
 

 

aWESoME: a Web Service Middleware for 

Ambient Intelligence 

Thanos G. Stavropoulos, Konstantinos Gottis, Dimitris Vrakas and Ioannis Vlahavas 
 

Abstract. This work presents a Web Service Middleware infrastructure for Ambient Intelligence environments, named aWESoME. 

aWESoME is a vital part of the Smart IHU project, a large-scale Smart University deployment. The purpose of the proposed middleware 

within the project is twofold: for one, to ensure universal, homogeneous access to the system’s functions and secondly, to fulfill functional 

and non-functional requirements of the system. Namely, the infrastructure itself should consume significantly low power (as it is meant for 

energy savings in addition to automations), without compromising reliability and fast response time. The infrastructure should enable fast 

and direct discovery, invocation and execution of services. Finally, on hardware level, the wireless sensor and actuator network should be 

optimally configured for speed and reliability as well. The proposed solution employs widely used web open standards for description and 

discovery to expose hardware and software functions and ensure interoperability, even outside the borders of this university deployment. It 

proposes a straightforward method to integrate low-cost and resource-constrained heterogeneous devices found in the market and a large-

scale placement of servers and wireless sensor networks. Different server hardware installations have been evaluated to find the optimum 

trade-off between response time and power consumption. Finally, a range of client applications that exploit the middleware on different 

platforms are demonstrated, to prove its usability and effectiveness in enabling, in this scenario, energy monitoring and savings. 

Keywords. Web Services, Real-time and Embedded Systems, Ubiquitous Computing, Wireless Sensor Networks  

1 Introduction

The future of computing may rely on an emerging new para-

digm known as Ubiquitous or Pervasive Computing (UbiComp, 

PerComp). Also referred to as the third wave of computing, the 

term ubiquitous computing was originally coined by Mark 

Weiser (Weiser 1999). Ubiquitous systems are able to perceive 

user needs and interface with them in an intuitive way. Physical 

objects of everyday life become mediums for users to interface 

with ubiquitous systems. The use of wearable computing devic-

es takes the place of desktop computers. As a result, the com-

puter fades in the background and relieves the user from con-

stantly requiring his full attention. The vision of Ambient Intel-

ligence (AmI) slightly extends these ideas by incorporating 

intrinsic intelligence in pervasive systems. Ideas and methodol-

ogies of Artificial Intelligence are adapted to pervasive systems 

to provide intelligent automations enabling an even more has-

sle-free and non-intrusive user experience. 

Meanwhile, another emerging paradigm, which happens to be 

tightly linked with AmI systems, is Service Oriented Compu-

ting (SOC). Service orientation is in essence the practice of 

exposing a system’s methods for users or applications to con-

sume in a universal way. A SOC-compliant infrastructure of 

certain roles is the Service Oriented Architecture (SOA). SOA 

is enabled by well-defined web standards and technologies, as 

the web also moves towards service-orientation. These technol-

ogies promote the reuse of existing implementations and remote 

collaboration between different individuals or enterprises. In 

AmI, SOA has proved to be of great value, as it offers both the 

necessary abstractions for high-level sophisticated AmI applica-

tions and remote calls. SOA has become so interconnected with 

AmI that it is almost considered as a requirement. Meanwhile, 

devices found in AmI systems become more compact and wo-

ven into everyday-life objects. Services are used to expose their 

data and functions and form the so-called Internet of Things. 

Focusing on the interoperability layer, the primal obstacle met 

in Ambient Intelligence is manipulating the heterogeneous de-

vices that provide basic functionality. Due to advancements in 

the industry, a wide variety of devices suitable for enabling the 

vision of AmI are now available at an affordable cost. Even 

optimal communication protocols have been designed to enable 

efficient and energy-saving dynamic networks of smart devices 

in smart homes, e.g. the wireless ZigBee
1
 and Z-Wave

2
 and the 

Power-Line-Communication-based INSTEON
3
 and X10

4
. On 

the other hand, the industry has not and does not intend to con-

verge on common standards concerning device manipulation. 

The alliances of ZigBee and Z-Wave have standardized device 

classes and operation protocols for devices compliant with 

them, breaching the biggest part of the interoperability bounda-

ries. UPnP
5
 has also become widely spread in both home enter-

tainment and AmI applications, as it defines classes and com-

munication standards for interoperability between different 

major manufacturers of multimedia systems.  

Nevertheless, a middleware is still needed to provide interoper-

ability between the different clusters of devices. Even if Z-

 

 
 

1
 The ZigBee Alliance: http://www.zigbee.org/ 

2
 Z-Wave: http://www.z-wave.com 

3
 INSTEON: http://www.insteon.net/ 

4
 X10: http://www.x10.com 

5
 UPnP Forum: http://www.upnp.org/ 

———————————————— 

 T. G. Stavropoulos is with the Aristotle University of Thessaloniki and the 

International Hellenic University. E-mail: athstavr@csd.auth.gr. 
 K. Gottis is with the Aristotle University of Thessaloniki.  

E-mail: kgottis@csd.auth.gr. 
 D. Vrakas is with the Aristotle University of Thessaloniki and the Interna-

tional Hellenic University. E-mail: dvrakas@csd.auth.gr. 
 I. Vlahavas is with the Aristotle University of Thessaloniki and the Interna-

tional Hellenic University. E-mail: vlahavas@csd.auth.gr. 

http://www.zigbee.org/
http://www.z-wave.com/
http://www.insteon.net/
http://www.x10.com/
http://www.upnp.org/


 

 

Wave, ZigBee and UPnP networks of devices can each be han-

dled in a uniform way, they need to be unified under a common 

API that applications can exploit. This common API also needs 

to include individual devices (i.e. those that do not belong to a 

standard family) that naturally still exist in the market, and 

function in unique ways. Furthermore, a manufacturer or alli-

ance sometimes provides specific tools that may enforce con-

straints e.g. platform-dependent APIs. Even worse, they may 

provide no API at all, which is almost always the case with 

individual devices in the market. However, even the alliance-

compliant devices often are not platform independent out-of-

the-box. E.g. there is a number of different Z-Wave APIs in 

different programming languages that need wrappers to be uti-

lized. All in all, a middleware can be seen as a set of drivers for 

different protocols that plays the role of a uniform abstraction 

layer between the application layer and the heterogeneous, plat-

form-specific hardware layer. 

The middleware layer, thus, has to ensure, in principle, univer-

sal access and data homogeneity for the application layer. One 

of the leading approaches for the first is employing a Service-

Oriented Architecture, which spawns many more side benefits. 

Well-defined and standardized by the W3C
6
 technologies prom-

ise to deliver flexible uniform access and interoperability on 

syntactic level, while benefiting from remote access over the 

Web. The leading description language and W3C standard, 

WSDL (the Web Service Description Language)
7
, already is 

widely adopted in both industry and research. These XML-

based descriptions distinguish and define the components of a 

Web Service in service operations, which can have incoming 

and outgoing messages which in turn can contain various data 

types. Ultimately the service can have a number of bindings 

which help locate and invoke the service by declaring its end-

points and communication protocol (usually HTTP or SOAP). 

WSDL sufficiently type-defines services on syntactic level 

which means services can be selected (i.e. matched) and com-

posed based on syntactic criteria.  

Except syntactic interoperability, uniform and remote access, 

the Service Oriented Architecture also introduces ways to en-

hance the discovery process. A Service Broker is responsible for 

the registering and provisioning of services to clients. The Ser-

vice providers (i.e. Servers) first have to register the services 

that they provide on the Service Broker. The clients can browse 

and select the service they need from the broker’s list. After 

they select a service, the clients directly interface with the se-

lected service provider to invoke the service and the broker’s 

intermediation ends. The need for a service broker is eminent 

due to the fact that services are essentially distributed (i.e. pro-

vided by different servers). It would otherwise be impractical 

for Clients to maintain an up-to-date list of all Provider loca-

tions. After all, in AmI environments, that list is dynamically 

ever-changing. Providers can be portable (even wearable) de-

vices that dynamically enter and leave the system (willingly or 

simply collapsing). 

