
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Rule-based Object-Oriented OWL Reasoner
Georgios Meditskos and Nick Bassiliades

Abstract— In this paper we describe O-DEVICE, a memory-based knowledge base system for reasoning and querying OWL
ontologies by implementing RDF/OWL entailments in the form of production rules in order to apply the formal semantics of the
language. Our approach is based on a transformation procedure of OWL ontologies into an Object-Oriented schema and the
application of inference production rules over the generated objects in order to implement the various semantics of OWL. In
order to enhance the performance of the system, we introduce a dynamic approach of generating production rules for ABOX
reasoning and an incremental approach of loading ontologies. O-DEVICE is built over the CLIPS production rule system, using
the object-oriented language COOL to model and handle ontology concepts and RDF resources. One of the contributions of our
work is that we enable a well-known and efficient production rule system to handle OWL ontologies. We argue that although
native OWL rule reasoners may process ontology information faster, they lack some of the key features that rule systems offer,
such as the efficient manipulation of the information through complex rule programs. We present a comparison of our system
with other OWL reasoners, showing that O-DEVICE can constitute a practical rule environment for ontology manipulation.

Index Terms— Inference engines, Object-Oriented Programming, Ontology languages, Rule-based processing.

—————————— ——————————

1 INTRODUCTION

o exploit the Web to its full extend, information
should become understandable not only to humans
but to machines too. Today’s Web is targeted at hu-

mans, making the discovery of information a time con-
suming task. Search engines need the ability to semanti-
cally understand and exploit the available knowledge,
without relying on the syntax of information. Moreover,
Web is continuously enriched with services. In such a
service-oriented architecture (SOA) each service can
communicate with others by passing messages and ser-
vices can be composed into more complex ones. In order
to enable automated service discovery and composition,
two fundamental issues for the successful proliferation of
SOAs, services should be well-described.

The Semantic Web initiative [1] tries to solve such
problems by suggesting standards, tools and languages
for information annotation. Ontologies play a key role to
the evolution of the Semantic Web and are widely used to
represent knowledge by describing data in a formal way.
OWL [2] is the W3C recommendation for creating and
sharing ontologies on the web. It provides the means for
ontology definition and specifies formal semantics on
how to derive new information. Thus, ontology reasoning
systems appear to be of great importance.

Existing implementations of OWL reasoners are based
on several approaches. The Description Logic reasoners
(e.g. Pellet [3], RacerPro [4]) implement tableaux algo-
rithms [5], exploiting the research that has been done on
algorithms for the description logics knowledge represen-
tation formalism on which OWL is based. Datalog-driven
engines (e.g. KAON2 [6]) reduce a SHIQ(D) KB to a dis-
junctive datalog program [7]. Rule-based reasoners (e.g.
OWLIM [8], OWLJessKB [9]) use a rule engine to define

rules for inferencing. F-Logic [10] based engines (e.g. F-
OWL [11], Ontobroker [12]) use frames in order to ma-
nipulate the ontology information. FOL theorem provers
(e.g. Vampire [13]) translate DL axioms into a FO theory
by mapping DL concepts and roles names into unary and
binary predicates. Finally, reasoners based on conceptual
graphs (e.g. Corese [14]) transform ontology information
into a conceptual graph formalism.

In this paper we present O-DEVICE, a production rule-
based system for inferencing about and querying OWL
ontologies. We use CLIPS [15], a well-known production
rule engine, and we augment it with an OWL-to-objects
mapping mechanism in order to handle OWL semantics
following an object-oriented (here after OO) approach.
Our implementation handles the OWL Lite sublanguage,
offering also support for some OWL DL constructs, such
as partial union of classes, the owl:hasValue construct
and class disjointness. Currently, we do not support class
definitions by instance enumeration (owl:oneOf), com-
plement classes and data ranges.

The work presented here is based on the experience
gained by previous efforts ([16], [17]) to develop a rule
reasoning system using static production rules. However,
in a memory-based rule inference system, like O-DEVICE,
memory utilization is very important and the efficiency
depends mainly on the quantity and the quality of rules.
Quantity refers to the number of implemented entail-
ments. The more they are, the more semantics can be
handled and thus the more complete the system is. But
the number of inference rules affects performance. Our
approach targets at developing a practical reasoning sys-
tem, able to perform with reasonable (time and memory)
requirements. Quality refers to the implementation as-
pects of these rules. The semantics of each OWL construct
can be handled by rules implemented in different ways.
To this end, we have followed a dynamic rule generation
method that is able to handle larger number of objects by

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

The authors are with Department of Informatics, Aristotle University of
Thessaloniki, 54124, Greece. E-mail: {gmeditsk, nbassili}@csd.auth.gr.

T

Digital Object Indentifier 10.1109/TKDE.2007.190699 1041-4347/$25.00 © 2007 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

restricting the search space where they are applied. The
domain-dependent rules we generate have simpler condi-
tions and thus faster activation time than the correspond-
ing static/generic ones. Other improvements include the
incremental loading of triples and the cyclic, partial ap-
plication of the production rules. Both mechanisms aim to
reduce the size of the RETE network that needs to be built
in order to match objects to rules, leading not only to
memory saving but also to speed-up due to less memory
management activities. All the above are testified via ex-
perimental results that also compare our system to others.

The rest of the paper is organized as follows: in section
2 we describe our motivation for using an existing pro-
duction rule system and for transforming OWL to an OO
schema. In section 3 we give a short background of the
CLIPS rule engine. In section 4 we give a detailed descrip-
tion of the ontology mapping and inference rules. In sec-
tion 5 we analyze the loading procedure. In section 6 we
describe the deductive query language of the system
while in section 7 we present experimental results. Fi-
nally, in sections 8 and 9 we present related work and
conclude giving future direction, respectively.

2 THE MOTIVATION

Our motivation is to combine OWL ontologies, the rule
programming paradigm and the OO model using a well-
known and efficient rule inference engine in order to en-
able it to handle OWL ontologies in a practical manner.

Several reasoners offer the possibility of connecting
them to external applications, e.g. through the DIG [18]
interface, as most DL reasoners and KAON2 supports,
justifying the need of further exploitation of the reasoning
results. Our approach targets at the exploitation of the
OWL ontological information via a rule engine.

In existing reasoning implementations, although it is
possible to manipulate ontologies using a rule notation,
e.g. SWRL [19] language in KAON2, or to perform que-
ries over the ontology, e.g. SPARQL [20], it is not possible
(or it is not efficient at least) to define a complete rule
program over the ontology since they are not dedicated
rule engines. To this end, the use of a rule system able to
reason over ontologies, gives the opportunity to utilize
directly the ontology information by building knowledge-
based systems. Ontologies can be inserted into the system
and, after the materialization of the semantics through the
reasoning procedure, i.e. the application of inference rules
in order to deduce new information, user-defined rules
can operate over the materialized knowledge.

However, although rule-based OWL reasoners built
from scratch, such as OWLIM, may process ontology in-
formation and answer single queries fast, since they are
optimized for this domain, we argue that they cannot
handle complex and large rule programs as efficient as a
native rule engine, such as CLIPS.

The motivation behind our OO representation of OWL
is twofold. Firstly, the OO form of the information lays
closer to the way programmers model a real world do-
main by categorizing objects and concepts of the world
into classes, attaching to them appropriate attributes. By

transforming ontologies into the OO model, we enable
the implementation of OO rule programs by users, taking
also into account that OWL uses classes, properties and
objects as well for the definition of concepts for a domain.

Secondly, the transformation enables us to exploit ba-
sic features that an OO environment can offer. The native
mechanism of COOL for subclass relationships supports
class subsumption and transitivity, treating both single
and multiple inheritance issues, saving us from the com-
plex and costing procedure of handling hierarchical class
relationships and derived consequences, such as class
membership and property inheritance.

Moreover, the OO ontology representation can be con-
sidered as a trivial but efficient form of indexing. Class
definitions embed their properties and property values
are encapsulated inside the resource objects, enabling the
direct access of property values of a particular object.
Every reference to an object’s property is handled by sys-
tem pointers to the corresponding values that are created
during the object initialization by CLIPS. In that way, we
can directly access property values through the native
COOL message passing mechanism.

At this point, two things are worth mentioning. Firstly,
the OO model is not able to capture the complete seman-
tics of the OWL language. With the transformation pro-
cedure, we want to capture as many semantics as possi-
ble, such as class and property inheritance issues. More
complex class and property semantics, such as intersec-
tion of classes or property transitivity cannot be modeled
directly by the OO model and for that reason we imple-
ment entailment rules that we present in the following
sections. Secondly, since we use a rule engine, we are in a
closed-world. However, the mapping mechanism exhibits
a dynamic behavior in order to cope with the open-world
nature of OWL. Therefore, already created classes may
need to change their definition or objects may need to
change their type at runtime due to the open-world se-
mantics of OWL. Furthermore, the close-world assump-
tion that rule systems follow during querying is not al-
ways an undesirable feature. This depends on the domain
of the application and the queries that are to be answered,
e.g. queries about negative information [21].

