tests, with the 
following values: a) 0 (Regression or Backward chaining) and b) 1 (Progression or Forward chaining). 
 As for the search itself, HAP adopts a weighted A* strategy with two independent weights: w1 
for the estimated cost for reaching the final state and w2 for the accumulated cost of reaching the current 
state from the starting state (initial or goals depending on the selected direction). For the tests with HAP, 
we used four different assignments for the variable weights which correspond to different assignments for 
w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3, w2 =1), c) 2 (w1 =2, w2 =1) and d) 3 (w1 =1, w2 =1). 
 The size of the planning agenda (denoted as sof_agenda) of HAP also affects the search 
strategy and it can also be set by the user. For example, if we set sof_agenda to 1 and w2 to 0, the search 
algorithm becomes pure Hill-Climbing, while by setting sof_agenda to 1, w1 to 1 and w2 to 1 the search 
algorithm becomes A*. Generally, by increasing the size of the agenda we reduce the risk of not finding a 
solution, even if at least one exists, while by reducing the size of the agenda the search algorithm 
becomes faster and we ensure that the planner will not run out of memory. For the tests we used three 
different settings for the size of the agenda: a) 1, b) 100 and c) 1000 
 The OB and OB-R functions introduced in BP and ACE respectively, are also adopted by HAP 
in order to search the states of the search for violations of orderings between the facts of either the initial 
state or the goals, depending on the direction of the search. For each violation contained in a state, the 
estimated value of this state that is returned by the heuristic function, is increased by violation penalty, 
which is a constant number supplied by the user. For the experiments of this work we tested the HAP 
system with three different values of violation_penalty: a) 0, b) 10 and c) 100.  
 The HAP system employs the heuristic function of the ACE planner, plus two variations of it, 
which are in general more fine-grained. There are implementations of the heuristic functions for both 
planning directions. All the heuristic functions are constructed in a pre-planning phase by performing a 
relaxed search in the opposite direction of the one used in the search phase. During this relaxed search the 
heuristic function computes estimations for the distances of all grounded actions of the problem.  
 The user may select the heuristic function by configuring the heuristic_order parameter. The 
three acceptable values are: a) 1 for the initial heuristic, b) 2 for the first variation and c) 3 for the second 
variation. 
 HAP also embodies a technique for simplifying the definition of the sub-problem in hand. This 
technique eliminates from the definition of the sub-problem (current state and goals) all the goals that 
have already been achieved in the current state and do not interfere in any way with the achievement of 
the remaining goals. In order to do this the techniques performs, off-line before the search process, a 
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dependency analysis on the goals of the problem. The parameter remove_subgoals is used to turn on 
(value 1) and off (value 0) this feature of the planning system. 
 The last parameter of HAP is equal_estimation, which defines the way in which states with the 
same estimated distances are treated. If equal_estimation is set to 0 then between two states with the same 
value in the heuristic function, the one with the largest distance from the starting state (number of actions 
applied so far) is preferred. If equal_estimation is set to 1, then the search strategy will prefer the state, 
which is closer to the starting state. 

4.2. Embedding other planning systems 

The current version of ViTAPlan embodies the HAP system, but the environment is open and the user can 
easily attach any other planner that reads the PDDL10 language. The communication protocol between the 
visual environment and the planner (including HAP) is outlined in Figure 5.  

 

Figure 5. Communication with the planner 

 As already discussed the data that should be transmitted between ViTAPlan and the planning 
system are: a) the description of the domain and the problem, b) optionally the settings for the planner’s 
parameters and c) the plan that solves the problem.  
 Concerning the description of the problem, ViTAPlan is able to extract PDDL files, which is 
the standard definition language for all modern planners. Therefore it is trivial to submit the problem to 
any new planning system.  
 For each configurable parameter, ViTAPlan needs a description, the option used to set this 
parameter in the planner and the domain of values. This information must be specified by the user in 
order to add a new planner in the environment. The current version of ViTAPlan supports only discrete 
values for the domains of the parameters, but this can very easily be extended to support continuous 
values or other data types (e.g. booleans). For example, Table 1 presents part of the information that 
should be inputted to ViTAPlan-2 in order to connect it with the LPG planning system8. 
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Table 1. Specification of LPG’s parameters 

