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A Rule-based Object-Oriented OWL Reasoner
Georgios Meditskos and Nick Bassiliades

Abstract— In this paper we describe O-DEVICE, a memory-based knowledge base system for reasoning and querying OWL 
ontologies by implementing RDF/OWL entailments in the form of production rules in order to apply the formal semantics of the 
language. Our approach is based on a transformation procedure of OWL ontologies into an Object-Oriented schema and the 
application of inference production rules over the generated objects in order to implement the various semantics of OWL. In 
order to enhance the performance of the system, we introduce a dynamic approach of generating production rules for ABOX 
reasoning and an incremental approach of loading ontologies. O-DEVICE is built over the CLIPS production rule system, using 
the object-oriented language COOL to model and handle ontology concepts and RDF resources. One of the contributions of our 
work is that we enable a well-known and efficient production rule system to handle OWL ontologies. We argue that although 
native OWL rule reasoners may process ontology information faster, they lack some of the key features that rule systems offer, 
such as the efficient manipulation of the information through complex rule programs. We present a comparison of our system 
with other OWL reasoners, showing that O-DEVICE can constitute a practical rule environment for ontology manipulation. 

Index Terms— Inference engines, Object-Oriented Programming, Ontology languages, Rule-based processing.  
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1 INTRODUCTION

o exploit the Web to its full extend, information 
should become understandable not only to humans 
but to machines too. Today’s Web is targeted at hu-

mans, making the discovery of information a time con-
suming task. Search engines need the ability to semanti-
cally understand and exploit the available knowledge, 
without relying on the syntax of information. Moreover, 
Web is continuously enriched with services. In such a 
service-oriented architecture (SOA) each service can 
communicate with others by passing messages and ser-
vices can be composed into more complex ones. In order 
to enable automated service discovery and composition, 
two fundamental issues for the successful proliferation of 
SOAs, services should be well-described.  

The Semantic Web initiative [1] tries to solve such 
problems by suggesting standards, tools and languages 
for information annotation. Ontologies play a key role to 
the evolution of the Semantic Web and are widely used to 
represent knowledge by describing data in a formal way. 
OWL [2] is the W3C recommendation for creating and 
sharing ontologies on the web. It provides the means for 
ontology definition and specifies formal semantics on 
how to derive new information. Thus, ontology reasoning 
systems appear to be of great importance. 

Existing implementations of OWL reasoners are based 
on several approaches. The Description Logic reasoners 
(e.g. Pellet [3], RacerPro [4]) implement tableaux algo-
rithms [5], exploiting the research that has been done on 
algorithms for the description logics knowledge represen-
tation formalism on which OWL is based. Datalog-driven 
engines (e.g. KAON2 [6]) reduce a SHIQ(D) KB to a dis-
junctive datalog program [7]. Rule-based reasoners (e.g. 
OWLIM [8], OWLJessKB [9]) use a rule engine to define 

rules for inferencing. F-Logic [10] based engines (e.g. F-
OWL [11], Ontobroker [12]) use frames in order to ma-
nipulate the ontology information. FOL theorem provers 
(e.g. Vampire [13]) translate DL axioms into a FO theory 
by mapping DL concepts and roles names into unary and 
binary predicates. Finally, reasoners based on conceptual 
graphs (e.g. Corese [14]) transform ontology information 
into a conceptual graph formalism. 

In this paper we present O-DEVICE, a production rule-
based system for inferencing about and querying OWL 
ontologies. We use CLIPS [15], a well-known production 
rule engine, and we augment it with an OWL-to-objects 
mapping mechanism in order to handle OWL semantics 
following an object-oriented (here after OO) approach. 
Our implementation handles the OWL Lite sublanguage, 
offering also support for some OWL DL constructs, such 
as partial union of classes, the owl:hasValue construct 
and class disjointness. Currently, we do not support class 
definitions by instance enumeration (owl:oneOf), com-
plement classes and data ranges.  

The work presented here is based on the experience 
gained by previous efforts ([16], [17]) to develop a rule 
reasoning system using static production rules. However, 
in a memory-based rule inference system, like O-DEVICE, 
memory utilization is very important and the efficiency 
depends mainly on the quantity and the quality of rules. 
Quantity refers to the number of implemented entail-
ments. The more they are, the more semantics can be 
handled and thus the more complete the system is. But 
the number of inference rules affects performance. Our 
approach targets at developing a practical reasoning sys-
tem, able to perform with reasonable (time and memory) 
requirements. Quality refers to the implementation as-
pects of these rules. The semantics of each OWL construct 
can be handled by rules implemented in different ways. 
To this end, we have followed a dynamic rule generation
method that is able to handle larger number of objects by 
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restricting the search space where they are applied. The 
domain-dependent rules we generate have simpler condi-
tions and thus faster activation time than the correspond-
ing static/generic ones. Other improvements include the 
incremental loading of triples and the cyclic, partial ap-
plication of the production rules. Both mechanisms aim to 
reduce the size of the RETE network that needs to be built 
in order to match objects to rules, leading not only to 
memory saving but also to speed-up due to less memory 
management activities. All the above are testified via ex-
perimental results that also compare our system to others. 

The rest of the paper is organized as follows: in section 
2 we describe our motivation for using an existing pro-
duction rule system and for transforming OWL to an OO 
schema. In section 3 we give a short background of the 
CLIPS rule engine. In section 4 we give a detailed descrip-
tion of the ontology mapping and inference rules. In sec-
tion 5 we analyze the loading procedure. In section 6 we 
describe the deductive query language of the system 
while in section 7 we present experimental results. Fi-
nally, in sections 8 and 9 we present related work and 
conclude giving future direction, respectively. 

2 THE MOTIVATION

Our motivation is to combine OWL ontologies, the rule 
programming paradigm and the OO model using a well-
known and efficient rule inference engine in order to en-
able it to handle OWL ontologies in a practical manner. 

Several reasoners offer the possibility of connecting 
them to external applications, e.g. through the DIG [18] 
interface, as most DL reasoners and KAON2 supports, 
justifying the need of further exploitation of the reasoning 
results. Our approach targets at the exploitation of the 
OWL ontological information via a rule engine.

In existing reasoning implementations, although it is 
possible to manipulate ontologies using a rule notation, 
e.g. SWRL [19] language in KAON2, or to perform que-
ries over the ontology, e.g. SPARQL [20], it is not possible 
(or it is not efficient at least) to define a complete rule 
program over the ontology since they are not dedicated 
rule engines. To this end, the use of a rule system able to 
reason over ontologies, gives the opportunity to utilize 
directly the ontology information by building knowledge-
based systems. Ontologies can be inserted into the system 
and, after the materialization of the semantics through the 
reasoning procedure, i.e. the application of inference rules 
in order to deduce new information, user-defined rules 
can operate over the materialized knowledge. 

However, although rule-based OWL reasoners built 
from scratch, such as OWLIM, may process ontology in-
formation and answer single queries fast, since they are 
optimized for this domain, we argue that they cannot 
handle complex and large rule programs as efficient as a 
native rule engine, such as CLIPS. 

The motivation behind our OO representation of OWL 
is twofold. Firstly, the OO form of the information lays 
closer to the way programmers model a real world do-
main by categorizing objects and concepts of the world 
into classes, attaching to them appropriate attributes. By 

transforming ontologies into the OO model, we enable 
the implementation of OO rule programs by users, taking 
also into account that OWL uses classes, properties and 
objects as well for the definition of concepts for a domain.  

Secondly, the transformation enables us to exploit ba-
sic features that an OO environment can offer. The native 
mechanism of COOL for subclass relationships supports 
class subsumption and transitivity, treating both single 
and multiple inheritance issues, saving us from the com-
plex and costing procedure of handling hierarchical class 
relationships and derived consequences, such as class 
membership and property inheritance.  

