
The Knowledge Engineering Review, Vol. 00:0, 1–24.c© 2010, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

The PORSCE II Framework: Using AI Planning for
Automated Semantic Web Service Composition

OURANIA HATZI 1, DIMITRIS VRAKAS2, NICK BASSILIADES2, DIMOSTHENIS
ANAGNOSTOPOULOS1 and IOANNIS VLAHAVAS2

1Department of Informatics and Telematics, Harokopio University of Athens, Harokopou 89, 17671, Athens, GREECE
E-mail: {raniah,dimosthe}@hua.gr
2Department of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, GREECE
E-mail: {dvrakas,nbassili,vlahavas}@csd.auth.gr

Abstract

This paper presents PORSCE II, an integrated system that performs automatic semantic web service
composition exploiting AI techniques, specifically planning. Essential steps in achieving web service
composition include the translation of the web service composition problem into a solver-ready planning
domain and problem, followed by the acquisition of solutions, and the translation of the solutions back to
web service terms. The solutions to the problem, that is, thedescriptions of the desired composite service,
are obtained by means of external domain-independent planning systems, they are visualized and finally
evaluated. Throughout the entire process, the system exploits semantic information extracted from the
semantic descriptions of the available web services and thecorresponding ontologies, in order to perform
composition under semantic awareness and relaxation.

1 Introduction

The World Wide Web has evolved from a collection of documentsinto a more integrated environment,
where not only information but also system functionality isexposed and the provision of services plays
an important role. The web service technology is a fundamental part of the web, as it provides a standard
way to interact with information systems, independent fromplatform and internal implementation, thus
accommodating interoperability between heterogeneous systems. However, in many cases, the need for
integrated functionality cannot be fulfilled by a simple atomic web service, leading to the requirement for
web service composition; that is, the appropriate combination of atomic web services in order to achieve
a complex goal. The task of web service composition becomes significantly difficult, time-consuming and
inefficient as the number of available atomic services increases continuously; therefore, the possibility to
automate the web service composition process is proved essential.

Automated web service composition is significantly facilitated by the development of the Semantic
Web, which permits the representation of knowledge about the actual meaning of information and services.
The existence of such semantic information enables composition using intelligent techniques, such as
AI Planning. Without the presence of semantic information,a high degree of human expertise would
be required in order to compose web services meaningfully and not based on circumstantial syntactic
similarities. The incorporation of semantics in the description of web services is accommodated through
the development of a number of standard languages such as OWL-S (OWL-S) and SAWSDL (SAWSDL).
Nevertheless, there are no tools utilizing semantic information incorporated in OWL-S to efficiently
compose web services either accurately or approximately, taking into account the actual meaning of web
service inputs/outputs as well as the corresponding ontologies.

The PORSCE II framework aims at automated semantic web service composition by employing
planning under semantic awareness and relaxation. Its contribution focuses on the effective utilization

2 O. HATZI ET AL .

of semantic information present in OWL-S description of webservices to enhance the web service
composition process by facilitating approximate compositions, via planning.

The first and decisive step in the process concerns the translation of the web service composition
problem to AI planning terms (Hatzi et al., 2009). This translation is based on the observation that
certain correspondences exist between the two domains, which, given the appropriate mapping, enable
the application of planning techniques to solve the web service composition problem effectively. Such
correspondences include the available web services that can be combined to formulate meaningful
compositions, which can be mapped to the planning domain, and user requirements about the desired
composite service, which can be perceived as a planning problem over this domain.

The translation takes place between the most prominent standards in each area: OWL-S for semantic
description of web services (either atomic or composite) and PDDL (Planning Domain Definition
Language) (Ghallab et al., 1998) for definition of planning domain and problem. According to user
preferences, the translation process may take into accountsemantics, resulting from the semantic analysis
of the domain and the corresponding ontologies; if so, semantically equivalent or relevant concepts are
also included, in order to cope with cases when no exact planscan be found and approximations must take
place. The result of this phase of the transformation process is a fully formulated, solver-ready planning
problem which incorporates all the required semantic information. PORSCE II consequently exports the
planning problem to PDDL and invokes external planning systems to acquire plans, which constitute
descriptions of the desired composite service. Each composite service is evaluated in terms of statistic and
accuracy measures, while a visual component is also integrated, which accommodates composite service
visualization and manipulation. Modification in the composite service is performed by atomic service
replacement, either with an alternative equivalent atomicservice, or through finding a sub-plan that can
substitute it. If necessary, the composite service can alsobe modified through replanning. Finally, in order
to provide full-cycle support, and render the result of the composition process independent from planning,
the composite service is translated back to OWL-S, presenting the user with a description in the same
standard as the initial atomic services and facilitating composite service deployment.

The rest of the paper is organized as follows: Section 2 discusses related work in the area of web service
composition through planning, while Section 3 provides background related to the OWL-S standard, AI
planning and the PDDL standard. Section 4 outlines system architecture, Section 5 elaborates on the main
knowledge engineering aspect that this paper focuses on, that is, the transformation process, and Section
6 presents the rest of the system operations. Section 7 presents a case study and performance evaluation
results and finally, Section 8 concludes and poses future directions.

2 Related Work

A number of approaches for automatic web service composition can be found at (Rao and Su, 2004)
and (Dustdar and Schreiner, 2005); the most closely relatedwith the approach proposed in this paper are
discussed and summarized in Table 1.

SHOP-2 (Sirin et al., 2004) uses services descriptions in DAML-S, the predecessor of OWL-S, and
performs Hierarchical Task Network (HTN) planning to solvethe problem. The main disadvantage of this
approach lies in the fact that the planning process, due to its hierarchical nature, requires the specification
of certain decomposition rules, which have to be encoded in advance by an expert in the specific domain,
with the help of a DAML-S process ontology.

OWLS-XPlan (Klusch and Gerber, 2005) uses the semantic descriptions of atomic web services in
OWL-S to derive planning domains and problems, and invokes aplanning module called XPlan to
generate the composite services. The system is PDDL compliant, as the authors have developed an XML
dialect of PDDL called PDDXML. Although the system imports semantic descriptions, the semantic
information provided from domain ontologies is not utilized and semantic awareness is not achieved;
therefore the planning module requires exact matching for service inputs and outputs.