In this paper, we present a Web Service Middleware named 

aWESoME which is based on a Service-Oriented infrastructure 

to better enable AmI applications in general and energy savings 
 

 
 

6 The World Wide Web Consortium: http://www.w3.org/ 
7
 The Web Service Description Language 1.1: http://www.w3.org/TR/wsdl 

in particular. aWESoME is part of the Smart IHU (International 

Hellenic University) project (Stavropoulos 2010), whose goal is 

to develop and deploy of an AmI-oriented system that enables 

automation, user-comfort and last but not least energy efficien-

cy and savings. Smart IHU entails a large-scale deployment of 

various devices, such as sensors of environmental conditions 

and actuators for switching devices or manipulating the ICT 

infrastructure. The devices naturally come from various manu-

facturers, are low-cost, platform dependent and resource-

constrained (i.e. have little or no processing power and/or 

memory). aWESoME integrates heterogeneous devices, and 

provides the required abstraction layer for universal access and 

data homogeneity. It follows the SOA guidelines for descrip-

tions and enhances service provisioning and discovery based on 

the WS-Discovery standard, to support dynamicity in a large-

scale distributed AmI environment. Its internal structure allows 

for scalability and extensibility to more software and hardware 

services. Different server installations are tested to find the op-

timum trade-off between their own power consumption and 

speed (service response time). The optimum server and device 

deployment, given the coverage of the devices is also show-

cased. Except for the energy savings of the platform itself, some 

client applications are shown to demonstrate the middleware’s 

efficiency and usability on desktop, web and mobile platforms. 

 This article is structured as follows: the next section surveys 

related work, i.e. other middleware designed for Ambient Intel-

ligence. In the third section the aspects of the proposed mid-

dleware are given in detail. In the fourth section, the exact de-

ployment of devices and aWESoME components at the Smart 

IHU environment is presented. Experiments and results, con-

cerning the platform’s performance and energy efficiency, are 

presented on the corresponding section. The final two sections 

present future work and conclusions from this work respective-

ly. 

2 Related Work 

The most relevant of works is the Hydra middleware
8
, later 

renamed to LinkSmart middleware. The Hydra middleware is a 

European project for the development of service-oriented soft-

ware to expose heterogeneous device functions in a universal 

way and target various Ambient Intelligence domains including 

home automation, healthcare and agriculture. Hydra supports a 

wide variety of devices that can be controlled by an external 

communication interface such as Bluetooth, ZigBee, RF, RFID, 

USB etc., called Hydra-enabled devices. To integrate supported 

device instances, Hydra generates the required Hydra software 

components and web services in each case. It follows a model-

driven architecture based on semantic models (ontologies) so 

that the middleware components for each device are automati-

cally generated based on that meta-data (Eisenhauer 2009). The 

Hydra project ideally targets devices that can embed Hydra web 

service components and hence do not require an external server 

to manage them. Another approach to unify home automation 

protocols, over OSGi, is Home SOA (Bottaro 2008). 

Hydra, Home SOA and aWESoME share a same goal: to ex-

 

 
 

8 The Hydra Middleware online: http://www.hydramiddleware.eu 

http://www.w3.org/
http://www.w3.org/TR/wsdl
http://www.hydramiddleware.eu/


 

 

pose various smart devices universally via Web Services and 

enable Ambient Intelligence environments. However, only a 

few of the proposed system’s devices are Hydra-enabled (and 

even fewer by Home SOA), as it is not of course possible to 

support every device family in the market. Additionally, devic-

es that can embed the services themselves are very hard to find 

in the market. We rather target affordable devices and employ a 

board microcomputer to embed the corresponding services for 

them (to preserve compactness, affordability and support each 

device equally) and present performance tests. Finally, we tar-

get a Smart University domain specifically and focus on provid-

ing additional software-services and energy-saving applications. 

Semantic Spaces (Hansen 2004) is a similar, much older, ap-

proach to middleware. In this system so-called wrappers are in 

fact UPnP discoverable services that expose various environ-

mental sensors and software services (CPU utilization, weather 

etc.). Like Hydra, this system also utilizes ontologies as a 

knowledge representation format. Context information or in 

other words the world’s representation is stored in an ontology 

designed for the purpose. The ontology naturally enables rea-

soning and querying that data. In our proposed solution, WSDL 

services and WS-Discovery are used instead, as the leading, 

widely used, open standards. Similar, although more, hardware 

and software services are provided (i.e. smart plug actuators, 

embedded services and Z-Wave support).  

Many more systems use ontologies either as a knowledge base 

or as complex service descriptions. There are even methods to 

generate ontologies suitable for services by the service descrip-

tions themselves. We do use an ontology designed for this sys-

tem as a knowledge base and indirect service descriptions. 

However, this is performed on application level to preserve low 

complexity and usability of the middleware for plain-WSDL 

industry and research clients, and is outside the scope of this 

work. 

Emi
2
 (López-de-Ipiña 2006) proposes an infrastructure quite 

similar to UPnP/DLNA, where each component has a distinct 

role: there are Emi
2 
Servers, Objects, Players etc. Each user and 

each Object (in other words Service) are represented by inter-

acting agents. The objects can be discovered but have to be 

downloaded to be executed, unlike in aWESoME and most 

approaches. The Emi
2 

platform is kind of restricted within its 

own boundaries due to its implementation (no interoperability 

with industry services). 

MEDUSA (Davidyuk 2011) is another web service middleware 

that enables transparent use of functions within the Smart Envi-

ronment. It employs mobile phones which are equipped with 

RFID-tag reading capabilities. The phones are used to scan 

cards that represent services and form service compositions. As 

a result, the system provides a practical physical interface for 

users. MEDUSA is based on the AmIi middleware (Georgantas 

2010), which defines a model and an XML-language for seman-

tic interoperability of services. AmIi focuses on semantic speci-

fications. It re-models information common on known models 

(i.e. OWL-S) and maps to BPEL, SAWSDL and more, by ex-

tending WSDL as a specification language. However, this mod-

el may be too specific, and functional only within the bounda-

ries of AmIi compliant clients. Hence, it needs to be adopted by 

a wider range of the community. On the other hand, WSDL 

(and even SAWSDL) is simpler and widely adopted in research 

and industry. MEDUSA and AmIi target almost exclusively 

multimedia devices. The aWESoME middleware supports a 

range of embedded software, sensor and actuator services, 

while multimedia devices are not a priority for the energy-

efficiency task. 

Polisave (Chiaraviglio 2010) is a software system developed by 

the Technical University of Torino to manage the IT infrastruc-

ture. Existing technologies such as Wake On Lan, and OS-based 

shutdown scripts are employed to enable users assign power on 

and power off schedules for their computers at the university in 

order to save energy and reduce energy bills. The process is 

carried out via a web-application graphical interface. We em-

ploy the same existing techniques, such as Wake On Lan and 

OS-based shutdown, hibernate, sleep and restart but also inte-

grate them as part of a Web Service middleware that provides 

more flexibility and availability to clients. Energy saving 

schedules are then implemented in independent client applica-

tions. 

Some approaches focus on much different aspects of middle-

ware. KASO (Corredor 2012) is a middleware also for Sensor 

and Actuator networks, but more oriented towards future inter-

net and usage of services through the Cloud. B3G – SOM (Au-

tili 2009) adapts mobile 3G device service to service-oriented 

middleware. UbiSOAP (Caporuscio 2008) is a different ap-

proach to middleware that addresses communications and opti-

mizations on the physical layer. As mobile devices may host 

and/or consume services but lack computing power, delays are 

introduced. UbiSoap proposes that these devices function in 

multi-radio, and proxy servers function as bridges for the seam-

less integration of these devices. 

