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Abstract—In this paper we present an approach for
investigating the feasibility of reducing inference control
to access control, as the latter is a more desirable
means of preventing unauthorized access to sensitive
data. Access control is preferable over inference control
in terms of efficiency, but it fails to offer confidentiality in
the presence of inference channels. We argue that during
the design phase of a data schema and the definition of
user roles, inference channels should be considered. An
approach is introduced that can be integrated into a risk
assessment exercise to assist in determining the roles
and/or attributes that lower the risks associated with
information disclosure from inference. The residual risk
from the remaining inference channels could be treated
by well known inference control mechanisms.

Keywords-access control; inference control;

I. INTRODUCTION

An inference channel is the ability to determine sen-
sitive data from non-sensitive data [9]. Inference con-
trol refers to the ability to prevent users from indirectly
accessing data that they do not have any authorization
for. Unauthorized access in this case is achieved as
data themselves usually contain information other than
their intended use. The “excess” information contained
within a certain piece of data results to the creation
of an inference channel, revealing the existence, state
and value of other data. This is usually a probabilistic
channel which under certain contexts is also referred as
side channel and as a result the formal access control
mechanisms are bypassed. Detection of such violations
in the general case is considered to be hard [6] and
therefore research focuses on prevention mechanisms.

Information inference is applicable to both quantita-
tive and qualitative data. In [18] an inference control
solution for quantitative data applicable to on-line

analytical processing systems is presented. An attacker
may derive sensitive information after performing a
number of non-sensitive queries on a database and the
authors address this problem by investigating the num-
ber of inference-safe queries. They also demonstrate
how this upper bound depends on characteristics of the
underlying datacubes and the structure of the queries.
With respect to qualitative data, inference is normally
feasible, due to the existence of (statistical) correlation
relations between the attributes. For example, the name
Alex is more likely to refer to a male rather than
a female, as the distribution of this name over the
two genders is not uniform. In the case of the name
Alexander the inference channel would not be proba-
bilistic, as the attribute Name reveals deterministically
the information contained in the attribute Gender.

Modern information systems exhibit in many cases
an unreserved collection of personal data and security
and privacy policies that describe the processes of
handling and processing the data are commonplace.
However, the large and expanding data schemas, as
well as the large volumes of the data result in an
increased complexity. Considering Ashby’s Law of
Requisite Variety [1], we can accept that informal paths
between the different type attributes are created, due
to the different perturbations of the underlying system,
or alternatively, inference channels. Applying Ashby’s
Law in the context of access control, the privacy of
sensitive data cannot be protected by implementing au-
thorization solutions on the sensitive data, when these
data are part of a schema that contains unclassified
data.

This paper proposes an extended access control
model that depends on both access control rules and
inference relationships, which are endogenous to the



data. Such model can be considered to complement
well known query restriction approaches that are em-
ployed during run time. The focus of the research is
on the feasibility of combining a deterministic problem
(access control) with a probabilistic one (inference con-
trol) through a formal model. A metric is introduced
that assists a security engineer to make database access
control decisions during the design and allocation of
user roles. We call upon the well known principles of
separation of duties and least to know, as points of
reference for developing the approach.

Throughout the paper it is assumed that a method-
ology for assessing the existence and magnitude of
inference channels is available. It is acknowledged that
the literature contains a significant amount of ongo-
ing research in information leakage through inference
channels, but such an exercise is not within the scope
of this paper. However it should be noted that the
applicability of our proposal depends on the reliability
and accuracy of a method for assessing inference
channels.

The paper is structured as follows. In Section II the
inference problem is stated and the current research is
presented. In Section III the extended access control
approach is introduced and metrics are proposed. Sec-
tion IV presents the conclusions and areas of ongoing
research.

II. ACCESS CONTROL VS. INFERENCE CONTROL

Access to sensitive data can be achieved either
directly or indirectly. Preventing direct access to the
data is dealt with access control mechanisms, whereas
preventing indirect access is known as inference con-
trol [4]. Although these two prevention mechanisms
share the same goal, they differ in several fundamental
aspects.

