Machine Learning for Adaptive Planning

Dimitris Vrakas, Grigorios Tsoumakas, Nick BasslBa and loannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, GREECE
Tel: +30 2310 998231, +30 2310 998418, +30 2310 998145
Fax: +30 2310 998362, +30 2310 998419

E-mail: [dvrakas, greg, nbassili, viahavas] @csd.auth.gr

Machine Learning for Adaptive Planning
Abstract

This chapter is concerned with the enhancementaohjng systems using techniques from
Machine Learning in order to automatically configtineir planning parameters according to the
morphology of the problem in hand. It presents tifferent adaptive systems that set the
planning parameters of a highly adjustable plabased on measurable characteristics of the
problem instance. The planners have acquired khewledge from a large data set produced by
results from experiments on many problems fromotaridomains. The first planner is a rule-
based system that employs propositional rule legrto induce knowledge that suggests
effective configuration of planning parameters lblase the problem's characteristics. The second
planner employs instance-based learning in ordéndloproblems with similar structure and

adopt the planner configuration that has provettiénpast to be effective on these problems. The
validity of the two adaptive systems is assessemitih experimental results that demonstrate the
boost in performance in problems of both known ankhown domains. Comparative
experimental results for the two planning systeraspaesented along with a discussion of their

advantages and disadvantages.

INTRODUCTION

Domain independent heuristic planning relies orimgus techniques, such as heuristics and
search strategies, to improve the execution speplduoning systems and the quality of their
solutions in arbitrary planning problems. However,single technique has yet proved to be the
best for all kinds of problems. Many modern plagystems incorporate more than one such

optimizing techniques in order to capture the pacitiles of a wider range of problems.

However, to achieve the optimum performance thé&ssnprs require manual fine-tuning of their
run-time parameters.

Few attempts have been made to explain which arsgécific dynamics of a planning
problem that favor a specific planning techniqud amwen more, which is the best setup for a
planning system given the characteristics of tla@ping problem. This kind of knowledge would
clearly assist the planning community in produdiegible systems that could automatically
adapt themselves to each problem, achieving befstrpgnce.

This chapter focuses on the enhancement of Plai8yatgms with Machine Learning
techniques in the direction of developing Adapflanning Systems that can configure their
planning parameters automatically in order to ¢ifety solve each different Planning problem.
More specifically, it presents two different Machibearning approaches for Adaptive Planning:
a) Rule learning and b) Instance-based learninth Bpproaches are described in detail and their
performance is assessed through several experinmestdts that exhibit different aspects of the
learning process. In addition, the chapter provatesxtended overview of past approaches on
combining Machine Learning and Automated Planniwg, of the most important areas of
Artificial Intelligence.

The rest of the chapter is organized as follows féxt section reviews related work on
combining learning and planning and discussesdbetad learning techniques. Then the
problem of the automatic configuration of planngygtems is analyzed. The following two
sections present the two learning approaches #wat been used for the adaptive systems and
present experimental results that compare thenslhod the gain in the performance over the
initial planner. Finally, the last section discusseveral issues concerning the two learning

approaches, concludes the chapter and poses fagearch directions.

MACHINE LEARNING FOR AUTOMATED PLANNING

Machine Learning is the area of Artificial Intekigce concerned with the design of computer
programs that improve at a category of tasks wiffegence. It is a very broad field with many
learning methodologies and numerous algorithmsglvhave been extensively exploited in the
past to support Planning systems in many ways eSiris a usual case for seemingly different
planning problems to present similarities in trstiucture, it is reasonable enough to believe that
planning strategies that have been successfulliyegpip some problems in the past will be also
effective for similar problems in the future. Legug can assist planning systems in three ways:
a) to learn domain knowledge, b) to learn contraledge and c) to learn optimization
knowledge.

Domain knowledge is utilized by planners in pregassing phases in order to either
modify the description of the problem in a way thatill make it easier for solving or make the
appropriate adjustments to the planner to bestkattee problem. Control knowledge can be
utilized during search in order to either solve pneblem faster or produce better plans. For
example, the knowledge extracted from past exangalese used to refine the heuristic
functions or create a guide for pruning non-prongdiranches. Most work on combining
machine learning and planning in the past has ftoes learning control knowledge since it is
crucial for planners to have an informative guideiry search. Finally, optimization knowledge
is utilized after the generation of an initial plamorder to transform it in a new one that

optimizes certain criteria, e.g. number of stepgsage of resources.

L earning Domain Knowledge
OBSERVER (Wang, 1996) is a learning module builtamof the PRODIGY system that uses

the hints and past knowledge of experts in ordextoact and refine the full description of the

operators for a new domain. The description ofgjperators include negative, positive and
conditional preconditions and effects. OBSERVERsusenultistrategy learning technique that
combines learning by observing and refining thropgictice (learning by doing). Knoblock
(1990) presented another learning module for PRODKalled ALPINE, that learns abstraction
hierarchies and thus reduces the required seatdPINE classifies the literals of the given
planning problem, abstracts them and performs atysis on the domain to aid ordering and
combination of the abstractions.

MULTI-TAC (Minton, 1996) is a learning system thaitomatically fine tunes itself in
order to synthesize the most appropriate constsaimtfaction program to solve a problem
utilizing a library of heuristics and generic algioms. The methodology we followed in this
chapter for one of the adaptive systems (HAPresents some similarities with MULTI-TAC,
since both approaches learn models that assoc@itéem characteristics with the most
appropriate setups for their solvers. The learnedehof MULTI-TAC is a number of rules that
are extracted using two complementary methods fif$teone is analytic and employs meta-level
theories in order to reason about the constrantige the second one, which is based on the
generate—and—test schema, extracts all possilele anld uses test problems in order to decide
about their quality.

One of the few past approaches towards the direcfi@adaptive planning is the BUS
system (Howe & Dahlman, 1993; Howe et al, 1999)SBuns six state-of-the-art planners,
namely STAN, IPP, SGP, BlackBox, UCPOP and PRODI@¥g a round-robin schema, until
one of them finds a solution. BUS is adaptive & $lense of dynamically deciding the ordering
of the six planners and the duration of the tinneeslbased on the values of five problem

characteristics and some rules extracted fromttiesgcal analysis of past runs. The system

achieved more stable behaviour than all the ind&ighlanners but it was not as fast as one may
have expected.

The authors have worked during the past few yeaexploiting Machine Learning
techniques for Adaptive Planning and have develapedsystems that are described in detail
later in this chapter. The first system, called HAR/rakas et al, 2003a ; 2003b), is capable of
automatically fine-tuning its planning parameteasdd on the morphology of the problem in
hand. The tuning of HAR is performed by a rule system, the knowledge dtiwhas been
induced through the application of a classificatgorithm over a large dataset containing
performance data of past executions of HAP (Hidkdyustable Planner). The second system,
called HAR\ (Tsoumakas et al, 2003), adopts a variation oktNearest Neighbour machine
learning algorithm that enables the incrementalcbment of its knowledge and allows users to

specify their level of importance on the criterfgptan quality and planning speed.

Learning Control Knowledge
The history of learning control knowledge for gumdiplanning systems, sometimes called

speedup learning, dates back to the early 70’s. The STRIPS plangystem was soon enhanced
with the MACROPS learning method (Fikes et. al, 2)%hat analyzed past experience from
solved problems in order to infer successful coratioms of action sequences (macro-operators)
and general conditions for their application. MACR®was in fact the seed for a whole new
learning methodology, calldekplanation-Based Learning (EBL).

EBL belongs to the family of analytical learningtimeds that use prior knowledge and
deductive reasoning to enhance the informationigeal/by training examples. Although EBL
encompasses a wide variety of methods, the maierlyig principle is the same: The use of

prior knowledge to analyze, or explain each tragremample in order to infer which example

features and constraints are relevant and whiekeirant to the learning task under consideration.
This background knowledge must be correct andaefft for EBL to generalize accurately.
Planning problems offer such a correct and completeain theory that can be readily used as
prior knowledge in EBL systems. This apparentlylaxys the very strong relationship of EBL

and planning, as the largest scale attempts ty &l have addressed the problem of learning
to control search. An overview of EBL computer pBogs and perspectives can be found in
(Ellman, 1989).

The PRODIGY architecture (Carbonell et al, 1991toge et al, 1995) was the main
representative of control-knowledge learning systenhis architecture, supported by various
learning modules, focuses on learning the necegsanyledge (rules) that guides a planner to
decide what action to take next during plan executirhe system mainly uses EBL to explain
fails and successes and generalize the knowledgeninol rules that can be utilized in the future
in order to select, reject or prefer choices. Stheesoverhead of testing the applicability of rules
was quite large (utility problem) the system aldogted a mixed criterion of usability and cost
for each rule in order to discard some of themrafide the rest. The integration of EBL into
PRODIGY is detailed in (Minton, 1988).

Borrajo and Veloso (1996) developed HAMLET, anotéystem combining planning and
learning that was built on top of PRODIGY. HAMLE®rabines EBL and inductive learning in
order to incrementally learn through experiencee fifain aspects responsible for the efficiency
of the system were: the lazy explanation of su@egke incremental refinement of acquired
knowledge and the lazy learning to override ongydiefault behavior of the planner.