Moreover, the OO ontology representation can be con-
sidered as a trivial but efficient form of indexing. Class 
definitions embed their properties and property values 
are encapsulated inside the resource objects, enabling the 
direct access of property values of a particular object. 
Every reference to an object’s property is handled by sys-
tem pointers to the corresponding values that are created 
during the object initialization by CLIPS. In that way, we 
can directly access property values through the native 
COOL message passing mechanism. 

At this point, two things are worth mentioning. Firstly, 
the OO model is not able to capture the complete seman-
tics of the OWL language. With the transformation pro-
cedure, we want to capture as many semantics as possi-
ble, such as class and property inheritance issues. More 
complex class and property semantics, such as intersec-
tion of classes or property transitivity cannot be modeled 
directly by the OO model and for that reason we imple-
ment entailment rules that we present in the following 
sections. Secondly, since we use a rule engine, we are in a 
closed-world. However, the mapping mechanism exhibits 
a dynamic behavior in order to cope with the open-world 
nature of OWL. Therefore, already created classes may 
need to change their definition or objects may need to 
change their type at runtime due to the open-world se-
mantics of OWL. Furthermore, the close-world assump-
tion that rule systems follow during querying is not al-
ways an undesirable feature. This depends on the domain 
of the application and the queries that are to be answered, 
e.g. queries about negative information [21].  

3 THE CLIPS RULE ENGINE

CLIPS [15] supports three different programming para-
digms: procedural, rule-based and OO. The semantics of 
CLIPS production rules are the usual production rule se-
mantics: rules whose condition is successfully matched 
against the current data are triggered and placed in the 
conflict set. The conflict resolution mechanism selects a 
single rule for firing its action, which may alter the data. 
Rule condition matching is performed incrementally, 
through the RETE algorithm. 

The OO module of CLIPS supports abstraction, inheri-
tance, encapsulation, polymorphism and dynamic bind-
ing, integrating procedural, OO and rule-based pro-
gramming, since classes, properties and objects can be 
manipulated via rules. The definition of an OO model in 
CLIPS is performed via the COOL [15] language which 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



MEDITSKOS ET AL.:  A RULE-BASED OBJECT-ORIENTED OWL REASONER 3

provides the necessary means for defining classes, prop-
erties and objects as well as relationships among them. 

Subclass relationships: COOL allows the definition of 
single and multiple class inheritance. This feature is 
used in our methodology for implementing complex 
class constructors (section 4.2). 
Property inheritance: Properties (in CLIPS they are 
called slots/multislots) are inherited to subclasses.
Object relationships: Object referencing slots are used 
to define OWL instance relations. 
We exploit these basic OO features of CLIPS in the 

domain of OWL ontologies through the mapping proce-
dure we describe next in order to treat some of the OWL 
semantics using the underlying OO environment.  

4 ONTOLOGY MAPPING AND INFERENCE RULES

O-DEVICE implements a number of entailments that are 
presented in Table 1 [22]. Fig. 1 illustrates in the form of 
an OO logic-like syntax the rules of O-DEVICE, since an 
exact and detailed presentation of the CLIPS production 
rules would be an unnecessary complication. However, in 
the remainder of the paper we present some rule exam-
ples in the native CLIPS/COOL syntax in order give a 
feeling of the implementation. For the logic-like represen-
tation we assume that Tr is the set of ontology and in-
stance triples, Cl is the set of user classes, Obj is the set of 
existing objects and ext(C) is the extension of class C, with 

C Cl, ext(C) Obj. Notice that (a) the set Obj equals to 
the union of all class extensions Obj= ext(C), (b) the set 
Obj includes all OWL instances Obj=ext(owl:Thing), and 
(c) the set Cl includes all OWL classes Cl=ext(owl:Class).
Furthermore, class(o) is a function that returns the class of 

the object o and slots(C) returns the set of slots of class C.
Finally, the expression t.s delivers the subject of the triple, 
t.o the object and t.p the predicate. In general, the expres-
sion o.s returns the values of the slot s of object o.

4.1 Ontology Mapping 
The mapping of basic OWL primitives into OO constructs 
is straightforward: there are classes with properties that 
model a concept of a particular domain and instances are 
defined upon them, creating the actual KB by specifying 
relationships among them. In that way, each OWL class is 
mapped into a COOL class, each OWL property into a 
slot (actually, a multislot) of a COOL class and each OWL 
instance into a COOL object.  

4.1.1 Implementing Basic OWL Axioms 
The OO schema is implemented in a way so to reflect 
OWL axioms. We present four basic axioms that charac-
terize our implementation. 

Axiom 1: Each class is a direct or indirect subclass of the 
owl:Thing class. Therefore, the C owl:Thing assertion is 
always satisfiable for every class C of the KB. 

Axiom 2: Every object belongs directly or indirectly to the 
owl:Thing class. Therefore, the owl:Thing(i) assertion is 
always satisfiable for every instance i of the KB. 

Axiom 3: Every role P for which no domain class is defined, 
the system assumes P .owl:Thing and the role is mapped 
as a slot in the owl:Thing class. Therefore, every object 
inherits the property P.

Axiom 4: Every role P for which no range constraint is de-
fined, the system assumes P.owl:Thing. Therefore, P
can take any value. 

In an OWL ontology, classes and properties are de-
fined as instances of appropriate built-in classes, e.g. 
owl:Class or owl:ObjectProperty. The system creates 
the objects that correspond to these instances, which we 
call meta-objects. In that way, properties are still first class 
citizens, as in RDF and OWL, since they are objects (meta-
objects) of the corresponding classes. In order for the sys-
tem to be able to create the meta-objects, we have prede-
fined the built-in classes and properties of OWL in the 
form of an OO schema based on the RDF schema of OWL, 
as it is defined in [23]. The OO implementation of the 
RDF Schema has been taken from [24]. 

4.1.2 Transformation Rules 
In this section we analyze the transformation rules by 
presenting also the role of each one during the transfor-
mation of the ontology of Fig. 2 in the COOL OO model.  

r1: Materializes the classes of the OO model. Each concept C
of an ontology is mapped into a defclass construct, the 
native construct for defining classes in COOL. This rule is 
responsible for generating the Person defclass construct 
from the first triple of the example. The Axiom 1 is used in 
order to define the class as a subclass of the owl:Thing.
Notice that at this point, the class has not any slots yet. 

r2: Generates the attributes of each class of the OO model.
Each axiom P .C (the domain of P is the class C) is 
mapped into a multislot with name P in the domain class 
C which should be materialized (C Cl). By this rule, the 

TABLE 1
The Entailment Rules Supported by O-DEVICE 

 IF THEN 
rdfs2 p domain d, s p o s type d 
rdfs3 p range r, s p o o type r 
rdfs4a u p w u type Resource 
rdfs4b u p w w type Resource 
rdfs7x p subPropertyOf q, u p w u q w 
rdfs9 u subClassOf w, s type u s type w 
rdfs11 u subClassOf w, w subClassOf t u subClassOf t 
rdfp1 p type FunctionalProperty, u p w, u p o w sameAs o 
rdfp2 p type InverseFunctionalProperty, 

u p w, s p w 
u sameAs s 

rdfp3 p type SymmetricProperty, u p w w p u 
rdfp4 p type TransitiveProperty, u p w, w p o u p o 
rdfp8ax p inverseOf q, u p w w q u 
rdfp8bx p inverseOf q, u q w w p u 
rdfp11 u p w, u sameAs u’, w sameAs w’ u’ p w’ 
rdfp12a u equivalentClass w u subClassOf w 
rdfp12b u equivalentClass w w subClassOf u 
rdfp13a u equivalentProperty w u subPropertyOf w
rdfp13b u equivalentProperty w w subPropertyOf u
rdfp15 u someValuesFrom w, u onProperty p, 

s p x, x type w 
s type u 

rdfp16 u allValuesFrom w, u onProperty p, 
s type u, s p x 

x type w 
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two multislots friendOf and age are inserted into the Person
class (3rd and 6th triple). Notice that although the class is 
already materialized, the system is able to redefine it with 
the new slots, presenting a fully dynamic behavior.  