The SWORD framework (Ponnekanti and Fox, 2002) is a set of tools that addresses a particular subset
of the automatic web service composition problem. SWORD follows an approach close to the one of
PORSCE II for modelling web service composition. However, atomic services are represented as rules,

PORSCE II Planning for Automated Semantic WS Composition 3

stating that given specific inputs, an atomic service produces specific outputs. SWORD then uses a rule-
based expert system to generate the composition plan, rather than classical planning.

The work described in (Mcilraith and Son, 2002) conceives web service composition as a planning
and execution task, where actions (services) may be complex. The GOLOG language is then employed,
adapted and extended to address the issue of composition. Approaches that use knowledge-based planning
include the work in (Pistore et al., 2005). Web service descriptions are expressed in a standard process
modeling and execution language, such as BPEL4WS, therefore some prior, domain-specific knowledge
of the composition issues is required, while another approach employing estimated-regression planning is
presented in (Mcdermott, 2002); however, in order to be used, it requires extension to current standards.

System / Atomic Composite Service Advantages Disadvantages
Approach Services (Inputs / Outputs)
SHOP-2 Primitive

Tasks
Task Networks,
Compound Tasks

Heuristics for
increased performance

Prior expert domain knowl-
edge required

OWLS-
XPlan

Primitive
Tasks

Initial State / Goal
State

Combination of plan-
ning techniques

Ontology information not uti-
lized. Domain-specific knowl-
edge required

SWORD Entity-
Relation
Model,
Horn r.

Initial State / Goal
State

Utilizes research in
the area of rule-based
expert systems

Requires user intervention.
Not straightforward
representation. Requires
domain-specific knowledge

GOLOG Situation
Calculus

High-level generic
procedures and
constraints

Utilizes research in the
area of situation calcu-
lus

Complex encoding and trans-
lation. Decreased scalability
and interoperability

Estimated-
Regression
Planning

State
Trans.
Ops

Initial State / Goal
State

Heuristics for acceler-
ation of the process

Requires extension to the stan-
dards and planners. Decreased
scalability

Knowledge-
based

BPEL
Pro-
cesses

Compound process
- goal

Well founded
formalization. Non-
determinism.

Semantic information and
ontologies not utilized.
Decreased scalability

Table 1 Overview and comparison of planning approaches to web service composition.

The main advantages of the proposed framework with respect to the aforementioned systems include
the extended utilization of semantic information, in orderto perform planning under semantic awareness
and relaxation, and find better and, when necessary, approximate solutions. Furthermore, PORSCE II
requires neither prior domain-specific knowledge, nor any kind of extension to the standards, in order
to form valid, desired composite services; the OWL-S descriptions of the atomic web services and the
corresponding ontologies suffice. Finally, PORSCE II is able to scale up for a great number of services,
having the flexibility to exploit modern, advanced planners, and it also handles cases of service failure or
unavailability dynamically, an important feature not covered by the aforementioned frameworks.

3 Background

This section presents the fundamental standards for the proposed approach, namely OWL-S and PDDL.
Additionally, it introduces some basic planning notation that will be used throughout the paper.

3.1 OWL-S

OWL-S is an upper ontology based on OWL (OWL), created in the context of the Semantic Web in
order to describe knowledge concerning semantic web services. It is used in combination with ontologies
organizing the concepts appearing in the OWL-S descriptions. The use of OWL-S renders the semantics
of the descriptions machine comprehensible; therefore it enables intelligent agents to discover, invoke and
compose web services automatically. A web service description in OWL-S is comprised of (OWL-S):

• Service Profile:describes what the service accomplishes, limitations on service applicability and
quality, and requirements that the service requester must satisfy to use the service.

• Process Model:describes the way a client can communicate and use the service.

4 O. HATZI ET AL .

• Service Grounding:specifies concrete details of how an agent can access a service, such as
communication protocols and message formats.

The proposed approach utilizes semantic information contained in theService Profile, along with the
corresponding ontologies, in order to translate the description in planning terms.

An ontology in this context refers to a formal representation of the concepts appearing as inputs
and outputs in the web service profiles. The concepts in the ontology are connected with hierarchical
relationships, such as superclass, subclass and sibling.

Apart from atomic web services, which involve atomic processes, OWL-S establishes a framework
for defining composite processes as well. A composite process consists of a set of atomic processes,
combined together using a number of control constructs, such as Sequence, Split, Split+Join, Choice,
Any-Order, Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-Until. The main reasons for using
these constructs while defining a composite web service are:a) to enable the definition of compact services
(e.g. through the use of Iterate, Repeat-While and Repeat-Until), b) to facilitate the definition of alternative
paths (i. e. through the use of Conditions and If-Then-Else constructs) and c) to speed up the invocation of
the composite web service, by allowing multiple atomic processes to be invoked concurrently (i.e. through
the use of Split and Split+Join constructs).

3.2 Planning & PDDL

A planning domain and problem is usually modeled according to STRIPS (Stanford Research Institute
Planning System) notation (Fikes and Nilsson, 1971) as a tuple < I, A, G >, whereI is the initial state,
A is a set of available actions andG is a set of goals. States in STRIPS are represented as sets of atomic
facts. SetA contains all the actions that can be used to modify states. Each actionAi has three lists of
facts containing the preconditions ofAi, the facts that are added, and the facts that are deleted fromthe
world state after the application of the action, noted asprec(Ai), add(Ai) anddel(Ai) respectively.

The following formulae hold for the states in the STRIPS notation:
• An actionAi is applicable to a stateS if prec(Ai)⊆ S.
• If Ai is applied toS, the successor stateS′ is calculated asS′ = S − del(Ai) ∪ add(Ai)

• The solution to a planning problem (planP) is a sequence of actionsP =A1, A2, ..., An, which,
if applied toI, lead to a stateS′ such thatS′ ⊇G.