A final category of middleware includes the ones that focus on 

performing automatic, intelligent composition of services. A 

complete survey of such work can be found on Stavropoulos 

2011a. Some of these approaches are not oriented towards de-

vices at all. They may even not include their own services but 

rather use existing ones. Scooby (Robinson 2004) is a script-

like middleware abstraction language for defining service com-

positions. MySIM (Ibrahim 2009) is a middleware that primari-

ly translates existing OSGi and WSDL services into an internal 

representation form, and spontaneously (i.e. without user re-

quest) composes the services in pairs of two. The new services 

are exposed on MySIM’s mathematic description model, which 

is a set of inputs, outputs and semantic annotations for them. 

However, MySIM goes from usable descriptions (OSGi, 

WSDL) to completely non-interoperable ones: only MySIM 

users can invoke those services. Many more similar approaches 

to service oriented-middleware target autonomous service com-

position (Ben Mabrouk 2009, Lagesse 2010, Park 2011). 

All in all, compared to existing approaches, aWESoME focuses 

on providing a wide range of hardware and software-based ser-

vices, syntactic interoperability, simplicity, ease-of-use, fast 

response time and ultimately energy-savings. Numerous devic-

es of the ZigBee, Z-Wave and RF protocols, not currently sup-

ported by the state-of-the-art, are integrated into aWESoME. In 

addition, different hardware has been tested. Among it, a board 

microcomputer has been tested and employed as a compact 

server to preserve low power consumption and cost, in a dis-

tributed multiple-server deployment. Finally, the WSDL and 

WS-Discovery open standards are used versus other approaches 

disregarding constraining internal representations. Knowledge 

representation databases of any form (ontology or other) and 



 

 

composition of services are disregarded on middleware level 

and left out for the application level. Finally, the aWESoME 

middleware platform introduces significant power consumption 

reduction at the Smart Building, as it is utilized by energy 

monitoring and saving applications. 

3 The aWESoME Middleware 

The middleware introduced in this work
9
, serves as the essential 

middle layer between the diverse hardware on the bottom layer 

and various applications on the top layer. Following guidelines 

in the field, the middleware provides the required level of ab-

straction to manipulate platform-specific, heterogeneous smart 

devices found in the market. In addition, implemented Web 

Services expose their functions universally and over the Web. A 

Service Oriented Architecture is set up to guarantee even more 

flexibility, currency and dynamicity in a large scale distributed 

server environment. 

To ensure the middleware’s extensibility to more hardware 

bundles, drivers are developed for each supported bundle sepa-

rately. All the driver modules are engineered completely from 

scratch, have no dependencies and interface directly with the 

devices. They all presently happen to be implemented in Java, 

which makes them suitable for all platforms. Indeed, PCs, net-

books and Linux-powered board computers are installed in our 

deployment. The drivers form a first sub-layer of the middle-

ware that can be thought of as the integration layer, presented in 

detail in the next subsection.  

On top of the integration layer, a service layer that contains 

WSDL Web Services wraps each driver to expose its function 

over Web. The services are also presently implemented in Java. 

Each service is responsible for a certain device group most of 

the time, and its operations expose each of its supported func-

tions. That way there are few services and many operations 

(instead of many services and few or one operation per service).  

Additionally, there are self-contained services that do not corre-

spond to devices and do not need a driver to function. A com-

prehensive list of services and operations is presented on the 

corresponding subsection. 

Following the service oriented paradigm, a service broker is 

employed to register and provision services scattered across 

distributed servers. Servers are set up by installing the essential 

aWESoME components for the case, i.e. the drivers and ser-

vices needed. Subsequently the newly provided services are 

registered at the service registry. The potential service clients, 

then, can browse and locate providers from a list of services. 

The registry infrastructure is presented at the corresponding 

subsection.  

A distributable version of aWESoME can be found online, con-

taining some of the driver modules. 

3.1 Integration Layer 

The integration layer contains all the driver modules responsi-

ble for directly interfacing with the infrastructure’s devices i.e. 

sensors and actuators. Each bundle of devices or device indi-

viduals has its own interface, communication and operation 
 

 
 

9
 aWESoME online: 

http://lpis.csd.auth.gr/people/thanosgstavr/development.html#awesome  

protocols. The driver modules are libraries for primitively ma-

nipulating the devices. They require no other out-of-the-box 

company software so they guarantee flexible deployment and 

swift operation. That way the middleware can first of all be 

decomposed and repackaged to contain the necessary drivers 

only. This compactness is needed for memory-restricted servers. 

Additionally, future support for more bundles can be added if 

necessary by adding suitable driver modules and services. 

3.1.1 ZigBee Smart Plugs 

Smart Plugs are devices for home-automation that can be at-

tached to any electric appliance and allow both power state and 

power consumption readings and switching the appliance on or 

off. This functionality can be useful in home automation, ener-

gy-saving and generally any Ambient Intelligence scenario. We 

chose a commercial bundle of Smart Plugs
10

 that form dynamic 

ZigBee mesh networks. This bundle also includes variants of 

the Smart Plugs that actually intersect cabling so that they can 

monitor and control appliances that cannot be plugged in (e.g. 

lighting, air conditioning). Fortunately, these variants have the 

exact same properties and can be manipulated in the same way 

as the original Smart Plugs, so they will not be considered sepa-

rately from now on. 

Each Plug network can handle up to around thirty nodes, man-

aged by a gateway which is a Smart Plug itself. The gateway 

plug interfaces with a PC client using a USB stick, again over 

ZigBee. Our exact topology of Smart Plugs is presented on a 

dedicated section. However, the ZigBee data packets are en-

crypted and the devices have their own operation protocol. 

Thus, the ZigBee-based protocol of the Smart Plugs had to be 

re-engineered, as a general-purpose open ZigBee library could 

not resolve the matter. The driver module developed can both 

form the suitable packets that perform each operation and parse 

back responses. Except from power consumption and power 

state information (i.e. on or off), the devices return additional 

data such as memory buffer information, firmware etc. Power 

consumption can also be used to calculate the energy consump-

tion over a target period of time. The driver module is imple-

mented in Java. 

3.1.2 ZigBee Sensor Boards 

The adopted Sensor Board bundle
11

 serves to provide data about 

environmental conditions in various points on the university 

premises. It is comprised of four battery-powered sensor boards 

that each embeds a temperature sensor, a humidity sensor and a 

luminance sensor. The boards form a dynamic ZigBee network 

over a dedicated gateway that comes with the bundle. Unlike 

Smart Plugs, this gateway is equipped with WiFi and Ethernet 

so it can easily be connected to the local area network to trans-

mit the collected data. 

For simple clients, the bundle’s own gateway would suffice to 

gather the data. However this is not the case in our system. 

Even though remote function is supported by the gateway (at 

least within the local area network), universal access and data 

homogeneity still needs to be ensured. WSDL Services do pro-

vide the desired syntactic interoperability. 
 

 
 

10
 Plugwise company: http://www.plugwise.com 

11
 Prisma Electronics: http://www.prismaelectronics.eu 

http://lpis.csd.auth.gr/people/thanosgstavr/development.html#awesome
http://www.plugwise.com/
http://www.prismaelectronics.eu/


 

 

As the gateway software cannot be modified, any computer in 

the local area network can access it and get the data using the 

bundle’s software. However, this software happens to require 

complex and time-consuming setup every time. For the same 

reasons of speed and flexibility, the software was re-engineered 

to directly poll the gateway for data. Sensor data is ultimately 

transmitted over TCP/IP and no ZigBee library is required alt-

hough this bundle uses no encryption on ZigBee packets. Final-

ly, the Java Sensor Board driver can run on any Server on the 

local network and periodically or upon request return sensor 

data. 