Another learning approach that has been appligdpif PRODIGY, is the STATIC
algorithm (Etzioni, 1993), which usértial Evaluation to automatically extract search-control

knowledge from training examples. Partial Evaluati@ kind of program optimization method

used for PROLOG programs, bares strong resembtart€eBL. A discussion of their relationship
is provided in (van Harmelen & Bundy, 1988).

DYNA-Q (Sutton, 1990) followed Reinforcement Learning approach (Sutton & Barto,
1998). Reinforcement learning is learning whatdoe-chow to map situations to actions — so as to
maximize a numerical reward signal. The learn@otstold which actions to take, as in most
forms of machine learning, but instead must discew@ch actions yield the most reward by
trying them. DYNA-Q employed the Q-learning methodorder to accompany each pair of
state-action with a reward (Q-value). The rewardstained by DYNA-Q are incrementally
updated as new problems are faced and are utiizedg search as a means of heuristic
function. The main problems faced by this approaete the very large memory requirements
and the amount of experience needed for solvingtnaial problems.

A more recent approach of learning control knowketlhy domain independent planning
was presented by Martin and Geffner (2000). Theys$oon learningeneralized policies that
serve as heuristic functions, mapping states aatsgato actions. In order to represent their
policies they adopt a concept language, which althe inference of more accurate models
using less training examples. The learning apprdalttwed in this project was a variation of
Rivest’'s Decision Lists (1987), which is actuallgeneralization of other concept representation
techniques, such as decision trees.

Eureka (Jones & Langley, 1995) adopts a flexiblamseends analysis for planning and is
equiped with a learning module that performslogical Reasoning over stored solutions. The
learning approach of Analogical Reasoning is basethe assumption that if two situations are
known to be similar in some respects, it is likitlsit they will be similar in others. The standard
computational model of reasoning by analogy defthessource of an analogy to be a problem

solution, example, or theory that is relatively \elderstood. The target is not completely

understood. Analogy constructs a mapping betweeesgonding elements of the target and
source. Analogical inferences extend this mappingetv elements of the target domain.

Eureka, actually maintains a long-term semantiovagt which stores representations of
past situations along with the operators that¢eithém. The semantic network is constantly
modified by either adding new experiences or updgte strength of the existing knowledge.
Daedalus (Langley & Allen, 1993) is a similar systthat uses a hierarchy of probabilistic
concepts in order to summarize its knowledge. €aening module of Daedalus is quite complex
and in a sense it unifies a large number of legrtéshniques including Decision Tree
Construction, Rule Induction and EBL.

Another example of utilizing learning techniquesifderring control knowledge for
automated planning systems is the family of plasitieait employCase-based Reasoning
(Kolodner, 1993). Case-based Eeasoning (CBR) isstance-based learning method that deals
with instances that are usually described by radational representations. Such instances are
often called cases. In contrast to instance-basgtads that perform a statistical computation of
a distance metric based on numerical values, CBR®)s must compute a complex similarity
measure. Another distinctive feature of CBR is thatoutput for a new case might involve the
combination of the output of several retrieved sabat match the description of the new case.
The combination of past outputs might involve thgpoyment of knowledge-based reasoning
due to the rich representation of cases.

CBR is actually very related to analogical reasgnfnalogical reasoning provides the
mechanism for mapping the output of an old casstoutput for a new case. Cased-based
reasoning was based on analogical reasoning lupadsided a complete framework for dealing
with issues like the representation of cases,egji@$ for organizing a memory of prior cases,

retrieval of prior cases and the use of prior césedealing with new cases.

Two known case-based planning systems are CHEF ifiteunth, 1989) and PRIAR
(Kambhampati & Hendler, 1992). CHEF is one of thdiest case-based planners and used the
Szechwan cooking as the application domain. CHEE nsemory structures and indexes in
order to store successful plans, failed plans apdirs among with general conditions allowing it
to reuse past experience. PRIAR is a more genasatbased system for plan modification and

reuse that uses hierarchical non-linear plannilhgyang abstraction and least-commitment.

L ear ning Optimization Knowledge
Ambite, Knoblock and Minton (2000) have presentec@pproach for learning Plan Rewriting

Rules that can be utilized along with local seanclorder to improve easy-to-generate low
quality plans. In order to learn the rules, thetaoban optimal and a non-optimal solution for
each problem in a training set, transform the smhgtinto graphs, and then extract and
generalize the differences between each pair gihgréoptimal and non-optimal) and form rules
in a manner similar to EBL.

IMPROVE (1998), deals with the improvement of lapgebabilistic plans in order to
increase their probability of being successfullyrieal out by the executor. IMPROVE uses a
simulator in order to obtain traces of the executiblarge plans and then feeds these traces to a
sequential discovery data mining algorithm in orteextract patterns that are common in
failures but not in successes. Qualitative reagp(iuipers, 1994) is then applied in order to

improve the plans.

Summary and Further Reading
Table 1 summarizes the 18 approaches that werergeskin this Section. It shows the name of

each system, the type of knowledge that was aatjuine way this knowledge was utilized and

the learning techniques that were used for induitirfgurther information on the topic of

Machine Learning for Automated Planning can be tbimthe extended survey of Zimmerman

and Kambhampati (2003) and also in (Gopal, 2000).

System Knowledge Utilization L earning Techniques
OBSERVER Domain Refine problem definition LearnmgObserving, Refining via Practice
MULTI-TAC Domain Configure System Meta-Level Thessj Generate and Test
ALPINE Domain Abstract the problem Domain Analyddstraction
BUS Domain Configure System Statistical Analysis
HAPgc Domain Configure System Classification Rules
HAP\N Domain Configure System kNN
PRODIGY Control Search guide EBL
HAMLET Control Search guide EBL, Rule Learning
STATIC Control Search guide Partial Evaluation
STRIPS Control Macro-operators EBL
Generalized Policies Control Search guide Decision Lists
DYNA-Q Control Heuristic Reinforcement Learning
CHEF Control Canned plans CBR
PRIAR Control Canned plans CBR
EUREKA Control Search guide Analogical Reasoning
DAEDALUS Control Search guide Analogical Reasoni@gnceptual Clustering
Plan Rewriting Optimization| Reduce plan size EBL
IMPROVE Optimization | Improve plan applicability @gential Patterns

Table 1. System name, type of knowledge, utilization andrlesy techniques

THE PLANNING PROBLEM

The rest of the chapter addresses learning donmawlkdge for the automatic configuration of
planning systems. The aim of this approach is tlllaun adaptive planning system that can
automatically fine-tune its parameters based omtbgphology of the problem in hand. This is a
very important feature for planning systems, sibcembines the efficiency of customized
solutions with the generality of domain independaoblem solving.

There are two main issues for investigation: a)tvgloat of customization should be
performed on a domain-independent planner and Ww)dam the morphology of a planning

problem be captured and quantified. These are asleldldn the remaining of this section.

The Planning System
The planning system used as a test bed for ouangses HAP (Highly Adjustable Planner), a

domain-independent, state-space heuristic plarsyatem, which can be customized through a

number of parameters. HAP is a general planningjgofa which integrates the search modules
of the BP planner (Vrakas & Vlahavas, 2001), theriséics of ACE (Vrakas & Vlahavas, 2002)
and several techniques for speeding up the plarprimgess. Apart from the selection of the
planning direction, which is the most importanttéea of HAP, the user can also set the values
of 6 other parameters that mainly affect the sean@tegy and the heuristic function. The seven

parameters along with their value sets are outlinéichble 2.

Name Value Set
Direction {0,1}

Heuristic {1,2,3}
Weights (w; andw,) | {0,1,2,3}
Penalty {10,100,500}
Agenda {10,100,1000}
Equal_estimation {0,1}

Remove {0,1}

Table 2 The value sets for planning parameters

HAP is capable of planning in both directions (pesgion and regression). The system is
quite symmetric and for each critical part of th@nmer, e.g. calculation of mutexes, discovery of
goal orderings, computation of the heuristic, Seatcategies etc., there are implementations for
both directions. The sear€&hrection is the first adjustable parameter of HAP with tbiéowing
values: a) 0 (Regression or Backward chaining)@rid (Progression or Forward chaining). The
planning direction is a very important factor foetefficiency of a planning system, since the
best direction strongly depends on the morpholdgheproblem in hand and there is no easy
answer which direction should be preferred.

The HAP system employs the heuristic function ef Atk planner, as well as two
variations. Heuristic functions are implementedldoth planning directions during the pre-
planning phase by performing a relaxed searchdrditection opposite to the one used in the

search phase. The heuristic function computes astns for the distances of all grounded

actions of the problem. The original heuristic ftioe of the AcE planning system, is defined by
the following formula:

1, if prec(A)c |
dist(A) =
(A) 1+ZX6MPS(,,@<A»diSt(X)' if prec(A)« |

whereA is the action under evaluatidnis the initial state of the problem aMPSS) is a
function returning a set of actions, with near mnm accumulated cost, achieving staté&he

algorithm ofMPSis outlined in Figure 1.