r3, r4: Define the allowed values for each property. Each 
axiom P.C (the range of P is the class C) is mapped 
according to the type of P. If P is an object property (r3)
then it is mapped given the COOL type restriction IN-
STANCE-NAME, taking care of the range class according 
to [24]. If P is a datatype property (r4) then it is mapped 
given the appropriate COOL datatype restriction INTE-
GER, SYMBOL, etc. The mapDT function performs OWL 
to CLIPS datatype conversion. By this rule, the 4th and 
7th triples are mapped into the type constraint by redefin-
ing the properties, i.e. the age property has the INTEGER 
and the friendOf property the INSTANCE-NAME type.  

r5: Implements hierarchical relationships. Each TBOX asser-
tion of the form C D is mapped into a subclass defini-
tion using the is-a constraint of the COOL defclass con-
struct. Both classes should be materialized (C, D Cl). If 
there was a subclass relationship in the example ontology, 
e.g. Person Human, then the Person class would be rede-
fined in order to alter the is-a constraint into is-a Human.

r6, r7: Generate the objects of the OO model. Each axiom 
i:C (i is an instance of C) is mapped into a COOL object of 
class C. Rule r6 transforms each triple <s rdf:type o>
into an object s of the class o, only if o is a materialized 

class (o Cl) and there is not any other materialized object 
with the name s (s Obj). By rule r6, triples 8 and 9 are 
mapped into actual objects in the KB. However, OWL 
allows an object to have multiple class declarations in 
contrast to the OO modeling principles. This case is 
treated by rule r7 which applies only if an object with the 
same ID already exists in the KB (s Obj). The object 
should belong to the intersection of the classes t.o and 
class(t.s). More specifically, let C and D be two classes 
and let there be an already implemented ABOX assertion 
C(a). If a new ABOX assertion D(a) appears, then there 
are three cases concerning class intersection: 
1. If C  D, then the system does not perform any action 

since the D(a) assertion is satisfiable due to the CLIPS 
inheritance mechanism.

2. If D  C, then the system redefines the object in order 
to belong to class D only. Therefore, D(a) and C(a) are 
satisfiable due to CLIPS inheritance.

3. If neither of the above is true, then the system gener-
ates a system class T, where T  C and T  D (allow-
able by CLIPS multiple inheritance mechanism) and 
implements the ABOX assertion T(a) through which 
both C(a) and D(a) are satisfiable.

The above algorithm is used in our system whenever 
an object should belong to more than one classes simulta-
neously. In the example, if there was an extra triple de-
noting that <nick type Human>, then one of the first 
two cases of the above algorithm would hold, according 
to the order the objects would be created: if nick was 
firstly implemented as a Person object, then the above tri-
ple would be ignored since Person Human. Otherwise, 
nick would be redefined as a Person object.  

r8, r9: Insert values into object properties. Each i1, i2 :P
axiom is mapped by inserting the value i2 into the slot P
of the object i1. The r8 rule handles the simple case of in-
serting a value o, which should be a materialized object 
(o Obj), into the object property p (p ext(owl:Object-
Property)) of the materialized object s (s Obj). Notice that 
the slot p should exist in the definition of class of the ob-

Fig. 1. An OO rule-like syntax of the rules presented in the paper 

1:<Person type Class> 
2:<friendOf type ObjectProperty> 
3:<friendOf domain Person> 
4:<friendOf range Person> 
5:<age type DatatypeProperty> 
6:<age domain Person> 
7:<age range int> 
8:<paul type Person> 
9:<nick type Person> 
10:<paul friendOf nick> 

(defclass Person 
  (is-a Thing) 
  (multislot friendOf 
     (type INSTANCE-NAME)) 
  (multislot age (type INTEGER)))

(make-instance [paul] of Person) 
(make-instance [nick] of Person) 
(send [paul] put-friendOf [nick]) 

Fig. 2. Transformation example. 
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ject s (p slots(class(s))). Otherwise, rule r9 is applied,
which mandates the object to also belong to the domain 
class of the property (in order to inherit it), following the 
algorithm we have described for multiple class definition 
objects. By rule r8, the 10th triple is mapped as an object 
value into the friendOf slot of the paul object. Rules similar 
to r8 and r9 exist for datatype properties as well. 

4.1.3 OWL Entailments 
We define also transformation rules that implement OWL 
entailments. To exemplify, we present rule r10.

r10: Implementation of the rdfs3 entailment. The rule en-
sures that the type of the object part o of a triple is consis-
tent with the range constraint of the predicate p of a triple 
by forcing the o resource to belong to the range constraint 
class (o ext(p.rdfs:range)). The rule ensures that all values 
have the appropriate type before they are inserted into 
the slots (via r8). To give a feeling of the implementation, 
we present the static CLIPS rule for the rdfs3 entailment. 
(defrule rdfs3 
   (triple ?s ?p ?o) 
   (test (instanceOf ?p owl:ObjectProperty)) 
   (test (class-existp (send ?p get-rdfs:range))) 
=> (create-object ?o (send ?p get-rdfs:range)))

The condition matches triples whose predicate is an 
object property and whose range class already exists. In 
that case, ?o is created as an object in the KB via the cre-
ate-object function, which is a functional equivalent of 
logical rules r6 (?o does not exist) and r7 (?o exists). Thus, 
if the nick object was not defined in the ontology, the sys-
tem would created it as a Person object, the range of the 
friendOf property. A similar rule for the rdfs2 entailment is 
based on the domain constraint of a property. In the case 
of datatype properties, if the value type is inconsistent to 
the range restriction of the property, the triple is ignored. 

4.2 TBOX Reasoning 
TBOX reasoning is performed via static rules that apply 
OWL semantics on class and property definitions. 

4.2.1 Class Intersection 
The owl:intersectionOf construct is treated by defini-
ng multiple concurrent subclass relationships. If there is a 
class C defined as C A1 A2  ... An, then we define C
Ak, where 1 k n, i.e. each Ak class becomes a direct super-
class of class C and every object of class C is simultaneo-
usly an object of all Ak classes. Notice that class subsump-
tion relationships among Ak are also considered, as al-
ready explained. Furthermore, the system stores this as a 
sufficient condition for class membership, denoting that 
common objects of all Ak classes are also objects of class C.
This information is used during the classification proce-
dure in ABOX reasoning (section 4.3.4), where the com-
mon objects of the Ak classes are classified into class C.

4.2.2 Class Union 
The owl:unionOf construct is also treated by defining 
subclass relationships. If there is a class C defined as C
A1 A2  ... An, then we define Ak  C, where 1 k n, i.e. 
each Ak class becomes a direct subclass of class C. In that 

way, the objects of each Ak class belong to class C as well, 
i.e. a | a Ak : a C. Currently, we do not handle the suf-
ficient relation a | a C : a A1 a A2  … a Ak. We
are investigating ways of applying disjunctive logic pro-
gramming over the generated OO schema. 

4.2.3 Class Equivalence 
Class equivalence is another example of the difference 
between OWL and OO modeling. Since in OO modeling 
it is infeasible to define mutual subclass relationships 
among equivalent classes, as the rdfp12a and rdfp12b en-
tailments denote, we follow an indirect approach. 