Access control is deterministic, whereas inference
control is usually related to stochastic channels. In
the general case, an inference channel is ought to
be stochastic as there is an associated probability
of obtaining the correct value of the inferred data.
Access control is static1, whereas inference control is
dynamic [2]. That is, access control rules can be well

1Although it is generally accepted that access control is based
on static measures, in [15] the authors develop an extended access
control model that includes dynamically updated rules based on
user action. However the context in that paper does not consider
explicitly inference control.

defined, and once set they apply throughout a user
session. Inference on the contrary is influenced by the
user’s actions and more specifically by the number and
structure of queries the user performs and therefore the
inference control responses vary through time (see for
example the work in [17]).

The differences between access and inference con-
trol call for different security mechanisms. In addition,
inference control is computationally more expensive
than a straightforward implementation of access con-
trol. Computational efficiency is an important require-
ment in a modern system and the performance, as well
as accuracy of security controls is a factor taken into
consideration when designing secure systems [3], [11].

In an ideal scenario, prevention of unauthorized
access to sensitive data would be dealt solely by
access control mechanisms. That would be the case
if all attributes in the underlying schema are pairwise
orthogonal, that is, knowledge of any data would not
reveal any information about the values of other data.
In large real life databases complete orthogonality is
not a realistic assumption. In fact, orthogonality is
expected to be sparse between attribute pairs as the
number of attributes increases. However, access con-
trol being capable of protecting confidentiality would
remain a possibility, if user access control roles grant
access to attribute sets that are orthogonal (that is
unrelated) to all other attributes which the role would
not have access to. Traditional methodologies of role
based access control design [14] do not consider role
separation based on inference, but on other well es-
tablished security principles such as the least to know
principle [13].

In the remainder of the paper an approach based
on the concept of inference control by design is pre-
sented. More specifically, assuming that access control
solutions are more preferable than inference control
solutions, we present an approach that allows one
to explore the possibilities of forming access control
rules that will balance trade-offs between business
requirements (desirable access control rules) and in-
ference control complexity. Reducing inference control
to access control is desirable from a complexity per-
spective and as it is demonstrated it can be delivered
with an expense to the number of roles. This would
eventually lead to conflicts with business requirements
and therefore the security designer and stakeholder
would need to decide on the balance between number



of user roles and inference control primitives.

III. AN EXTENDED ACCESS CONTROL METHOD

Initially we define the access control matrix in the
Harrison-Ruzzo-Ullman fashion [8]. In this particular
application we adopt the following convention depart-
ing from the original HRU terminology: “subjects” are
represented by user “roles” and “files” correspond to
data “attributes”. In addition, it should be noted that
we are primarily interested in the confidentiality of the
data and as such the access control rules refer to read
access operations.

Definition 1: Let R = {r1, r2, . . . , rn} be the set
of user roles and D = {d1, d2, . . . , dm} be the set of
different attributes. An access control matrix A is an
n×m matrix, where for a role ri ∈ R and data dj ∈ D
the respective element in A is defined as:

aij =

{
1 if ri has access to dj ;
0 otherwise.

(1)

In addition, we need to capture the information
relating to the existence of inference channels between
the attributes. The inference channels exist irrespective
of the shape and form of the access control matrix
defined above.

Definition 2: Given a set of attributes D =
{d1, d2, . . . , dm}, a data disclosure matrix L is a m×m
matrix, where element pij denotes the probability of
attribute di revealing dj .

This essentially means that there exists a mapping
f ⊆ D × D where for (i, j) ∈ f , attribute dj can
be inferred from attribute di with probability pij . It is
evident from the above definition that L would be of
the following form:

L =


1 p12 · · · p1m

p21 1
...

...
. . .

...
pm1 · · · · · · 1


with 0 ≤ pij ≤ 1 where i 6= j. From a graph theory
perspective, L can be mapped to an adjacency matrix
Aadj [i, j] of a weighted directed graph where:

Aadj [i, j] =


1 if i = j

pij if pij > 0
0 if pij = 0

(2)

Figure 1. The weighted directed graph corresponding to L.

with the non zero elements for i 6= j representing the
inference channels with probability pij .

Example. Consider for example the data and attributes
in Table I and the following access control matrix on
that table:

A1 =

(
1 1 1 0 0 1
1 0 0 1 0 0

)
A reasonable disclosure matrix would be the following:

L1 =



1 0 0 0 0 0
0 1 0 .7 .5 0
0 0 1 .2 .6 0
0 .002 0 1 0 0
0 .003 .06 0 1 0
0 0 0 0 0 1


The corresponding graph consists of three strongly
connected components as shown in Fig. 1.