Function MPS(S)
Input: a set of facts S
Output: a set of actions achieving S with near mini mum accumulated dist

Set G= ¢
S= S- SN
Repeat
f is the first fact in S

Let act (f) be the set of actions achieving f
for each action Ain act (f)do

val (A)= dist (A)/ ladd(A) M S|

Let A' be an actionin act (f) that minimizes val
Set G=G VA
Set S=S—-add (A") NS

Unil sS= 9

Return G

Figure 1. Function MPS(S)

Apart from the original AcE heuristic function debed above, HAP embodies two more
fined-grained variations. The general idea behiresé¢ variations lies in the fact that when we
select a set of actions in order to achieve theqmditions of an actioA, we also achieve several
other facts (denoted asplied(A)), which are not mutually exclusive with the preditions of A.
Supposing that this set of actions was chosereipldn beford\ then after the application &f

the facts inmplied(A) would exist in the new state, along with the onethe add-list ofA.

Taking all these into account, we produce a netwofifacts for each action (hamed
enriched_add) which is the union of the add-list and the imgliest of this action.

The first variation of the AcE heuristic functiosas the enriched instead of the
traditional add-list in the MPS function in the ead part of the function that updates state S. So
the commandset S= S—add(A)~S becomessst S=S—enriched _add(A)NS.

The second variation pushes the above ideas ognéusteer. Theenriched_add list is
also used in the first part of the MPS functionjahiranks the candidate actions. So, it
additionally alters the comman@l (A)=dist(A)/|add(A) N S| to
val(A)=dist(A)/ |enriched _add (A)S|.

The user may select the heuristic function to kellsy the planner by configuring the
Heuristic parameter. The acceptable values are three:@)thhd AcE heuristic, b) 2 for the first
variation and c) 3 for the second variation.

Concerning search, HAP adopts a weighted A* styatdth two independent weightea;
for the estimated cost for reaching the final statéw, for the accumulated cost of reaching the
current state from the starting state (initial oalg depending on the selected direction). In this
work we have used four different assignments ferviéwriableweights which correspond to
different assignments fav, andws: a) 0 (vy =1,w, =0), b) 1 (v; =3,w,> =1), €) 2 (v; =2, W, =1)
and d) 3y =1, w, =1). By selecting different value sets for the virggone can emulate a large
number of search strategies suclBest-First-Search (w; =1, w, =0) orBreadth-First-Search (w;
=0, w, =1). It is known that although certain search styegts perform better in general, the ideal
treatment is to select the strategy which bests e morphology of the problem in hand.

The HAP system embodies two fact-ordering techréqoee for the initial stateand

another one for the goa), which try to find strong orderings in which tfaets (of eithet or

G) should be achieved. In order to find these ordgs;i the techniques make extensive use of
mutual exclusions between facts, performing a échgearch. These orderings are utilized during
normal search phase, in order to identify possitmations. For each violation contained in a
state, the estimated heuristic value of this statecreased bfPenalty, a constant number

supplied by the user. In this work we have testedHAP system with three different values for
Penalty: a) 10, b) 100 and c) 500. The reason for notdheary strict with states containing
violations of orderings, is the fact that sometirttesonly path to the solution is through these
states.

The HAP system allows the user to set an uppet imthe number of states in the
planning agenda. This enables the planner to hamtelarge problems, since the memory
requirements will not grow exponentially with theesof the problem. However, in order to keep
a constant number of states in the agenda, theitalgoprunes branches, which are less likely to
lead to a solution, and thus the algorithm canwargntee completeness. Therefore, it is obvious
that the size of the planning agenda significaatfgcts the search strategy. For example, if we
set Agenda to 1 anah to O, the search algorithm becomes pure Hill-Climgbwhile by setting
Agenda to larger valuesj to 1 andw, to 1 the search algorithm becomes A*. Generally, b
increasing the size of the agenda we reduce tk@fisot finding a solution, while by reducing
the size of the agenda the search algorithm bectasts and we ensure that the planner will not
run out of memory. In this work we have used ttdigierent settings for the size of the agenda:
a) 10, b) 100 and c) 1000.

Another parameter of HAP Egual_estimation that defines the way in which states with
the same estimated distances are treat&mjulll _estimation is set to 0 then when two states with

the same value in the heuristic function exist,dhe with the largest distance from the starting

state (number of actions applied so far) is prefierif Equal_estimation is set to 1, then the
search strategy will prefer the state that is ¢lés¢he starting state.

HAP also embodies a technique for simplifying tleérdtion of the current sub-problem
(current state and goals) during the search pHdsgtechnique eliminates from the definition of
the sub-problem all the goals that: a) have alrdmsabyn achieved in the current state and b) do not
interfere with the achievement of the remaininglgoa order to do this, the technique performs
a dependency analysis on the goals of the probféefime, before the search process. Although
the technique is very useful in general, the depeag analysis is not complete. In other words,
there are cases where an already achieved sulstgmad be temporarily destroyed in order to
continue with the achievement of the rest of thalgorherefore, by removing this fact from the
current state the algorithm may risk completen€ls. parameteRemove can be used to turn on
(value 1) or off (value 0) this feature of the plarg system.

The parameters presented above are specific tdAResystem. However, the
methodology presented in this chapter is gener@igimand can be applied to other systems as
well. Most of the modern planning systems suppodam be modified to support all or some of
the parameterized aspects presented in this seEtorexample, there are systems such as the
progression planner HSP (Bonet et. al, 1997) tlmevaccompanied by versions working in the
opposite directions; HSP-R (Bonet & Geffner, 1989 regression planner based on HSP.

Moreover, most of the planning systems presentedglthe last years can be customized
through their own set of parameters. For exampleGRT planning system (Refanidis &
Vlahavas, 2001) allows the user to customize theckestrategy (Best-first or Hill-climbing) and
to select how the goals of the problem are enrighed affects the heuristic function). LPG
(Gerevini et al, 2003) can be customized throudrge number of planning parameters and

could also be augmented using the proposed metbhgylol'he user may select options such as

the heuristic function (there are two availableg search strategy, the number of restarts, the
depth of the search, the way mutexes are calcutatdathers. The MIPS system (Edelkamp &
Helmert, 2001) also allows some customization,esihases a weighted A* search strategy, the
weights of which can be set by the user, in a masinglar to HAP. Furthermore, the user can

also set the optimization level.

Quantifying the structure of planning problems
Selecting a set of numerical attributes that regortethe dynamics of problems and domains is

probably the most important task in the procedsudtiing an adaptive planning system. These
attributes should be able to group problems wittilar structure and discriminate uneven ones.
Moreover, these attributes should clearly influesgecific choices for the values of the available
planning parameters. Therefore, their selectiaanglly depends on the underlying planning
system.

The result of a theoretical analysis on a) the molqgy of problems, b) the way this is
expressed through the PDDL language and c) theddatpy of the HAP planning system, was a
set of 35 measurable characteristics that are prexbén Table 3. In Table 8(1) refers to the
number of steps needed to reagmitial state) by regressing the goals, as edgchay the
backward heuristic function. Similarlig(G) refers to the number of steps needed to reach the
goals by progressing the initial state, estimatethle forward heuristic function.

Our main concern was to select simple attributasttieir values are easily calculated and
not complex attributes that would cause a largelwmaal in the total planning time. Therefore,
most of the attributes come directly from the PDibjwut files and their values can be calculated
during the standard parsing process. We have atdaded a small number of attributes closely

related to specific features of the HAP planningtesn, such as the heuristics or the fact-ordering

techniques. In order to calculate the values ddetedtributes, the system must perform a limited

search. However, the overhead is negligible contpréhe total planning time.

Name Description

Al Percentage of dynamic facts in Initial staterde¢al dynamic facts
A2 Percentage of static facts

A3 Percentage of goal facts over total dynamicsfact

A4 Ratio between dynamic facts in Initial state godl facts

A5 Average number of actions per dynamic fact

A6 Average number of facts per predicate

A7 Standard deviation of the number of facts pedfmate

A8 Average number of actions per operator

A9 Standard deviation of the number of actionsquarator

A10 Average number of mutexes per fact

All Standard deviation of the number of mutexesqer

Al2 Average number of actions requiring a fact

Al13 Standard deviation of the number of actionsiréng a fact

Al4 Average number of actions adding a fact

Al15 Standard deviation of the number of actionsragld fact

Al6 Average number of actions deleting a fact

Al7 Standard deviation of the number of actionetite) a fact

Al18 Average ratio between the number of actionsregd fact and those deleting it

Al19 Average number of facts per object

A20 Average number of actions per object

A21 Average number of objects per object class

A22 Standard deviation of the number of objectsgigect class

A23 Ratio between the actions requiring an inféalt and those adding a goal (Relaxed branchingifsic
A24 Ratio between the branching factors for the divections

A25 h(1)/h(G) [1st heuristic] - h(I)/h(G) [2nd hasiic]

A26 h(1)/h(G) [1st heuristic] - h(I)/h(G) [3rd hestfic]

A27 h(1)/h(G) [2nd heuristic] - h(1)/h(G) [3rd heastic]

A28 Average number of goal orderings per goal

A29 Average number of initial orderings per initfatt

A30 Average distance of actions / h(G) [forwardediron]

A3l Average distance of actions / h(l) [backwanedlion]

A32 a30/a31

A33 Percentage of standard deviation of the digtari@ctions over the average distance of actibosaard
direction]

A34 Percentage of standard deviation of the digtarfi@ctions over the average distance of actiBaskward
direction]

A35 Heuristics deviation [a33/a34]

Table 3. Problem characteristics
A second concern was the fact that the attribuiesld be general enough to be applied

to all domains. Furthermore, their values shouldiaxgely depend on the size of the problem,

otherwise the knowledge learned from easy probleamsot be efficiently applied to difficult

ones. For example, instead of using the numberuéxes (mutual exclusions between facts) in
the problem, which is an attribute that stronglpeleds on the size of the problem (larger
problems tend to have more mutexes), we dividg the total number of dynamic facts (attribute
A10) and this attribute (mutex density) identiftae complexity of the problem without taking
into account whether it is a large problem or fidiis is a general solution followed in all
situations where a problem attribute depends néiadgrly on the size of the problem.