3 THE CLIPS RULE ENGINE

CLIPS [15] supports three different programming para-
digms: procedural, rule-based and OO. The semantics of
CLIPS production rules are the usual production rule se-
mantics: rules whose condition is successfully matched
against the current data are triggered and placed in the
conflict set. The conflict resolution mechanism selects a
single rule for firing its action, which may alter the data.
Rule condition matching is performed incrementally,
through the RETE algorithm.

The OO module of CLIPS supports abstraction, inheri-
tance, encapsulation, polymorphism and dynamic bind-
ing, integrating procedural, OO and rule-based pro-
gramming, since classes, properties and objects can be
manipulated via rules. The definition of an OO model in
CLIPS is performed via the COOL [15] language which

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

MEDITSKOS ET AL.: A RULE-BASED OBJECT-ORIENTED OWL REASONER 3

provides the necessary means for defining classes, prop-
erties and objects as well as relationships among them.

Subclass relationships: COOL allows the definition of
single and multiple class inheritance. This feature is
used in our methodology for implementing complex
class constructors (section 4.2).
Property inheritance: Properties (in CLIPS they are
called slots/multislots) are inherited to subclasses.
Object relationships: Object referencing slots are used
to define OWL instance relations.
We exploit these basic OO features of CLIPS in the

domain of OWL ontologies through the mapping proce-
dure we describe next in order to treat some of the OWL
semantics using the underlying OO environment.

4 ONTOLOGY MAPPING AND INFERENCE RULES

O-DEVICE implements a number of entailments that are
presented in Table 1 [22]. Fig. 1 illustrates in the form of
an OO logic-like syntax the rules of O-DEVICE, since an
exact and detailed presentation of the CLIPS production
rules would be an unnecessary complication. However, in
the remainder of the paper we present some rule exam-
ples in the native CLIPS/COOL syntax in order give a
feeling of the implementation. For the logic-like represen-
tation we assume that Tr is the set of ontology and in-
stance triples, Cl is the set of user classes, Obj is the set of
existing objects and ext(C) is the extension of class C, with

C Cl, ext(C) Obj. Notice that (a) the set Obj equals to
the union of all class extensions Obj= ext(C), (b) the set
Obj includes all OWL instances Obj=ext(owl:Thing), and
(c) the set Cl includes all OWL classes Cl=ext(owl:Class).
Furthermore, class(o) is a function that returns the class of

the object o and slots(C) returns the set of slots of class C.
Finally, the expression t.s delivers the subject of the triple,
t.o the object and t.p the predicate. In general, the expres-
sion o.s returns the values of the slot s of object o.

4.1 Ontology Mapping
The mapping of basic OWL primitives into OO constructs
is straightforward: there are classes with properties that
model a concept of a particular domain and instances are
defined upon them, creating the actual KB by specifying
relationships among them. In that way, each OWL class is
mapped into a COOL class, each OWL property into a
slot (actually, a multislot) of a COOL class and each OWL
instance into a COOL object.

4.1.1 Implementing Basic OWL Axioms
The OO schema is implemented in a way so to reflect
OWL axioms. We present four basic axioms that charac-
terize our implementation.

Axiom 1: Each class is a direct or indirect subclass of the
owl:Thing class. Therefore, the C owl:Thing assertion is
always satisfiable for every class C of the KB.

Axiom 2: Every object belongs directly or indirectly to the
owl:Thing class. Therefore, the owl:Thing(i) assertion is
always satisfiable for every instance i of the KB.

Axiom 3: Every role P for which no domain class is defined,
the system assumes P .owl:Thing and the role is mapped
as a slot in the owl:Thing class. Therefore, every object
inherits the property P.

Axiom 4: Every role P for which no range constraint is de-
fined, the system assumes P.owl:Thing. Therefore, P
can take any value.

In an OWL ontology, classes and properties are de-
fined as instances of appropriate built-in classes, e.g.
owl:Class or owl:ObjectProperty. The system creates
the objects that correspond to these instances, which we
call meta-objects. In that way, properties are still first class
citizens, as in RDF and OWL, since they are objects (meta-
objects) of the corresponding classes. In order for the sys-
tem to be able to create the meta-objects, we have prede-
fined the built-in classes and properties of OWL in the
form of an OO schema based on the RDF schema of OWL,
as it is defined in [23]. The OO implementation of the
RDF Schema has been taken from [24].

4.1.2 Transformation Rules
In this section we analyze the transformation rules by
presenting also the role of each one during the transfor-
mation of the ontology of Fig. 2 in the COOL OO model.

r1: Materializes the classes of the OO model. Each concept C
of an ontology is mapped into a defclass construct, the
native construct for defining classes in COOL. This rule is
responsible for generating the Person defclass construct
from the first triple of the example. The Axiom 1 is used in
order to define the class as a subclass of the owl:Thing.
Notice that at this point, the class has not any slots yet.

r2: Generates the attributes of each class of the OO model.
Each axiom P .C (the domain of P is the class C) is
mapped into a multislot with name P in the domain class
C which should be materialized (C Cl). By this rule, the

TABLE 1
The Entailment Rules Supported by O-DEVICE

 IF THEN
rdfs2 p domain d, s p o s type d
rdfs3 p range r, s p o o type r
rdfs4a u p w u type Resource
rdfs4b u p w w type Resource
rdfs7x p subPropertyOf q, u p w u q w
rdfs9 u subClassOf w, s type u s type w
rdfs11 u subClassOf w, w subClassOf t u subClassOf t
rdfp1 p type FunctionalProperty, u p w, u p o w sameAs o
rdfp2 p type InverseFunctionalProperty,

u p w, s p w
u sameAs s

rdfp3 p type SymmetricProperty, u p w w p u
rdfp4 p type TransitiveProperty, u p w, w p o u p o
rdfp8ax p inverseOf q, u p w w q u
rdfp8bx p inverseOf q, u q w w p u
rdfp11 u p w, u sameAs u’, w sameAs w’ u’ p w’
rdfp12a u equivalentClass w u subClassOf w
rdfp12b u equivalentClass w w subClassOf u
rdfp13a u equivalentProperty w u subPropertyOf w
rdfp13b u equivalentProperty w w subPropertyOf u
rdfp15 u someValuesFrom w, u onProperty p,

s p x, x type w
s type u

rdfp16 u allValuesFrom w, u onProperty p,
s type u, s p x

x type w

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

two multislots friendOf and age are inserted into the Person
class (3rd and 6th triple). Notice that although the class is
already materialized, the system is able to redefine it with
the new slots, presenting a fully dynamic behavior.

r3, r4: Define the allowed values for each property. Each
axiom P.C (the range of P is the class C) is mapped
according to the type of P. If P is an object property (r3)
then it is mapped given the COOL type restriction IN-
STANCE-NAME, taking care of the range class according
to [24]. If P is a datatype property (r4) then it is mapped
given the appropriate COOL datatype restriction INTE-
GER, SYMBOL, etc. The mapDT function performs OWL
to CLIPS datatype conversion. By this rule, the 4th and
7th triples are mapped into the type constraint by redefin-
ing the properties, i.e. the age property has the INTEGER
and the friendOf property the INSTANCE-NAME type.

r5: Implements hierarchical relationships. Each TBOX asser-
tion of the form C D is mapped into a subclass defini-
tion using the is-a constraint of the COOL defclass con-
struct. Both classes should be materialized (C, D Cl). If
there was a subclass relationship in the example ontology,
e.g. Person Human, then the Person class would be rede-
fined in order to alter the is-a constraint into is-a Human.

r6, r7: Generate the objects of the OO model. Each axiom
i:C (i is an instance of C) is mapped into a COOL object of
class C. Rule r6 transforms each triple <s rdf:type o>
into an object s of the class o, only if o is a materialized

class (o Cl) and there is not any other materialized object
with the name s (s Obj). By rule r6, triples 8 and 9 are
mapped into actual objects in the KB. However, OWL
allows an object to have multiple class declarations in
contrast to the OO modeling principles. This case is
treated by rule r7 which applies only if an object with the
same ID already exists in the KB (s Obj). The object
should belong to the intersection of the classes t.o and
class(t.s). More specifically, let C and D be two classes
and let there be an already implemented ABOX assertion
C(a). If a new ABOX assertion D(a) appears, then there
are three cases concerning class intersection:
1. If C D, then the system does not perform any action

since the D(a) assertion is satisfiable due to the CLIPS
inheritance mechanism.

2. If D C, then the system redefines the object in order
to belong to class D only. Therefore, D(a) and C(a) are
satisfiable due to CLIPS inheritance.