�

Definition 3: Let L be the disclosure matrix of a
data scheme defined by its elements pij . This data
scheme is leakage proof iff pij = 0 for all i 6= j.

Essentially a data scheme is leakage proof if knowl-
edge of any of the attributes does not reveal any
information about any other attribute, or equivalently,
L = Im, where Im is the m×m identity matrix.

Definition 4: Let L and A be a disclosure and an
access control matrix respectively. The access leakage
matrix Q is defined as:

Q = A · L



Table I
AN EXAMPLE DATABASE TABLE

Key Name SName Gender Ethnic Background SSN

101 Alex Alisson M Wh.Eur. 1234567
102 Alex Warteiner F Wh.Eur. 3456789
103 Muhammed Ali M Asian 5678901
104 Mumba Abonage M African 2231122
105 Song Li M Asian 1112223

It can be trivially shown that if there are inference
channels (with non zero probability) connecting at-
tributes that can be accessed by different roles, the
corresponding element in the access leakage matrix
would be greater than zero. The access leakage matrix
captures the effective access control, rather than the
desirable access control policy.

From a practical point of view, though it is possible
for a data scheme to contain inference channels, the ac-
cess control policy may prohibit exploitation of them.
If for example an inference channel exists between two
attributes but the access control prohibits access to both
attributes, then there is no inference. Conversely, if an
inference channel exists between two attributes but the
access control policy grants access to both attributes,
then that inference channel would be redundant. This
leads to the need to define the property of incidental
leakage proofness:

Definition 5: Let A be an access control matrix and
L the disclosure matrix with L 6= I. Then the scheme
is incidentally leakage proof iff:

aij = 1<+(qij)

for all aij of the access control matrix and qij the
elements of the access leakage matrix Q where i =
1..n, j = 1..m and 1<+ is the indicator function over
<+.

In an incidental leakage proof schema the inference
channels do not influence the confidentiality of the
data. Our proposal relates the problem of inference
control to the problem of modifying the access control
policy or adding auxiliary attributes, in order to obtain
incidental leakage proofness.

A. Avoiding inference channels by improved imple-
mentation of separation of duties or least to know
principles

Following the previous definitions it should be ev-
ident that inference control in this context can be ex-
pressed as an optimization problem. More specifically,
we are interested in increasing the degree of separation
of duties reflected in A or adding auxiliary attributes,
which will result to a more sparse L. In both cases the
new matrices A′ and L′ will reduce the distance

d =
n∑

i=1

m∑
j=1

(qij − aij)2

where qij represent the elements of the amended access
leakage matrix and aij the elements of the modified
access control matrix. We define four problem types
that fall into two categories:

P1a. Given a n × m access control matrix A and a
disclosure matrix L such that aij 6= 1<+(qij) for
all 1 ≤ i ≤ n, 1 ≤ j ≤ m, develop a (n + k ×m
access matrix A′ where:

– At least one row of A with more than one
non-zero elements is partitioned into rows;
elements of the same column for all resulting
rows, when combined with the OR operator
yield the value given in the initial matrix A.

– The resulting scheme is closer to an inci-
dentally leakage proof scheme, such that the
distance d is diminished at an “acceptable”
level.

– The number of inserted rows k is limited to
the minimum feasible value for achieving the
required d

P1b. Given a n × m access control matrix A and a
disclosure matrix L such that aij 6= 1<+(qij) for



all 1 ≤ i ≤ n, 1 ≤ j ≤ m, develop a (n+k×m)
access matrix A′ where:

– at least one row of A with more than one
non-zero elements is partitioned into rows;
elements of the same column for all resulting
rows, when combined with the OR operator
yield the value given in the initial matrix A.

– The number of inserted rows k is a constant
number defined by the underlying business
logic. Note that each additional row in the
access control matrix represents an additional
role in the system.

– The resulting scheme is closer to an inci-
dentally leakage proof scheme, such that the
distance d is the smallest possible.

These problems refer to row partitioning, which
is essentially an implementation of finer grained
separation of duties. Not all partitions will be
practically feasible, due to restrictions imposed
by the underlying business logic. For example,
in a relational database model these restrictions
depend on the assumed entity relationships.