Planning Domain Definition Language (PDDL) (Ghallab et al.,1998) was initially designed for
providing a standard means of encoding planning domains andcorresponding problems used as input
test sets for planners that took part in planning competitions such as IPC (IPC2004). However, it has since
been enhanced, extended and become a standard for modeling planning domains and problems.

PDDL provides structures to represent all the aforementioned STRIPS elements, such as predicates
(atomic facts), actions and problems. Newer versions of thelanguage (Gerevini and Long, 2005) added
more features in order to enable the representation of more complex domains. These features include
constants, variables, functions, and numeric expressions. PDDL also provides separate structures that can
be used to represent problems, which are associated with specific planning domains. The latest extensions
to the PDDL standard take into account the temporal properties of domains, as well as quality metrics,
features which might prove very useful in the web service composition case, while PDDL+ (Fox and
Long, 2002), also provides a standard way to represent plans, either sequential or partially parallel.

4 Overview and Architecture

PORSCE II was based on the results obtained from the prototype system PORSCE (Hatzi et al., 2008).
PORSCE II aims at a high degree of integration as, along with the core transformation component, it
additionally contains a visual interface, more elaborate relevance metrics, the ability for composite service
accuracy assessment, and composite web service manipulation features. Furthermore, PORSCE II adopts
a way of modeling the web service composition as a planning problem which reduces the complexity of
the generated planning problem, thus accelerating the planning process. In order to highlight the planner
independency of PORSCE II, which enables the use of any domain independent planning system based

PORSCE II Planning for Automated Semantic WS Composition 5

on PDDL, two external planners have been included. Finally,PORSCE II supports seamless composition,
by initiating the process with the OWL-S descriptions of atomic web services, and concluding with the
OWL-S description of the produced composite service, thus facilitating deployment.

The key features of the framework are:
• Translation of OWL-S web service descriptions (atomic or composite) into planning operators.
• Interaction with the user in order to acquire their preferences regarding the desired composite

service and desired metrics for semantic relaxation.
• Enhancing the planning domain and problem with semantically similar concepts.
• Exporting the web service composition problem as a PDDL planning domain and problem.
• Acquisition of solutions by invoking external planners.
• Flexibility in the choice of planner, as any PDDL-compliantexternal planning system can be used.
• Assessing the accuracy of the composite services.
• Visualizing and modifying the solution by atomic service replacement or replanning.
• Transformation of the solution (composite web service) back to OWL-S.

PORSCE II comprises of the OWL-S Parser, the TransformationComponent, the OWL Ontology
Manager, the Visualizer and the Service Replacement Component. An overview of the architecture and
the interactions among the components is depicted in Fig. 1.

Figure 1 PORSCE II architecture.

The OWL-S Parser is responsible for parsing a set of OWL-S webservice profiles and determining
the corresponding ontologies that the concepts appearing in the web service descriptions belong to. The
OWL Ontology Manager (OOM), utilizing the inferencing capabilities of the Pellet DL Reasoner (Sirin
et al., 2007), applies the selected algorithm for discovering concepts that are similar to a query concept.
The Transformation Component is responsible for a number ofoperations that result in the formulation
of the planning problem from the initial web service composition problem, its consequent solving, and
the transformation of the produced composite service back to OWL-S. The purpose of the Visualizer
is to provide the user with a visual representation of the plan, which in fact is the description of the
composite service. Finally, the Service Replacement Component enables the user to employ a number
of alternative techniques in order to replace a specific atomic web service in the composite service
sequence. PORSCE II is implemented in Java and it is available online, along with example problems,
at http://www.dit.hua.gr/˜ raniah/porsceIIen.html.

5 Transformation Process

The transformation process includes translation of the webservice composition problem into a planning
problem and possible enhancement with semantic information, as well as transformation of the plan
representing the produced composite service back in web service context. The process starts at the OWL-S
Parser, which parses the OWL-S profiles of the available atomic web services and forwards them to the
Transformation Component. The Transformation Component is responsible for a number of operations,
including translating the web service descriptions received from the OWL-S Parser to planning operators
and enhancing them with similar concepts derived from the OOM. Moreover, it interacts with the user in

6 O. HATZI ET AL .

order to formulate the planning problem, and exports both the planning domain and problem to PDDL.
Finally, it translates the PDDL+ plan back to OWL-S, completing the composition process.

5.1 OWL-S to PDDL Translation

The first step in the translation process generates the planning domain by translating each available OWL-
S web service profileWSDi into a planning actionAi (Fig. 2). More specifically:

• The name of the action is therdf:ID field of the profile:name(Ai) =WSDi.ID

• The preconditions of the action are formed by the service input and precondition definitions:

prec(Ai)≡
n⋃

k=1

WSDi.hasInputk ∪
m⋃

k=1

WSDi.hasPreconditionk

• The add effects of the action comprise of the service output and positive effect definitions:

add(Ai)≡
n⋃

k=1

WSDi.hasOutputk ∪
m⋃

k=1

WSDi.hasEffect+
k

• The delete list is formed by the negative effect definitions.The SWRL language (SWRL) was used
in order to model the preconditions and effects of the web services. SWRL combines OWL DL and
RuleML in order to model preconditions and consequences in the Semantic Web, through the use
of Horn-like rules. In the PORSCE II case, preconditions aremodeled by SWRL rule conditions,
while positive effects are modeled as SWRL atomic expressions that are true in the world after
the execution of the web service. Since SWRL does directly support for negation and negated
atomic expressions, which would model negative (delete) effects, the negation<neg> element
of RuleML (RuleML) was employed, which is used by the transformation process in order to
discriminate between add and delete effects. The delete list of the action is formed as follows:

del(Ai)≡
m⋃

k=1

WSDi.hasEffect−
k

Figure 2 Web services to planning domain mapping.