3. If neither of the above is true, then the system gener-
ates a system class T, where T C and T D (allow-
able by CLIPS multiple inheritance mechanism) and
implements the ABOX assertion T(a) through which
both C(a) and D(a) are satisfiable.

The above algorithm is used in our system whenever
an object should belong to more than one classes simulta-
neously. In the example, if there was an extra triple de-
noting that <nick type Human>, then one of the first
two cases of the above algorithm would hold, according
to the order the objects would be created: if nick was
firstly implemented as a Person object, then the above tri-
ple would be ignored since Person Human. Otherwise,
nick would be redefined as a Person object.

r8, r9: Insert values into object properties. Each i1, i2 :P
axiom is mapped by inserting the value i2 into the slot P
of the object i1. The r8 rule handles the simple case of in-
serting a value o, which should be a materialized object
(o Obj), into the object property p (p ext(owl:Object-
Property)) of the materialized object s (s Obj). Notice that
the slot p should exist in the definition of class of the ob-

Fig. 1. An OO rule-like syntax of the rules presented in the paper

1:<Person type Class>
2:<friendOf type ObjectProperty>
3:<friendOf domain Person>
4:<friendOf range Person>
5:<age type DatatypeProperty>
6:<age domain Person>
7:<age range int>
8:<paul type Person>
9:<nick type Person>
10:<paul friendOf nick>

(defclass Person
 (is-a Thing)
 (multislot friendOf
 (type INSTANCE-NAME))
 (multislot age (type INTEGER)))

(make-instance [paul] of Person)
(make-instance [nick] of Person)
(send [paul] put-friendOf [nick])

Fig. 2. Transformation example.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

MEDITSKOS ET AL.: A RULE-BASED OBJECT-ORIENTED OWL REASONER 5

ject s (p slots(class(s))). Otherwise, rule r9 is applied,
which mandates the object to also belong to the domain
class of the property (in order to inherit it), following the
algorithm we have described for multiple class definition
objects. By rule r8, the 10th triple is mapped as an object
value into the friendOf slot of the paul object. Rules similar
to r8 and r9 exist for datatype properties as well.

4.1.3 OWL Entailments
We define also transformation rules that implement OWL
entailments. To exemplify, we present rule r10.

r10: Implementation of the rdfs3 entailment. The rule en-
sures that the type of the object part o of a triple is consis-
tent with the range constraint of the predicate p of a triple
by forcing the o resource to belong to the range constraint
class (o ext(p.rdfs:range)). The rule ensures that all values
have the appropriate type before they are inserted into
the slots (via r8). To give a feeling of the implementation,
we present the static CLIPS rule for the rdfs3 entailment.
(defrule rdfs3
 (triple ?s ?p ?o)
 (test (instanceOf ?p owl:ObjectProperty))
 (test (class-existp (send ?p get-rdfs:range)))
=> (create-object ?o (send ?p get-rdfs:range)))

The condition matches triples whose predicate is an
object property and whose range class already exists. In
that case, ?o is created as an object in the KB via the cre-
ate-object function, which is a functional equivalent of
logical rules r6 (?o does not exist) and r7 (?o exists). Thus,
if the nick object was not defined in the ontology, the sys-
tem would created it as a Person object, the range of the
friendOf property. A similar rule for the rdfs2 entailment is
based on the domain constraint of a property. In the case
of datatype properties, if the value type is inconsistent to
the range restriction of the property, the triple is ignored.

4.2 TBOX Reasoning
TBOX reasoning is performed via static rules that apply
OWL semantics on class and property definitions.

4.2.1 Class Intersection
The owl:intersectionOf construct is treated by defini-
ng multiple concurrent subclass relationships. If there is a
class C defined as C A1 A2 ... An, then we define C
Ak, where 1 k n, i.e. each Ak class becomes a direct super-
class of class C and every object of class C is simultaneo-
usly an object of all Ak classes. Notice that class subsump-
tion relationships among Ak are also considered, as al-
ready explained. Furthermore, the system stores this as a
sufficient condition for class membership, denoting that
common objects of all Ak classes are also objects of class C.
This information is used during the classification proce-
dure in ABOX reasoning (section 4.3.4), where the com-
mon objects of the Ak classes are classified into class C.

4.2.2 Class Union
The owl:unionOf construct is also treated by defining
subclass relationships. If there is a class C defined as C
A1 A2 ... An, then we define Ak C, where 1 k n, i.e.
each Ak class becomes a direct subclass of class C. In that

way, the objects of each Ak class belong to class C as well,
i.e. a | a Ak : a C. Currently, we do not handle the suf-
ficient relation a | a C : a A1 a A2 … a Ak. We
are investigating ways of applying disjunctive logic pro-
gramming over the generated OO schema.

4.2.3 Class Equivalence
Class equivalence is another example of the difference
between OWL and OO modeling. Since in OO modeling
it is infeasible to define mutual subclass relationships
among equivalent classes, as the rdfp12a and rdfp12b en-
tailments denote, we follow an indirect approach.

Let there be a set of n equivalent classes Cn (n 1). The
system selects randomly one of the n classes, e.g. class Cd
to become the delegator class and defines it as a subclass of
the rest of the classes, i.e. Cd Cn where n d. However,
this transformation is not enough by itself to capture the
complete semantics of class equivalence. Objects of class
Cd are also objects of each of the Cn classes, but not vice
versa. For that reason we store a sufficient condition stat-
ing that an object of any of the Cn classes is also an object
of the Cd class. This condition is used later to generate
dynamic rules for instance classification which “push” all
objects of the Cn classes to the Cd class. In that way, a
query to the Cd class retrieves the objects of all Cn classes
since their objects have been classified into the Cd class.

4.2.4 Checking Class Consistency
O-DEVICE checks class consistency based on the
owl:disjointWith property that denotes which classes
cannot have hierarchical relationship with each other.

r11: Determines class inconsistencies. The rule checks the
consistency of the class hierarchy by examining the values
of the owl:disjointWith property of class meta-objects.
If two classes b and c are defined to be disjoint with each
other (thus b belongs to the disjoint slot of c
(b c.owl:disjointWith) and vice versa), then the system
does not allow the existence of a subclass relationship
between them and interrupts the ontology loading proce-
dure with an appropriate error message.

4.2.5 Schema Related Semantics
Specific rules are responsible for creating a complete and
valid OO schema. Notice that these rules do not imple-
ment any entailment of Table 1. We have defined them
based on the formal specification of OWL.

r12: Handles domain/range constraints of inverse properties.
For two inverse properties, the domain restriction of the
one should be the range of the other and vice versa. More
formally, Pi,Pk: Pi Pk , Pi .C Pk.C.

r13, r14: Handle domain/range constraints of subproperties.
A subproperty inherits the domain and range constraints
of its superproperties by inserting the values into the cor-
responding domain and/or range slots. Thus, a property
might result in having more than one domain and/or
range constraints. These cases are treated by creating an
intersection class which acts as a unique domain or range
class, as already explained. For example, if a property P
has i domain classes, where i 1, i.e. P .Ci, then

P .T, where T Ci.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

r15, r16: Define implicit functional and inverse functional
properties. The rules define as functional (r16) (or inverse
functional (r15)) the properties that are defined as the
inverse of inverse functional (or functional) properties.
For example, if Pi Pk and 1Pk, then 1Pi .

4.3 ABOX Reasoning
ABOX reasoning is performed via production rules that
are dynamically generated based on templates that are
“filled” with actual ontology values. In the following sec-
tions we present some example templates. All the tem-
plate rules can be found in [25].

4.3.1 Dynamic Rules for Property Values
User-defined properties may have special semantics ac-
cording to the class(es) they belong, e.g. owl:Transi-
tiveProperty, or because they are related to other prop-
erties, e.g. owl:inverseOf. In order to handle these
property semantics, rules that range over all such proper-
ties are needed. As example we present rule r17.
r17: Handles transitive property values (implementation of the
rdfp4 entailment). This rule actually implements the transi-
tive relation P(x,y) P(y,z) P(x,z), where P is a transi-
tive property and x,y,z Obj.