P2a. Given an access control matrix A and a disclosure
matrix L such that aij 6= 1<+(qij), for all 1 ≤
i ≤ n, 1 ≤ j ≤ m, develop a (m + k)× (m + k)
disclosure matrix L′ where:

– L is a partition of L′
– the additional elements are all zero, except

the diagonal elements which are equal to 1.
– A is inevitably modified resulting into a

n× (m + k) matrix A′ where the Hamming
weight2 of each row is equal to the Hamming
weight of the respective row in A

– the resulting scheme is closer to an inciden-
tally leakage proof scheme, such that d is
diminished at an “acceptable” level with the
smallest possible k.

P2b. Given an access control matrix A and a disclosure
matrix L such that aij 6= 1<+(qij), for all 1 ≤
i ≤ n, 1 ≤ j ≤ m, develop a (m + k)× (m + k)
disclosure matrix L′ where:

– L is a partition of L′
– the additional elements are all zero, except

the diagonal elements which are equal to 1.

2A Hamming weight is defined as the sum of 1’s in a binary
vector.

– A is inevitably modified resulting into a
n× (m + k) matrix A′ where the Hamming
weight of each row is equal to the Hamming
weight of the respective row in A

– The number of additional columns k in A′ is
a constant number defined by the underlying
business logic. Note that each additional col-
umn in the access control matrix represents
an additional anonymizer in the system.

– The resulting scheme is closer to an inci-
dentally leakage proof scheme, such that the
distance d is the smallest possible.

These problems refer to narrowing the disclosed
information, thus improving implementation of
the least to know security principle. The compo-
nents of the weighted directed graph correspond-
ing to Aadj are increased by k. This is realized by
adding vertices that represent auxiliary attributes
and at the same time migrating access from the
attribute with the greatest sum of weights for the
arcs directing from it, to the newly introduced
attribute.

All problems aim to increase the sparseness of the
corresponding matrices. When modifying the access
control matrix the problem concerns how to break a
role into two or more sub-roles, where each sub-role
will have access to fewer attributes than previously,
but when all sub-roles are put together will provide
access equivalent to the initial role. In practice, some
instances of role fragmentation may not be feasible
and therefore different fragmentation alternatives have
to be explored.

With respect to the disclosure matrix, no “tamper-
ing” can be made on the initial matrix itself, as the
information captured refers to the inherent inference
channels between the attributes. However, the added
auxiliary attributes will not correspond to natural data
and therefore they can be free from inference chan-
nels. A typical example of such an attribute is the
pseudonym which decouples a name from other per-
sonal data as will be shown in the following example.

In both cases the method could be used as a
policy planning tool to assist the policy makers in
exploring role allocation alternatives. Such an exercise
may augment risk assessment practices, where the
policy makers and system stakeholders consent on an
acceptable risk due to inference.



B. Estimating an access control policy for reduced
inference risk

P1a is a hard problem that concerns finding the
minimum number of rows that have to be partitioned
in the access control matrix A, in order to drop the dis-
tance between the resulting matrix and an incidentally
leakage proof construction below a given threshold.
P1b is a similar problem with two minor differences:
a) the number of rows that can be partitioned is fixed
and b) the goal is to find a matrix with the “minimum”
distance d, rather than a matrix with an “acceptable”
distance.

A straightforward approach to tackle problems P1a,
P1b, P2a and P2b is outlined in Algorithm 1, Algo-
rithm 2, Algorithm 3 and Algorithm 4 respectively.
Algorithm 1 follows an iterative approach, where at
each step the number of additional rows added to
the access control matrix is increased by 1, until the
size of the new matrix is sufficient in order to find
a permutation with the required distance. Note that a
completely sparse matrix would be one with no more
than one 1 in each row and therefore the number
of additional rows that are allowed is limited by the
number of 1s in the initial matrix A minus n. Algo-
rithm 3 is similar to Algorithm 1 with the exception
that Algorithm 3 incrementally adds new columns at
the end of matrix A and respectively recalculates the
corresponding disclosure matrix. Algorithms 2 and 4
do not work in a n iterative manner, since they deal
with fixed size access control matrices.

At the core of all algorithms lies a
function (solve_bound, solve_bound2,
solve_optimum or solve_optimum2) which
given a matrix with binary values, performs a
systematic search in the space of possible permutations
of 1s, under specific restrictions in order to come
up with a new matrix that either diminishes d at a
satisfactory level or minimizes it.