This transformation can be applied either to atomic or to composite web services described in OWL-S,
provided that the outputs of the composite service are fullydeterministic; PORSCE II is not concerned
with the internal implementation of the services. An example of an OWL-S to PDDL transformation is
presented in Fig. 3, where the mapping presented above is marked. The web service description at hand
concerns a web service that accepts as inputs the ISBN, a Seller and a Client of a book, and has as a
precondition that a Seller possesses the book indicated by the ISBN. The service has as output the Order
Data, and as a result the change of book ownership from Sellerto Client. The addition of the auxiliary
argument in every PDDL predicate representing an input or output concept was a necessary technicality,
in order to overcome the disadvantage of many planners that did not accept predicates without arguments,
which does not in any way affect the outcome of the composition.

After the creation of the planning domain, the next step is the generation of a corresponding planning
problem, based on the user requirements about the compositeservice. A straightforward solution adopted
by PORSCE II for this step is the following: LetIC be the set of concepts that the user wishes to provide
to the composite service andGC its desired outputs. IfO denotes the set of all available concepts in the
ontology, thenIC ⊆O, GC ⊆O andIC ∩GC ≡ ∅. The inputs that the user wishes to provide formulate
the initial state of the planning problem, while the desiredoutputs of the composite service formulate the
goals:I = IC andG=GC. Both input and output sets are provided externally by the user.

PORSCE II Planning for Automated Semantic WS Composition 7

Figure 3 OWL-S to PDDL translation example.

5.2 Semantic Analysis

The step of semantic analysis, following that of the transformation process described in the previous
subsection, enables the system to exploit semantic information. This step is implemented by the OWL
Ontology Manager (OOM). During translation, the OOM is usedextensively for performing semantic
relaxation, which is useful in cases when an exact input-to-output matching plan is not available. The
OOM locates equivalent and semantically relevant concepts; therefore, approximate plans can be created.

In our approach, two ontology concepts are considered semantically similar if and only if they have a
hierarchical relationshipand theirsemantic distancedoes not exceed a user-defined threshold.

As far as thehierarchical relationshipis concerned, four hierarchical filters are used for its definition
for two ontology concepts A and B:

• exact(A, B):The two concepts should have the same identifier (URI) or theyshould be equivalent,
in terms of OWL class equivalence, i.e.A=B ∨ A≡B.

• plugin(A, B):The conceptA should be subsumed by the conceptB, i.e.A⊑B.
• subsume(A, B):The conceptA should subsume the conceptB, i.e.B ⊑A. In both theplugin and

thesubsumefilters the subsumption relationships of equivalent concepts are not considered.
• sibling(A, B): The two concepts should neither have a hierarchical relationship, nor be disjoint;

instead, they should have a common superclassT , such asA⊑ T ∧B ⊑ T .

Thesemantic distancebetween two ontology concepts is calculated in PORSCE II using two methods:

1. TheEdge-Counting Distance (ec)is based on the observation that in the hierarchical, tree-like
structure of an ontology, the further two concepts are placed, the less semantically related they are.
Therefore, it computes the semantic distance of two concepts in terms of the number of edges(p)
found on the shortest path between them in the ontology tree.An edge exists between two concepts

8 O. HATZI ET AL .

A andB if A is the direct subclass ofB, denoted asA⊑d B. The implementation of theecdistance
between two concepts, denoted asdec(A, B), returns a value between 0 and 1, with 1 denoting
absolute mismatch. This value is the result of normalization of the number of edges to[0..1] as
p/pmax, using the maximumecdistance (pmax) found in the ontology. For performance purposes,
pmax can be approximated aspmax = 2h− 1, whereh is the maximum number of edges between
the root owl:Thing concept (T) and the furthest leaf.

2. TheUpwards Cotopic Distance, denoted asduc(A, B), is defined in terms of the upwards cotopic
measure, denoted asuc(A) that represents the set of the superclasses of the conceptA, including
A itself (Maedche and Zacharias, 2002). In PORSCE II, the upwards cotopic distance definition
has been modified to incorporate the semantics of an ontologyhierarchy. More specifically,
the owl:Thing concept is not considered in theuc measure, while the union and intersection
set operators take into account the concept equivalence semantics, thus ignoring concept set
multiplicity. The upwards cotopic distance is defined as

duc(A, B) = 1−
|uc(A) ∩ uc(B)| − 1

|uc(A) ∪ uc(B)| − 1
If two concepts are disjoint, then their distance equals 1; otherwise, if the two concepts have a

hierarchical relationship, thenduc(A, B) ∈ [0..1). The upwards cotopic measure reflects the significance
of the common ancestors of two concepts in the ontology hierarchy, based on the intuition that concepts
with a great fraction of common ancestors among all their ancestors tend to be semantically related.

5.3 Semantic Awareness and Relaxation

After the steps of the translation process and the semantic analysis are both complete, the system is able
to perform semantic awareness and semantic relaxation. This step is potentially essential, because the
representation of the web service composition as a planningproblem is significantly empowered if the
planning system is aware of semantic similarities among syntactically different concepts.

The implementation in PORSCE II involves enhancing the domain and problem description with all
the required semantic information and consequently letting the planner handle it as a classical planning
problem. This solution is employed in order to: a) be able to use any PDDL compliant planner, as the
semantic enhancement applied to the domain remains transparent to the planner, and b) minimize the
interactions between the planner and the OOM, which introduce an overhead on the planning time.

In the pre-processing phase, prior to actual planning, the system uses the OOM in order to acquire
all semantically relevant concepts for both the facts of theinitial state and the outputs of the operators,
discovered by the semantic analysis process described in the previous subsection. The enhancement of the
problem by PORSCE II is based on the following rules:

• The original concepts of the initial state together with thesemantically equivalent and similar
concepts form a new set of facts noted as the Expanded InitialState (EIS).

• The goals of the problem remain the same.
• The Enhanced Operator Set (EOS) is produced, by altering thedescription of each operator, while

preserving the initial size of the set. More specifically, the preconditions of each operator remain
the same, while the list of add effects of each operator is enhanced by including all the equivalent
and semantically similar concepts for the concepts in the initial list.