Parameter Option Values 
Heuristic identifier -h 1,2 
Max number of restarts -restarts 1,2,3,4,5,6,7,8,9…. 
Noise added to Walksat -noise 0,0.1,0.2,0.3…. 
…   

 
 The output of any planner to a given problem is a sequence of actions that achieve the 
predefined goals. However, since there has not been a standard for describing plans yet, each planner may 
present the sequences of actions in a different way. Therefore a necessary step in order to attach a 
different planning system X on ViTAPlan-2, is to format its output, either by modifying the system, or by 
adding a pre-processor that reads the plan in X’s format and transforms it. Figure 6 presents an example of 
a plan in ViTAPlan’s format.  

 

 

Figure 6. A plan’s excerpt in ViTAPlan’s format  

5. Configuration Module 

The Configuration module of ViTAPlan is a sub-system able to adjust the planning parameters in 
automatic manner. This feature is currently available only for use with the HAP planning system, 
although the methodology for the automatic configuration of planning parameters is general and can be 
applied to other planners as well 21.  
 The automatic configuration is based on HAP-RC26, which uses a rule system in order to 
automatically select the best settings for each planning parameter, based on the morphology of the 
problem in hand. HAP-RC, whose architecture is outlined in Figure 7 is actually HAP with two additional 
modules (Problem Analyzer and Rule System) which are utilized off-line, just after reading the 
representation of the problem in order to fine tune the planning parameters of HAP.  
 

Begin of Plan 
1: (drive truck0 distributor1 distributor0)  
2: (lift hoist1 crate0 pallet1 distributor0) 
3: (load hoist1 crate0 truck0 distributor0) 
… 
11: (drop hoist1 crate1 pallet1 distributor0) 
End of Plan  



 10

 
Figure 7. HAP-RC Architecture 

 The role of the Problem Analyzer is to identify the values of a specific set of 35 problem 
characteristics (noted as A1 to A35). These characteristics include measurable attributes of planning 
problems, such as number of facts per predicate and the branching factor of the problem that present the 
internal structure of the problems in a quantified way. After the identification of the values of the 
attributes, which may requires a limited search in the problem, the analyzer feeds the Rule system with a 
vector containing the values for the 35 problem attributes. 
 The Rule system contains a number of rules of the following format:  

If preconditions list Then actions list 
The preconditions of the rules check if the values of the problem’s attributes comply with some 
constraints on them, while the actions set one or more planning parameters to specific values. For 
example, the rule: 