The attributes can be classified in three categofibe first category (attributes A01-A9,
A12-A24) refer to simple and easily measured chargstics of planning problems that source
directly from the input files (PDDL). The secondegory (attributes A10, A11, A28, A29)
consists of more sophisticated features of modiermners, such as mutexes or orderings
(between goals and initial facts). The last catedattributes A25-A27, A30-A35) contains
attributes that can be instantiated only aftercélleulation of the heuristic functions and refer to
them.

The attributes presented above aim at capturingittv@hology of problems expressed in
a quantifiable way. The most interesting aspecfdaining problems according to this attribute
set are: a) the size of the problem, which maiafgns to the dimensions of the search space, b)
the complexity of the problem, c) the directionabf the problem that indicates the most
appropriate search direction, and d) the heuristtbest suits the problem.

The first two categories, namely the size and treplexity, are general aspects of planning
problems. The directionality is also a general aspéplanning problems that is additionally, of
great importance to HAP, due to its bi-directiocapbabilities. The last category depends strongly
on the HAP planning system, concerning the suitgtof the heuristic functions for the problem
in hand. Although the four aspects that the salaatf attributes was based on are not enough to

completely represent any given planning problemy florm a non trivial set that one can base

the setup of the planning parameters of HAP. Tdldketches the relation between the four

problem aspects described above and the 35 praditeivutes adopted by this work.

Attribute Size | Complexity | Directionality Heuristics
Al
A2

A3

Ad

A5

A6

A7

A8

A9

A10
All
Al2
Al13
Al4
A15
Al6
Al7
Al8
A19 .
A20 .
A21
A22
A23
A24
A25
A26
A27
A28 .
A29 .
A30
A3l
A32
A33 .
A34 .
A35 .

Table 4. Relation between problem aspects and attributes

LEARNING APPROACHES

The aim of the application of learning techniqueplanning is to find the hidden dependencies
among the problem characteristics and the planpemgmeters. More specifically, we are
interested in finding those combinations of probkinbutes and planning parameters that

guarantee good performance of the system. Oneavdy this is by experimenting with all

possible combinations of the values of 35 problénibates and the 7 planning parameters and
then process the collected data in order to leam ft. However, this is not tractable since most
of the problem attributes have continuous valugearand even by discretizing them it would
require a tremendous number of value-combinatiBlzgeover, it would not be possible to find
or create enough planning problems to cover altt#ses (value combinations of attributes).

One solution to the problem presented above islersa relatively large number of
problems, uniformly distributed in a significantmber of domains covering as many aspects of
planning as possible. Then experiment with thesblpms, called training set, and all the
possible setups of the planning system (864 ircéise of HAP), record all the data (problem
attributes, planner configuration and the result®erms of planning time and plan length) and try
to learn from that. It is obvious that the selattid problems for the training set is the second
crucial part of the whole process. In order to dvwbe over fitting and the disorientation of the
learned model the training set must be signifigalatige and uniformly distributed over a large
and representative set of different domains.

After the collection of the data there are two imgnt stages in the process of building
the adaptive system: a) selecting and implemeraimgppropriate learning technique in order to
extract the model and b) embedding the model imi@grated system that will automatically
adapt to the problem in hand. Note however, thegdlsteps cannot be viewed as separate tasks
in all learning approaches.

The rest of the section addresses these issugeesehts details concerning the

development of two adaptive systems, namely ktAdhd HARp.

Data Prepar ation
A necessatry initial step in most data mining agians is data preparation. In our case, the data

were collected from the execution of HAP usingd&4 parameter configurations on 30 problems
from each of the 15 planning domains of Table % Ppfocess of collecting the data is sketched
in Figure 2. The recorded data for each run coaththe 35 problem attributes presented in
Section 0, the 7 planner parameters presentedctin8d, the number of steps in the resulting

plan and the required time for building it.

Batch of stored N
problems

o . Problems,
HAP

performances,

parameters

All parameter
configurations [~

Figure 2. Preparing the training data

In the case where the planner did not manage toafisolution within the upper time limit
of 60 seconds, a special value (999999) was reddmtdoth steps and time. This led to a

dataset of 388.800 (450 problems * 864 configuredjaecords with 44 fields, the format of

which is presented in Figure 3.

Domain Source
Assembly New domain
Blocks-world (3 operators) Bibliography
Blocks-world (4 operators) AIPS 98, 2000
Driver AIPS 2002
Ferry FF collection
Freecell AIPS 2000, 2002
Gripper AIPS 98

Hanoi Bibliography
Sokoban New domain
Logistics AIPS 98, 2000
Miconic-10 AIPS 2000
Mystery AIPS 98

Tsp FF collection
Windows New domain
Zeno AIPS 2002

Table 5. Domains used for the creation of the learning data

Planning parameters Problem attributes Performance metrics
A A N

~ ~N ~ s ~
| p1 | p2 | ...] p7|] al| a2] ..| a3g steps time

Figure 3. The format of the records

This dataset did not explicitly provide information the quality of each run. Therefore, a
data pre-processing stage was necessary that weaide about the performance of each
configuration of HAP (for a given problem) basedtbe two performance metrics (hnumber of
plan steps and the required time for finding itpvkdver, it is known within the planning
community, that giving a solution quickly and findia short plan are contradicting directives for
a planning system. There were two choices in dgatith this problem: a) create two different
models, one for fast planning and one for shomigland then let the user decide which one to
use or b) find a way to combine these two metnia @roduce a single model which uses a trade-
off between planning time and length of plans. &&tdd both scenarios and noticed that in the
first one the outcome was a planner that wouldceeitiheate short plans after too long a time, or
create awfully large plans quickly. Since nonehafse cases are acceptable in real-world
situations, we decided to adopt the second scenario

In order to combine the two metrics we first norzed the plan steps and planning time
according to the following transformation:

e LetS; be the number of plan steps afdbe the required time to build it for problem
(i=1..450) and planner configuratipj=1..864).
e We first found the shortest plan and minimum plagrtime for each problem among the

tested planner configurations.

S™=min(S), T™ =min(T,)

e We then normalized the results by dividing the mimm plan length and minimum planning
time of each run with the corresponding problenugakFor the cases where the planner could

not find a solution within the time limits, the moalized values of steps and time were set to

zero.
Smln Tmm
—, §; #99999¢ —, T; #99999¢
. Sl;wrm — S” , -I—ijnorm — ij
0, otherwise 0, otherwise

e We finally created a combined metric about planatte M;, which uses a weighted sum of

the two normalized criteria:

_\y % @ norm % T norm
My =w*§™" +w* T,

Classification Rules
Learning sets of if-then rules is an appealingrigay method, due to the easily understandable

representation of rules by humans. There are vaapproaches to rule learning, including
transforming decision trees to rules and using tieaggorithms to encode each rule set. We will
here briefly describe another approach that isdbasehe idea afequential Covering that it has
been exploited by a number of planning systems.

Sequential covering is a family of algorithms feaining rule sets based on the strategy
of learning one rule, removing the data it coveren iterating this process (Mitchell, 1997). The
first rule will be learned based on all the avdgatipaining examples. We then remove any
positive examples covered by this rule and thenkevt again to learn a second rule based on
the remaining training examples. It is called ausedjial covering algorithm because it
sequentially learns a set of rules that togetheercthe full set of positive examples. The final se
of rules can then be sorted so that more accuntge will be considered first when a new

instance must be classified.

Learning a rule usually involves performing a hsticisearch in the space of potential
attribute-value pairs to be added to the currelet iDepending on the strategy of this search and
the performance measure used for guiding the heusisarch several variations of sequential
covering have been developed.

The CN2 program (Clark & Niblett, 1989) employsemngral to specific beam search
through the space of possible rules in searchrofeawith high accuracy, though perhaps
incomplete coverage of the data. Beam searchiisealg non-backtracking search strategy in
which the algorithm maintains a list of the k bestdidates at each step, rather than a single best
candidate. On each search step, specializationgeaerated for each of these k best candidates,
and the resulting set is again reduced to the K prosnising members. A measure of entropy is
the heuristic guiding the search.

