

Combining a DL Reasoner and a Rule Engine for
Improving Entailment-based OWL Reasoning

Georgios Meditskos and Nick Bassiliades

Department of Informatics

Aristotle University of Thessaloniki
{gmeditsk, nbassili}@csd.auth.gr

Abstract. We introduce the notion of the mixed DL and entailment-based
(DLE) OWL reasoning, defining a framework inspired from the hybrid and
homogeneous paradigms for integration of rules and ontologies. The idea is to
combine the TBox inferencing capabilities of the DL algorithms and the scal-
ability of the rule paradigm over large ABoxes. Towards this end, we define a
framework that uses a DL reasoner to reason over the TBox of the ontology
(hybrid-like) and a rule engine to apply a domain-specific version of ABox-
related entailments (homogeneous-like) that are generated by TBox queries to
the DL reasoner. The DLE framework enhances the entailment-based OWL
reasoning paradigm in two directions. Firstly, it disengages the manipulation of
the TBox semantics from any incomplete entailment-based approach, using the
efficient DL algorithms. Secondly, it achieves faster application of the ABox-
related entailments and efficient memory usage, comparing it to the conven-
tional entailment-based approaches, due to the low complexity and the domain-
specific nature of the entailments.

Keywords: Hybrid and Homogeneous Systems, Rule-based OWL Reasoning,
Entailment Rules, Rule Engines, DL Reasoning.

1 Introduction

The Web Ontology Language (OWL) [29] is the W3C recommendation for creating
and sharing ontologies on the Web and its theoretical background is based on the
Description Logic (DL) [2] knowledge representation formalism, a subset of predicate
logic. Existing sound and complete DL reasoners [12][44][45] implement tableaux
algorithms [3]. However, although these systems perform well on complex TBox
reasoning, they have a high ABox reasoning complexity on medium and large com-
plexity TBoxes that constitutes a serious limitation regarding the efficient query an-
swering capabilities needed in domains with large ABoxes [13][15][35].

Rules play an important role in the Semantic Web and, although there is not an un-
restricted translation of DLs into the rule paradigm, they can be used in many direc-
tions, such as reasoning, querying, non-monotonicity, integrity constraints [4][11]
[34]. Regarding rule-based OWL reasoning, the idea is to map OWL on a rule formal-
ism that applies (a subset of) the OWL semantics in the KB of a rule engine. Practical

examples of rule-based OWL reasoners are [21][23][27][28][33] that follow the en-
tailment-based OWL reasoning (EOR) approach [17], and [19] that reduces OWL into
disjunctive Datalog [18].

We present our effort to combine the strong points of the DL and EOR paradigms;
the former performs efficient TBox reasoning while the latter is characterized by
ABox reasoning scalability (comparing it to the DL paradigm), and the simplicity of
implementation. We define a mixed DL and rule-based (DLE) framework that em-
beds the TBox inferencing results of the DL paradigm, and it is able to handle larger
ABoxes than the conventional EOR systems. The latter is achieved by substituting the
TBox-related entailments with TBox queries to the DL reasoner, generating the
ABox-related entailments. The DLE framework is inspired from the hybrid and ho-
mogeneous approaches for integration of rules and ontologies [1], using the DL rea-
soner to answer TBox queries and the rule engine for instance queries.

The rest of the paper is structured as follows. In section 2 we present related back-
ground and our motivation for the DLE framework. In section 3 we describe the clas-
sification of entailments on which our methodology is based. In section 4 we give the
general reasoning principles of the DLE framework. In section 5 we present experi-
mental results about the reasoning activity of DLE-based implementations. Finally, in
sections 6 and 7, we present related work and we conclude, respectively.

2 Background and Motivation

The RDF and RDFS semantics can be captured using entailments [14] that are rules
that denote the RDF triples [10] that should be inferred (rule head) based on existing
ones (rule body). A triple has a subject, a predicate and an object, represented as 〈s p
o〉, where s is an RDF URI reference or a blank node, p is an RDF URI reference (in
[17] p is allowed to take blank nodes) and o is an RDF URI reference, a blank node or
a literal. Examples of entailments can be found in Table 1.

Horst [16] defines the pD* semantics as a weakened variant of OWL Full and in
[17] they are extended to apply to a larger subset of the OWL vocabulary, using 23
entailments and 2 inconsistency rules. Many practical OWL reasoners are based on
the implementation of entailments in a rule engine, such as [21][23][27][28][31][33].
These systems apply a larger set of entailments than the pD* semantics define. For
example, class intersection or the eRDFS [14] entailments (RDF entailment regimes
[5]) are not considered in pD* semantics.