3.1.3 Smart Clampers 

Smart Plugs fulfill the need for power consumption monitoring 

in small-scale i.e. per device. On the other hand, in the large-

scale environment of Smart IHU, no conclusion is drawn for the 

total energy consumption of the university. Adding the con-

sumption of Smart Plugs does not suffice and can be very mis-

leading as many devices of massive consumption will always 

be left out (it is impractical to attach every single appliance to a 

Smart Plug). 

Smart Clampers are used in home automation environments to 

measure the total energy consumption directly at the source, 

which is the main power supply. Smart Clampers usually do not 

plug in or intersect cables, but rather clip around cables and 

detect the current. However, the Smart Clampers do not suffice 

for a smart environment. The total energy consumption of the 

university is so massive that significant changes in power con-

sumption cannot be detected in large-scale. In other words, 

numerous powered-on air conditioning units or lighting can go 

undetected. As mentioned above, Smart Plugs can also manage 

the power supply of individual devices, in small-scale. Thus, 

Smart Clampers and Smart Plugs are complementary and both 

need to be used. 

In our deployment we chose to integrate two different commer-

cial brands of Smart Clampers for tests and completeness. Both 

clampers function similarly. A transmitter is attached to the 

clips to wirelessly transmit data to a receiver attached to a USB 

port of a computer client. The first bundle’s
12

 receiver is also an 

LED monitor that shows readings. The other bundle
13

 also in-

cludes an independent monitor.  

The first bundle is the one used in practice (as two are redun-

dant). It submits real-time data, and less often even historical 

data, in text (specifically XML) format, so that they can be di-

rectly parsed. However, the other bundle was found not to be 

reliable as it is prone to failure. The company’s API was used 

but contrary to the official software, too many bugs showed up. 

That goes to show that only direct protocol re-engineering and 

interfacing with device ports can utterly be considered always 

reliable and fast (and not poorly supported APIs that naturally 

do not interest the industry). 

3.1.4 Z-Wave devices 

Z-Wave is another alliance protocol in home networking that 

sets standards and is supported by many manufacturers. It is 

also similar to ZigBee in terms of networking as it is also wire-

less and supports adequate range and many nodes per network. 

Z-Wave defines various device classes that are agreed upon 

across Z-Wave manufacturers. That ensures interoperability 

between devices and software client controllers within the Z-

Wave network. 

A great advantage of the Z-Wave family is the vast variety of 

smart devices provided. Z-Wave devices can control every as-

pect of a smart home ranging from multimedia controllers for 

home entertainment (TV, home theater etc.), to motors for gar-

age doors and window blinds, home security systems (motion 

detection, alarms, smoke detection etc.), facilities (such as 

thermostats), and environmental sensors. There are also LED-

screen controllers so that users can control the devices without a 

gateway, and USB PC interfaces for implementing PC client 

applications. 

 

 
 

12
 CurrentCost: http://www.currentcost.com/ 

13
 OWL energy monitor: http://www.theowl.com/ 

 
Figure 1. The aWESoME layers and components 

 

http://www.currentcost.com/
http://www.theowl.com/


 

 

For our implementation we chose some of those devices to en-

rich the variety of information and functions in our system. 

Namely, a motion and environmental sensor, an infrared sensor, 

a smoke detector and a USB PC interface for control. A Z-Wave 

library was incorporated in a Z-Wave driver module for aWE-

SoME. Due to the extensible nature of the Z-Wave family, any 

other type of Z-Wave device can be added by making minor 

modifications to the driver. 

3.2 Web Service Layer 

The Web Service Layer contains all the services needed for the 

upper layer, i.e. applications, to interface with the middleware, 

and, in turn, with the system hardware. To provide functionality 

of the various devices, Web Services are implemented to wrap 

each device driver of the Integration Layer. The Service Layer 

also contains additional Services which do not wrap device 

drivers but are self-contained and software-based instead. All 

Services also return suitable faults when exceptions occur, so 

they can be handled according to client logic. 

In reference to Figure 1, there are currently four services that 

wrap device functions and one service that does not. This cate-

gorization was preferred having in mind to preserve a small 

number of services and many operations for each service, in-

stead of many services and few or even one operation per ser-

vice. Services are in fact groups of inter-related operations.  

3.2.1 Smart Plug Service 

The Smart Plug service operations are listed on Table 1. Most 

service operations are based on the Smart Plug driver functions, 

and require the target Plug ID (referred to as the Plug’s MAC 

Address) as input. Each instance of a Smart Plug Service man-

ages a network of Plugs. Hence, a client has to know which 

Service instance to invoke for the desired target Smart Plug. 

To enable various application scenarios, switching on and off is 

supported in two forms, e.g. Switch On, Switch Off and 

SwitchOnOff. Various information provided by the hardware, 

e.g. firmware version, internal memory addresses, internal 

clock etc. can be obtained through the getInfo operation. 

For returning Power Consumption information, a basic opera-

tion, getPulses, returns Pulse information directly from devices. 

This raw information in most cases has to be converted into 

Watts, which is supported by the convertPulsesToPower opera-

tion. To provide a straightforward solution, the getPower opera-

tion does both.  

Likewise, sometimes pulses can be fine-tuned to specific device 

properties. These properties are constant and can be obtained 

through the getCalibration operation. Then these parameters can 

be simply inserted into a formula and fine-tune pulse infor-

mation. The contents of the formula and the meaning of these 

properties are outside the scope of this work. The correctPulses 

operation gets a power measurement in pulses and an array of 

the calibration information and returns the corrected value. 

Again, to provide an alternative straightforward solution, the 

getCorrectPower operation is a composite service that does all 

four: it gets Pulses, gets Calibration info, corrects Pulses based 

on Calibration and finally converts Pulses to Watts. Client ap-

plications can invoke once and store Calibration data, and use it 

every time for corrections. Otherwise, the complete but more 

time-consuming solution of getCorrectPower can be used e.g. 

by human clients.  

Table 1. Smart Plug Service Operations 

Operation Description Description 

SwitchOff Plug MAC - 

SwitchOn Plug MAC - 

SwitchOnOff Plug MAC, Power State - 

getStatus Plug MAC Power State 

getPulses Plug MAC Power (Pulses) 

convertPulsesToPower Power (Pulses) Power (Watt) 

getPower Plug MAC Power (Watt) 

getCalibration Plug MAC Calibration 

getCorrectPower Plug MAC Power (Watt) 

correctPulses 
Power (Pulses),  

Calibration 
Power (Pulses) 

getInfo Plug MAC Info 

Table 2. Sensor Board Service Operations 

Operation Description Description 

getNodeCount Board MAC Number of nodes 

getMACs Board MAC MAC Array 

getLuminance Board MAC Light Level (cd/m
2
) 

getHumidity Board MAC Humidity % 

getTemperature Board MAC Temperature (Celsius) 

Table 3. Smart Clamper Service Operations 

Operation Description Description 

get3PhasePower Transmitter ID Timestamp, Three phase 

power (Watt) 

get3PhasePowerSum Transmitter ID Timestamp, Three phase sum 

(Watt) 

Table 4. Z-Wave Service Operations 

Operation Description Description 

getNodeIDs - Node ID array 

getBattery Node ID Battery % 

getAwake Node ID Node awake state 

getVersion Node ID Version 

getSpecifications Node ID Specifications 

getMotion Node ID Motion Detection value 

getPIRMotion Node ID Infrared Motion Detection 

getTemperature Node ID Temperature (Fahrenheit) 

getLuminance Node ID Light level (1-40) 

getSmoke Node ID Smoke Detection value 

Table 5. IT Service Operations 

Operation Description Description 

wakeComputer MAC, IP Address - 

pingIP IP Address IP online 

findIP MAC Address IP Address 

findMAC IP Address MAC Address 

wakeComputerIP IP Address - 

wakeComputerMAC MAC Address - 

shutdownComputer IP Address - 

restartComputer IP Address - 

putComputerToSleep IP Address - 

hibernateComputer IP Address - 

getServerCPU - % CPU Usage 

getServerCPUAvg Interval (sec) % CPU Usage 

 



 

 

3.2.2 Sensor Board Service 

All the Sensor Board Service operations are actually wrappers 

of the Sensor Board driver’s functions. The Sensor Boards also 

have designated MAC Addresses which are used as operation 

input, to distinguish the boards. The operations shown on Table 

2 are self-explanatory as each one gets the corresponding envi-

ronmental parameter from the desired target Sensor Board. 