AQ (Michalski et al, 1986) also conducts a gen&vadpecific beam-search for each rule,
but uses a single positive example to focus thascée In particular, it considers only those
attributes satisfied by the positive example agd@rches for progressively more specific
hypotheses. Each time it learns a new rule it sekeoew positive example from those that are
not yet covered, to act as a seed to guide thelséarthis new disjunct.

IREP (Furnkranz & Widmer, 1994), RIPPER (Cohen,5)%hd SLIPPER (Cohen &
Singer, 1999) are three rule learning systemsaitgabased on the same framework but use
reduced error pruning to prune the antecedentaatf discovered rule. IREP was a first
algorithm that employed reduced-error pruning. FHRRs an enhanced version of the IREP
approach dealing with several limitations of IREfl @roducing rules of higher accuracy.
SLIPPER extends RIPPER by using confidence-ratedtbg and manages to achieve even

better accuracy.

Classifying executions

In order to learn classification rules from theadat, a necessary step was to decide for the two
classes (good run or bad run) based on the valtreeafombined quality metric MTherefore,

we split the records of the training data into tvabegories: a) the class of good runs consisting of
the records for which Mwas larger than a threshold and b) the classafinas consisting of the
remaining records. In order to create these twe afetecords, we calculated the valugfQ

each run, which is given by the following formula:

1j

good, M;>c
| bad, M;<c

wherec, is the threshold constant controlling the quadityhe good runs. For thej\vnetric, we
used the value of 1 for both,@&nd w in order to keep the balance between the two tyuali
criteria.

For example, foc equal to 1.6 the above equation means thatdh is good if its
combined steps and time are at most 40% wor se (bigger) than the combined minimum plan steps
and time for the same problem”. Since normalized steps and time are combineld avit:1 ratio,
the above 40% limit could also be interpreted aawamage of 20% for each steps and time. This
is a flexible definition that would allow a plan i@ characterized as good even if its steps are for
example 25% worse than the minimum steps as loitg &ime is at most 15% worse than the
minimum time, provided that their combination israist 40% worse than the combined
minimum steps and time. In the general case thétwd steps and time must be at most
(2-¢)*100% worse than the combined minimum steps and.tiAfter experimenting with various

values forc we ended up that 1.6 was the best value to betediéqgr the experiments.

Moddling

The next step was to apply a suitable machine ileguadgorithm in order to discover a model of
the dependencies between problem characterista®gr parameters and good planning
performance. A first requirement was the intergiityt of the resulting model, so that the
acquired knowledge would be transparent and opémretmquiries of a planning expert. Apart
from developing an adaptive planner with good peanénce to any given planning problem, we
were also interested in studying the resulting rhmtenteresting new knowledge and
justifications for its performance. Therefore, syiiblearning approaches were at the top of our
list.

Mining association rules from the resulting datagas$ a first idea, which however was
turned down due to the fact that it would prodwzernany rules making it extremely difficult to
produce all the relevant ones. In our previous W¥iakas et al, 2003a), we have used the
approach of classification based on associatia@sr(lliu, Hsu & Ma, 1998), which induces
association rules that only have a specific taatfebute on the right hand side. However, such
an approach was proved inappropriate for our cumerth more extended dataset.

We therefore turned towards classification rulerie®y approaches, and specifically
decided to use the SLIPPER rule learning systerhéG@& Singer, 1999) which is fast, robust,
easy to use, and its hypotheses are compact apdoeasderstand. SLIPPER generates rule sets
by repeatedly boosting a simple, greedy rule legaifi@s learner splits the training data, grows a
single rule using one subset of the data and thameg the rule using the other subset. The
metrics that guide the growing and pruning of rugelsased on the formal analysis of boosting
algorithms. The implementation of SLIPPER that wedihandles only two-class classification

problems. This suited fine our two-class problemigoiod” and "bad" performance. The output

of SLIPPER is a set of rules predicting one ofdlasses and a default rule predicting the other
one, which is engaged when no other rule satifiegxample to be classified. We run SLIPPER

so that the rule set predicts the class of "go@ufgomance.

The Rule-Based Planner Tuner

The next step was to embed the learned rules in &A&rule-based system that decides the
optimal configuration of planning parameters basedhe characteristics of a given problem. In

order to perform this task certain issues had tadmressed:

a. Should all the rules be included?

The rules that could actually be used for adagilaening are those that associate, at the same
time, problem characteristics, planning parametadsthe quality field. So, the first step was to
filter out the rules that included only problem @eristics as their antecedents. This process
filtered out 21 rules from the initial set of 79as. We notice here that there were no rules
including only planning parameters. If such rulested, then this would mean that certain
parameter values are good regardless of the pradnhehthat the corresponding parameters
should be fixed in the planner.

The remaining 58 rules that model good performaweee subsequently transformed so
that only the attributes concerning problem charistics remained as antecedents and the
planning parameters were moved to the right-hathel af the rule as conclusions, replacing the
rule quality attribute. In this way, a rule decidege or more planning parameters based on one or

more problem characteristics.

What conflict resolution strateqgy should be adopted for firing the rules?

Each rule was accompanied by a confidence metdesating how valid a rule is, i.e. what
percentage of the relevant data in the conditiariicas the conclusion-action of the rule. A
100% confidence indicates that it is absolutelyaierthat when the condition is met, then the
action should be taken.

The performance of the rule-based system is oneeconbut it occupies only a tiny
fragment of the planning procedure, therefore iitdsof primary concern. That is why the
conflict resolution strategy used in our rule-basgstem is based on the total ordering of rules
according to the confidence factor, in descendnaigio This decision was based on our primary
concern to use the most certain (confident) rubesdnfiguring the planner, because these rules
will most likely lead to a better planning perfonmea.

Rules are appropriately encoded so that when dirageand sets one or more parameters,
then all the other rules that might also set omem@re) of these parameters to a different setting
are “disabled”. In this way, each parameter idogahe most confident rule (examined first),

while the rest of the rules that might affect thésameter are skipped.

What should we do with parameter s not affected by the rule system?

The experiments with the system showed that orageethe rule based system would affect
approximately 4 planning parameters, leaving astrae time 3 parameters unset. According to
the knowledge model, if a parameter is left ungew/alue should not affect the performance of
the planning system. However, since the model iamplete, this behavior could also be
interpreted as an inability of the learning prodesextract a rule for the specific case. In otder
deal with this problem we performed a statisticadlgsis in order to find the best default settings

for each independent parameter.

For dealing with situations where the rule-basexdesys leaves all parameters unset we

calculated the average normalized steps and timesfth planner configuration:

norm norm
S 2T

avg i avg i

B YIS ¥

and recorded the configuration with the best suth®fabove metrics, which can be seen in
Table 6.

For dealing with situations where the rule systemla only set part of the parameters,
but not all of them, we repeated the above calicuiatfor each planner parameter individually, in
order to find out if there is a relationship betwerdividual settings and planner performance.
Again for each parameter we recorded the value thdhest sum of the average normalized

steps and time. These settings are illustratebierl6.

Name Best Configuration | Best Individual Value
Direction 0 0

Heuristic 1 1

Wei ghtS (Wl and W2) 2 2

Penalty 10 100
Agenda 100 10
Equal_estimation 1 1

Remove 0 1

Table 6: Best combined and individual values of parameters

In the future we will explore the possibility talite learned rules that predict bad
performance as integrity constraints that guidestilection of the unset planner parameters in
order to avoid inappropriate configurations.

The rule configurable version of HAP, which is cegd inFigure 4contains two additional
modules, compared to the manually configurableioersf the system, that are run in a pre-
planning phase. The first module, notedPasblem Analyzer, uses the problem’s representation,

constructed by thBarser, to calculate the values of the 35 problem chargstics used by the

rules. These values are then passed t&theSystem module, which tunes the planning
parameters based on the embedded rule base atef#iudt values for unset parameters. The
values of the planning parameters along with tiedlpm’s representation are then passed to the

planning module, in order to solve the problem.

Problem file
/

| Parser |

Problem representation

Problem Analyzer

Values of Al to A35

Rule system

Values of planning parameiers

L p| Planner

Figure 4. HAPgc Architecture
k Nearest Neighbors
Apart from the rule-based approaches, we also arpated with other learning methodologies,
mainly in order to overcome several limitationgtoé former. A very interesting learning
approach, which could be easily adapted to ourlpnojas the k Nearest Neighbors (KNN)
algorithm. According to this approach, when thenpkr is faced with a new problem, it
identifies the k nearest instances from the s&taniing problems, aggregates the performance
results for the different planner configurationsl @elects the one with the best average

performance.

This is the most basic instance-based learningoddibr numerical examples. The
nearest neighbors of an instance are defined nmstef some distance measure for the vectors of

values of the examples. Considering the followimgjance x, that is described by the attributes:

<al(x),al(x),...,an(x)>

whereo,(x) denotes the value of the instance forrtheattribute. Then the distance d of two

instances x1, x2 can be measured using any suitatbem:

n

d(M)#Z

r=1

a (x)-a (%)

For L=1 we get the Manhattan distance, while foR lwe get the Euclidean distance.
When a new instance requires classification, thedcest neighbor approach first
retrieves the k nearest instances to this one. Tteshects the classification that most of these

instances propose.