Let there be a set of n equivalent classes Cn (n 1). The 
system selects randomly one of the n classes, e.g. class Cd
to become the delegator class and defines it as a subclass of 
the rest of the classes, i.e. Cd  Cn where n d. However, 
this transformation is not enough by itself to capture the 
complete semantics of class equivalence. Objects of class 
Cd are also objects of each of the Cn classes, but not vice 
versa. For that reason we store a sufficient condition stat-
ing that an object of any of the Cn classes is also an object 
of the Cd class. This condition is used later to generate 
dynamic rules for instance classification which “push” all 
objects of the Cn classes to the Cd class. In that way, a 
query to the Cd class retrieves the objects of all Cn classes 
since their objects have been classified into the Cd class.

4.2.4 Checking Class Consistency 
O-DEVICE checks class consistency based on the 
owl:disjointWith property that denotes which classes 
cannot have hierarchical relationship with each other.  

r11: Determines class inconsistencies. The rule checks the 
consistency of the class hierarchy by examining the values 
of the owl:disjointWith property of class meta-objects.
If two classes b and c are defined to be disjoint with each 
other (thus b belongs to the disjoint slot of c
(b c.owl:disjointWith) and vice versa), then the system 
does not allow the existence of a subclass relationship 
between them and interrupts the ontology loading proce-
dure with an appropriate error message. 

4.2.5 Schema Related Semantics 
Specific rules are responsible for creating a complete and 
valid OO schema. Notice that these rules do not imple-
ment any entailment of Table 1. We have defined them 
based on the formal specification of OWL. 

r12: Handles domain/range constraints of inverse properties.
For two inverse properties, the domain restriction of the 
one should be the range of the other and vice versa. More 
formally, Pi,Pk: Pi  Pk , Pi .C Pk.C.

r13, r14: Handle domain/range constraints of subproperties.
A subproperty inherits the domain and range constraints 
of its superproperties by inserting the values into the cor-
responding domain and/or range slots. Thus, a property 
might result in having more than one domain and/or 
range constraints. These cases are treated by creating an 
intersection class which acts as a unique domain or range 
class, as already explained. For example, if a property P
has i domain classes, where i 1, i.e. P .Ci, then 

P .T, where T Ci.
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r15, r16: Define implicit functional and inverse functional 
properties. The rules define as functional (r16) (or inverse 
functional (r15)) the properties that are defined as the 
inverse of inverse functional (or functional) properties. 
For example, if Pi Pk and 1Pk, then 1Pi .

4.3 ABOX Reasoning 
ABOX reasoning is performed via production rules that 
are dynamically generated based on templates that are 
“filled” with actual ontology values. In the following sec-
tions we present some example templates. All the tem-
plate rules can be found in [25]. 

4.3.1 Dynamic Rules for Property Values 
User-defined properties may have special semantics ac-
cording to the class(es) they belong, e.g. owl:Transi-
tiveProperty, or because they are related to other prop-
erties, e.g. owl:inverseOf. In order to handle these 
property semantics, rules that range over all such proper-
ties are needed. As example we present rule r17.
r17: Handles transitive property values (implementation of the 
rdfp4 entailment). This rule actually implements the transi-
tive relation P(x,y) P(y,z) P(x,z), where P is a transi-
tive property and x,y,z Obj.

If the above rule was implemented statically in CLIPS  
a triple loop (i.e. a double join) would be required in the 
rule condition, as the simplified rule below illustrates. 
This would be very slow in large ontologies.  
(defule transitive-property 
   (object (is-a owl:TransitiveProperty)(name ?p)(rdfs:domain ?d)) 
   (object (is-a ?d) (name ?obj1)) 
   (object (is-a ?d) (name ?obj2)) 
   (test (member$ ?obj2 (send ?obj1 (sym-cat get- ?p))) 
=> (bind $?val1 (send ?obj1 (sym-cat get- ?p))) 
     (bind $?val2 (send ?obj2 (sym-cat get- ?p))) 
     (send ?obj1 (sym-cat put- ?p) (union$ $?val1 $?val2)))

Instead, the system dynamically generates domain 
specific rules based on template rules that implement 
special property semantics. The template rule that han-
dles transitive properties can be shown below. 
(defrule <rule-name>
   (object (is-a <p-domain>) (name ?obj1) 
      (<p> $? ?obj2 &: (transitive ?obj1 ?obj2 <p>) $?)) 
=> (bind $?v1 (send ?obj1 get-<p>))
     (bind $?v2 (send ?obj2 get-<p>))
     (send ?obj1 put-<p> (union$ $?v1 $?v2))) 

Expressions in bold denote variables that are substi-
tuted at runtime by actual ontology values. More pre-
cisely, <p> denotes a transitive property and <p-domain>
denotes its domain class. In that way (a) we generate 
rules that are as specific as possible to the characteristics 
of a property, restricting the search space of the rule con-
dition and (b) the resulting rules have as less conditional 
elements as possible, minimizing the cost from multiple 
joins. The template rule matches objects (?obj1) of the 
domain class, retrieves the values (?obj2) of the transi-
tive slot of ?obj1, exploiting the message passing infra-
structure of COOL, and calculates the partial transitive 
closure between the property values of ?obj1 and ?obj2,

without performing any join among objects. 

4.3.2 Individual Equality/Inequality 
In an OO environment, there is not a direct way to define 
that two objects are in fact identical. Every object has its 
unique ID and the only way to achieve such relationship 
is to implement an indirect mechanism. Our approach 
results in forcing all the identical objects to have the same 
values in their corresponding slots (rdfp11). An alternative 
solution could be that, instead of having all the identical 
objects materialized in the KB, we could select only one to 
exist as the representative object and all the transforma-
tions can be done over this object only. Thus, every query 
or value insertion that refer to any of the “ghost” objects 
will be transformed in order to refer to the representative. 
Although this approach would be more scalable during 
the loading of an ontology, it is quite customized and 
does not fully comply with the OO principles since the 
notion of “subsumed/hidden” objects does not exist. Fur-
thermore, we would impose an extra overhead at query 
time, since rules should be transformed appropriately in 
order to refer to the representative object only. 

For individuals explicitly defined as identical via 
owl:sameAs, we utilize a static rule since the property is 
known in advance.

r18: Makes identical objects to have the same properties and 
values. The rule finds two objects o1 and o2 such that o2
exists in the owl:sameAs slot of o1 and copies all the val-
ues of all the properties of both objects to each other, via 
the copy-values procedure which is defined as:
copy-values(o1,o2): s slots(class(o1)) o1.s = o2.s

Since the objects may belong to different classes and 
thus, may not have the same properties, the system forces 
them to belong to the same class, before copying, result-
ing in two objects whose only difference is their name. 
The name restriction is overcome at the query level where 
queries traverse objects based on their values and not on 
their IDs. The same procedure is followed when entail-
ments derive an owl:sameAs property (e.g. rdfp1, rdfp2).

Individual inequality statements are used in order to 
check consistency, based on the values of the owl:dif-
ferentFrom property and the objects of the owl:All-
Different class. As an example, we present rule r19.

r19: Checks inconsistencies based on the owl:differentFrom 
property values. The rule examines if there is an object o1
that has in both owl:sameAs and owl:differentFrom
properties the same value o2 and reports an inconsistency. 