3.2.3 Smart Clamper Service 

Likewise, the network of Smart Clampers is accessed via the 

Smart Clamper Service Operations, shown on Table 3. Each 

Transmitter in the Smart Clamper network can have up to three 

Clampers attached, that measure three-phase current (one phase 

each). To get the Power Consumption information, the 

get3PhasePower operation has to be provided with a Transmit-

ter ID. For better enabling clients, another version of this opera-

tion additionally adds up the three readings and returns the total 

consumption for a Transmitter. 

3.2.4 Z-Wave Service Operations 

The Z-Wave Service supports an initial set of devices but can 

later be expanded by adding more. The operations currently 

support the existing device classes of the platform: a PIR (Pas-

sive Infrared) Motion Detector, Smoke Detector and a Multi-

sensor for Temperature, Luminance and Motion Detection. The 

supported Web Service operations are shown on Table 4. In 

addition to the operations that get sensor readings, there are 

methods to get an array of the nodes in the Z-Wave network, 

whether a node is awake or not and battery level for each node. 

3.2.5 IT Service Operations 

This service is currently the only one that does not relate to a 

driver module i.e. has a hardware-counterpart. Its purpose is to 

inform about and manipulate the IT equipment in the setting by 

using existing technologies. The Smart Plug operations, 

SwitchOn and SwitchOff are completely inappropriate for IT 

equipment. Computers shouldn’t be abruptly shut down, and 

(usually) do not power on as power supply is provided (Switch 

On operation). This Service employs WakeOnLAN and OS-

based techniques to carry out these tasks, as well as give addi-

tional information on IT equipment. 

First of all, the wakeComputer operation implements a 

WakeOnLAN technology method to wake any PC in the LAN 

from Sleep, Hibernation or Off state. This is carried out by 

sending the standard so-called Magic Packet for WakeOnLAN 

that contains the target terminal’s IP Address and MAC Address 

(for Ethernet interface only). Hence, the Addresses have to be 

given as the operation’s input. To facilitate that process, an IP 

and MAC table is constructed at server-side. The operations 

findIP and findMAC return the IP Address and the MAC Ad-

dress of a terminal based on that table. There are also operations 

that include that process to further facilitate clients. Possible 

compositions can automatically be generated on application 

level. 

Unfortunately, while Wake On LAN is supported at hardware 

level, there is no equivalent for the shutdown process. On the 

contrary, the shutdown process is OS-dependent. The operations 

provided, contain OS-supported scripts to shutdown, restart, put 

to sleep and hibernate a computer within the LAN, given its IP 

Address. That enables better energy management of the IT in-

frastructure. Finally, the getServerCPU returns the percentage 

of Server CPU load for informative purposes. All operations are 

listed on Table 5. 

3.3 Service Broker 

The service oriented infrastructure of aWESoME also includes 

the Service Broker subsystem which is responsible for register-

ing and provisioning the available Services. The aWESoME 

SOA is comprised of the various distributed aWESoME Servers 

that provide different instances of the aWESoME Services, 

Service Clients which can be human or software agents, and a 

Service Broker. Clients primarily browse the Service Broker’s 

list of Services, which the Service Providers have previously 

registered. Overall, aWESoME’s Service Broker module inter-

mediates between Servers and Clients. 

The purpose of Service Broker is twofold: to maintain a unique 

list of the distributed services in the environment and to refresh 

that list, removing Services that go offline i.e. leave the envi-

ronment or collapse. The Service Broker module is based on the 

WS-Discovery standard of the WS-* stack. It provides the es-

sential wrapper interface to the WS-Discovery Java implemen-

tation. When a Server deploys a new Service, it registers with 

the Service Broker module. That way, Clients do not have to 

maintain the list of various distributed (different IPs, different 

bindings) Services or ping them themselves. Otherwise, the 

Services would have to either explicitly have the same IP base 

(e.g. with the use of proxies) or new Services would have to 

register with a list of Clients (which should dynamically 

change). 

 

Figure 2. Service Broker Web interface 



 

 

Finally, the Service Broker implements a Web Service interface 

as well so that it can be easily used by external Clients. The 

Broker Service is also listed within the list, and returns a list of 

the currently registered and available WSDL Services. All the 

operations of Service Broker can be carried out via a Web UI, to 

facilitate the process of quickly deploying aWESoME. For 

compactness, all functions are presented at the home page, 

which is depicted on Figure 2.When the Server administrator 

uploads an aWESoME Web Service, he can enter the Service 

Broker portal and enter the WSDL URL of the Service. Human 

Clients or testers can directly view the Service list in HTML 

(which is constantly updated) by using the second function “Get 

List”. Finally, the WSDL URL of the Broker Service itself is 

provided, so that software agents that exploit the Broker can be 

developed. For demonstration purposes a WSDL Broker Ser-

vice Client is built into that page and can be invoked by using 

the last option “Get Service Response”, which returns a SOAP 

message containing the Service list. 

4 Smart IHU Deployment 

aWESoME is in fact a set of drivers and services as described 

in the previous sections, so that it can support numerous smart 

devices and provide useful services in an Ambient Intelligence 

environment. A system supported by aWESoME can be de-

ployed in numerous ways, using all sorts of different PC-

Servers and deploying in each, the driver and/or service com-

ponents needed. 

This section presents the actual deployment of aWESoME at 

the Smart IHU environment which was, after all, the motivation 

for building the middleware. The instantiation takes place at the 

School of Science and Technology of the International Hellenic 

University. At this stage, devices cover one floor, the ground 

floor of Building A, until the deployment is extended with more 

devices of the same (already supported) or different manufac-

turer/protocol.  

To cover the whole floor, one Server was not sufficient. In order 

to preserve low energy consumption, cost and compactness, a 

board computer was chosen and set up as an aWESoME server. 

The final deployment verifies the fact that the topology can be 

extended in space with more servers of different kinds to cover 

more floors and buildings. 

An overview of the ground floor, devices and servers is shown 

in Figure 3. The most interesting locations to place devices are 

fortunately located on this floor: the reception desk equipped 

with a TV and security camera, the SciTech Secretarial and 

Academic Assistant Office, the Data Center (Server room), 

Lecture Room 1, two PC-Labs and the Auditorium. 

The first constraint for server placement arises from the loca-

tion of the main power supply which is located at the basement, 

under the reception. Three sets of three Smart Clampers (one 

for each Phase) are placed at the main power supply. The first 

two sets measure the buildings total power supply and the third 

measures the Data Center’s Power supply. A Transmitter for 

each set has to communicate with the Smart Clamper receiver 

via RF, so the receiver has to be placed relatively near. The first 

server is hence placed at the SciTech Office (which is also a 

secure place) and attached to the Smart Clamper receiver.  

Evidently, this Server is assigned to cover the south part of the 

floor. Smart Plugs are attached to the screen and security 

equipment at the reception, lights, computers, fax machines, 

printers and heating of the SciTech Office and Secretary, to 

each of the nine servers in the Data Center as shown on Figure 
4, to lighting and projectors in Lecture Room 1 and to the light-

 

Figure 4. Smart Plugs attached to the Data Center 

 

Figure 3. Current Smart IHU Deployment 



 

 

ing of the Reading Room. Sensor Boards are placed to measure 

environmental settings at the Reading Room, Lecture Room 1, 

the Data Center and outside (at the yard). The gateway-Plug is 

placed near the laptop server and the rest of the Plugs are dis-

tributed as evenly as possible around that point. The gateway is 

placed at the SciTech Office for security but can be moved an-

ywhere in the building (as long as there is WiFi coverage). Alt-

hough computers can be managed from any server in the LAN, 

the laptop Server, being the most powerful in the setup, is as-

signed to host IT Services and manage the IT infrastructure. 