Preparing the Training Data

According to the methodology previously descriltbé, system needs to store two kinds of
information: a) the values for the 35 attributessdach one of the 450 problems in the training set
in order to identify the k closest problems to avrmme and b) the performance (steps and time)
of each one of the 864 planner configurations &mheproblem in order to aggregate the
performance of the k problems and then find the basfiguration.

The required data were initially in the flat fileopluced by the preparation process
described in a previous section. However, they Watsx organized as a multi-relational data set,
consisting of 2 primary tableproblems (450 rows)andparameters (864 rows), and a relation
tableperformances (450*864 rows), in order to save storage spacesahdnce the search for the

k nearest neighbors and the retrieval of the coomdipg performances. The tables were

implemented as binary files, with tperformances table being sorted on both the problem id and

the parameter id.

Online Planning M ode

Given a new planning problem, HARfirst calculates the values of the problem charéstics.
Then thekNN algorithmis engaged in order to retrieve fids of thek nearest problems from the
problems file. The number of neighbork, is a user-defined parameter of the planner. In the
implementation okNN we use the Euclidean distance measure withahaalized values of the
problem attributes to calculate the nearest problem

Using the retrievedds and taking advantage of the sorted binary file Pdf\promptly
retrieves the performances for all possible coméigans in &*864 two-dimensional matrix. The
next step is to combine these performances in aodeuggest a single parameter configuration
with the optimal performance, based on past expeei®f thek nearest problems. The optimal
performance for each problem is calculated usieg\thcriterion, where the two weightss;and
w; are set by the user.

We can consider the fin&t864 2-dimensional matrix as a classifier combioati
problem, consisting df classifiers and 864 classes. We can combine ttisides of thek
classifiers, using the average Bayes rule, whiskemslly comes down to averaging the planner
scores across thenearest problems and selecting the decision Wwéhargest average. Thus, the
parameter configuration(j=1..864) with the large< is the one that is proposed and used.
k

2 M,

i=1

C =

~ |

The whole process for the online planning mode APk} is depicted in Figure 5. It is

worth noting that HAR\ actually outputs an ordering of all parameter grations and not just

one parameter configuration. This can be expldibe@xample in order to output the top 10
configurations and let the user decide amongst terather useful aspect of the ordering, is that
when the first parameter configuration fails toveathe problem within certain time, then the
second best could be tried. Another interestitey@tive in such a case is the change of the
weight setting so that time has a bigger weighte @&fiect of the weights in the resulting

performance is empirically explored in the expentaéresults section that follows.

-------------------- s rommmmn R
1 criteria weights | "
! 1
ws, wt @
Pfroblems, Eg v '3
performances, [€P = 9 £
arameters c= v - average s
P I ET '8 Bayes P8
k nearest S5 0 2
—» o ® it ar i rule
neighbor < 4 multicriteria Py '3 HAP
S i‘,—: weighted L@) .
R average P L e
— : i e
new problem) —> :—> S
: | ; i e
R e L S [[
B .
>

Figure5. Online planning mode

Offline Incremental Training Mode
HAP\n can be trained incrementally with each new plagpiroblem that arises. Specifically,
the planner stores each new examined planninggmglsdo that it can later train from it offline.
As in the training data preparation phase, traimogsists of running the HAP planner on the
batch of newly stored problems using all 864 valombinations of the 7 parameters. For each
run, the features of the problem, the performari¢keoplanner (steps of the resulting plan and
required planning time) and the configuration ofgmaeters are recorded.

The incremental training capability is an importégdture of HARN, stemming from the
use of thekNN algorithm. As the generalization of the algamitis postponed for the online

phase, learning actually consists of just storiagt gxperience. This is an incremental process

that makes it possible to constantly enhance thfemeance of the adaptive planner with the

advent of new problems.

EXPERIMENTAL RESULTS

We have conducted four sets of comprehensive erpets in order to evaluate the potential
gain in performance offered by the adaptive wawlnich the planner parameters are configured
and to compare the two different approaches (raket an#&NN). For the experiments
presented below we used HAPwith the value ok set to 7.

All the runs of the planning systems (static andpige), including those used in the
statistical analysis and the machine learning m®ceere performed on a SUN Enterprise Server
450 with 4 ULTRA-2 processors at 400 MHz and 2 GBlared memory. The Operating system
of the computer was SUN Solaris 8. For all expentaeve counted CPU clocks and we had an
upper limit of 60 sec, beyond which the planner lda@iop and report that the problem is not

solved.

Adapting to problems of known domains

This experiment aimed at evaluating the generahaaif the adaptive planners’ knowledge to
new problems from domains that have already beed f8 learning. Examining this learning
problem from the viewpoint of a machine learnerngéice that it is quite a hard problem. Its
multi-relational nature (problem characteristicd @lanner parameters) resulted in a large
dataset, but the number of available problems (#&@)small, especially compared to the
number of problem attributes (35). This gives tsévo problems with respect to the evaluation
of the planners: a) Since the training data istBhi(450 problems), a proper strategy must be
followed for evaluating the planners’ performangeevaluating on already seen examples must

definitely be avoided, because it will lead to eathptimistic results due to overfitting.

For the above reasons we decided to perform 10efaisis-validation. We have split the
original data into 10 cross-validation sets, eawh containing 45 problems (3 from each of the
15 domains). Then we repeated the following expeniniO times: In each run, one of the cross-
validation sets was withheld for testing and tire® were merged into a training set. The
training set was used for learning the models oPklAand HAR\\ and the test set for measuring
their performance. Specifically, we calculated shen of the average normalized steps and time.
In addition we calculated the same metric for thstlstatic configuration based on statistical
analysis of the training data (HM&P), in order to calculate the gain in performandaaly, we
calculated the same metric for the best configonafior any given problem (HAJRacLe) in order
to compare with the maximum performance that ta@mers could achieve if it had an oracle
predicting the best configuration. The resultsaxfterun were averaged and thus a proper

estimation was obtained, which is presented indabl

Fold HAPyc HAPorAcLE HAPgc HAPyy
1 1,45 1,92 1,6(1,74
2 1,63 1,94 1,7(1,73
3 1,57 1,94 1,6(1,7(¢
4 1,6(1,94 1,7(1,79
5 1,67 1,94 1,67% 1,73
6 1,66 1,92 1,67 1,74
7 1,44 1,91 1,69 1,72
8 1,47 1,91 1,57 1,74
9 1,39 1,91 1,47 1,59
10 1,43 1,972 1,65 1,73
Average 1,52 1,92 1,63 1,72

Table 7. Comparative results for adapting to problems ofikmalomains

Studying the results of Table 7 we notice that taathptive versions of HAP significantly
outperformed HARc. The difference in the performance between RA&d HAR,c was 0.11
on average, which can be translated as a 7% avgeigeombining both steps and time. HAP

performed even better, scoring on average 0.2 &% gain) than the static version. Moreover,

the auto-configurable versions outperformed thecstane in all folds, exhibiting a consistently
good performance. This shows that the learning atetlogies we followed were fruitful and

resulted in models that successfully adapt HAPiikanown problems of known domains.

Adapting to problems of unknown domains

The second experiment aimed at evaluating the gkration of the adaptive planners’
knowledge to problems of new domains that havebeeh used for learning before. In a sense
this would give an estimation for the behaviorlw planner when confronted with a previously
unknown problem of a new domain.

This is an even harder learning problem considdghiedact that there are very few
domains that have been used for learning (15),cepecompared again to the 35 problem
attributes. To evaluate the performances of RA&d HAR\ we used leave-one-(domain)-out
cross-validation. We split the original data infdcross-validation sets, each one containing the
problems of a different domain. Then we repeatedalowing experiment 15 times: In each
run, one of the cross-validation sets was withii@ldesting and the 14 rest were merged into a
training set. As in the previous experiment, tlaéning set was used for learning the models and
the test set for measuring its performance.

The results show that all the planners performesgthan the previous experiment. Still
HAPrc and HARN managed to increase the performance overdARs it can be seen in Table
8.

We notice a 3% average gain of H&fand 2% average gain of HRPover the static
version in the combined metric. This is a smaltéase in performance, but it is still a success

considering that there were only 15 domains avksl&dr training. The enrichment of data from

more domains will definitely increase the accuratthe models, resulting in a corresponding

increase in the performance of the adaptive systems

Test Domain | HAPyc [HAPoracLe HAPre | HAPW
Assembly 1,31 1,89 1,46 1,04
Blocks 1,13 1,98 1,10 1,71
Blocks_3op 1,69 1,99 1,52 1,81
Driver| 1,52 1,97 1,49 1,45
Ferry 1,03 2,00 1,66 1,41
Freecell 1,43 1,96 1,39 1,7¢
Grippe 1,75 1,99 1,62 1,61
Hano 1,08 1,87 1,03 1,10
Logistics 1,66 1,91 1,69 1,75
Miconic 1,79 1,96 1,71 1,07
Mystery 1,21 1,97 1,11 0,88
Sokoban 1,20 1,96 1,57 1,45
Tsp 1,56 1,74 1,56 1,29
Windows 1,30 1,78 1,26 1,55
Zend 1,26 1,93 1,34 1,34
Average 1,39 1,92 1,43 1,42

Table 8. Comparative results for adapting to problems dfarnvn domains

Scalability of the methodology

The third experiment aimed at showing the abilityhe adaptive systems to learn from easy
problems (problems that require little time to bésed) and to use the acquired knowledge as a
guide for difficult problems. It is obvious thatctua behavior would be very useful, since
according to the methodology, each problem in thieihg set must be attacked with every
possible combination of the planner’s parametedsfanhard problems this process may take
enormous amounts of time.