4.3.3 Dynamic Rules for Existential Quantifiers 
Existential quantifiers are treated by generating Skolem 
objects based on the properties owl:someValuesFrom,
owl:minCardinality, owl:cardinality and owl:-
hasValue.  As an example, we present r20.

r20: Generates existential quantifiers based on the 
owl:someValuesFrom restriction. This rule is the logic-like 
equivalent of the static rule that would generate a Skolem 
object sk for each object o of a class c with an 
owl:someValuesFrom restriction r on property p. Notice 
that classes keep links with their associated restrictions 
via the necessary slot, which stores IDs of instances of the 
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owl:Restriction meta-class. Although restrictions are 
typically classes in OWL, in O-DEVICE they are not ma-
terialized with defclass constructs, but their meta-objects 
are just used for storing their properties. The rest of the 
restrictions are handled similarly. The actual template 
rule for rule r20 is depicted below. 
(defrule <rule-name>
   (object (is-a <p-domain>)(name ?n) 
      (source ?sk &~ SKOLEM) 
      (<p> $?val &: (not (exists $?val <c-name>)))) 
=> (make-skolem-object ?n <p> <c-name>))

The rule finds an object ?n of the restricted class <p-
domain> and checks if it does not have any values of the 
appropriate type <c-name> for the restricted slot <p>. In 
the action, the rule generates a Skolem object of type <c-
name> and inserts its ID in the slot <p> of the object ?n.

Notice that Skolem objects need special treatment to 
avoid non-termination of the derivation procedure. For 
example, consider the ontology Person hasParent.Per-
son. For every Person that does not have in its hasParent
slot a Person value, the system will generate a Skolem 
object of such type and will insert it in the slot. However, 
for every generated Person Skolem object, a new Person
Skolem object should be generated and the system would 
go into an endless loop. To solve this, we do not generate 
Skolem objects for Skolem objects (source slot). Although 
this approach seems simplistic, we argue that we can effi-
ciently handle many real world cases, keeping the com-
plexity of the system low.  

4.3.4 Dynamic Rules for Instance Classification 
Classification is performed over objects that satisfy the 
sufficient conditions of the ontology. Appropriate rules 
change the type of existing objects either by pushing them 
from a class that is higher in the hierarchy to a more spe-
cific class or by pushing them to system generated sub-
classes which are intersections of existing classes, not hi-
erarchically related. The following template rule gener-
ates classification rules. 
(defrule <rule-name>

   (object (is-a <classes> &~ <class>)
      (name ?n &: (OSR ?n <restrictions>))) 
=> (change-object <class> ?name))

The expression <classes> denotes the classes that an al-
ready existing object belongs to and <class> is the new 
class where the object should be classified. The rule finds 
an object ?n that belongs simultaneously in all <classes>
and it is not already an object of <class>, since in that case 
there is no need to activate the rule, and checks if the ob-
ject satisfies every sufficient condition (<restrictions>) of 
the new class (OSR function). In that case, the rule action 
changes the type of the object using the change-object
function that implements the algorithm we have already 
described for multiple type objects in section 4.1.2. 

To exemplify, consider the class intersection example 
of section 4.2.1 defined as C A1 A2  ... An. In this case, 
the <classes> expression refers to all An classes and 
<class> refers to class C where the object should be classi-
fied. Since there are not any restrictions to be satisfied, the 
<restrictions> term is nil. Thus, an object that satisfies the 

condition of the rule is classified in class C. The generated 
classification rule is depicted below. 
(defrule genA 
   (object (is-a A1&A2&…&An &~ C) (name ?n &: (OSR ?n nil))) 
=> (change-object C ?name))

5 LOADING ONTOLOGIES

Since O-DEVICE is a memory-based reasoning system, 
memory size is crucial and imposes a physical threshold 
on the amount of data that can handle. However, sys-
tem’s performance can be heavily affected by the way the 
available memory is used.  

We have used four ontologies in our experiments. The 
SEMINTEC [26] ontology is about the financial domain 
and uses extensively class disjointness, functionality as-
sertions, inverse properties and universal quantifiers. We 
used a dataset of ~65,000 triples. 

VICODI [27] is a project that provides an ontology of 
European history. The TBOX consists of only subclass 
relationships, one symmetric property and several sub-
properties. We used a dataset of ~265,000 triples. 

The Lehigh University Benchmark (LUBM) [28] de-
fines an ontology for the university domain. The ontology 
uses existential quantifiers, intersection of classes and 
special properties. LUBM provides a tool for generating 
synthetic OWL data over the ontology. We generated 
data for one university (LUBM1) with ~105,000 triples. 

The University Ontology Benchmark (UOBM) [29] de-
fines two university ontologies for inferencing on OWL 
Lite and OWL DL by extending the LUBM. In our ex-
periments we use the OWL Lite version that covers suffi-
ciently enough constructs and the UOBM Lite-1 dataset 
that contains ~245,000 triples. LUBM and UOBM are well 
known benchmarks, having been used extensively for 
comparing reasoning engines. A more detailed presenta-
tion of benchmarking frameworks can be found in [30]. 

5.1 Analyzing the Loading Procedure 
In an initial implementation, we call Direct Loading of Tri-
ples and Rules (DLTR), the ontology was transformed into 
triples that were loaded into CLIPS and rules operated 
over them in order to create the OO schema and to apply 
the OWL inference procedure. The drawback of this ap-
proach is that rule condition matching (through RETE) 
involved all the rules simultaneously over the “complete” 
ontology information. The loading time LDLTR of an ontol-
ogy  of N triples is given by: 

DLTR N N D,NL = T + L +T + L , (1) 
where T is the transformation time of the ontology into 
triples, using the ARP Parser [31], LN is the loading time 
of N triples into CLIPS, TN is the transformation time of N
triples into an OO schema and LD,N is the loading time of 
the set D of all the dynamic rules, i.e. the inference rules. 
T  and LN are always the same for a specific ontology 
and are independent of the approach we use for the trans-
formation and inference procedure. Thus, (1) becomes: 

,DLTR N D NL H T L ,
where H = T  + LN.

To enhance system performance, we introduced an In-
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cremental Loading of Rules (ILR) methodology (Fig. 3). We 
separate the dynamic rules into ten subsets and each sub-
set is loaded separately. The sets are: transitive (D1), 
symmetric (D2), subproperty (D3), inverse (D4), equivalent 
(D5), functional (and min cardinality) (D6), inverse func-
tional (D7), universal quantifiers (D8), skolem/existential 
(D9) and classification (D10). We have excluded from the 
analysis the individual equality rule (owl:sameAs prop-
erty), since the rule is static and ontology-independent. 
Rule subsets are applied in a circular mode, to cope with 
the missing rule activations due to incremental rule load-
ing, until no activation is detected. The loading time LILR
of an ontology  of N triples is given by the following 
formula, where a is the number of cycles of the inference 
procedure and ,nD NL  is the loading time of the n-th set of 
dynamic rules over the generated OO schema from the 
transformation of N triples: D = Di, where D is the 
complete set of all the dynamic rules. 

1
,i

n

ILR N D ,N
i=

L = H +T + a L

Experiments have shown that the incremental loading 
of dynamic rules performs better, even if the ABOX rea-
soning procedure needs to be applied many times. When 
the complete set of rules is loaded, the firing of one of 
them causes the pattern matching procedure to be execu-
ted over all rules in order to determine rule activati-
ons/deactivations. By loading each time a portion of the 
rule set, the pattern matching procedure operates faster, 
even if the system spends extra time in order to apply the 
inference rules in a circular mode. In other words: 

( )1 2 nD ,N D ,N D ,N D,Na L + L +...+ L < L .
However, even if rules were applied incrementally, 

each time rule conditions had to be matched over a large 
number of objects leading to a poor performance. To cope 
with this problem, we have also implemented an Incre-
mental Loading of Triples (ILT) methodology (Fig. 4). The 
system incrementally loads sets of q triples, where q is a 
predefined value, and then applies the ILR methodology 
over the currently loaded data in order to create each time 
a portion of the OO schema. Thus, the overall reasoning 
procedure consists of N/q cycles. The loading time is: 

=1
( ) ( ) ( ) ,i

n

ILT+ILR q q D ,q
i

L = T + N/q L + N/q T +a N/q L (2) 

where (N/q)Lq is the sum of the loading times of each q
triples incrementally into CLIPS, (N/q)Tq is the sum of the 
transformation times of q triples incrementally into the 
OO schema and the last factor is the sum of the loading 
times of the dynamic rules. Assuming that bulk loading N
triples into memory is the same as loading them incre-

mentally, i.e. (N/q)Lq = LN, (2) becomes: 

=1
( )[ ]i

n

ILT+ILR q D ,q
i

L = H + N/q T +a L .