The Z-Wave nodes (a Smoke Detector, Motion Detector and a 

Multi-sensor) are placed arbitrarily on the south part of the 

floor. As these devices are currently few, they can be placed to 

serve various scenarios and then change position. E.g. the mo-

tion detector is mostly useful for detecting people at the lecture 

room, or a person entering the building at the reception. Various 

scenarios are implemented in applications and are outside the 

scope of this work. 

The north part of the floor is covered by a second server. Unfor-

tunately the devices themselves or their gateways cannot host 

their own Web Services, so aWESoME servers are required in 

their vicinity, usually at the center of each mesh network. In 

that case, a laptop is not necessary for testing or monitoring 

purposes, so a board computer was chosen to minimize size and 

power consumption. From a range of board servers, the one 

with the lowest memory, processing power and consumption 

was chosen
14

. Apparently, this is the most-lightweight computer 

that can host aWESoME services: it features an Atmel ARM9 at 

400 MHz CPU module, and 64MB of RAM, which is just 

enough for hosting the services. After testing this extreme 

choice, any other more capable board server could offer im-

provements in performance if the power requirements are met. 

That set up also proves the extensibility of the aWESoME de-

ployment, as any number of servers can be set up, inflicting no 

further delay to the system. Finally, Figure 5 shows the interac-

tion of the two servers, the Service Broker and potential Clients, 

for instance desktop or Smartphone. 

The north part is covered with Smart Plugs in different rooms 

as well, but can just as well contain any other kind of the sup-

ported devices. As long as device networks are moved as a 

whole, the board server contains the necessary components to 

provide services for the other bundles. In fact, as Sensor Boards 

interface through WiFi, it can also provide Sensor Board Ser-
 

 
 

14 Foxboard by Acme systems: http://www.acmesystems.it/?id=FOXG20 

vices, but hopefully the laptop server can relieve the board 

server from that task as well. The same goes for the IT Services, 

as Computers can be managed from anywhere in the LAN. Fi-

nally, Smart Plugs are again attached to the lighting in projec-

tors in the Auditorium, and lighting of PC Labs and the Hall-

way. 

5 Application layer 

This section presents external clients of the aWESoME mid-

dleware to prove its purpose, usability and effectiveness. aWE-

SoME interfaces with the upper layer (application layer) 

through universal well-defined Web Services described in 

WSDL. Complementary to the WSDL files, a provisioning sub-

system is used to publish and locate the distributed Service 

Providers. It also guarantees the currency of the available ser-

vices, as new services are dynamically added and obsolete ser-

vices are removed. Two clients are showcased here: iDEALISM 

which is a desktop application that provides a GUI for aWE-

SoME services and added-value functionality, and PlugDroid 

which is a Smartphone application for the Android platform that 

offers similar functionality. Finally a web portal collects all 

sensor data for viewing purposes only. The differences between 

these client applications are summarized on Table 6. 

5.1 Desktop Application – iDEALISM 

The simplest and most straightforward client for the aWESoME 

middleware is the desktop application named iDEALISM 

(Stavropoulos 2011b). iDEALISM is directly compatible with 

the newer versions of the aWESoME functions, as they are 

WSDL-based. That goes to show the extensible character of 

both aWESoME and iDEALISM. 

iDEALISM was designed from an energy-saving perspective. It 

serves two purposes: to present a usable GUI for aWESoME 

services and promote energy savings at the IHU premises. As 

 

Figure 5. Broker, Provider and Client communication in current de-
ployment 

Table 6. Application functionality 

Functionality iDEALISM PlugDroid Web Portal 

Platform Java 
Java,  

Android SDK 
PHP 

Store Service List Locally Locally Globally 

List of Services Selective Selective Complete 

View per Type    

View per Room    

Form Service 

Groups 
  × 

Manually Invoke 

Services 
  × 

Smart Plug Services   

  

(Read  

Only) 

Sensor Board Ser-

vices 
   

Smart Clamper 

Services 
   

Historical Data 

Charts 
 ×  

Local function  × × 

QRCode scanning ×  × 

 

http://www.acmesystems.it/?id=FOXG20


 

 

all WSDL Web Services, aWESoME services lack a user-

friendly interface for invoking the services. Not only do they 

exchange SOAP messages, which are difficult and impractical 

for non-expert users to form and to parse back, but the ex-

changed data itself often have no practical meaning to the user. 

The latter does not know what to enter to get the desired output 

or how to interpret the results. iDEALISM presents a user-

friendly interface (Figure 7) that helps maintain a list of ser-

vices, organize and invoke them periodically or per request. As 

desktop users do not need to be burdened with a complete list of 

services, they can manually enter and store the ones they are 

interested in. To better handle the service list, the users can 

form service groups and view the list per device type, room or 

group. All device-related services can be invoked by the iDE-

ALISM’s Web Service Client. Sensor-related Services are peri-

odically invoked and response data is stored to form historical 

data charts. The actuator services can be invoked per user re-

quest. Especially operations of devices in Rooms and Groups 

can also be invoked collectively and carry out batch tasks. 

Moreover, this extended functionality and the overall design of 

the application is set to promote energy savings. The ability to 

organize and view historical and real time service response data 

enables the user to comprehensively grasp an accurate view of 

the environmental conditions in the building in correlation with 

energy consumption for both past and present. Subsequently, 

the user is able to manage energy consumption based on this 

knowledge.  

Despite the universal nature of Web Services, WSDL grants 

syntactic interoperability only. That sets a boundary for all Ser-

vice clients, including iDEALISM as well. The application 

could reach its full potential and incorporate a form of intelli-

gence when services get semantic annotations. This next stage 

is listed as future work. After that, iDEALISM could offer au-

tomatic parsing and organizing of services based on semantic 

descriptions and require no user action. Going deeper, that 

would also eliminate the need for hardcoded service behavior, 

as services will reference classes or groups of classes from a 

common model (i.e. the ontology). 

5.2 Smartphone Application - PlugDroid 

Smartphones are becoming increasingly used in every applica-

tion and especially in Ambient Intelligence, because of their 

compact and portable nature. Smartphones are interesting be-

cause of their dual role: they can be used for manual user input 

and output but also as sensors in the Ambient Intelligence sys-

tem. Smartphones incorporate numerous devices in compact 

size and reasonable price. The Android platform
15

 has also con-

tributed to easy adaptation and exploitation of Smartphone 

hardware through the open source android SDK
16

. 

 

 
 

15
 Android homepage: http://www.android.com/ 

16
 Android SDK: http://developer.android.com/sdk/ 

 

Figure 7. iDEALISM view of a Smart Clamper Service 

 

Figure 6. PlugDroid screenshots. List of all Devices (left)  
Device Service view and invocation options (right) 

http://www.android.com/
http://developer.android.com/sdk/


 

 

The PlugDroid application (Figure 6) was developed for the 

purposes of Smart IHU, on top of the aWESoME middleware. 

It can be seen as a variant of its desktop counterpart, iDEAL-

ISM, as it offers similar functionality, altered to suit its compact 

and portable nature. To put it simply, the functionality provided 

by PlugDroid is the same as iDEALISM, minus historical data 

(i.e. charts) and plus the aiding functions provided by the 

smartphone hardware. 