Suppose, for example, that the initial state I and the two operators of the problem are the following:

I = {debitcard(X), dates, motel}
ActivateCard: prec={creditcard(X),disabled(X)},

effects(+)={enabled(X)}, effects(-)={disabled(X)}
BookHotel: prec={dates,hotel}, effects(+)={bookinginf o}, effects(-)={},

The OOM for a given distance metric and threshold discovers the following relevant concepts:

debitcard ˜ creditcard motel ˜ hotel active ˜ enabled

The pre-processor alters the problem definition to the following:

PORSCE II Planning for Automated Semantic WS Composition 9

EIS: {debitCard(X), dates, motel, creditCard(X), hotel}
EOS: ActivateCard: prec={creditCard(X),disabled(X)},

effects(+)={enabled(X),active(X)}, effects(-)={disab led(X)}
BookHotel: prec={dates,hotel}, effects(+)={bookinginf o}, effects(-)={}

The new problem, namely<EIS,EOS,G> is encoded into PDDL and forwarded to the planning system
in order to acquire a solution. Note that the semantic information is encoded in such a way that it is
transparent to the external planners, which can solve the problem as any other classical planning problem.

5.4 PDDL to OWL-S Translation

After the acquisition of solutions, a reverse translation process has to take place, in order to provide the
resulting composite web service to the original OWL-S standard and the initial web services domain. This
reverse translation accommodates composite service deployment and execution monitoring.

For the purposes of the PORSCE II framework, the use of intricate OWL-S control constructs is not
mandatory, as far as the proper invocation of the atomic processes is concerned. Since the modeling of the
web service composition problem to a planning problem is merely based on the STRIPS formalism, there
is no need to define alternative paths. Moreover, all the plans produced by the planning systems contain a
finite number of steps and the use of loops is rare and not mandatory. Therefore, any plan produced by the
framework can be expressed as a composite web service by using only the Sequence control construct,
without risking the proper invocation of the composite service. This is true even for the cases where the
external planning system used, such as LPG-td, returns a non linear plan (i.e. one that contains steps with
parallel execution of actions), since any non linear STRIPSplan has one or more equivalent topological
orderings. However, in order to accelerate the invocation of the composite service by allowing the parallel
execution of certain atomic processes, an algorithm that translates plans (linear or non linear) to composite
web services using the Sequence, Split and Split+Join constructs has been developed.

Algorithm 1 (Basic) Computes an initial composite service withSequenceandSplit constructs
Inputs: G= (V, E), the web service graph
Output: C: a composite service

1 set R← {r ∈ V : ∀x ∈ V, (x→ r) /∈E} // R is the set of root nodes in G
2 if |R| = 0 then return NULL
3 if |R| = 1 then

set G′← the tree inG with r ∈ R as the root
return sequence(r, Basic(G′ − {r}))

4 set c← {}
5 for each r in R

set G′← the tree inG with r ∈ R as the root
set c← c ∪Basic(G′ − {r})

6 return split(c)

Algorithm 1 presents the basic algorithm that creates a composite service, given a web service graph.
A web service graph is a graphG= (V, E), where the nodes inV correspond to all the atomic services
in the plan and the edges(x→ y) in E, wherex andy are nodes inV , define that web servicex produces
an output that is required byy as an input. The process of obtaining a web service graph fromthe
plan is straightforward and due to space limitations, we will not further elaborate on that. The output
of the Basic function in Algorithm 1 is either a composite construct of the form sequence(c1, c2), or
split(c1, c2, .., cn), wherec1 to cn are eitherNULL or composite constructs. For example, consider the
web service graph presented in Fig. 4. The output of the Basicfunction presented in Algorithm 1 will be
split(sequence(WSa, sequence(WSc, NULL)), sequence(WSb, sequence(WSc, NULL)))

Figure 4 Web service graph example.

10 O. HATZI ET AL .

Algorithm 2 (Join) ReplacesSplit with Split+Joinwhere possible in a composite service
Inputs: C = f(a1, a2, .., an): a composite service withSequenceandSplit constructs
Output: C: a composite service withSequence, Split andSplit+Joinconstructs

1 set f(a1, a2, .., an) = C, wheref is the name of the construct anda1 to an its arguments
2 if f =NULL then return NULL
3 if f = sequence then

a′

1 = Join(a1)
a′

2 = Join(a2)
return f(a′

1, a
′

2)
4 if f = split then

for each pair (ai, aj), i, j in [1,n]
if ai andaj have a common ending, i.e.ai = a′

i ∪ k andaj = a′

j ∪ k then
C′ = C − {ai, aj} ∪ seq(split+ join(a′

i, a
′

j), k)
return C′

The output of theBasicfunction is then fed to theJoin function, presented in Algorithm 2, in order
to replace theSplit construct withSplit+Joinwherever this is possible. TheJoin function searches in all
possible pairs ofSplit arguments, in order to find a common ending part. For instance, in the example
composite service given above, both arguments of theSplit construct end insequence(WSc, NULL).
Therefore, if we apply Algorithm 2 to the output of Algorithm1, the resulting composite service will be
split(sequence(split+ join(WSa, WSb), sequence(WSc, NULL)))

The above composite service is then simplified by removingNULLs and constructs with single
arguments and the final outcome is a construct of the formsequence(split+ join(WSa, WSb), WSc)

The above algorithms, along with some additional filters, such as the one mentioned above for
removingNULLsand unary constructs were implemented using the CMU OWL-S API (CMU).

6 Solution and Integration

PORSCE II aims at a high degree of integration of the composition process; therefore, its features include
solving the problem through invocation of external planning systems, visualization, solution evaluation
and composite service modification.