If the above rule was implemented statically in CLIPS
a triple loop (i.e. a double join) would be required in the
rule condition, as the simplified rule below illustrates.
This would be very slow in large ontologies.
(defule transitive-property
 (object (is-a owl:TransitiveProperty)(name ?p)(rdfs:domain ?d))
 (object (is-a ?d) (name ?obj1))
 (object (is-a ?d) (name ?obj2))
 (test (member$?obj2 (send ?obj1 (sym-cat get- ?p)))
=> (bind $?val1 (send ?obj1 (sym-cat get- ?p)))
 (bind $?val2 (send ?obj2 (sym-cat get- ?p)))
 (send ?obj1 (sym-cat put- ?p) (union$ $?val1 $?val2)))

Instead, the system dynamically generates domain
specific rules based on template rules that implement
special property semantics. The template rule that han-
dles transitive properties can be shown below.
(defrule <rule-name>
 (object (is-a <p-domain>) (name ?obj1)
 (<p> $? ?obj2 &: (transitive ?obj1 ?obj2 <p>) $?))
=> (bind $?v1 (send ?obj1 get-<p>))
 (bind $?v2 (send ?obj2 get-<p>))
 (send ?obj1 put-<p> (union$ $?v1 $?v2)))

Expressions in bold denote variables that are substi-
tuted at runtime by actual ontology values. More pre-
cisely, <p> denotes a transitive property and <p-domain>
denotes its domain class. In that way (a) we generate
rules that are as specific as possible to the characteristics
of a property, restricting the search space of the rule con-
dition and (b) the resulting rules have as less conditional
elements as possible, minimizing the cost from multiple
joins. The template rule matches objects (?obj1) of the
domain class, retrieves the values (?obj2) of the transi-
tive slot of ?obj1, exploiting the message passing infra-
structure of COOL, and calculates the partial transitive
closure between the property values of ?obj1 and ?obj2,

without performing any join among objects.

4.3.2 Individual Equality/Inequality
In an OO environment, there is not a direct way to define
that two objects are in fact identical. Every object has its
unique ID and the only way to achieve such relationship
is to implement an indirect mechanism. Our approach
results in forcing all the identical objects to have the same
values in their corresponding slots (rdfp11). An alternative
solution could be that, instead of having all the identical
objects materialized in the KB, we could select only one to
exist as the representative object and all the transforma-
tions can be done over this object only. Thus, every query
or value insertion that refer to any of the “ghost” objects
will be transformed in order to refer to the representative.
Although this approach would be more scalable during
the loading of an ontology, it is quite customized and
does not fully comply with the OO principles since the
notion of “subsumed/hidden” objects does not exist. Fur-
thermore, we would impose an extra overhead at query
time, since rules should be transformed appropriately in
order to refer to the representative object only.

For individuals explicitly defined as identical via
owl:sameAs, we utilize a static rule since the property is
known in advance.

r18: Makes identical objects to have the same properties and
values. The rule finds two objects o1 and o2 such that o2
exists in the owl:sameAs slot of o1 and copies all the val-
ues of all the properties of both objects to each other, via
the copy-values procedure which is defined as:
copy-values(o1,o2): s slots(class(o1)) o1.s = o2.s

Since the objects may belong to different classes and
thus, may not have the same properties, the system forces
them to belong to the same class, before copying, result-
ing in two objects whose only difference is their name.
The name restriction is overcome at the query level where
queries traverse objects based on their values and not on
their IDs. The same procedure is followed when entail-
ments derive an owl:sameAs property (e.g. rdfp1, rdfp2).

Individual inequality statements are used in order to
check consistency, based on the values of the owl:dif-
ferentFrom property and the objects of the owl:All-
Different class. As an example, we present rule r19.

r19: Checks inconsistencies based on the owl:differentFrom
property values. The rule examines if there is an object o1
that has in both owl:sameAs and owl:differentFrom
properties the same value o2 and reports an inconsistency.

4.3.3 Dynamic Rules for Existential Quantifiers
Existential quantifiers are treated by generating Skolem
objects based on the properties owl:someValuesFrom,
owl:minCardinality, owl:cardinality and owl:-
hasValue. As an example, we present r20.

r20: Generates existential quantifiers based on the
owl:someValuesFrom restriction. This rule is the logic-like
equivalent of the static rule that would generate a Skolem
object sk for each object o of a class c with an
owl:someValuesFrom restriction r on property p. Notice
that classes keep links with their associated restrictions
via the necessary slot, which stores IDs of instances of the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

MEDITSKOS ET AL.: A RULE-BASED OBJECT-ORIENTED OWL REASONER 7

owl:Restriction meta-class. Although restrictions are
typically classes in OWL, in O-DEVICE they are not ma-
terialized with defclass constructs, but their meta-objects
are just used for storing their properties. The rest of the
restrictions are handled similarly. The actual template
rule for rule r20 is depicted below.
(defrule <rule-name>
 (object (is-a <p-domain>)(name ?n)
 (source ?sk &~ SKOLEM)
 (<p> $?val &: (not (exists $?val <c-name>))))
=> (make-skolem-object ?n <p> <c-name>))

The rule finds an object ?n of the restricted class <p-
domain> and checks if it does not have any values of the
appropriate type <c-name> for the restricted slot <p>. In
the action, the rule generates a Skolem object of type <c-
name> and inserts its ID in the slot <p> of the object ?n.

Notice that Skolem objects need special treatment to
avoid non-termination of the derivation procedure. For
example, consider the ontology Person hasParent.Per-
son. For every Person that does not have in its hasParent
slot a Person value, the system will generate a Skolem
object of such type and will insert it in the slot. However,
for every generated Person Skolem object, a new Person
Skolem object should be generated and the system would
go into an endless loop. To solve this, we do not generate
Skolem objects for Skolem objects (source slot). Although
this approach seems simplistic, we argue that we can effi-
ciently handle many real world cases, keeping the com-
plexity of the system low.

4.3.4 Dynamic Rules for Instance Classification
Classification is performed over objects that satisfy the
sufficient conditions of the ontology. Appropriate rules
change the type of existing objects either by pushing them
from a class that is higher in the hierarchy to a more spe-
cific class or by pushing them to system generated sub-
classes which are intersections of existing classes, not hi-
erarchically related. The following template rule gener-
ates classification rules.
(defrule <rule-name>

 (object (is-a <classes> &~ <class>)
 (name ?n &: (OSR ?n <restrictions>)))
=> (change-object <class> ?name))

The expression <classes> denotes the classes that an al-
ready existing object belongs to and <class> is the new
class where the object should be classified. The rule finds
an object ?n that belongs simultaneously in all <classes>
and it is not already an object of <class>, since in that case
there is no need to activate the rule, and checks if the ob-
ject satisfies every sufficient condition (<restrictions>) of
the new class (OSR function). In that case, the rule action
changes the type of the object using the change-object
function that implements the algorithm we have already
described for multiple type objects in section 4.1.2.

To exemplify, consider the class intersection example
of section 4.2.1 defined as C A1 A2 ... An. In this case,
the <classes> expression refers to all An classes and
<class> refers to class C where the object should be classi-
fied. Since there are not any restrictions to be satisfied, the
<restrictions> term is nil. Thus, an object that satisfies the

condition of the rule is classified in class C. The generated
classification rule is depicted below.
(defrule genA
 (object (is-a A1&A2&…&An &~ C) (name ?n &: (OSR ?n nil)))
=> (change-object C ?name))

5 LOADING ONTOLOGIES

Since O-DEVICE is a memory-based reasoning system,
memory size is crucial and imposes a physical threshold
on the amount of data that can handle. However, sys-
tem’s performance can be heavily affected by the way the
available memory is used.

We have used four ontologies in our experiments. The
SEMINTEC [26] ontology is about the financial domain
and uses extensively class disjointness, functionality as-
sertions, inverse properties and universal quantifiers. We
used a dataset of ~65,000 triples.

VICODI [27] is a project that provides an ontology of
European history. The TBOX consists of only subclass
relationships, one symmetric property and several sub-
properties. We used a dataset of ~265,000 triples.

The Lehigh University Benchmark (LUBM) [28] de-
fines an ontology for the university domain. The ontology
uses existential quantifiers, intersection of classes and
special properties. LUBM provides a tool for generating
synthetic OWL data over the ontology. We generated
data for one university (LUBM1) with ~105,000 triples.

The University Ontology Benchmark (UOBM) [29] de-
fines two university ontologies for inferencing on OWL
Lite and OWL DL by extending the LUBM. In our ex-
periments we use the OWL Lite version that covers suffi-
ciently enough constructs and the UOBM Lite-1 dataset
that contains ~245,000 triples. LUBM and UOBM are well
known benchmarks, having been used extensively for
comparing reasoning engines. A more detailed presenta-
tion of benchmarking frameworks can be found in [30].

5.1 Analyzing the Loading Procedure
In an initial implementation, we call Direct Loading of Tri-
ples and Rules (DLTR), the ontology was transformed into
triples that were loaded into CLIPS and rules operated
over them in order to create the OO schema and to apply
the OWL inference procedure. The drawback of this ap-
proach is that rule condition matching (through RETE)
involved all the rules simultaneously over the “complete”
ontology information. The loading time LDLTR of an ontol-
ogy of N triples is given by:

DLTR N N D,NL = T + L +T + L , (1)
where T is the transformation time of the ontology into
triples, using the ARP Parser [31], LN is the loading time
of N triples into CLIPS, TN is the transformation time of N
triples into an OO schema and LD,N is the loading time of
the set D of all the dynamic rules, i.e. the inference rules.
T and LN are always the same for a specific ontology
and are independent of the approach we use for the trans-
formation and inference procedure. Thus, (1) becomes:

,DLTR N D NL H T L ,
where H = T + LN.