A list of services is again maintained locally, as mobile users 

would be overwhelmed with a complete list of services. Instead, 

they can selectively add the Services they need and store them 

for later use. Again, the list can be organized in custom groups 

for batch operations and viewed categorized per Type, Room or 

Group. All device-related services are naturally supported by 

the Web Service client incorporated in PlugDroid, including the 

Smart Plug Services. Unlike iDEALISM, this application is rid 

of the historical data charts, which would need numerous ser-

vices calls to fill in and burden the portable applications usage. 

Besides, smartphone users (not only Android users) can visit the 

Web Portal on the phone’s browser and view all historical data 

carts. 

The MAC Addresses can be manually entered during Service 

registration but in PlugDroid they can also be obtained by scan-

ning QRCodes. QRCodes are printed on paper and placed on 

the appliances or near the entrances of corresponding rooms. As 

a result, the users can physically interface with the real-world 

appliances on-the-go and do not have to take notes or seek out 

complex MAC Addresses. 

As future extension, the PlugDroid application can equally ben-

efit from semantic service discovery and interpretation. It 

would then require even less user input and choice making and 

enable a hassle-free mobile experience. 

6 Results 

To measure and evaluate the robustness, responsiveness and 

energy efficiency of the proposed platform itself (apart from 

energy savings that can be achieved by applications) a series of 

experiments has been carried out. The services and even the 

servers used were evaluated in three different setups: using a 

PC, a netbook and a board microcomputer. The PC has a P4 1.8 

GHz processor and 512 MB RAM, the netbook wears an Atom 

2x1.66Ghz processor and 1G DDR3 RAM, while the micro-

computer wears an ARM9 400MHz processor and 64MB RAM.  

To begin with, during experiment 1, all machines were tested on 

different combinations, i.e. Scenarios, of mild CPU load and 

attached I/O devices (as they also consume energy) to measure 

their average idle consumptions. Scenario 1 is the most de-

manding one, running the aWESoME server and having a lot of 

devices attached. As seen on Table 7, the board’s consumption 

is always constant and about 4% of the PC’s power demand 

while the netbook is about 28% as demanding as the PC. 

The second experiment involves invoking a given set of service 

operations (Switch On and Switch Off) for 120 consecutive 

times in each run. The average of response time for each call, 

over each run and per server is shown on Table 8. The perfor-

mance of the netbook and the PC can be regarded as equal and 

was very fast (as the sensors themselves need some time to 

respond). However the Board PC is almost three times slower. 

During the same experiment, the power consumption of each 

server has been logged (using the smart plug sensors and anoth-

er aWESoME server). Table 9 shows the average values of 

these measurements. The consumption values while idle, con-

firm experiment 1. What is interesting is that the difference of 

an active PC is far bigger than the rest of the machines. Now 

the Board PC is consuming 2% (98% saved) and the netbook 

18% (82% saved) of the PC’s power demand. 

 Figure 8 shows the power dissipation in time during the course 

of experiment 2. Except from the large differences in energy 

savings already mentioned above, the large response time of the 

Board PC is also evident. As expected, the three times bigger 

response time of the Board PC results in a three times longer 

total runtime of the experiment. Note that turning the netbook’s 

monitor off can save up to 4 Watts in average, which is shown 

on this figure. 

Since the netbook and the PC have the exact same response 

time but the netbook’s consumption is smaller, the PC is left out 

of the next comparison. Table 10 summarizes the power con-

sumption-performance tradeoff between the Board PC and the 

netbook. All in all, both of them can be considered as signifi-

cant improvements over the PC server. 

7 Future Work 

The development of the Smart IHU platform follows two direc-

tions: extending and enriching the aWESoME middleware and 

developing intelligent applications that exploit the middleware. 

aWESoME serves as the essential middleware layer that offers 

the required interoperability but it is not supposed to (and does 

not) present certain behavior. On the contrary, it serves as a 

library of methods (web methods) to be exploited in order to 

realize applications of different logic. 

To provide applications with more variety and flexibility, aWE-

SoME can be extended in two ways: more components and 

semantic annotations. Due to its component-based structure, 

newly developed drivers and/or services can be added. To inte-

grate more devices or device families, new drivers and their 

corresponding services can be built. Software-based services for 

utility functions or internet services (e.g. weather forecast) can 

be added to the service layer to support more scenarios. In the 

future we plan to integrate more devices (e.g. a weather station) 

but also various Z-Wave devices to profit from existing work in 

the Z-Wave library. 

Apart from extending the functionality provided, semantic an-

notations can enrich aWESoME in terms of interoperability and 

usability. The Semantic Web
17

 technologies have reached a 

point where all the necessary tools and standards suffice for 

machine interpretable information on the Web. As web devel-

opment and usage patterns shift from data to services, many 

efforts to apply the same semantic web methodologies to ser-

vices have been presented. Some did not succeed as W3C rec-

ommendations, but provide rich expressiveness, such as OWL-

S
18

. Other approaches, such as SAWSDL
19

 - annotations for 

WSDL are based on simplicity and effectiveness. We have de-

veloped an ontology to describe entities in the Smart IHU do-
 

 
 

17
 The Semantic Web initiative: http://semanticweb.org 

18
 The OWL-S ontology for services: http://www.daml.org/services/owl-s/1.0/ 

19
 SAWSDL at W3C: http://www.w3.org/2002/ws/sawsdl/ 

http://semanticweb.org/
http://www.daml.org/services/owl-s/1.0/
http://www.w3.org/2002/ws/sawsdl/


 

 

main, and Smart Spaces in general, and plan to explore both 

directions towards Semantic Web Services: describe the service 

in a complex model (i.e. the ontology), following the OWL-S 

approach, and using direct annotations on WSDL, following the 

SAWSDL approach. 

Finally, we plan to develop applications based on well-known 

A.I. methodologies to benefit from the infrastructure and pre-

sent intelligent behavior in the system. The applications pre-

sented so far, are merely GUIs that showcase the capabilities of 

aWESoME and offer a user-friendly view of the system’s sta-

tus. However, known methodologies of A.I. have been used in 

research to provide automation of tasks in Smart Spaces. The 

most common objective for service-oriented systems is auto-

matic Service Composition using simple matching or A.I. Plan-

ning. We plan to exploit semantic annotations on aWESoME 

and employ such techniques to profit from existing solutions 

(e.g. known planning algorithms) to automate tasks in the Smart 

IHU environment, towards both saving energy and raising user 

comfort. 

8 Conclusion 

This work presents a middleware for Ambient Intelligence sys-

tems, based on the Service-Oriented Architecture for interoper-

ability, the current sensor network deployment in a Smart Uni-

versity system, including a prototype board Server, and finally 

sample client applications.  

As Ambient Intelligence systems are characterized by diversity 

in hardware and the market has not yet reached a point where 

devices can be exploited by computer programs in homogene-

ous ways, a middleware is often employed to tackle this obsta-

cle. Also, the paradigm shift to service computing has widely 

been adopted in Ambient Intelligence as it provides a useful 

abstraction for complex ambient applications to simply get 

things done. The proposed middleware is both able to expose 

functions and data of various devices and device families and 

follows the service-oriented paradigm to harvest its benefits.  

The driver layer of the middleware contains device drivers for 

ZigBee Smart Plugs, Sensor Boards, Smart Clampers and Z-

Wave devices while the service layer contains services that ex-

pose the methods of these drivers and additional software-based 

services such as Wake-On-Lan and remote shutdown to manage 

IT equipment.  

aWESoME is deployed in a Smart University setting, namely 

the Smart IHU project. Each driver and/or service module can 

be separately installed in aWESoME servers that are distributed 

in the building. Thus, coverage restrictions of the smart device 

networks are lifted. To maintain compactness and low power 

consumption of the aWESoME infrastructure itself, we demon-

strate a prototype board aWESoME server along with perfor-

mance and consumption measurements.  Current topology in-

cludes a laptop server and a board server that cover the most 

vital part of the School of Science and Technology (the ground 

floor). 