If A24<1.8 and A17<9.7 Then direction=1 and closer=yes 
will trigger in a given problem if the values of A24 (ratio between the branching factors of the two 
directions) and A17 (standard deviation of the average number of actions deleting a fact) are smaller than 
1.8 and larger than 9.7 respectively. If this rule is eventually fired, then the planning direction will be set 
to forward and the search algorithm will use the technique for overcoming plateaus.  
 What these rules actually do, is to propose setups for the planning parameters that worked 
efficiently in similar problems in the past. This knowledge has been extracted from Machine Learning 
techniques on data produced by thorough experiments with the HAP system. More specifically, we tested 
all the possible combinations of the parameters of HAP on a large set of problems from various domains 
and for each run we kept record of the values of the problem attributes, the specific setup for HAP and the 
value for a metric combining planning time and plan length. The data set was then fed to a Machine 
Learning tool in order to learn a rule-based classification model that would discriminate between good 
and bad value of the metric based on the rest of the attributes. 
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 The Configuration module of ViTAPlan-2 also provides the user with the option to use the 
Problem Analyzer and the Rule System of HAP-RC in order to automatically fine-tune the planning 
parameters of HAP. The relevant window of the interface is shown in Figure 8. This window is divided in 
three parts: a) the first part shows the discretized values for the 35 problem characteristics, as produced by 
the Problem analyzer, b) the second part provides the user with the list of the rules that comprise the core 
knowledge of the system and c) the last part provides the user with the proposed values for the planning 
parameters of HAP. 
 The values of the problem’s attributes are presented in order to check for the triggered rules, 
but more importantly to assist the knowledge engineer or the domain expert in decoding the internal 
structure of the problem and extract useful insights from it. The tool presents the following information 
for each one of the 35 attributes: a) the code name (e.g A07), b) a description of the attribute (e.g. 
Standard deviation of the number of facts per predicate), c) the arithmetic value, d) a discretized value 
(e.g. small) and e) the usual upper and lower limit for its value.  
 The rules are shown in the appropriate frame of the environment sorted by decreasing order of 
their confidence, as this was calculated by the learning algorithm. ViTAPlan presents all the rules, but the 
user is able to control the viewable part of the rules through two controls that select only the triggered 
rules or the rules that affect a specific parameter (e.g. heuristic function). 
 From the set of triggered rules, ViTAPlan-2 makes an initial choice, selecting the rules with the 
highest confidence factor that are not in conflict with any other already selected rule. We say that two 
rules are in conflict, if they propose different setups for the same parameter. The configuration module 
uses the initial subset of selected rules in order to calculate the values of the parameters and present them 
to the user, leaving each unset parameter to its default value.  

 

Figure 8. The rule system 
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 Instead of just accepting or rejecting the proposed parameter setting, the user has the ability to 
interfere with the rule system, modifying so the adopted conflict resolution strategy. More specifically, 
the user may either include a new rule in the firing set, or request the removal of a selected one and thus 
alter the firing set and therefore the setup of the parameters. Each time the user request the firing of a new 
rule Ri, the module automatically checks the resulting firing set for conflicts and removes all the rules that 
propose contradictory values for the parameters affected by Ri. 
Consider for example the case in Figure 9, which presents a portion of the triggered rules, i.e. those that 
require values for the attributes A01 to A35 that are compatible with the problem in hand. The initial 
selection contains rules 49, 74 and 154 that define the values 100, 2, 3 and 0 for the parameters penalty, 
heuristic, search_strategy and direction respectively. 
 

 

Figure 9. The initial firing set 

 Lets also suppose that the user requests rule number 35 (the first rule in Figure 9) to be 
included in the firing set. Rule 35 is in contradiction with rule 49, since the first sets penalty to 500 while 
the second sets it to 100 and with rule 154 for the same reason. There is no contradiction with rule 74, 
since the only common parameter is heuristic and they propose the same value (2) for it. Therefore after 
the inclusion of rule 35, rules 49 and 154 are removed form the firing set as shown in Figure 10. The 
proposed setup of the planner’s parameters becomes the following: closer=1, penalty=500, heuristic=2, 
search_strategy=3 and direction=0. 
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Figure 10. The final firing set 

6. Designing Module 

The designing module of ViTAPlan-2 is able to present graphical visualizations of planning domains and 
specific problems that assist the users in better comprehension of their structure. The environment also 
enables the user to modify existing domains and problems and even create new using pre-designed visual 
elements and simple mouse movements.  

6.1. Visualization of domains 

The graphical visualization of planning domains that is adopted by ViTAPlan-2 consists of the entities-
relations diagram and the definition of the operators. 