In order to test the scalability of the methodologg have split the initial data set into
two sets: a) the training set containing the datalfe 20 easiest problems from each domain and
b) the test set containing the 10 hardest probfeons each domain. The metric used for the

discrimination between hard and easy problems hasterage time needed by the 864 different

planner setups to solve the problem. We then usetrdining set in order to learn the models
and statistically find the best static configurataf HAP and tested the two adaptive planners
and HARyc on the problems of the test set. For each prolerhave also calculated the
performance of HABracLe in order to show the maximum performance thataddalve been
achieved by the planner.

The results of the experiments, which are present&dble 9, are quite impressive. The
rule based version managed to outperform the lbegst gersion in 11 out of the 15 domains and
its performance was approximately 40% better omagyee Similarly HARn was better in 11
domains too and the average gain was approximaBsly. There are some very interesting
conclusions that can be drawn from the results:

e With the exception of a small number of domaine, tatic configurations which are
effective for easy problems do not perform welltloe harder instances of the same
domains.

e There are some domains (e.g. Hanoi) where ther¢ beugreat differences between the
morphology of easy and hard problems and therefeitber the statistical nor the
learning analyses can effectively scale up.

e ltis clear that some domains present particuésiiin their structure and it is quite
difficult to tackle them without any specific knaydge. For example, ireecell all the
planners and specifically HAR and HAR,c that were trained from the rest of the
domains only, did not perform very well (see Ta®jewhile the inclusion of Freecell’s
problems in their training set, gave them a bossé (Table 9).

e There are domains where there is a clear tradbeatffeen short plans and little planning

time. For example, the low performance of HAR: e in the Tsp domain shows that the

configurations that result in short plans requitetaf planning time and the ones that
solve the problems quickly produce bad plans.
e The proposed learning paradigms can scale up veliyawd the main reason for this is

the general nature of the selected problem ategout

Test Domain HAPyc [HAPoracLel HAPre | HAPyy

Assembly 0,91 1,86 1,64 1,8(
Blocks 0,91 1,86 1,64 1,72
Blocks_3op 1,86 1,99 1,72 1,86
Driver 1,22 1,97 1,72 1,5]
Ferry 0,31 2,0q 1,89 1,85
Freecell 1,86 1,96 1,87 1,84
Gripper 1,68 1,99 1,76 1,96
Hanoi 0,4% 1,8(1,19 0,5(
Logistics 1,68 1,87 1,80 1,81
Miconic 1,93 1,96 1,93 1,93
Mystery 0,67 1,94 1,73 1,52
Sokoban 0,79 1,97 1,64 1,47
Tsp 1,3% 1,54 1,32 1,46
Windows 1,52 1,69 1,49 1,42
Zeno 0,89 1,91 1,77 1,2¢
Average 1,20 1,88 1,68 1,60

Table 9. Scalability of the methodology

Ability to learn a specific domain

The fourth experiment aimed at comparing generalats which have been learned from a
variety of domains versus specific models that Haeen learned from problems of a specific
domain. The reason for such an experiment is te baslear answer to the question whether the
planning system could be adapted to a target domaursing problems of solely this domain.
The rationale behind this is that a general-purplmseain independent planner can be used
without having to hand code it in order to suit fipecific domain. Furthermore, the experiment

can also show how disorienting can the knowledge fother domains be.

In order to carry out this experiment, we creatgdrain sets, each one containing the 20
easiest problems of a specific domain and 15 &gstvgith the 10 hardest instances. The next step
was to learn specific models for each domain, astithem on the hardest problems of the same
domain. For each domain we compared the performaiite specialized models versus the
performance of general models, which have beeneddirom the 20 easier problems from all 15
domains (see previous subsection). The results fhenexperiment are presented in Table 10,
where:

e HAPyc corresponds to the manually configured versiomm@ling to the statistical

analysis on the 20 easy problems of each domain,

e specific HAR:c and HAR\ correspond to the adaptive versions trained aolynfthe 20
easier problems of each domain,

e general HARc and HAR\ correspond to the adaptive versions trained fioen300
problems (20 easier problems from each one of Thgoinains) and

e HAPgaciecorresponds to the ideal configuration.

According to the results presented in Table 10, kiAdutperforms the best static one in
13 out of the 15 domains and on average it is agpmately 7% better. This shows that we can
also induce efficient models that perform well iffidult problems of a given domain when
solely trained on easy problems of this domain. E\mv, this is not the case for H&R whose
not very good performance indicates that the metlogy requires more training data, especially
because there is a large number of attributes.

Comparing the specialized models of HaRvith the general ones, we see that it is on
average 4% better. This shows that in order to tatbagp single domain, it is better to train the

planner exclusively from problems of that domalith@ugh such an approach would

compromise the generality of the adaptive planfikee results also indicate that on average there
is no actual difference between the performandbefjeneral and the specific versions of
HAPyn. To some extend this behavior is reasonable amdhegustified by the fact that most of
the nearest neighbors of each problem belong teahee domain and no matter how many
redundant problems are included in the trainingtietalgorithm will select the same problems

in order to learn the model.

HAPgc HAP\
Test Domain|HAPyc |HAPoracLE specific general specific general
Assembly 1,68 1,86 1,72 1,64 1,84 1,8(
Blocks 1,68 1,86 1,74 1,64 1,64 1,72
Blocks_3op 1,85 1,98 1,88 1,72 1,89 1,86
Driver 1,68 1,92 1,78 1,72 1,22 1,51
Ferry 1,83 2,00 1,8% 1,89 1,85 1,85
Freecell 1,88 1,96 1,8% 1,87 1,84 1,84
Gripper 1,66 1,99 1,78 1,76 1,96 1,96
Hanoi 1,00 1,8(1,38 1,19 0,50 0,5(¢
Logistics 1,80 1,87 1,81 1,80 1,81 1,81
Miconic 1,93 1,97 1,93 1,93 1,93 1,93
Mystery 1,65 1,94 1,83 1,73 1,52 1,52
Sokoban 1,61 1,972 1,88 1,66 1,57 1,47
Tsp 1,36 1,54 1,38 1,32 1,46 1,46
Windows 1,36 1,65 1,48 1,49 1,46 1,42
Zeno 1,48 1,91 1,80 1,78 1,44 1,2¢
Average 1,63 1,88 1,74 1,68 1,60 1,60

Table 10. General vs. specialized models

DISCUSSION AND CONCLUSION

This chapter presented our research work in thee @rasing Machine Learning techniques in
order to infer and utilize domain knowledge in Aueted Planning. The work consisted of two
different approaches: The first one utilizes cliésaiion rules learning and a rule-based system
and the second one uses a variation of the k-Neldseghbors learning paradigm.

In the first approach the learned knowledge cossibtules that associate specific values

or value ranges of measurable problem attributés thve best values for one or more planning

parameters, such as the direction of search drehastic function. The knowledge is learned
offline and it is embedded in a rule system, wheghtilized by the planner in a pre-processing
phase in order to decide for the best setup opldener according to the values of the given
problem attributes.

The second approach is also concerned with thereatito configuration of planning
systems in a pre-processing phase, but the leaispegyformed on-line. More specifically, when
the system is confronted with a new problem, ihtdfees thek nearest instances from a database
of solved problems and aggregates the plannersétapresulted in the best solutions according
to the criteria imposed by the user.

The model of the first approach is very compactiaodnsists of a relatively small
number (less than 100) of rules that can be easjjjemented in the adaptive system. Since the
size of the model is small it can be easily corslfor every new problem and the overhead
imposed to the total planning time is negligibl@ewéver, the inference of the model is a
complicated task that involves many subtasks agdimes a significant amount of processing
time. Therefore, the model cannot be easily updaiddnew problems. Furthermore, if the user
wishes to change the way the solutions are evalyatg. emphasizing more on plan size) this
would require rebuilding the whole model.

On the other hand, the model of the k Nearest Broblapproach is inferred on-line every
time the system is faced with a new problem. Tha tfeat are stored in the database of the
system are in raw format and this allows incremespansion and easy update. Furthermore,
each run is evaluated on-line and the weights@fp#rformance criteria (e.g. planning time or
plan size) can be set by the user. However, sliesystem maintains raw data for all the past

runs, it requires a significant amount of disk si#ech increases as new problems are added in

the database. Moreover, the overhead imposed yrtloessing of data may be significant,
especially for large numbers of training problems.

Therefore, the decision on which method to follamsgly depends on the application
domain. For example, if the planner is used aswaudting software for creating large plans, e.g.
for logistics companies, then neither the size irequents or the few seconds overhead of the k
Nearest Problems would be a problem. On the otlwed hHf the planner must be implemented as
a guiding system on a robot with limited memoryntiiee rule based model would be more
appropriate.