To enhance system performance, we introduced an In-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

cremental Loading of Rules (ILR) methodology (Fig. 3). We
separate the dynamic rules into ten subsets and each sub-
set is loaded separately. The sets are: transitive (D1),
symmetric (D2), subproperty (D3), inverse (D4), equivalent
(D5), functional (and min cardinality) (D6), inverse func-
tional (D7), universal quantifiers (D8), skolem/existential
(D9) and classification (D10). We have excluded from the
analysis the individual equality rule (owl:sameAs prop-
erty), since the rule is static and ontology-independent.
Rule subsets are applied in a circular mode, to cope with
the missing rule activations due to incremental rule load-
ing, until no activation is detected. The loading time LILR
of an ontology of N triples is given by the following
formula, where a is the number of cycles of the inference
procedure and ,nD NL is the loading time of the n-th set of
dynamic rules over the generated OO schema from the
transformation of N triples: D = Di, where D is the
complete set of all the dynamic rules.

1
,i

n

ILR N D ,N
i=

L = H +T + a L

Experiments have shown that the incremental loading
of dynamic rules performs better, even if the ABOX rea-
soning procedure needs to be applied many times. When
the complete set of rules is loaded, the firing of one of
them causes the pattern matching procedure to be execu-
ted over all rules in order to determine rule activati-
ons/deactivations. By loading each time a portion of the
rule set, the pattern matching procedure operates faster,
even if the system spends extra time in order to apply the
inference rules in a circular mode. In other words:

()1 2 nD ,N D ,N D ,N D,Na L + L +...+ L < L .
However, even if rules were applied incrementally,

each time rule conditions had to be matched over a large
number of objects leading to a poor performance. To cope
with this problem, we have also implemented an Incre-
mental Loading of Triples (ILT) methodology (Fig. 4). The
system incrementally loads sets of q triples, where q is a
predefined value, and then applies the ILR methodology
over the currently loaded data in order to create each time
a portion of the OO schema. Thus, the overall reasoning
procedure consists of N/q cycles. The loading time is:

=1
() () () ,i

n

ILT+ILR q q D ,q
i

L = T + N/q L + N/q T +a N/q L (2)

where (N/q)Lq is the sum of the loading times of each q
triples incrementally into CLIPS, (N/q)Tq is the sum of the
transformation times of q triples incrementally into the
OO schema and the last factor is the sum of the loading
times of the dynamic rules. Assuming that bulk loading N
triples into memory is the same as loading them incre-

mentally, i.e. (N/q)Lq = LN, (2) becomes:

=1
()[]i

n

ILT+ILR q D ,q
i

L = H + N/q T +a L .

L refers only to loading triples without applying any rule.
Experiments have shown that for an appropriate q

value (a) the incremental loading of dynamic rules over a
portion of the OO schema is faster than the incremental
loading over the whole set, since rules are applied to a
smaller set of objects, and (b) the incremental transforma-
tion procedure of triples into an OO schema is faster than
transforming all the triples at once, since the transforma-
tion rules are applied in a portion of the triples and, thus,
activated faster. In other words:

=1 1
(/) i i

n n

D ,q D ,N
i i=

a N q L a L , (/) q NN q T T .

5.1.1 Determining the q Value
In order to discover the factors that influence q, we have
conducted experiments with different ontologies. We
loaded each ontology and for each run we used a differ-
ent q value. The results we obtained are depicted in Fig. 5.
Table 2 shows the approximate number of generated ob-
jects in each cycle according to the number q of triples.

TABLE 2
Approximate Number of Generated Objects in Each Cycle

 5,000 10,000 20,000 30,000
UOBM Lite1 950 1,900 3,950 5,900
LUBM1 975 2,050 4,200 6,420
SEMINTEC 1,380 2,760 5,500 8,450
VICODI 1,550 3,150 6,350 9,800

We observed that three out of the four ontologies were
loaded faster with a q value approximately equal to
20,000, where the number of generated objects in each
cycle varies from 4,000 to 5,500 objects. The VICODI on-
tology exhibits a different behavior, achieving the best
loading time for q=5,000. Furthermore, increasing q af-
fects heavily the loading time of VICODI in contrast to
the other ontologies where the loading time increase is
smoother. In order to explain this difference, we exam-
ined the dynamic rules that were generated.

We conclude that the optimal q value is affected by the
percentage of the overall schema the rules have to trav-
erse, i.e. the is-a part of a rule that denotes the class of the
matched objects. Furthermore, the amount of overhead is
relevant to the type of the dynamic rule: a transitive rule
imposes greater overhead than a symmetric one.

For the VICODI ontology, the rules that are generated
traverse many objects since they match objects of classes

Fig. 3. The Incremental Loading of Rules architecture.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

MEDITSKOS ET AL.: A RULE-BASED OBJECT-ORIENTED OWL REASONER 9

high in the hierarchy and for that reason the best loading
time is observed by inserting only 1,500 objects. How-
ever, the inference procedure for UOBM Lite-1 and
LUBM1 datasets is not heavily affected by the increase of
q. We observe smooth changes of loading times as q in-
creases. In fact, the loading performance decreases with
smaller q values, since the time the system gains by ap-
plying the rules in a smaller number of objects is overbal-
anced by the time it spends to apply the dynamic rules in
more cycles. The same holds for the SEMINTEC ontology,
where the is-a part of the rules refer to a small portion of
the objects and there is no need for a small q value.

We conclude that the system can efficiently handle
4,000 to 6,000 newly generated objects in each cycle, and
by default, the system operates by loading 20,000 triples
in each cycle. However, in order to enhance system’s per-
formance in cases such as the VICODI ontology, we pre-
sent a heuristic approach for automatically adjusting the q
value. We define a metric p that represents the degree of
ontology complexity in terms of the overhead that the
corresponding dynamic rules impose in the system’s
ABOX reasoning procedure. It is worth mentioning, that
the q value that we estimate is not an optimal one. The
reason is that it cannot represent the actual number of
instances that would be loaded. For example, if there are
many properties in the ontology, many of the triples
would refer to property values of the objects and not to
actual definitions of objects. Thus, for different ontologies,
the same q value would result in the generation of differ-
ent number of objects in each cycle.

5.1.2 Estimating the p Metric
We define the p metric for a rule as:

n n np w k , (3)
where pn is the p metric for a rule n, wn is a weight that
characterizes the class where a rule n refers to in its is-a
part and kn is a weight that represents how much the rule
n is influenced by the weight wn.

To calculate the w weight for a class i, we have devel-
oped a module that reads the class hierarchy and assigns
a weight in every class, depending on its position in the
class hierarchy and the total number of classes. The as-
signment of such a weight is based on the heuristic obser-
vation that a class is likely to contain a large number of
objects if it has many subclasses. Furthermore, we made
the assumption that classes have a uniform number of
objects. That is wi = si/tc, where wi is the weight for a class

i, si is the number of subclasses of i and tc is the total
number of user-defined classes. In that way, each weight
w is a number between 0 and 1 and denotes an estimation
for a class to have a large number of objects. For example,
the owl:Thing class will be assigned with w=1 since all
objects belong to this class. Leaf classes are assigned w=0.

The kn weight denotes how much a rule n is affected by
the wn weight. Each dynamic rule is characterized by dif-
ferent complexity, e.g. the calculation of the transitive
closure is a time consuming process and it is affected
heavily by the portion of the schema it is computed on.
On the other hand, the Skolemization process cannot be
considered as a complex one. We have defined weights
for each dynamic rule type, depicted in Table 3.

We consider inverse functional and transitive rules as
the most complex, especially the first ones since they im-
pose a join of objects. However, for the universal quanti-
fier, Skolemization and classification rules we have as-
signed a small weight, since the implemented semantics
are handled fast by the rule engine.

We generalize (3) to a subset of the dynamic rules of
the same type as:

max{ }nD n np w k ,
where nDp is the p metric for a subset Dn, max{ }nw is the
maximum class weight w present in the whole Dn subset
and kn is the k weight for the rules in the subset Dn. There-

Fig. 4. The combination of the ILT and ILR architectures.

100

200

300

400

500

600

700

0 20 40 60 80 100
Thousandsq (triples)

Ti
m

e
(s

ec
)

UOBM LITE-1
LUBM1
SEMINTEC
VICODI

Fig. 5. Loading times for different q values.