6.1.1. Entities-relations diagram 

The entities-relations diagram is a directed graph containing two types of nodes and one type of arcs 
connecting the nodes. The first type of nodes, called entity, is represented in the design as a circle and 
corresponds to an object class of the domain. The second type is presented by the visual tool as a 
parallelogram and is used to specify relations between the domain’s classes. The edges connect 
rectangular with circular nodes and are used to specify which classes take part in each relation.  
 Consider the gripper domain for example, where there is a robot with N grippers that moves in 
a space, composed of K rooms that are all connected with each other. All the rooms are modeled as points 
and there are connections between each pair of points and therefore the robot is able to reach all rooms 
starting from any one of them with a simple movement. In the gripper domain there are L numbered balls 
which the robot must carry from their initial position to their destination. 
 The diagram for the Gripper domain, which was used in the AIPS-98 planning competition, is 
illustrated in Figure 11. There are three object classes in the domain, namely room, ball and gripper that 
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are represented with circles. There is no class defined for the robot, since the domain assumes the 
presence of only one instance of it and therefore there is no need for an explicit definition.  
 

 

Figure 11. Entities-relations diagram for gripper 

 The domain has four predicates: a) at-robby, which specifies the position of the robot and it is 
connected only with one instance of room, b) at which specifies the room in which each ball resides and 
therefore is connected with an instance of ball and an instance of room, c) carry which defines the 
alternative position of a ball, i.e it is hold by the robot and therefore it is connected with an instance of 
ball and an instance of gripper and d) free which is connected only with an instance of gripper and states 
that the current gripper does not hold any ball. 
 Note here that although PDDL, requires only the arity for each predicate and not the type of 
objects for the arguments, the interface obliges the user to connect each predicate with specific object 
classes and this is used for the consistency check of the domain design. According to the design of Figure 
11, the arity of predicate holding, for example, is two and the specific predicate can only be connected 
with one object of class ball and one object of class gripper. 

6.1.2. Operators 

The definition of operators in ViTAPlan follows a declarative schema, which is different from the 
classical STRIPS approach, although there is a direct way to transform definitions from one approach to 
the other. More specifically, an operator in the visual environment is represented with two lists, namely 
Pre and Post, that contain: a) the facts that must hold in a state S1 in order to apply the operator and b) the 
facts that will be true in state S2 which will result from the application of the operator on S1. The relations 
between these lists and the three lists (Prec, Add, Del) of the STRIPS notation are the following: 

From STRIPS to ViTAPlan: 
Pre(A) = Prec(A) 

Post(A) = Add(A) ∪ (Prec(A) – Del(A))  

From ViTAPlan to STRIPS: 
Prec(A) = Pre(A) 

Add(A) = Post(A) - Pre(A) 
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Del(A) =  Pre(A) – Post(A) 

 Each operator, in the interface, is represented with a labeled frame, which contains a column of 
object classes in the middle, two columns of predicates at the two sides of it and connections between the 
object classes and the predicates. The un-grounded facts that are generated by the classes and the 
predicates in the left column define the Pre list of the operator while the Post list is defined by the 
predicates in the right column. 
 For example, in the gripper domain there are three operators: a) move which allows the robot to 
move between rooms, b) pick which is used in order to lift a ball using a gripper and c) drop which is the 
direct opposite of pick and is used to leave a ball on the ground 
 The move operator is related with two instance of the room class (room1 and room2) which 
correspond to the initial and the destination room of the robot’s move. The Pre and Post lists of the 
operator contain only one instance of the at-robby relation. In the Pre list the at-robby is connected to 
room1, while the latter is replaced by room2 in the Post list. The definition of the move operator is 
presented in Figure 12. 
 

 

Figure 12. The move operator 

 The second operator (pick), which is presented in Figure 13, contains one instance from three 
entities, namely ball1, room1 and gripper1 that correspond to the ball that resided on the room and was 
picked by a robot’s gripper. The Pre list defines that both the ball and the robot must be in the same room 
and that the gripper must be free. The new fact that is contained in the Post list is that the gripper holds 
the ball, while the freedom of the gripper and the fact that the ball resides on the room are deleted. The 
fact that the robot is in room1 is contained in both lists (Pre and Post) since it is not deleted. 