According to the experimental results, both systbage exhibited promising
performance that is on average better than the@meance of any statistically found static
configuration. The speedup improves significantlyew the system is tested on unseen problems
of known domains, even when the knowledge was iedixy far easier problems than the tested
ones. Such a behavior can prove very useful iroouiging domain independent planners for
specific domains using only a small number of gasgelve problems for training, when it
cannot be afforded to reprogram the planning system

The speedup of our approach compared to the statigtfound best configuration can be
attributed to the fact that it treats planner pagers as associations of the problem
characteristics, whereas the statistical analyigs to associate planner performance with planner
settings, ignoring the problem morphology.

In the future, we plan to expand the applicatioMaichine Learning to include more
measurable problem characteristics in order to capnith vectors of values that represent the
problems in a unique way and manage to captuteahidden dynamics. We also plan to add
more configurable parameters of planning, suchaeaarpeters for time and resource handling and

enrich the HAP system with other heuristics froatestof-the-art planning systems. Moreover, it

is in our direct plans to apply learning technigtesther planning systems, in order to test the
generality of the proposed methodology.

In addition, we will explore the applicability offterent rule-learning algorithms, such as
decision-tree learning that could potentially paevknowledge of better quality. We will also
investigate the use of alternative automatic feas@lection techniques that could prune the
vector of input attributes thus giving the learnaigorithm the ability to achieve better results.
The interpretability of the resulting model andatsalysis by planning experts will also be a point

of greater focus in the future.

REFERENCES
Ambite, J. L., Knoblock, C., & Minton, S. (2000)e&rning Plan Rewriting Rules. Proceedings

of the 8" International Conference on Atrtificial Intelligem®lanning and Scheduling, 3-12.

Bonet, B., and Geffner, H. (1999). Planning as k#tiarSearch: New Results, Proceedings of the

5" European Conference on Planning, 360-372.

Bonet, B., Loerincs, G., and Geffner, H. (1997 Yohust and fast action selection mechanism for

planning. Proceedings of the 14th International f€a@nce of AAAI, 714-719.

Borrajo, D., & Veloso, M. (1996). Lazy Incrementadarning of Control Knowledge for

Efficiently Obtaining Quality Plans. Artificial lefligence Review. 10, 1-34.

Carbonell, J. G. (1983). Learning by Analogy: Folating and generalizing plans from past

experience. Machine Learning: An Artificial Intglénce Approach. Tioga Press, 137-162.

Carbonell, J., Knoblock, C. & Minton, S. (1991). BRIGY: An integrated architecture for

planning and learning, Architectures for IntelligenLawrence Erlbaum Associates, 241-278.

Cardie, C. (1994). Using decision trees to imprease-based learning. Proceedings of the 10

International Conference on Machine Learning, 28-36
Clark, P. & Niblett, R. (1989). The CN2 inductiolgarithm. Machine Learning. 3(4), 261-284.

Cohen, W. & Singer Y. (1999). A Simple, Fast, airffé&ive Rule Learner, Proceedings of the

16" Conference of AAAI, 335-342.

Cohen, W. (1995). Fast Effective Rule Inductiorgd@edings of the {2international

Conference on Machine Learning, 115-123.

Ellman, T. (1989). Explanation-based learning: Avsy of programs and perspectives.

Computing Surveys. 21(2), 163-221.

Edelkamp, S., & Helmert, M. (2001). The Model Chagkintegrated Planning System. Al-

Magazine. Fall, 67-71.

Etzioni, O. (1993). Acquiring Search-Control Knodgge via Static Analysis. Artificial

Intelligence. 62 (2). 265-301.

Fikes, R., Hart, P., & Nilsson, N. (1972). Learnangd Executing Generalized Robot Plans.

Atrtificial Intelligence. 3, 251-288.

Furnkranz J. & Widmer G. (1994). Incremental redliegror pruning. Proceedings of thé"11

International Conference on Machine Learning, 70-77

Gerevini, A., Saetti, A. & Serina, 1. (2003). Plamgpthrough Stochastic Local Search and

Temporal Action Graphs. Journal of Artificial Infigence Research. 20, 239-290.

Gopal, K. (2000). An Adaptive Planner based on by of Planning Performance. Master

Thesis, Office of Graduate Studies, Texas A&M Unsity.

Hammond, K. (1989). Case-Based Planning: Viewiran®ing as a Memory Task. Academic

Press.

van Harmelen, F. & Bundy, A. (1988). Explanatiorséé generalization = partial evaluation.

Artificial Intelligence. 3(4), 251-288.

Hoffmann, J., & Nebel, B. (2001). The FF Planningt®m: Fast Plan Generation Through

Heuristic Search. Journal of Artificial Intelligem&esearch. 14, 253-302.

Howe, A., & Dahlman, E. (1993). A critical assessingf Benchmark comparison in Planning.

Journal of Artificial Intelligence Research. 1, -1

Howe, A., Dahlman, E., Hansen, C., vonMayrhauser&-Scheetz, M. (1999). Exploiting
Competitive Planner Performance. Proceedings ob'feuropean Conference on Planning, 62-

72.

Jones, R. & Langley, P. (1995). Retrieval and Leayim Analogical Problem Solving.

Proceedings of the"?Conference of the Cognitive Science Society, 486-4

Kambhampati, S., & Hendler, H. (1992). A ValidatiBtructure-Based Theory of Plan

Modification and Reuse. Artificial Intelligence. 5893-258.

Knoblock, C. (1990). Learning Abstraction Hieraehior Problem Solving. Proceedings of the

8" National Conference on Atrtificial Intelligence, 3928.
Kolodner, J. L. (1993). Case-based Reasoning. Mokgaifmann.

Kuipers, B. (1994). Qualitative Reasoning: Modelargl Simulation with Incomplete

Knowledge. MIT Press.

Langley, P., & Allen, J. A. (1993). A Unified Framerk for Planning and Learning. Machine

Learning Methods for Planning, S. Minton ed. Morgaaufman, 317-350.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating Ckaication and Association Rule Mining.
Proceedings of thé™international Conference on Knowledge Discoveny Bata Mining

(Plenary Presentation).

Martin, M., & Geffner, H. (2000). Learning Generad Policies in Planning Using Concept
Languages. Proceedings of tHlfternational Conference on Knowledge Representathd

Reasoning, 667-677.

Michalski, R. S., Mozetic, |., Hong, J. & Lavrac, 1986). The Multi-Purpose Incremental
Learning System AQ15 and its Testing ApplicatioTtoee Medical Domains. Proceedings of

the 8" National Conference on Artificial Intelligence,4131045.

Minton, S., (1996). Automatically Configuring Coraht Satisfaction Programs: A Case Study.

Constraints. 1(1/2), 7-43.

Minton, S. (1988). Learning search control knowkedgn explanation-based approach. Kluwer

Academic Publishers.
Mitchell, T. (1977). Machine Learning. McGraw-Hill.

Refanidis, I., and Vlahavas, I. (2001). The GRThRkx: Backward Heuristic Construction in

Forward State-Space Planning. Journal of Artifioiélligence Research. 15, 115-161.
Rivest, R. (1987). Learning Decision Lists. Machirearning. 2(3), 229-246.

Sutton, R. (1990). Integrated Architectures forméag, planning and reacting based on
approximating dynamic programming. Proceedingheff’ International Conference on

Machine Learning, 216-224.

Sutton, R. S. & Barto A.G. (1998). Reinforcemenatreng: An Introduction. MIT Press.

Tsoumakas, G., Vrakas, D., Bassiliades, N., & Walsal. (2004)Using the k nearest problems
for adaptive multicriteria planning. Proceedingsted 3d Hellenic Conference on Attificial

Intelligence, 132-141.

Veloso, M., Carbonell, J., Perez, A., Borrajo, Bink, E., & Blythe, J. (1995). Integrating
planning and learning: The PRODIGY architecturewrdal of Experimental and Theoretical

Artificial Intelligence. 7(1), 81-120.

Vrakas, D., & Vlahavas, I., (2001). Combining preggion and regression in state-space heuristic

planning. Proceedings of th& European Conference on Planning, 1-12.

Vrakas, D. & Vlahavas, I. (2002). A heuristic fdapning based on action evaluation.
Proceedings of the 1nternational Conference on Artificial IntelligezdMethodology,

Systems and Applications, 61-70.

Vrakas, D., Tsoumakas, G., Bassiliades, N., & Walsal., (2003a). Learning rules for Adaptive
Planning. Proceedings of the™Biternational Conference on Automated Planning and

Scheduling, 82-91.

Vrakas, D., Tsoumakas, G., Bassiliades, N., & Waisal., (2003b). Rule Induction for
Automatic Configuration of Planning Systems. TechhReport TR-LPI1S-142-03 , LPIS Group,

Dept. of Informatics, Aristotle University of Thedeniki, Greece.

Wang, X., (1996). A Multistrategy Learning Systeon Planning Operator Acquisition.

Proceedings of théBInternational Workshop on Multistrategy Learni@g;25.

Zimmerman, T., & Kambhampati, S., (2003). LearnAgpisted Automated Planning: Looking

Back, Taking Stock, Going Forward. Al Magazine.24{3-96.