TABLE 3
The Assignment of k Weights in Different Types of Rules

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
kn 0.9 0.7 0.4 0.4 0.4 0.6 1.0 0.2 0.2 0.2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

fore, the p metric of the Dn rule subset depends only on
the maximum w class weight referred by the correspond-
ing rules. Thus, p is given by equation (4) as the maxi-
mum nDp of all rule subsets Dn.

max{max{ } }n np w k . (4)

5.1.3 The Relation of q to the p Metric
Equation (4) imposes that p is a value between 0 and 1 in
the worst case. The value 0 denotes that the ontology does
not require any special ABOX reasoning ability, e.g. an
ontology that defines only subclass relationships and
simple object or datatype properties. In that case, p = 0
since max{wn}kn = 0 for 1 n 10. The worst case occurs
when an ontology requires to traverse all the schema ob-
jects in order to apply an inverse functional property, i.e.

7 7max{ } 1w k . We set a threshold to p value equal to 0.6.
This is an arbitrary choice, based on the experimental re-
sults. If the p value for an ontology is smaller than this
threshold, then the loading is performed with the default
value q=20,000. Otherwise, the system sets q=5,000. By
applying this methodology over the four tested ontolo-
gies, we obtain the p values of Table 4. The calculation of
the p metric does not impose an extra overhead to the
loading procedure, since it takes only a few milliseconds.

TABLE 4
The p Metric for the Tested Ontologies

UOBM LUBM SEMINTEC VICODI
p 0.48 0.19 0.1 0.7

he method for calculating p is based on heuristic as-
sumptions and cannot be used as an absolute criterion for
the actual complexity of an ontology. Its usefulness is
restricted only to detect extreme cases where the infer-
ence requirements of an ontology result in demanding
rules, as far as objects traverse requirements are con-
cerned. For example, in flat ontologies, many classes will
be assigned with w=0, since they will not have subclasses
and s=0. But usually real world ontologies have a suffi-
cient hierarchy in order to find a good estimation for p.

5.2 Ontology Loading Results
We apply our transformation methodologies, namely
DLTR, ILR and ILT+ILR in 4 datasets. The loading times
depicted in Fig. 6 incorporate the mean time after 5 runs
needed to transform the ontology into triples, to load the
triples into the system and to perform the transforma-
tion/inference procedure. The ILT+ILR approach per-
forms better than the other two in all datasets. It is worth

mentioning that the ILT+ILR methodology was the only
one that managed to load the UOBM Lite-10 dataset that
contains ~2 million triples in a reasonable time limit.

In order to examine the complexity of the loading pro-
cedure, we generated a dataset for LUBM with almost the
same triples as the UOBM Lite-10 dataset. Fig. 7 depicts
how the loading times of the two datasets are affected by
the number of triples. As we have already described (sec-
tion 4.3), O-DEVICE generates dynamically ABOX infer-
ence production rules according to the defined constructs
in an ontology. Since each entailment has its own com-
plexity, the overall complexity depends on the generated
production rules, i.e. depends on the TBOX. LUBM re-
quires less inferencing capabilities than UOBM and the
inferencing procedure terminates faster. Notice that an
absolute linear behavior cannot be achieved since before
the creation of an object or the insertion of a property
value into an object’s slot, the system should check if the
object exists. As the number of objects increases, this
check becomes more time consuming. However, the im-
plementation is totally based on the native CLIPS mecha-
nisms without having implemented any special structures
for handling OWL constructs or to treat the large number
of objects. We believe that more sophisticated indexing
methods would increase the performance considerably.

6 QUERY LANGUAGE

The deductive rule language of O-DEVICE supports que-
rying over OWL instances represented as objects. The
conclusions of deductive rules represent derived classes,
whose objects are generated by evaluating these rules
over the current set of objects. Each deductive rule is im-
plemented as a CLIPS production rule that inserts a de-
rived object when the condition of the deductive rule is
satisfied. The query language aims at simplifying the
definition of queries, following a simpler syntax than
CLIPS or to eliminate any lisp-like syntax through the
RuleML-like module that supports [24].

As an example of the deductive rule language, we give
the first query of UOBM which retrieves all the instances
of the class UndergraduateStudent that have the value
Course0 in the property takesCourse.
1:(deductiverule r1
2: ?id <- (UndergraduateStudent (takesCourse $? [Course0] $?))
3:=> (result (uGradStud ?id)))

Line 2 defines the condition of the rule. Variable ?idFig. 6. The loading results of the three loading approaches.

Fig. 7. Loading time according to the number of triples.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

MEDITSKOS ET AL.: A RULE-BASED OBJECT-ORIENTED OWL REASONER 11

refers to the ID of the object that satisfies the restriction on
the property takesCourse, namely to have [Course0]
among its values. Line 3 defines the conclusion of the
rule, namely the pattern of the derived object, having on
the slot uGradStud the name of the object that satisfies
the condition. Thus, the result of this query consists of
objects of the class result that have on the property uG-
radStud the names of the actual objects that satisfy the
condition of the rule. The deductive rule is transformed
into the following production rule.
(defrule gen234
 (object (is-a UndergraduateStudent) (name ?id)
 (takesCourse $? ?gen5 &: (contains ?gen5 [Course0]) $?))
 (test (not (instance-existp (sym-cat result ?id))))
=> (bind ?oid (sym-cat result ?id))
 (make-instance ?oid of result (uGradStud ?id)))

The rule, instead of matching directly Undergraduat-
eStudent objects that have the value [Course0] in the
takesCourse slot, uses an intermediate variable ?gen5
and the function contains that first checks if the object
matched by the variable matches the ID of the actual ob-
ject variable. If not, it checks if the object matched by the
variable has an owl:sameAs relationship with the actual
object variable, i.e. if the object Course0 exists in the
owl:sameAs values of the matched object by the variable
(or vice-versa). If this check fails too, so does the function.
More formally, the contains function returns true if:

?av = ?qv ?qv ?av.owl:sameAs.
In that way, the rule also matches object values based

on the owl:sameAs information, overcoming the problem
of OO programming languages, where objects with dif-
ferent IDs are necessarily different objects. Notice that
identical objects are retrieved using the message passing
mechanism of CLIPS avoiding thus joins.

7 EXPERIMENTAL RESULTS

We tested O-DEVICE query performance using LUBM1
and UOBM Lite-1 datasets that define 14 and 13 exten-
sional queries, respectively. We also run the same ex-
periments on OWLIM (v2.8.4) and OWLJessKB rule-
based reasoners, Pellet (v1.3) DL reasoner and KAON2
(build-2007-01-06) datalog-driven reasoner. We have mea-
sured the time needed to load the ontologies (time spent
in any processing of the ontology, such as parsing and
reasoning) and to answer the queries (time spent to load,
process and answer queries). We also measured the
maximum memory consumption of each system to com-
plete the benchmarks. The experiments run on a laptop
with AMD Turion ML-34, 1.8 GHz processor, 1 GB RAM
and JAVA EE 5 SDK, setting maximum heap size 700 MB.

Fig. 8 depicts the loading times. All systems, except
KAON2 and Pellet, follow a complete materialization
approach, i.e. they apply rules at loading time in order to
derive the implicit information. KAON2 and Pellet han-
dle semantic information on demand. Thus, they load
faster the ontologies than OWLIM, O-DEVICE and OWL-
JessKB. However, OWLIM loads ontologies considerably
fast. We believe that this happens due to the sophisticated

indexing methods and the dedicated rule OWL reasoning
engine that OWLIM uses (TRREE [32]). O-DEVICE and
OWLJessKB use native rule engines (CLIPS and Jess re-
spectively) that are not OWL-oriented. But O-DEVICE
loads ontologies considerably faster than OWLJessKB
which could not load UOBM Lite-1 due to memory limi-
tation. The transformation of ontologies into an OO sche-
ma and the utilization of dynamically generated rules
perform better than applying rules directly over triples.

Fig. 9 depicts the maximum memory requirements of
each system for both loading and querying. Notice that
the measurement of KAON2 for the UOBM Lite-1 ontol-
ogy incorporates only the loading memory requirements,
since it did not manage to answer any query due to
memory limitation. O-DEVICE requires the least mem-
ory, whereas OWLJessKB requires almost 680 MB.

Fig. 10 and Fig. 11 depict the query response times for
LUBM1 and UOBM Lite-1, respectively. All systems re-
turned the same sets of instances, except OWLJessKB
which, in some queries, returned some incorrect in-
stances. Concerning the LUBM1 ontology, OWLIM per-
forms the best, whereas KAON2 and Pellet need the most
time to answer queries, since they perform OWL inferenc-
ing at query time. O-DEVICE and OWLJessKB exhibit
similar performance; some queries run faster in one sys-
tem and some on the other, with O-DEVICE spending
much time in answering query 9. We believe that the rea-
son of this behavior lies on technical aspects of the im-
plementation of both systems. Concerning the UOBM
Lite-1 ontology, KAON2 threw a heap error exception in
all queries. Furthermore, OWLIM failed to answer query
9 (we have used the default settings of OWLIM distribu-
tion for the UOBM ontology), returning no results,
whereas O-DEVICE managed to answer it within 156 sec-
onds. Moreover, Pellet failed to answer queries 4, 9, 11, 12
and 13, throwing a nominal exception.