 

Figure 13. The pick operator 
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 Similarly we define the drop operator which is presented in Figure 14. This operator is the 
direct opposite of the pick operator and in fact it is produced by exchanging the Prec and Post lists of the 
latter. 

 

Figure 14. The drop operator 

6.2. Problems 

The designing of problems in the interface follows a similar model with that of operators. Problems can 
be formed by creating a list of objects, two lists of predicates and a number of connections among them. 
The list which is created by the predicates in the left column and the objects correspond to the initial state 
of the problem, while the goals are formed by the predicates of the right column. 
 Figure 15 presents a problem of the gripper domain, which contains two rooms (rooma and 
roomb), three balls (ball1, ball2 κ α ι  ball3) and the robot has two grippers (left and right). The initial state 
of the problem defines the starting locations of the robot and the balls and that both grippers are free. The 
goals specify the destinations of the three balls. 
 One of the key enhancements of ViTAPlan-2 over the past versions concerns the ability to use 
a predefined chain of objects that can be utilized for the definition of many kinds of facts. Consider for 
example the case where in gripper the moves of the robot are restricted by a relation (e.g. connected) 
which specifies which movements are feasible. If we suppose that the map of the rooms is the one 
presented in Figure 16, then this would require the user to add the connected relation 7 times in the 
problem’s definition and each time to make the appropriate connections (see Figure 17). This can become 
a severe problem for large and complex maps.  
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Figure 15. A Problem of the gripper domain 

 

Figure 16. A map for a gripper problem 

 There is a number of cases where similar maps are required. For example in the hanoi domain, 
according to the definition adopted by the planning community, the problem file must specify for each 
possible pair of pegs and discs which of the two is smaller. For a simple problem with three pegs and 5 
discs, this yields to 39 smaller relations. 

 

 

Figure 17. The connections between the rooms 

1 

2 

3 

4 
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 In order to deal with this problem, ViTAPlan-2 contains a tool for building maps which makes 
it easier for the user to define multiple relations between pairs of objects that belong to the same entity. 
The user can use simple drag ‘n drop operations in order to define single and duplex connections between 
them. For example, the case described in Figure 17 can be easily encoded in ViTAPlan-2 using the map 
tool as shown in Figure 18. 
 

 

Figure 18. The map tool 

6.3. Validity checking 

The visual environment besides the automation and the convenient way in which new domains and 
problems are designed, it also performs a number of validity checks in the definitions, in order to assist 
the user I this really complex task. The entities-relations diagram, which is probably the most important 
part of the design of new domains is further used by ViTAPlan-2 as a reference model for the checks. 

Each time the user tries to connect an instance of an entity E to an instance of a relation R, the tool checks 
if: 

i. This specific connection generates a fact that has already been defined in the same operator or in 
the problem. In that case the connection is rejected, since PDDL does not allow redefinitions of 
the same fact inside the same scope.  

ii.  The definition of the relation in the entities-relations diagram contains a connection to the entity 
in which the E belongs.  

iii.  There is an empty slot in R which according to the diagram should be connected to objects of the 
same class as E’s.  

 The checks listed above are performed dynamically also at each attempted change in the 
entities-relations diagram. For example, if the user deletes a connection between an entity and a relation, 
ViTAPlan will automatically delete any instance of this connection from all the operators and the 
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definition of the problem. A similar update will also take place in the definition of the operators and in the 
problem, if the user deletes an entire relation or an entity. 

 Finally, a number of checks are also performed during the compilation of the design in PDDL. 
More specifically these checks contain:  

• The case where no operator is defined 
• The definition of empty operators  
• The definition of void operators, i.e. operators with empty Pre and Post lists 
• The definition of effect less operators (Pre ≡ Post) 
• The definition of any empty problem 
• Semi-connected edges which lead to incomplete facts 

6.4. Translation to pddl 

The domains and the problems that are designed in ViTAPlan are automatically compiled to the PDDL 
definition language, in order to allow their solving using different planning systems. The environment 
contains a PDDL editor which enables the user to see and even modify the PDDL files of his designs. For 
example, the gripper domain and the specific problem used in this section are presented in Figure 19 and 
Figure 20 respectively. 