The solve_bound function (solve_bound2 is
similar with the exception that it utilizes the additional
columns instead of the additional rows) can be eas-
ily implemented using a heuristic search algorithm.
Algorithm 5 presents a prototype implementation of
solve_bound that is based on the Best First Search
algorithm [16]. The various matrices (permutations
of the original access control matrix) are considered
to be the states of the algorithm and the distance

metric is used as a heuristic function. The algorithm
maintains a set of states (matrices) and at each step
it removes the state (matrix) with the best heuristic
value (minimum distance) and finds all the children
states (permutations of the matrix) that are then pushed
back in the agenda. The algorithm terminates when
it encounters a state with the required heuristic value
(distance ≤ Dmax) or the Agenda becomes empty
which means that the problem is unsolvable. Finally,
in order to avoid endless loops the algorithm also
maintains a closed set with all the states that have been
examined in the past.

Algorithm 1
Input: A n ×m access control matrix A, a m ×m

disclosure matrix L, a threshold Dmax

Output: A (n + k)×m access control matrix A′

Let T:= the number of ‘1’s in A
For k = 1 to T-n
Create a new (n+k)xm matrix A′

such that

a′
ij =

{
aij 1 ≤ i ≤ n, 1 ≤ j ≤ m

0 otherwise

A′′ = solve_bound(A′,L, Dmax)

If A′′ 6= NULL return A′′

Next k

Algorithm 2
Input: A n ×m access control matrix A, a m ×m

disclosure matrix L, a threshold k
Output: A (n + k)×m access control matrix A′

Create a new (n+k)xm matrix A′

such that

a′
ij =

{
aij 1 ≤ i ≤ n, 1 ≤ j ≤ m

0 otherwise

A′′ = solve_optimum(A′,L)

return A′′

The solve_optimum and solve_optimum2
functions are optimization functions where there is no
explicit criterion concerning the desired goal matrices,
other than that they have to minimize the distance
d. Therefore they can either be implemented using
variations of admissible heuristic search algorithms
(e.g. A* [5]), iterative optimization algorithms (e.g.
Branch and Bound [10] ), or even exhaustive search,
where this is possible. However, since the space of
possible matrices can become extremely large, it would
be much more efficient to search for near optimal



solutions using stochastic optimization methods like
local search algorithms [7].

Example. Returning back to the example presented
earlier, it can be seen that the corresponding access
leakage matrix would be:

Q1 =

(
1 1 1 .9 1.1 1
1 .002 0 1 0 0

)
We can verify that the access scheme is not incidentally
leakage proof since:

1<+(qij) =

(
1 1 1 1 1 1
1 1 0 1 0 0

)

6=
(

1 1 1 0 0 1
1 0 0 1 0 0

)
and the distance from an incidentally leakage proof
construction is d = 2.02. In other words, knowledge
of name and surname is sufficient to gain indirect
access to all attributes of the table. If the security
policy does not allow such access and the business
logic can be delivered with the use of pseudonyms,
then an anonymizer attribute can be introduced. The
enriched table is shown in Table II.
The updated access control and disclosure matrices
would respectively be:

A2 =

(
1 0 1 0 0 1 1
1 0 0 1 0 0 0

)
,

L2 =



1 0 0 0 0 0 0
0 1 0 .7 .5 0 0
0 0 1 .2 .6 0 0
0 .002 0 1 0 0 0
0 .003 .06 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and the resulting access leakage matrix would be:

Q2 =

(
1 0 1 .2 .6 1 1
1 .002 0 1 0 0 0

)
with the scheme moving closer to an incidentally
leakage proof scheme as the distance is now d = 0.4.
Clearly in this example one anonymizer would not
adequately solve the inference problem as there not
one but two significant inference channels. Adding a

second anonymizer for SName and repeating the above
process, the resulting access leakage matrix would be:

Q3 =

(
1 0 0 0 0 1 1 1
1 .002 0 1 0 0 0 0

)

and d = 0.000004. This distance could be considered
acceptably low and the residual inference channel
could be addressed with inference control mechanisms.