A Service Broker for aWESoME has been developed to com-

plete the architecture paradigm with provisioning capabilities, 

supported by the WS-Discovery standard. As the system is 

based on distributed servers, and services can possibly enter and 

leave the environment (due to portability or failure), the Service 

Broker serves to intermediate and locate Service Providers for 

Service Clients. Finally, two kinds of aWESoME clients, a 

desktop application and a smartphone application, are presented 

Table 7. Idle consumption of different servers during experiment 1 

Scenario Board PC Netbook PC 

1 2.1324 W 13.5703 W 48.3361 W 

2 2.1325 W 13.3764 W 48.4783 W 

3 2.1325 W 13.3764 W 48.3361 W 

4 2.1325 W 13.3764 W 47.9096 W 

Table 8. Response time overall distribution during experiment 2 

Response 

Time(sec) 

Board PC% Netbook % PC% 

1 0 82.1 82.5 

2 5.417 17.9 17.5 

3 90.833 0 0 

4 3.333 0 0 

5 0.417 0 0 

Total 100 100 100 

Table 9. Power consumption during experiment 2 

Server Power Consumption 

Board PC Idle 2.133 W 

Active 2.337 W 

Difference 0.204 W 

Netbook Idle 13.376 W 

Active 15.220 W 

Difference 1.844 W 

PC Idle 48.265 W 

Active 81.998 W 

Difference 33.742 W 

Table 10. Netbook and Board PC comparison 

Parameter Netbook 
Board 

PC 
Difference 

Processor 2x1.6GHz 400MHz 
2x41% 

faster 

RAM 1GB 64MB 16% bigger 

Average  

Consumption when active 
15.220 W 2.337 W 65% higher 

Total Response Time 142 s 358 s 40% faster 

Average Repsonse Time 

per call 
1.18 s 2.98 s 40% faster 

 

s

 
 Figure 8. Server power consumption in time during experiment 2 

 

0 W
10 W
20 W
30 W
40 W
50 W
60 W
70 W
80 W
90 W

100 W

00
' 0

0'
'

00
' 2

7'
'

00
' 5

3'
'

01
' 2

0'
'

01
' 4

6'
'

02
' 1

3'
'

02
' 4

0'
'

03
' 0

6'
'

03
' 3

3'
'

04
' 0

0'
'

04
' 2

6'
'

04
' 5

3'
'

05
' 2

0'
'

05
' 4

6'
'

06
' 1

3'
'

PC Netbook+Monitor
Netbook Board PC



 

 

to showcase aWESoME functionality and allow monitoring and 

managing the Smart IHU environment in a user-friendly way. 

Acknowledgment 

The Smart IHU project is funded by Operational Program Edu-

cation and Lifelong Learning, OPS200056 (International Hel-

lenic University, Thessaloniki, Greece). The authors would also 

like to thank Andrea Dimitri (MSc student at the time) as well 

as the undergraduate students Alexander Arvanitidis and 

George Pilikidis for their most valuable contribution. 

References 

Autili, M., Caporuscio, M., & Issarny, V. (2009, May). Architecting 

Service Oriented Middleware for pervasive networking. In Proceedings of 
the 2009 ICSE Workshop on Principles of Engineering Service Oriented 

Systems (pp. 58-61). IEEE Computer Society. 

Ben Mabrouk, N., Beauche, S., Kuznetsova, E., Georgantas, N., & Issarny, 
V. (2009). QoS-aware service composition in dynamic service oriented 

environments. Middleware 2009, 123-142. 

Bottaro, A., & Gérodolle, A. (2008, July). Home soa-: facing protocol 
heterogeneity in pervasive applications. In Proceedings of the 5th 

international conference on Pervasive services (pp. 73-80). ACM. 

Caporuscio, M., Raverdy, P. G., Moungla, H., & Issarny, V. (2008). ubi 
SOAP: A Service Oriented Middleware for Seamless Networking. Service-

Oriented Computing–ICSOC 2008, 195-209. 

Chiaraviglio, L., & Mellia, M. (2010, September). PoliSave: Efficient 

power management of campus PCs. In Software, Telecommunications and 
Computer Networks (SoftCOM), 2010 International Conference on (pp. 82-

87). IEEE. 

Corredor, I., Martínez, J. F., Familiar, M. S., & López, L. (2012). 
Knowledge-Aware and Service-Oriented Middleware for deploying 

pervasive services.Journal of Network and Computer Applications, 35(2), 
562-576. 

Davidyuk, O., Georgantas, N., Issarny, V., & Riekki, J. J. (2011). 

MEDUSA: Middleware for End-User Composition of Ubiquitous 
Applications. Handbook of research on ambient intelligence and smart 

environments: trends and perspectives, 11, 197-219. 

Eisenhauer, M., Rosengren, P., Antolin, P., A Development Platform for 
Integrating Wireless Devices and Sensors into Ambient Intelligence 

Systems in the proc. of the 6th Annual IEEE Communications Society 
Conference on Sensor, Mesh and Ad Hoc Communications and Networks 

Workshops 2009, (SECON Workshops '09). 

Georgantas, N., Issarny, V., Mokhtar, S. B., Bromberg, Y. D., Bianco, S., 
Thomson, G., ... & Cardoso, R. S. (2010). Middleware architecture for 

ambient intelligence in the networked home. Handbook of Ambient 
Intelligence and Smart Environments, 1139-1169. 

Hansen K. M., Zhang W., Soares G.: Ontology-Enabled Generation of 

Embedded Web Services. SEKE 2008: 345-350 Wang, X. H., Dong, J. S., 
Chin, C., and Hettiarachchi, S. R. Semantic space: an infrastructure for 

smart spaces. IEEE Pervasive Computing 3,3 (July-Sept 2004), 32?39. 

Ibrahim, N., Le Mouël, F., & Frénot, S. (2009, July). MySIM: a 

spontaneous service integration middleware for pervasive environments. 
In Proceedings of the 2009 international conference on Pervasive 

services (pp. 1-10). ACM. 

Lagesse, B., Kumar, M., & Wright, M. (2010, March). ReSCo: A 
middleware component for Reliable Service Composition in pervasive 

systems. In Pervasive Computing and Communications Workshops 
(PERCOM Workshops), 2010 8th IEEE International Conference on (pp. 

486-491). IEEE. 

López-de-Ipiña, D., Vázquez, J., Garcia, D., Fernández, J., García, I., Sáinz, 
D., & Almeida, A. (2006). A middleware for the deployment of ambient 

intelligent spaces. Ambient Intelligence in Everyday Life, 239-255. 

Park, J. H., & Kang, J. H. (2011). Intelligent service processing in common 
USN middleware. Artificial Intelligence Review, 35(1), 37-51. 

Robinson, J., Wakeman, I., & Owen, T. (2004, October). Scooby: 

middleware for service composition in pervasive computing. 
In Proceedings of the 2nd workshop on Middleware for pervasive and ad-

hoc computing (pp. 161-166). ACM. 

Stavropoulos T. G., Tsioliaridou A., Koutitas G., Vrakas D. and Vlahavas I. 
(2010), "System Architecture for a Smart University Building", in the proc. 

of IEM3 workshop in conjunction with ICANN 2010, Thessaloniki, Greece 

Stavropoulos, T. G., Vrakas, D., & Vlahavas, I. (2011a). A survey of 
service composition in ambient intelligence environments. Artificial 

Intelligence Review, 1-24. 

Stavropoulos, T., Vrakas, D., Arvanitidis, A., & Vlahavas, I. (2011b). A 
system for energy savings in an ambient intelligence 

environment. Information and Communication on Technology for the Fight 
against Global Warming, 102-109. 

Weiser M., The computer for the 21st century, ACM SIGMOBILE Mobile 

Computing and Communications Review, v.3 n.3, p.3-11, July 1999  
[doi>10.1145/329124.329126]  

 