L refers only to loading triples without applying any rule.  
Experiments have shown that for an appropriate q

value (a) the incremental loading of dynamic rules over a 
portion of the OO schema is faster than the incremental 
loading over the whole set, since rules are applied to a 
smaller set of objects, and (b) the incremental transforma-
tion procedure of triples into an OO schema is faster than 
transforming all the triples at once, since the transforma-
tion rules are applied in a portion of the triples and, thus, 
activated faster. In other words: 

=1 1
( / ) i i

n n

D ,q D ,N
i i=

a N q L a L , ( / ) q NN q T T .

5.1.1 Determining the q Value 
In order to discover the factors that influence q, we have 
conducted experiments with different ontologies. We 
loaded each ontology and for each run we used a differ-
ent q value. The results we obtained are depicted in Fig. 5. 
Table 2 shows the approximate number of generated ob-
jects in each cycle according to the number q of triples. 

TABLE 2
Approximate Number of Generated Objects in Each Cycle 

 5,000 10,000 20,000 30,000 
UOBM Lite1 950 1,900 3,950 5,900
LUBM1 975 2,050 4,200 6,420
SEMINTEC 1,380 2,760 5,500 8,450
VICODI 1,550 3,150 6,350 9,800 

We observed that three out of the four ontologies were 
loaded faster with a q value approximately equal to 
20,000, where the number of generated objects in each 
cycle varies from 4,000 to 5,500 objects. The VICODI on-
tology exhibits a different behavior, achieving the best 
loading time for q=5,000. Furthermore, increasing q af-
fects heavily the loading time of VICODI in contrast to 
the other ontologies where the loading time increase is 
smoother. In order to explain this difference, we exam-
ined the dynamic rules that were generated. 

We conclude that the optimal q value is affected by the 
percentage of the overall schema the rules have to trav-
erse, i.e. the is-a part of a rule that denotes the class of the 
matched objects. Furthermore, the amount of overhead is 
relevant to the type of the dynamic rule: a transitive rule 
imposes greater overhead than a symmetric one. 

For the VICODI ontology, the rules that are generated 
traverse many objects since they match objects of classes 

Fig. 3. The Incremental Loading of Rules architecture. 
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high in the hierarchy and for that reason the best loading 
time is observed by inserting only 1,500 objects. How-
ever, the inference procedure for UOBM Lite-1 and 
LUBM1 datasets is not heavily affected by the increase of 
q. We observe smooth changes of loading times as q in-
creases. In fact, the loading performance decreases with 
smaller q values, since the time the system gains by ap-
plying the rules in a smaller number of objects is overbal-
anced by the time it spends to apply the dynamic rules in 
more cycles. The same holds for the SEMINTEC ontology, 
where the is-a part of the rules refer to a small portion of 
the objects and there is no need for a small q value. 

We conclude that the system can efficiently handle 
4,000 to 6,000 newly generated objects in each cycle, and 
by default, the system operates by loading 20,000 triples 
in each cycle. However, in order to enhance system’s per-
formance in cases such as the VICODI ontology, we pre-
sent a heuristic approach for automatically adjusting the q
value. We define a metric p that represents the degree of 
ontology complexity in terms of the overhead that the 
corresponding dynamic rules impose in the system’s 
ABOX reasoning procedure. It is worth mentioning, that 
the q value that we estimate is not an optimal one. The 
reason is that it cannot represent the actual number of 
instances that would be loaded. For example, if there are 
many properties in the ontology, many of the triples 
would refer to property values of the objects and not to 
actual definitions of objects. Thus, for different ontologies, 
the same q value would result in the generation of differ-
ent number of objects in each cycle. 

5.1.2 Estimating the p Metric 
We define the p metric for a rule as: 

n n np w k , (3) 
where pn is the p metric for a rule n, wn is a weight that 
characterizes the class where a rule n refers to in its is-a
part and kn is a weight that represents how much the rule 
n is influenced by the weight wn.

To calculate the w weight for a class i, we have devel-
oped a module that reads the class hierarchy and assigns 
a weight in every class, depending on its position in the 
class hierarchy and the total number of classes. The as-
signment of such a weight is based on the heuristic obser-
vation that a class is likely to contain a large number of 
objects if it has many subclasses. Furthermore, we made 
the assumption that classes have a uniform number of 
objects. That is wi = si/tc, where wi is the weight for a class 

i, si is the number of subclasses of i and tc is the total 
number of user-defined classes. In that way, each weight 
w is a number between 0 and 1 and denotes an estimation 
for a class to have a large number of objects. For example, 
the owl:Thing class will be assigned with w=1 since all 
objects belong to this class. Leaf classes are assigned w=0.

The kn weight denotes how much a rule n is affected by 
the wn weight. Each dynamic rule is characterized by dif-
ferent complexity, e.g. the calculation of the transitive 
closure is a time consuming process and it is affected 
heavily by the portion of the schema it is computed on. 
On the other hand, the Skolemization process cannot be 
considered as a complex one. We have defined weights 
for each dynamic rule type, depicted in Table 3. 

We consider inverse functional and transitive rules as 
the most complex, especially the first ones since they im-
pose a join of objects. However, for the universal quanti-
fier, Skolemization and classification rules we have as-
signed a small weight, since the implemented semantics 
are handled fast by the rule engine. 

We generalize (3) to a subset of the dynamic rules of 
the same type as: 

max{ }nD n np w k ,
where nDp  is the p metric for a subset Dn, max{ }nw  is the 
maximum class weight w present in the whole Dn subset 
and kn is the k weight for the rules in the subset Dn. There-

Fig. 4. The combination of the ILT and ILR architectures. 
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Fig. 5. Loading times for different q values. 

TABLE 3
The Assignment of k Weights in Different Types of Rules 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
kn 0.9 0.7 0.4 0.4 0.4 0.6 1.0 0.2 0.2 0.2
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fore, the p metric of the Dn rule subset depends only on 
the maximum w class weight referred by the correspond-
ing rules. Thus, p is given by equation (4) as the maxi-
mum nDp  of all rule subsets Dn.

max{max{ } }n np w k . (4) 

5.1.3 The Relation of q to the p Metric 
Equation (4) imposes that p is a value between 0 and 1 in 
the worst case. The value 0 denotes that the ontology does 
not require any special ABOX reasoning ability, e.g. an 
ontology that defines only subclass relationships and 
simple object or datatype properties. In that case, p = 0
since max{wn}kn = 0 for 1 n  10. The worst case occurs 
when an ontology requires to traverse all the schema ob-
jects in order to apply an inverse functional property, i.e. 

7 7max{ } 1w k . We set a threshold to p value equal to 0.6.
This is an arbitrary choice, based on the experimental re-
sults. If the p value for an ontology is smaller than this 
threshold, then the loading is performed with the default 
value q=20,000. Otherwise, the system sets q=5,000. By 
applying this methodology over the four tested ontolo-
gies, we obtain the p values of Table 4. The calculation of 
the p metric does not impose an extra overhead to the 
loading procedure, since it takes only a few milliseconds. 