 

 

Figure 19. The gripper domain in PDDL 
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Figure 20. The PDDL file of a gripper's problem 

7. Plan Visualization 

There are two modules for visualizing the plans in ViTAPlan: the execution simulation which simulates 
the execution of the plan in a virtual world and the steps visualization that presents the plan as an action 
graph. 

7.1. Execution simulation  

This module of ViTAPlan-2 allows the user to execute the plan that was acquired from the execution sub 
system and trace the changes that occur to the world as the actions of the plan are sequentially applied. 
Figure 21 presents the simulation module, which consists of three parts. The first one is a scroll bar, 
through which the user can browse for a specific action of the plan. The other two parts present the states 
of the world before the application of the selected action (left part) and after it (right part) respectively.  
 

 

Figure 21. Execution simulation 
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 In the example presented in Figure 21 the first action of the plan is selected and therefore the 
state presented in the left part is the initial one, while the one in the right part is the first intermediate 
state. The tool uses proper color coding in order to discriminate the facts in four categories: 

i. facts of the preceding state that are deleted by the action 
ii.  new facts that are added to the new state  

iii.  propagated facts  
iv. static facts 

7.2. Step graph 

 The second option for the user is to view the actions of the plan on a timeline, as shown in 

Figure 22. The timeline for the plan presents for each action the point in which it is scheduled to be 

executed and the facts in its precondition and add lists. Moreover, the visualization shows the interactions 

between the actions in the plan. More specifically, for each action A the user is able to see connections 

between: 

i. each precondition of A and the most recent action that achieved it 
ii.  each fact that is deleted by A and the most recent action that established it 
iii.  each fact that is added by A and the following actions that have it in their preconditions  

 

 

Figure 22. Step graph 

 The connections represented by the arcs in the graph present in graphical way all the 
interactions (positive and negative) between the steps of the plan and therefore allow the user to: 



 22

i. Comprehend the specific sorting in which the steps have been ordered and why a specific action 
should be placed before (or after) another one.  

ii.  Replace an action or a set of actions with other, taking care as not to violate the interactions, and 
thus produce modified or alternative plans. 

iii.  Find parallelizations in the plan execution and therefore reduce the total execution time and the 
cost of its application. 

8. Conclusions and Future Work 

This article presented ViTAPlan-2 a unified environment for automated planning which contains several 
modules with user friendly interfaces. One of the key features of the environment is the use of the 
configuration module that can automatically fine- tune the planning parameters based on rules, extracted 
from Machine Learning techniques, that associate planning parameters with problem attributes. 
 The current version of the environment has four main functions: a) using the planning system 
through a number of windows, controls and common dialogues, which makes it much easier for a non – 
programmer to use the planner and experiment with different setups of the planning parameters, b) use the 
Problem analyzer and the Rule system of HAP-RC in order to acquire useful knowledge about the 
morphology of each problem and automatically fine tune the planner with the most appropriate values for 
the planning parameters c) generating new domains and problems using a visual tool which saves the 
domain expert from the strict syntactic rules of PDDL, makes the definition of domains and problems 
more understandable, even for a non-planning-expert, and makes a number of consistency checks on the 
designs in order to generate PDDL files with as little flaws as possible and d) produce visual 
representations of the plans found by the planning system, which enable the user to better understand each 
step in the plan and also intervene and alter the plan at will. 
 In the future we plan to improve the interface in all functions of it and introduce others that will 
make it a complete tool for planning both for academic and industrial use. It is in our direct plans to 
enhance the tool for designing domains and problems with the ability to handle advanced aspects of the 
PDDL2.17, such as treatment of numerical values, explicit representation of time and duration, 
conditional effects e.t.c.  
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