6.1 Acquiring Solutions

Since the transformation process results in the export of both the planning domain and problem in PDDL,
any PDDL-compliant domain independent external planning system can be used. This is a key issue for the
ability of the system to keep up to date with advancements in planning research. Currently, two different
planning modules have been incorporated in the system: JPlan (JPlan), which is an open-source Java
implementation of Graphplan and LPG-td (Gerevini et al., 2004). Both planners proved to be remarkably
fast and can handle a respectable number of operators, whichis very important as the number of available
web services is expected to increase significantly over time. After the planning process is completed, JPlan
provides the plan, in its own format, which comprises of a simple sequential list of actions. LPG-td, on
the other hand, provides the plan in a format that complies with PDDL+. The plan in this case might not
be sequential, but structured in levels; actions belongingto the same level can be executed in an arbitrary
sequence, however all actions of a certain level must be completed before any action of the following level
can be executed. Subsequently, the produced plans are visualized and their accuracy is evaluated.

6.2 Composite Service Accuracy Assessment

Semantic relaxation and the use of multiple planners may produce a number of composite services, for
which statistics and quality metrics have to be calculated.Such metrics include the number of actions and
the number of levels in the plan, as well as a plan distance quality metric, which indicates the accuracy of
the plan, when semantic relaxation takes place.

For the calculation of the plan semantic distance, each concept appearing in the inputs or outputs of
the actions of the plan is annotated by the OOM with a semanticdistancedi with respect to the original

PORSCE II Planning for Automated Semantic WS Composition 11

concept it was derived from, using the selected similarity metric. A concept distance of 0 reveals identical
or equivalent concepts. Additionally, each concept is annotated with a weightwi, with respect to the
kind of hierarchical relationship to the original concept.This provides the option to discriminate among
different hierarchical relationships, to accommodate forcases when certain relationships might be more
desirable than others. As a rough example consider a user looking for ”zip code” (subclass); in this case,
superclasses, for example ”address” (which entails the zipcode) are more desirable than siblings, for
example ”streetnumber”; therefore, providing different weights for superclasses and siblings will have
the desired effect on the results. These values are combinedto form the plan semantic distance. When the
upwards cotopic distance metric is used, the plan semantic distance is calculated as a weighted product of
these concepts, as the product represents appropriately the semantic distance in this case:

PSDuc =

n∏

k=0

widi, di 6= 0

The plan accuracy metric is calculated as1− PSD; therefore, if there is exact input to output
matching, or if only equivalent concepts are used, then the plan quality metric value is 1, while it decreases
as the plan becomes less accurate.

6.3 Visualization and Composite Service Modification

The Visualizer enhances comprehensibility by providing a visual representation of the composite service
and enables the user to interfere by manipulating it. The composite service is represented as a schema
of simple service invocations, possibly structured in levels, showing inputs and outputs, as well as
dependencies among web services. The Visualizer module invokes and interacts closely with another
module of the system, the Service Replacement Component, which allows the user to select among a
series of alternatives in order to modify the produced composite service. The first alternative for composite
service modification is the replacement of a certain serviceincluded in the composite service (plan) with a
semantically equivalent or relevant service. In order to perform this operation, the system needs to discover
all actions that could be used alternatively instead of the chosen one, using advice from the OOM as far as
concept equivalence and semantic relevance are concerned.An actionA is considered an alternative for an
actionQ of the plan as far as it does not disturb the plan sequence and the intermediate states. In order to
ensure that, both the conditionsadd(A) ⊇ add(Q) andprec(A) ⊆ S must hold, whereS is the state of the
world exactly before the application ofA and can be calculated by Algorithm 3 below (Irr). The selected
alternative service substitutes the original one both in the plan and in the visualization, and no replanning is
performed. The web service substitution can be applied an arbitrary number of times on any of the services
taking part in the composite service. In cases when none of the semantically equivalent or relevant services
that correspond to a certain service is considered suitable, or in cases where there are no alternative
services, the system offers the option to substitute the service with a partially ordered set of services,
which are found through planning. In this case, the world states right before and after the execution of the
action being replaced serve as the initial and goal states for the planning process, respectively. In order
to find the initial stateIrr and the goal stateGrr for the replanning process Algorithms 3 and 4 are used
respectively. Note that the replanning process is bound to return the web service being replaced itself,
especially if the external planner used produces the optimal plan in each case. In order to prevent that,
this specific service has to be removed from the set of available services before the replanning process
proceeds. As the new plan produced substitutes the service,its quality metrics have to be incorporated in
the quality metrics of the entire plan.

If replacement of a web service, either by an equivalent or through replanning, is not a suitable option,
or if multiple services are undesirable or unavailable, theuser can resort to replanning from a certain point
in the plan, or even replanning from scratch. When replanning from a certain point, Algorithm 3 is used
to calculate the initial state.

7 Demonstration and System Evaluation

This section aims at demonstrating the use and evaluating the performance of the PORSCE II through a
case study, following the general course depicted in Fig. 5.

12 O. HATZI ET AL .

Algorithm 3 Computes the initial state for replacement of actionAi through replanning (Irr)
Inputs: Extended Initial State (EIS), planP =A1, .., An, index of the action being replaced (i)
Output: TheIrr

1 set Irr← EIS
2 if j = 1 // start at the beginning of the plan
3 do // for every action

Irr← Irr ∪ add(Aj) // include the add effects of the action in theIrr set
j = j + 1

4 while j < i // until the action being replaced is reached
5 return Irr

Algorithm 4 Computes the goal state for replacement of actionAi through replanning (Grr)
Inputs: Initial Goal State (G), planP = A1, .., An, index of the action being replaced (i)
Output: TheGrr

1 set Grr ←G
2 if j = n // start at the end of the plan
3 do // for every action

Grr←Grr − add(Aj) ∪ prec(Aj) // include preconditions and exclude the add effects
j = j − 1

4 while j > i // until the action being replaced is reached
5 return Grr

Figure 5 The demonstration steps.

The test sets used to perform experiments were obtained fromthe OWLS-TC (OWLS-TC). Several
service descriptions were modified or added to the domains, accommodating demonstration of the
capabilities of the system. Some indicative web services that were modified or added are depicted in
Table 2.