TABLE 4
The p Metric for the Tested Ontologies 

UOBM LUBM SEMINTEC VICODI 
p 0.48 0.19 0.1 0.7 

he method for calculating p is based on heuristic as-
sumptions and cannot be used as an absolute criterion for 
the actual complexity of an ontology. Its usefulness is 
restricted only to detect extreme cases where the infer-
ence requirements of an ontology result in demanding 
rules, as far as objects traverse requirements are con-
cerned. For example, in flat ontologies, many classes will 
be assigned with w=0, since they will not have subclasses 
and s=0. But usually real world ontologies have a suffi-
cient hierarchy in order to find a good estimation for p.

5.2 Ontology Loading Results 
We apply our transformation methodologies, namely 
DLTR, ILR and ILT+ILR in 4 datasets. The loading times 
depicted in Fig. 6 incorporate the mean time after 5 runs 
needed to transform the ontology into triples, to load the 
triples into the system and to perform the transforma-
tion/inference procedure. The ILT+ILR approach per-
forms better than the other two in all datasets. It is worth 

mentioning that the ILT+ILR methodology was the only 
one that managed to load the UOBM Lite-10 dataset that 
contains ~2 million triples in a reasonable time limit. 

In order to examine the complexity of the loading pro-
cedure, we generated a dataset for LUBM with almost the 
same triples as the UOBM Lite-10 dataset. Fig. 7 depicts 
how the loading times of the two datasets are affected by 
the number of triples. As we have already described (sec-
tion 4.3), O-DEVICE generates dynamically ABOX infer-
ence production rules according to the defined constructs 
in an ontology. Since each entailment has its own com-
plexity, the overall complexity depends on the generated 
production rules, i.e. depends on the TBOX. LUBM re-
quires less inferencing capabilities than UOBM and the 
inferencing procedure terminates faster. Notice that an 
absolute linear behavior cannot be achieved since before 
the creation of an object or the insertion of a property 
value into an object’s slot, the system should check if the 
object exists. As the number of objects increases, this 
check becomes more time consuming. However, the im-
plementation is totally based on the native CLIPS mecha-
nisms without having implemented any special structures 
for handling OWL constructs or to treat the large number 
of objects. We believe that more sophisticated indexing 
methods would increase the performance considerably. 

6 QUERY LANGUAGE

The deductive rule language of O-DEVICE supports que-
rying over OWL instances represented as objects. The 
conclusions of deductive rules represent derived classes, 
whose objects are generated by evaluating these rules 
over the current set of objects. Each deductive rule is im-
plemented as a CLIPS production rule that inserts a de-
rived object when the condition of the deductive rule is 
satisfied. The query language aims at simplifying the 
definition of queries, following a simpler syntax than 
CLIPS or to eliminate any lisp-like syntax through the 
RuleML-like module that supports [24]. 

As an example of the deductive rule language, we give 
the first query of UOBM which retrieves all the instances 
of the class UndergraduateStudent that have the value 
Course0 in the property takesCourse.
1:(deductiverule r1 
2: ?id <- (UndergraduateStudent (takesCourse $? [Course0] $?)) 
3:=> (result (uGradStud ?id))) 

Line 2 defines the condition of the rule. Variable ?idFig. 6. The loading results of the three loading approaches. 

Fig. 7. Loading time according to the number of triples. 
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refers to the ID of the object that satisfies the restriction on 
the property takesCourse, namely to have [Course0]
among its values. Line 3 defines the conclusion of the 
rule, namely the pattern of the derived object, having on 
the slot uGradStud the name of the object that satisfies 
the condition. Thus, the result of this query consists of 
objects of the class result that have on the property uG-
radStud the names of the actual objects that satisfy the 
condition of the rule. The deductive rule is transformed 
into the following production rule. 
(defrule gen234 
   (object (is-a UndergraduateStudent) (name ?id) 
      (takesCourse $? ?gen5 &: (contains ?gen5 [Course0]) $?)) 
   (test (not (instance-existp (sym-cat result ?id)))) 
=> (bind ?oid (sym-cat result ?id)) 
     (make-instance ?oid of result (uGradStud ?id))) 

The rule, instead of matching directly Undergraduat-
eStudent objects that have the value [Course0] in the 
takesCourse slot, uses an intermediate variable ?gen5
and the function contains that first checks if the object 
matched by the variable matches the ID of the actual ob-
ject variable. If not, it checks if the object matched by the 
variable has an owl:sameAs relationship with the actual 
object variable, i.e. if the object Course0 exists in the
owl:sameAs values of the matched object by the variable 
(or vice-versa). If this check fails too, so does the function. 
More formally, the contains function returns true if: 

?av = ?qv  ?qv  ?av.owl:sameAs.
In that way, the rule also matches object values based 

on the owl:sameAs information, overcoming the problem 
of OO programming languages, where objects with dif-
ferent IDs are necessarily different objects. Notice that 
identical objects are retrieved using the message passing 
mechanism of CLIPS avoiding thus joins. 

7 EXPERIMENTAL RESULTS

We tested O-DEVICE query performance using LUBM1 
and UOBM Lite-1 datasets that define 14 and 13 exten-
sional queries, respectively. We also run the same ex-
periments on OWLIM (v2.8.4) and OWLJessKB rule-
based reasoners, Pellet (v1.3) DL reasoner and KAON2 
(build-2007-01-06) datalog-driven reasoner. We have mea-
sured the time needed to load the ontologies (time spent 
in any processing of the ontology, such as parsing and 
reasoning) and to answer the queries (time spent to load, 
process and answer queries). We also measured the 
maximum memory consumption of each system to com-
plete the benchmarks. The experiments run on a laptop 
with AMD Turion ML-34, 1.8 GHz processor, 1 GB RAM 
and JAVA EE 5 SDK, setting maximum heap size 700 MB. 

Fig. 8 depicts the loading times. All systems, except 
KAON2 and Pellet, follow a complete materialization 
approach, i.e. they apply rules at loading time in order to 
derive the implicit information. KAON2 and Pellet han-
dle semantic information on demand. Thus, they load 
faster the ontologies than OWLIM, O-DEVICE and OWL-
JessKB. However, OWLIM loads ontologies considerably 
fast. We believe that this happens due to the sophisticated 

indexing methods and the dedicated rule OWL reasoning 
engine that OWLIM uses (TRREE [32]). O-DEVICE and 
OWLJessKB use native rule engines (CLIPS and Jess re-
spectively) that are not OWL-oriented. But O-DEVICE 
loads ontologies considerably faster than OWLJessKB 
which could not load UOBM Lite-1 due to memory limi-
tation. The transformation of ontologies into an OO sche-
ma and the utilization of dynamically generated rules 
perform better than applying rules directly over triples. 

Fig. 9 depicts the maximum memory requirements of 
each system for both loading and querying. Notice that 
the measurement of KAON2 for the UOBM Lite-1 ontol-
ogy incorporates only the loading memory requirements, 
since it did not manage to answer any query due to 
memory limitation. O-DEVICE requires the least mem-
ory, whereas OWLJessKB requires almost 680 MB. 