1

10

100

1000

10000

O-DEVICE OWLIM OWLJessKB KAON2 Pellet

Ti
m

e
(s

ec
)

LUBM-1 UOBM Lite-1

Fig. 8. Loading times.

1

10

100

1000

O-DEVICE OWLIM OWLJessKB KAON2 Pellet

M
em

or
y

(M
B

)

LUBM-1 UOBM Lite-1

Fig. 9. Memory requirements.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

In order to give a gist of how O-DEVICE performs in
different types of queries, we analyze the query results of
the LUBM1 dataset. The complexity for a query in O-
DEVICE depends on two factors: (a) the number of joined
objects in the query condition and (b) the number of ob-
jects that the query needs to traverse, i.e. the class(es) the
query refers to. We can see that query response times of
O-DEVICE are clustered into three groups. Queries of the
first group (1, 3, 4, 5, 10, 11, 12) are executed faster since
they do not impose any join of objects, apart from query
12 which although requires a join, refers to classes with
small number of instances. A typical example is query 5:
(deductiverule lubm-q5
 ?o1 <- (Person (memberOf
 $? [http://www.Department0.University0.edu] $?))
=> (result (name ?o1)))

Queries of the second group (2, 6, 7, 8, 13, 14) require
more time to be answered. Queries 2, 13 and 14, although
they do not impose any join, they refer to classes with
large number of objects, e.g. Person, in contrast to queries
of the first group. Queries 2, 7 and 8 require a join and in
addition to the large number of objects of the referred
class, increase the response time compared to the query
12. A typical example of this cluster is query 8:
(deductiverule lubm-q8
 ?o2 <- (Department (subOrganizationOf
 $? [http://www.University0.edu] $?))
 ?o1 <- (Student (memberOf $? ?o2 $?) (emailAddress ?mail))
=> (result (x ?o1) (y ?o2) (z ?mail)))

Finally, query 9 is the most complicated query, since it
joins instances from three classes, one of which contains

the larger number of instances (Student class). The R-
DEVICE syntax of all LUBM queries is available in [25].

8 RELATED WORK

Pellet [3], RacerPro [4] and Fact++ [33] are well known
DL reasoners. Pellet is based on the tableaux algorithms
developed for expressive Description Logics and it is
complete on SHIN(D) and SHON(D). It supports an ABox
query answering module using the “rolling-up” tech-
nique. Racer implements a highly optimized tableaux
calculus for a very expressive description logic. It also
implements a description logic query language for ABox
individuals, named nRQL [34]. FaCT++ uses a variation
of the established FaCT tableaux algorithms for descrip-
tion logic inferencing. FaCT and FaCT++ do not directly
support ABOX reasoning. We have chosen Pellet as an
optimized DL reasoner for ABOX queries.

Vampire [13] is a FOL engine, exploiting several tech-
niques to improve its performance such as optimized al-
gorithms for backward and forward subsumption, index-
ing and discrimination trees. In [35] a comparison be-
tween Vampire and the Fact++ reasoner is presented.

KAON2 [6] is a DL reasoner where reasoning is im-
plemented by novel algorithms which reduce a SHIQ(D)
KB to a disjunctive datalog program [7]. It is argued that
this approach is fast for large ABoxes, due to certain op-
timization techniques, such as magic sets or join-order
optimizations. The experiments have shown that KAON2
requires a considerable amount of memory.

OWLJessKB [9], a successor of DAMLJessKB [36], is a
memory-based reasoner for OWL, implemented using the

1

10

100

1000

10000

100000

1000000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

Ti
m

e
(m

s)

O-DEVICE OWLIM Pellet

Fig. 11. Query response times for the UOBM Lite1 dataset.

1

10

100

1000

10000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

Ti
m

e
(m

s)

O-DEVICE OWLIM OWLJessKB KAON2 Pellet

Fig. 10. Query response times for the LUBM1 dataset.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

MEDITSKOS ET AL.: A RULE-BASED OBJECT-ORIENTED OWL REASONER 13

Jess [37] rule engine. It translates RDF triples directly into
facts and uses production rules to implements OWL en-
tailments. We have shown in the experiments that such a
trivial approach is functional for relatively small ontolo-
gies but suffers from scalability and memory limitations.

Bossam [38] is a RETE-based forward-chaining pro-
duction rule engine that has an RDF logic-like rule lan-
guage, called Buchingae. We were unable to load the
LUBM1 ontology due to memory limitations.

Corese [14] is an engine that internally works on con-
ceptual graphs. When matching a query with an annota-
tion, both RDF graphs and their schema are translated in
the conceptual graph model. Through this translation,
Corese takes advantage of previous work of the KR com-
munity leading to reasoning capabilities of this language.

To the best of our knowledge, OWLIM [8] is the fastest
memory-based system that performs reasoning based on
forward chaining of entailment rules. OWLIM uses the
dedicated OWL TRREE engine and the most expressive
language supported is a combination of limited OWL Lite
and unconstrained RDFS.

F-OWL [11], Ontobroker [12] and Florid [39] are sys-
tems that employee F-Logic [10] for data definition and
querying. The main difference with O-DEVICE is that
they use a frame-based language only for representing
the information whereas we build a native OO schema
that complies with OO principles. For example, F-OWL
uses the Flora2 [40] system that translates a dialect of F-
Logic into the XSB [41] deductive engine, i.e. into Tabled
Prolog. To understand the difference, consider for exam-
ple instance equality. In Flora2 (and in F-OWL), instance
equality can be modelled by substituting a term with an
equivalent one based on the facts. In O-DEVICE we create
multiple objects with different IDs and we treat them as
same through the query language, making our approach
general and applicable in any OO environment.

One more example is class equivalence, which in F-
OWL is defined as:

A[owl_equivalentClass->>B] :-
 A[rdfs_subClassOf->>B], B[rdfs_subClassOf->>A].

This is feasible, since subclass relationships are modelled
as facts. However, in an OO environment, such mutual
subclass relationships cannot be modelled because sub-
class graph cycles are forbidden.

9 CONCLUSIONS AND FUTURE WORK

In this paper we have described a memory-based rule
system for inferencing about and querying ontologies
expressed in a more expressive set than OWL Lite. We
build an OO model of the ontologies into the COOL lan-
guage of CLIPS and production rules match objects in-
stead of triples. In that way, we enable a well-known and
highly reliable rule engine to handle OWL semantics.

In our approach we do not use static production rules
for every OWL construct but we follow a Dynamic Rule
Generation approach where domain specific rules are gen-
erated according to ontology characteristics. The rules are
simpler than the corresponding static rules because they
contain fewer condition elements and thus they are acti-

vated faster. Furthermore, we have adopted an incre-
mental triple loading and rule application procedure in
order to avoid the excessive memory management system
activities that lead to poorer performance.

A memory-based reasoning system should exploit the
available memory in an efficient way in order to load the
larger possible set of ontologies. Experimental results
have shown that O-DEVICE requires less memory than
the rest of tested systems, being able to load ontologies
and answer queries that other system failed due to mem-
ory limitations. Although OWLIM is the fastest rule-
based reasoner, we argue that the reusability of an exist-
ing rule engine gives great potentials, based on the practi-
cality, efficiency and optimized techniques that has ob-
tained thought the years of the development.

For the future, we plan to introduce more sophisticated
indexing methods in order to improve the retrieval per-
formance, without sacrificing the practical aspect of the
approach, since currently we are based only on native
CLIPS mechanisms. One such solution would be the sub-
stitution of the hash function that CLIPS uses for deter-
mining the existence of an object, since it might be inap-
propriate to handle so large number of objects or two im-
plement dedicated structures in order, for example, to
further index identical individual. In that way, we could
improve both loading and querying performance. Fur-
thermore, we plan to connect O-DEVICE with [42], a vis-
ual tool for defining queries using a RuleML-like syntax.
Finally, we plan to use the reasoner as the core system of
a Web service discovery and composition framework [43]
[44] based on OWL-S [45] descriptions.

ACKNOWLEDGMENT
This work was partially supported by a PENED program
(EPAN M.8.3.1, No. 03 73), jointly funded by the Euro-
pean Union and the Greek Government (General Secre-
tariat of Research and Technology/GSRT) and by a NON-
EUROPE project (GSRT - 05 NON EU 423).