Service Inputs Preconditions Outputs Effects
BookToPublisher Book, Author Publisher
CreditCardCharge OrderData,

CreditCard
Payment

ElectronicOrder Electronic OrderData
PublisherElectronic
Order

PublisherInfo OrderData

ElectronicOrderInfo Electronic OrderInformation
Shipping Address,

OrderData
ShippingDate

WaysOfOrder Publisher Electronic
CustomsCost Publisher,

OrderData
CustomsCost

FindUsed ISBN Seller has(Seller,ISBN)
OrderUsed ISBN, Seller,

Client
has(Seller,ISBN) OrderData -has(Seller,ISBN)

has(Client,ISBN)
FindISBN Book, Author ISBN

Table 2 Added / modified web services.

PORSCE II Planning for Automated Semantic WS Composition 13

The transformation of the web service composition problem in planning terms includes translating all
available OWL-S web services, including the aforementioned ones, to PDDL operators, so that the size
of the resulting domain is maintained on realistic levels. The transformation process also incorporates
the representation of the requirements about the compositeservice, which the user can express through a
dialog interface such as the one depicted in Fig. 6.

Figure 6 Initial and goal states definition and desired planners selection.

The scenario implemented here belongs to the OWLS-TCbooksandfinancedomains, and concerns
the electronic purchase of a book. The user provides as inputs his details (client), a book title and author,
credit card info and the address that the book will be shippedto, and wishes to use a credit card for the
purchase, as well as to be informed about the shipping dates and the customs cost for the specific item.
The initial state corresponds to the inputs of the compositeservice, while the goal state represents the
desired composite service outcome.

In order to accommodate semantic awareness, all the ontologies that organize the concepts appearing
as inputs and outputs of the available web services are parsed and analyzed. This enables semantic
relaxation, performed through semantic enhancement of theplanning domain and problem. The degree of
the semantic relaxation is user-defined, and can be specifiedby selecting semantic distance metrics and
thresholds through the interface depicted in Fig. 7.

Figure 7 The semantic enhancement interface.

At this point, the system exports the formulated and possibly semantically enhanced planning domain
and problem to PDDL. Consequently, it invokes external planners to acquire solutions. The PDDL domain,
problem and produced plan for this scenario are depicted in Fig. 8. Note that the domain in this case, for
space purposes, contains only the necessary atomic web services.

The produced plans are imported into the Visualizer Component, where they are represented as a web
service graph and depicted visually. The first plans produced by JPlan and LPG-td for this case study,
using the operator set described above, without performingany semantic relaxation, are presented in Fig.
9. The calculated statistics and metrics for the composite web services include the number of actions and
the number of levels in the plan (which coincide for sequential plans), as well as the plan accuracy metric.

While exact matching of input to output concepts is obligatory in the classical planning domains, in
the web services world the case can be different, as it is preferable to present the user with a composite
service that approximates the required functionality thanto present no service at all. The semantically
similar concepts obtained from the OWL Ontology Manager enable the system to compose alternative
services that approximate the desired one in case there are no exact matches, by performing semantically

14 O. HATZI ET AL .

Figure 8 The PDDL domain, problem and plan for the specific scenario.

relaxed concept matching. Such an approximate service for the specific case study is presented in Fig. 10.
The calculated accuracy of this service is different from the accurate ones presented in Fig. 9.

In case service replacement is required, for example on the CustomsCost service, and there is no
alternative service available, service replacement through replanning will be employed. The algorithms
described in the corresponding section will yield new initial and goal states, and the corresponding planner
will be re-invoked, finding a new sequence of actions that cansubstitute the selected service. The user
interface for the replacement options is depicted in Fig. 11, while the resulting composite service after the
modifications is depicted in Fig. 12.

PORSCE II Planning for Automated Semantic WS Composition 15

Figure 9 The plans from JPlan (top) and LPG-td (bottom) for the specific case study.

Figure 10 Approximate composite service.

Figure 11 Service Replacement Interface.

Figure 12 Composite service after replacement operation.

The final step is to transform the solution to web service context. This is achieved by translating
the PDDL+ plan that represents the desired composite web service, produced by the external planning
systems, into OWL-S, utilizing information retrieved fromweb service descriptions and ontology analysis.

16 O. HATZI ET AL .

Number of web services 10 100 500 1000
Preprocessing time 5953 5794 6007 5903

Total transformation time
Exact 4685 71533 356800 823793
Edge 4635 76558 346212 820700
Cotopic 4667 76928 757778 3947955

Transformation time per web service
Exact 469 715 714 824
Edge 464 766 693 820
Cotopic 467 769 1516 3950

Planning time (LPG-td)
Exact 4 17 50 119
Edge 6 16 72 123
Cotopic 4 15 56 122

Table 3 Time measurements in milliseconds.

In order to study the behavior of the system as the number of available web services increases,
web service profiles were added to the domain progressively in batches. The time performance results
presented in Table 3 were obtained from a number of runs of thesystem on a machine with Dual-Core
AMD Opteron Processor at 2.20GHz with 1GB of RAM memory and concern times for preprocessing,
transformation of the OWL-S service profiles to PDDL actionsand planning using LPG-td.

Measurements took place for domains of different sizes, namely 10, 100, 500 and 1000 OWL-S
profiles. Some of the experiments were performed with exact matching, while others were performed with
semantic relaxation using either the edge-counting or the upwards cotopic metric. The preprocessing time
did not show significant fluctuation, as it depends on the number and structure of the processed ontologies
and not on the number of available web services. The total transformation time evidently increased as
the number of available web services increased, however theaverage transformation time per web service
profile converged to approximately 0.81 seconds for the exact matching and the edge-counting cases. In
the upwards cotopic case, the increase in the average transformation time is significant as available web
services increase, due to the higher complexity of the algorithm used for calculating the upwards cotopic
relevance between two concepts. As far as average planning time is concerned, LPG-td shows an increase
in planning time as the number of actions increases; however, it is still remarkably fast. It should be noted
that the scalability of the system as far as planning time is concerned is not critical, as the planners used
are not embedded and could easily be replaced by more efficient ones.