Fig. 10 and Fig. 11 depict the query response times for 
LUBM1 and UOBM Lite-1, respectively. All systems re-
turned the same sets of instances, except OWLJessKB 
which, in some queries, returned some incorrect in-
stances. Concerning the LUBM1 ontology, OWLIM per-
forms the best, whereas KAON2 and Pellet need the most 
time to answer queries, since they perform OWL inferenc-
ing at query time. O-DEVICE and OWLJessKB exhibit 
similar performance; some queries run faster in one sys-
tem and some on the other, with O-DEVICE spending 
much time in answering query 9. We believe that the rea-
son of this behavior lies on technical aspects of the im-
plementation of both systems. Concerning the UOBM 
Lite-1 ontology, KAON2 threw a heap error exception in 
all queries. Furthermore, OWLIM failed to answer query 
9 (we have used the default settings of OWLIM distribu-
tion for the UOBM ontology), returning no results, 
whereas O-DEVICE managed to answer it within 156 sec-
onds. Moreover, Pellet failed to answer queries 4, 9, 11, 12 
and 13, throwing a nominal exception. 
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In order to give a gist of how O-DEVICE performs in 
different types of queries, we analyze the query results of 
the LUBM1 dataset. The complexity for a query in O-
DEVICE depends on two factors: (a) the number of joined 
objects in the query condition and (b) the number of ob-
jects that the query needs to traverse, i.e. the class(es) the 
query refers to. We can see that query response times of 
O-DEVICE are clustered into three groups. Queries of the 
first group (1, 3, 4, 5, 10, 11, 12) are executed faster since 
they do not impose any join of objects, apart from query 
12 which although requires a join, refers to classes with 
small number of instances. A typical example is query 5: 
(deductiverule lubm-q5 
  ?o1 <- (Person (memberOf
                      $? [http://www.Department0.University0.edu] $?)) 
=> (result (name ?o1))) 

Queries of the second group (2, 6, 7, 8, 13, 14) require 
more time to be answered. Queries 2, 13 and 14, although 
they do not impose any join, they refer to classes with 
large number of objects, e.g. Person, in contrast to queries 
of the first group. Queries 2, 7 and 8 require a join and in 
addition to the large number of objects of the referred 
class, increase the response time compared to the query 
12. A typical example of this cluster is query 8: 
(deductiverule lubm-q8 
  ?o2 <- (Department (subOrganizationOf  
                          $? [http://www.University0.edu] $?)) 
  ?o1 <- (Student (memberOf $? ?o2 $?) (emailAddress ?mail)) 
=> (result (x ?o1) (y ?o2) (z ?mail)))

Finally, query 9 is the most complicated query, since it 
joins instances from three classes, one of which contains 

the larger number of instances (Student class). The R-
DEVICE syntax of all LUBM queries is available in [25]. 

8 RELATED WORK

Pellet [3], RacerPro [4] and Fact++ [33] are well known 
DL reasoners. Pellet is based on the tableaux algorithms 
developed for expressive Description Logics and it is 
complete on SHIN(D) and SHON(D). It supports an ABox 
query answering module using the “rolling-up” tech-
nique. Racer implements a highly optimized tableaux 
calculus for a very expressive description logic. It also 
implements a description logic query language for ABox 
individuals, named nRQL [34]. FaCT++ uses a variation 
of the established FaCT tableaux algorithms for descrip-
tion logic inferencing. FaCT and FaCT++ do not directly 
support ABOX reasoning. We have chosen Pellet as an 
optimized DL reasoner for ABOX queries. 

Vampire [13] is a FOL engine, exploiting several tech-
niques to improve its performance such as optimized al-
gorithms for backward and forward subsumption, index-
ing and discrimination trees. In [35] a comparison be-
tween Vampire and the Fact++ reasoner is presented.  

KAON2 [6] is a DL reasoner where reasoning is im-
plemented by novel algorithms which reduce a SHIQ(D) 
KB to a disjunctive datalog program [7]. It is argued that 
this approach is fast for large ABoxes, due to certain op-
timization techniques, such as magic sets or join-order 
optimizations. The experiments have shown that KAON2 
requires a considerable amount of memory. 

OWLJessKB [9], a successor of DAMLJessKB [36], is a 
memory-based reasoner for OWL, implemented using the 
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Jess [37] rule engine. It translates RDF triples directly into 
facts and uses production rules to implements OWL en-
tailments. We have shown in the experiments that such a 
trivial approach is functional for relatively small ontolo-
gies but suffers from scalability and memory limitations. 

Bossam [38] is a RETE-based forward-chaining pro-
duction rule engine that has an RDF logic-like rule lan-
guage, called Buchingae. We were unable to load the 
LUBM1 ontology due to memory limitations. 

Corese [14] is an engine that internally works on con-
ceptual graphs. When matching a query with an annota-
tion, both RDF graphs and their schema are translated in 
the conceptual graph model. Through this translation, 
Corese takes advantage of previous work of the KR com-
munity leading to reasoning capabilities of this language. 

To the best of our knowledge, OWLIM [8] is the fastest 
memory-based system that performs reasoning based on 
forward chaining of entailment rules. OWLIM uses the 
dedicated OWL TRREE engine and the most expressive 
language supported is a combination of limited OWL Lite 
and unconstrained RDFS. 

F-OWL [11], Ontobroker [12] and Florid [39] are sys-
tems that employee F-Logic [10] for data definition and 
querying. The main difference with O-DEVICE is that 
they use a frame-based language only for representing 
the information whereas we build a native OO schema 
that complies with OO principles. For example, F-OWL 
uses the Flora2 [40] system that translates a dialect of F-
Logic into the XSB [41] deductive engine, i.e. into Tabled 
Prolog. To understand the difference, consider for exam-
ple instance equality. In Flora2 (and in F-OWL), instance 
equality can be modelled by substituting a term with an 
equivalent one based on the facts. In O-DEVICE we create 
multiple objects with different IDs and we treat them as 
same through the query language, making our approach 
general and applicable in any OO environment.  

One more example is class equivalence, which in F-
OWL is defined as:  

A[owl_equivalentClass->>B] :-  
              A[rdfs_subClassOf->>B], B[rdfs_subClassOf->>A].

This is feasible, since subclass relationships are modelled 
as facts. However, in an OO environment, such mutual 
subclass relationships cannot be modelled because sub-
class graph cycles are forbidden. 

9 CONCLUSIONS AND FUTURE WORK

In this paper we have described a memory-based rule 
system for inferencing about and querying ontologies 
expressed in a more expressive set than OWL Lite. We 
build an OO model of the ontologies into the COOL lan-
guage of CLIPS and production rules match objects in-
stead of triples. In that way, we enable a well-known and 
highly reliable rule engine to handle OWL semantics. 

In our approach we do not use static production rules 
for every OWL construct but we follow a Dynamic Rule 
Generation approach where domain specific rules are gen-
erated according to ontology characteristics. The rules are 
simpler than the corresponding static rules because they 
contain fewer condition elements and thus they are acti-

vated faster. Furthermore, we have adopted an incre-
mental triple loading and rule application procedure in 
order to avoid the excessive memory management system 
activities that lead to poorer performance.  

A memory-based reasoning system should exploit the 
available memory in an efficient way in order to load the 
larger possible set of ontologies. Experimental results 
have shown that O-DEVICE requires less memory than 
the rest of tested systems, being able to load ontologies 
and answer queries that other system failed due to mem-
ory limitations. Although OWLIM is the fastest rule-
based reasoner, we argue that the reusability of an exist-
ing rule engine gives great potentials, based on the practi-
cality, efficiency and optimized techniques that has ob-
tained thought the years of the development. 

For the future, we plan to introduce more sophisticated 
indexing methods in order to improve the retrieval per-
formance, without sacrificing the practical aspect of the 
approach, since currently we are based only on native 
CLIPS mechanisms. One such solution would be the sub-
stitution of the hash function that CLIPS uses for deter-
mining the existence of an object, since it might be inap-
propriate to handle so large number of objects or two im-
plement dedicated structures in order, for example, to 
further index identical individual. In that way, we could 
improve both loading and querying performance. Fur-
thermore, we plan to connect O-DEVICE with [42], a vis-
ual tool for defining queries using a RuleML-like syntax. 
Finally, we plan to use the reasoner as the core system of 
a Web service discovery and composition framework [43] 
[44] based on OWL-S [45] descriptions. 
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