REFERENCES

[1] W3C Semantic Web Activity, http://www.w3.org/2001/sw/
[2] Web Ontology Language, http://www.w3.org/2004/ OWL/
[3] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur and Y. Katz, “Pellet: A

Practical OWL DL Reasoner”, Journal of Web Semantics, 2007.
[4] V. Haarslev, R. Möller, “Racer: A Core Inference Engine for the

Semantic Web”, 2nd Int. Workshop on Evaluation of Ontology-
based Tools, Florida, USA, pp. 27–36, 2003

[5] F. Baader, U. Sattler, “An Overview of Tableau Algorithms for
Description Logics”, Studia Logica, vol. 69, pp. 5-40, 2001

[6] B. Motik, R. Studer, “KAON2 – A Scalable Reasoning Tool for
the Semantic Web”, Proc. 2nd ESWC, Heraklion, Greece, 2005

[7] U. Hustadt, B. Motik, U. Sattler, “Reducing SHIQ Description
Logic to Disjunctive Datalog Programs”, Proc. KR2004, Whis-
tler, Canada, pp. 152-162, 2004.

[8] A. Kiryakov, D. Ognyanov, D. Manov, “OWLIM - a Pragmatic
Semantic Repository for OWL”, Proc. Workshop Scalable Semantic
Web Knowledge Base Systems, USA, 2005

[9] OWLJessKB: A Semantic Web Reasoning Tool, http://edge.cs.
drexel.edu/assemblies/software/owljesskb/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

[10] M. Kifer, G. Lausen, J. Wu, “Logical foundations of object-
oriented and frame-based languages”, Journal of the ACM, vol.
42, pp. 741–843, 1995.

[11] Y. Zou, T. Finin and H. Chen, “F-OWL: an Inference Engine for
Semantic Web”, Proc. 3rd Inter. Workshop Formal Approaches to
Agent-Based Systems, Greenbelt, USA, 2004

[12] S. Decker, M. Erdmann, D. Fensel, R. Studer, “Ontobroker:
Ontology based access to distributed and semi-structured in-
formation”, Database Semantics-Semantic Issues in Multimedia
Systems, IFIP Conf. Proc., vol. 138, 1998, pp. 351–369.

[13] D. Tsarkov, A. Riazanov, S. Bechhofer, I. Horrocks, “Using
Vampire to reason with OWL”, Proc. ISWC 2004, pp. 471-485.

[14] O. Corby, R. Dieng-Kuntz, C. Faron-Zucker, “Querying the
Semantic Web with the CORESE search engine”, Proc.
PAIS'2004, Valencia, Spain, IOS Press, pp. 705-709.

[15] CLIPS, http://www.ghg.net/clips
[16] G. Meditskos, N. Bassiliades, “Towards an Object-Oriented

Reasoning System for OWL”, Proc. Workshop OWL Experiences
and Directions, Galway, Ireland, 2005, CEUR, Vol. 188.

[17] G. Meditskos, N. Bassiliades, “O-DEVICE: An Object-Oriented
Knowledge Base System for OWL Ontologies”, Proc. 4th Hel-
lenic Conf. on Artificial Intelligence, Crete, Greece, 2006.

[18] S. Bechhofer, R. Moller, P. Crowther, “The DIG description
interface”, International Workshop on Description Logics, 2003.

[19] SWRL, http://www.w3.org/Submission/SWRL/.
[20] SPARQL, http://www.w3.org/TR/ rdf-sparql-query/
[21] B. Motik, I. Horrocks, R. Rosati, U. Sattler, “Can OWL and

Logic Live Together Happily Ever After?”, Proc. 5th ISWC, Ath-
ens, USA, 2006.

[22] H.J. Horst, “Completeness, decidability and complexity of en-
tailment for RDF Schema and a semantic extension involving
the OWL vocabulary”, Journal of Web Semantics, vol. 3, pp. 79-
115, 2005

[23] OWL Web Ontology Language Reference (Appendix B),
http://www.w3.org/TR/owl-ref/

[24] N. Bassiliades, I. Vlahavas, “R-DEVICE: An Object-Oriented
Knowledge Base System for RDF Metadata”, Int. Journal on Se-
mantic Web and Information Systems, 2(2), pp. 24-90, 2006

[25] The O-DEVICE System, http://iskp.csd.auth.gr/systems/o-
device/o-device.html

[26] SEMINTEC - Semantically-enabled data mining techniques,
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

[27] VICODI Ontology, http://www.vicodi.org/
[28] Y. Guo, Z. Pan, J. Heflin, “LUBM: A Benchmark for OWL

Knowledge Base Systems”, Journal of Web Semantics, 3(2), pp.
158-182, 2005

[29] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, S. Liu, “Towards a Com-
plete OWL Ontology Benchmark”, Proc. 3rd ESWC, Budva,
Montenegro, pp. 125–139, 2006

[30] Y. Guo, A. Qasem, Z. Pan, J. Heflin, “A Requirements Driven
Framework for Benchmarking Semantic Web Knowledge Base
Systems”, IEEE TKDE, vol. 19, Feb. 2007

[31] B. McBride, “Jena: Implementing the RDF Model and Syntax
Specification”, 2nd Int. Workshop on the Semantic Web, 2001

[32] TRREE - Triple Reasoning and Rule Entailment Engine,
http://www.ontotext.com/trree/

[33] D. Tsarkov, I. Horrocks, “FaCT++ Description Logic Reasoner:
System Description”, Int. Conf. on Automated Reasoning, 2006

[34] V. Haarslev, R. Möller, M. Wessel, “Querying the Semantic
Web with Racer + nRQL”, Proc. 3rd Int. Workshop on Applications

of Description Logics, Ulm, Germany, 2004
[35] D. Tsarkov, I. Horrocks, “DL reasoner vs. first-order prover”,

Proc. 2003 DL Workshop, CEUR, vol. 81, pp. 152–159, 2003.
[36] J.B. Kopena, W.C. Regli, “DAMLJessKB: a tool for reasoning

with the Semantic Web”, Proc. 2nd ISWC, 2003.
[37] Jess, http://herzberg.ca.sandia.gov/jess
[38] J. Minsu, J.C Sohn, “Bossam: An Extended Rule Engine for

OWL Inferencing, Proc. RuleML 2004, pp. 128-138, Japan, 2004.
[39] B. Ludäscher, R. Himmeröder, G. Lausen, W. May, C. Schlep-

phorst, “Managing Semistructured Data with FLORID: A De-
ductive Object-Oriented Perspective”, Information Systems, 23
(8), Special Issue on Semistructured Data, pp. 589-612, 1998.

[40] G. Yang, M. Kifer, C. Zhao, “FLORA-2: A rule-based knowl-
edge representation and inference infrastructure for the seman-
tic web”, Proc. 2nd ODBASE, 2003

[41] K. Sagonas, T. Swift, D.S. Warren, “XSB as an efficient deduc-
tive database engine”, Int. Conf. on the Management of Data, pp.
442–453, ACM Press, 1994

[42] N. Bassiliades, E. Kontopoulos, G. Antoniou, “A Visual Envi-
ronment for Developing Defeasible Rule Bases for the Semantic
Web”, Proc. RuleML-2005, Galway, Ireland, pp. 172-186.

[43] G. Meditskos, N. Bassiliades, “A Semantic Web Service Discov-
ery and Composition Prototype Framework Using Production
Rules”, OWL-S: Experiences and Future Developments workshop of
4th ESWC, Innsbruck, Austria, June, 2007

[44] G. Meditskos, N. Bassiliades, “Object-Oriented Similarity
Measures for Semantic Web Service Matchmaking”, 5th IEEE
ECOWS, Halle (Saale), Germany, November 26-28, 2007 (to appear).

[45] OWL-S: Semantic Markup for Web Services, http://www.w3.
org/Submission/OWL-S/

Georgios Meditskos received the BSc de-
gree in Computer Science in 2004 and the
MSc degree in Computer Science in 2007
from the Aristotle University of Thessaloniki,
Greece. Since 2004, he has been a PhD
student in Computer Science at the Aristotle
University of Thessaloniki. His research inter-
ests include Semantic Web, Semantic Web
Services and Artificial Intelligence.

Nick Bassiliades received the PhD degree in
parallel knowledge base systems in 1998
from the Department of Informatics, Aristotle
University, Thessaloniki, Greece, where he is
currently an assistant professor. His research
interests include knowledge base systems,
rule systems and the semantic web. He has
published over 70 papers at journals, confer-
ences and books and co-authored an interna-
tional book on Parallel, Object-Oriented, and
Active Knowledge Base Systems and a Greek

book on Artificial Intelligence. He has been involved in projects con-
cerning knowledge based systems, intelligent agents, e-learning,
web services, semantic web, etc. He is a member of the Board of the
Greek Artificial Intelligence Society and also a member of the Greek
Computer Society, the IEEE and the ACM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