8 Conclusions and Future Work

This paper presented PORSCE II, an integrated system which combines planning with semantic object
relevance in order to approach automated semantic web service composition. The web service composition
problem is transformed into a planning problem, solved under semantic awareness accommodating
approximate compositions, and then transformed back in webservice terms. The system exploits the
most prominent standards in both worlds, namely OWL-S and PDDL. PORSCE II aims at a high
degree of interoperability with external planning systemswhich perform planning with the desired degree
of semantic relaxation. Finally, the system is integrated with a visual environment and components
which accommodate composite service evaluation and modification. Among the main advantages of the
proposed framework are the extended utilization of semantic information, the ability to scale up for a great
number of services, and the capability to handle service failure or unavailability dynamically.

Future goals include the extension of the system in order to deploy the produced composite services,
through OWL-S deployment systems such the OWL-S Virtual Machine (Paolucci et al., 2003), and
automatically acquire feedback, which can then be utilizedto partially automate the service replacement
procedure. Also, another direction we plan to explore is themodification of the web service modeling, so
that a metric domain is constructed, which incorporates theconcept semantic distances and requires the
planner to minimize the total semantic distance. In addition, another future goal concerns the exploration
of the possibility to accelerate the composition process byasserting the produced OWL-S profiles in
the base of the available web services, under certain time constraints. Furthermore, integration with the
VLEPPO system (Hatzi et al., 2007) is a promising future direction, in order to accommodate design
and solving of the web service composition problems. Finally, it lies in our immediate plans to study

PORSCE II Planning for Automated Semantic WS Composition 17

ways to enhance the services representation and explore theability to produce various composite services
according to non-functional properties.

References

CMU. OWL-S API. http://www.daml.ri.cmu.edu/owlsapi/ [accessed 17/04/10].
S. Dustdar and W. Schreiner. A survey on web services composition. Int. J. Web Grid Services, 1(1):1–30, 2005.
R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of theorem proving to problem solving.

In IJCAI’71: Proceedings of the 2nd international joint conference on Artificial Intelligence, pages 608–620, San
Francisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

M. Fox and D. Long. PDDL+: Modelling continuous time-dependent effects, 2002.
A. Gerevini and D. Long. Plan constraints and preferences inPDDL3. Technical report, Department of Electronics

for Automation, University of Brescia, Italy, 2005.
A. Gerevini, A. Saetti, I. Serina, and P. Toninelli. LPG-td:a fully automated planner for pddl2.2 domains. InIn

Proc. of the 14th Int. Conference on Automated Planning and Scheduling (ICAPS-04) International Planning
Competition abstracts, 2004.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL – the
planning domain definition language. Technical report, Yale University, New Haven, CT, 1998.

O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas. VLEPPO: A visual language for problem
representation. In R. Bartak, editor,PlanSIG 2007: The 26th workshop of the UK Planning and Scheduling Special
Interest Group, pages 60–66, 2007.

O. Hatzi, G. Meditskos, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas. A synergy of planning
and ontology concept ranking for semantic web service composition. In IBERAMIA ’08: Proceedings of the 11th
Ibero-American conference on AI, pages 42–51, Berlin, Heidelberg, 2008. Springer-Verlag.

O. Hatzi, G. Meditskos, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas. PORSCE II: Using planning
for semantic web service composition. In R. Bartak, S. Frattini, and L. McCluskey, editors,In Proceedings of 3rd
International Competition on Knowledge Engineering for Planning and Scheduling (ICKEPS’09), in conjunction
with the International Conference on Automated Planning and Scheduling (ICAPS-09), pages 38–45, 2009.

IPC2004. International Planning Competition. http://www.tzi.de/ edelkamp/ipc-4/ [accessed 27/10/10].
JPlan. Java Graphplan Implementation. http://sourceforge.net/projects/jplan [accessed 27/10/10].
M. Klusch and A. Gerber. Semantic web service composition planning with OWLS-XPlan, 2005.
A. Maedche and V. Zacharias. Clustering ontology-based metadata in the semantic web. InPKDD ’02: Proceedings

of the 6th European Conference on Principles of Data Mining and Knowledge Discovery, pages 348–360, London,
UK, 2002. Springer-Verlag.

D. Mcdermott. Estimated-regression planning for interactions with web services. InIn Proceedings of the 6th
International Conference on Artificial Intelligence Planning Systems, pages 204–211. AAAI Press, 2002.

S. Mcilraith and T. C. Son. Adapting GOLOG for composition ofsemantic web services. InProceedings of the
Eighth International Conference on Knowledge Representation and Reasoning, pages 482–493, 2002.

OWL. Web Ontology Language. http://www.w3.org/TR/owl-ref/ [accessed 27/10/10].
OWL-S. 1.1. http://www.daml.org/services/owl-s/1.1/ [accessed 27/10/10].
OWLS-TC. SemWebCentral. http://projects.semwebcentral.org/projects/owls-tc/ [accessed 27/10/10].
M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara. TheDAML-S virtual machine. InThe SemanticWeb - ISWC

2003, volume 2870 ofLecture Notes in Computer Science, pages 290–305. Springer Berlin / Heidelberg, 2003.
M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated composition of web services by planning at the

knowledge level. InIn 19th Intl. Joint Conferences on Artificial Intelligence, pages 1252–1259, 2005.
S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for web service composition. InProceedings of the 11th

International WWW Conference (WWW2002), pages 83–107, Honolulu, HI, USA, 2002. Elsevier.
J. Rao and X. Su. A survey of automated web service composition methods. InIn Proceedings of the 1st International

Workshop on Semantic Web Services and Web Process Composition, SWSWPC 2004, pages 43–54, 2004.
RuleML. The Rule Markup Initiative. http://ruleml.org/ [accessed 27/10/10].
SAWSDL. Semantic Annotations for WSDL. http://www.w3.org/2002/ws/sawsdl/ [accessed 27/10/10].
E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service composition using SHOP2.Web

Semantics, 1(4):377–396, 2004.
E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL reasoner.Journal of Web

Semantics, 5(2):51–53, 2007.
SWRL. A Semantic Web Rule Language. http://www.w3.org/Submission/SWRL/ [accessed 27/10/10].