�

Algorithm 3
Input: A n ×m access control matrix A, a m ×m

disclosure matrix L, a threshold Dmax

Output: A n × (m + k) access control matrix A′ and
a (m + k)× (m + k) disclosure matrix L′

Create a new (m+k)x(m+k) matrix L′

such that

l′ij =


lij 1 ≤ i ≤ n, 1 ≤ j ≤ m

1 m < i ≤ (m + k), j = i

0 otherwise
Let T:= the number of ‘1’s in A
For k = 1 to T-n

Create a new (n+k)xm matrix A′

such that

a′
ij =

{
aij 1 ≤ i ≤ n, 1 ≤ j ≤ m

0 otherwise

A′′ = solve_bound2(A′,L′, Dmax)

If A′′ 6= NULL return (A′′,L′)
Next k

Algorithm 4
Input: A n ×m access control matrix A, a m ×m

disclosure matrix L, a threshold k
Output: A n × (m + k) access control matrix A′ and

a (m + k)× (m + k) disclosure matrix L′

Create a new (m+k)x(m+k) matrix L′

such that

l′ij =


lij 1 ≤ i ≤ n, 1 ≤ j ≤ m

1 m < i ≤ (m + k), j = i

0 otherwise
Create a new nx(m+k) matrix A′

such that

a′
ij =

{
aij 1 ≤ i ≤ n, 1 ≤ j ≤ m

0 otherwise

A′′ = solve_optimum2(A′,L)

return A′′



Table II
ADDING AN ANONYMIZER ATTRIBUTE (ANON1).

Key Name SName Gender Ethnic. Background SSN Anon1

101 Alex Alisson M Wh.Eur. 1234567 n1
102 Alex Warteiner F Wh.Eur. 3456789 n2
103 Muhammed Ali M Asian 5678901 n3
104 Mumba Abonage M African 2231122 n4
105 Song Li M Asian 1112223 n5

Algorithm 5: Function solve bound
Input: A n ×m access control matrix A, a m ×m

disclosure matrix L, a threshold Dmax

Output: A n× (m + k) access control matrix A′

Set Agenda =A
Set Closed =∅
While Agenda 6= ∅
Set S the matrix in Agenda with
minimum distance d
Set dcurr the distance of S
Agenda = Agenda - {S}
if dcurr ≤ Dmax return S
if S/∈ Closed
Set Z=∅
For each a,b: Sa,b = 1
For each c: Sc,b = 0
Create matrix S2 such that

s2ij =


1 i = c, j = b

0 i = a, j = b

sij otherwise
Z = Z ∪{S2}

Set Agenda = Agenda ∪ Z
Set Closed = Closed ∪ {S}

End while
Return NULL

IV. CONCLUSION AND AREAS FOR FUTURE

RESEARCH

In this paper, a formal alternative to the infer-
ence problem is proposed. By reflecting upon the
consensus found in the literature that access control
mechanisms are more preferable than inference control
mechanisms, we propose a method to deliver inference
control by design. This method is concerned with
investigating how instances of the (probabilistic) infer-
ence control problem can be reduced to (deterministic)
access control. We propose to extend the use of ma-
trices and matrix operations beyond access control, in
order to represent the inference channels and to capture
the effective access control capabilities on a given data

scheme.
By acknowledging that not all inference control re-

ductions are practically feasible, we pinpoint the need
for a trade-off between meeting business requirements
and maintaining low inference risks. We formally cap-
ture the trade-offs as two optimization problems. In
an ideal scenario - from an inference control point of
view - careful access control design could eliminate the
need for inference control mechanisms whilst meeting
confidentiality requirements. However as in most cases
this would not be a realistic goal, we need to accom-
modate for the constraints that will drive the evaluation
process of the different design alternatives. This aspect
of the work is part of the ongoing research efforts.

The proposed distance metric d is currently an ordi-
nal variable which meets the representation condition
in accordance to a measurement theory. Although an
ordinal variable is capable of showing changes (im-
provements or deteriorations) of the quantity measured,
its actual order of magnitude has limited meaning. In
order to address this, d would need to be promoted
to at least a rational variable. At the time or writing
this paper, it is conjectured that the proposed metric
could be a rational or an absolute variable, if the
leakage matrix in turn can be represented within a
Markov model. This is also a research direction under
investigation.

Finally, the data disclosure matrix captures pairwise
dependencies between the data. Dependencies between
k-tuples of data with k > 2, are partially accounted
for through the multiplication operation between the
access control and the data disclosure matrix, but this
assumes a linear dependency between the higher order
relationships. Consequently, the inference matrix con-
tains the lower bounds of the inferences between the
data. Such a limitation can be addressed by considering
the proposed data leakage matrix to be the first order



model, whereas the k-tuples would be represented
by the (k − 1)th order model. Similar to above, a
Markovian representation of the leakage matrix would
support such direction.
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