In general, the approaches towards the combination of rules and ontologies are ei-
ther hybrid or homogeneous [1]. In homogeneous approaches, the rule and ontology
predicates are treated homogeneously, as a new single logic language. Practically,
ontologies are mapped on a rule-based formalism that coexists in the KB with rule
predicates [32][40][41]. The EOR is a type of a homogeneous approach, since any
rule predicate of a rule program coexists with the entailment rules [1].

In hybrid approaches, the rule and ontology predicates are separated and the ontol-
ogy predicates can be used as constraints in rules. This is achieved by following a
modular architecture, combining a DL reasoner for OWL reasoning and a rule engine
for rule execution [6][7][9][24][39]. Therefore, while in homogeneous approaches

OWL reasoning is performed only by rules, in the hybrid paradigm the OWL reason-
ing is performed only by the DL reasoner.

While the DL reasoners have poor ABox reasoning performance [13][15][35], the
EOR paradigm has limited TBox reasoning completeness. For example, if p and g are
both the inverse properties of q, then p and g should be inferred as equivalent proper-
ties. We observed that the [23][28][33] EOR systems do not deduce such a TBox
relationship, in contrast, for example, to Pellet [44] which supports it. Notice that
[23][28][33] treat the properties p and g as equivalent at the instance level through the
implementation of the inverse entailment (rdfp8ax, Table 1). Thus, if 〈x p y〉 then 〈y q
x〉, and therefore, 〈x g y〉. However, they do not infer that p and g are equivalent be-
cause they do not implement the corresponding entailment. In the EOR paradigm,
some TBox entailments are either ignored, in order to speed up the TBox reasoning
procedure, or they have not been considered during implementation. For both reasons,
the result is an incomplete TBox reasoning procedure in the EOR paradigm.

The use of entailments makes the EOR paradigm also incomplete on ABox reason-
ing, for the same reasons we mentioned previously. Thus, the choice between an EOR
system and a DL reasoner depends on the domain and the needs of the application
(see also [4][38]). With DLE we tackle the TBox reasoning incompleteness of EOR.
Our motivation can be summarized in the following observation: “Why do we need to
struggle to define the entailments for OWL TBox reasoning in the EOR paradigm, if
we can make it effortless and more complete using the efficient DL algorithms?”.

In [37] the RDFS(FA) sublanguage of RDFS and the RDF Model Theory are dis-
cussed. In brief, RDFS(FA) eliminates the dual roles of RDFS, stratifying built-in
RDF primitives in different layers. On the other hand, the RDF MT handles dual roles
by treating classes and properties as objects. Practically, DL reasoners treat the OWL
extension of the bottom two layers of RDFS(FA), while the entailments are defined in
RDF MT. For example, RDFS(FA) distinguishes built-in from user-defined proper-
ties, while in RDFS there is no such restriction and thus it is more expressive (al-
though it is argued that this expressivity is too confusing). The existing EOR systems
treat OWL as an extension of RDF MT, allowing anyone to say anything about any-
thing. This was the domain of interest in [30] and [31], where only a rule engine is
considered for TBox and ABox entailments in the RDF MT. On the other hand, the
DLE framework is an RDFS(FA)-oriented approach, since it uses a DL component to
reason on OWL ontologies, following though the EOR paradigm.

Our DLE framework considers the EOR paradigm as a rule program (ABox en-
tailments) over the KB of a DL reasoner after TBox reasoning, following the architec-
ture of the hybrid paradigm. Therefore, any subsequent user-defined rule program
would then coexist in the rule base of the rule engine with the ABox rule program, in
the same manner as in the homogeneous paradigm. Thus, in contrast to the existing
EOR implementations, the OWL reasoning in the DLE framework is performed both
by a DL component and a rule engine. More specifically, it combines the TBox infer-
ence capabilities of the DL component to compute the subsumption hierarchy and the
related semantics to the ontology roles, e.g. domain constraints, property types, etc.,
with the ability of a rule engine to process a large number of instances, applying do-
main-specific entailment rules that are generated based on the DL reasoner.

Apart from scalability issues, one of the attracting features of the EOR paradigm is
that it can be easily implemented in any rule engine, e.g. Jess [22], or a Prolog engine

[42], enabling the use of ontological information into rule programs, exploiting the
research on efficient rule engines with different capabilities. The DLE framework is
based on this practicality and actually enhances the EOR paradigm in two directions:
- It simplifies the development of an EOR system, disengaging the TBox reason-

ing procedure from any (incomplete) TBox entailment implementation that
should take into account all the possible OWL TBox semantic derivations.

- The rule engine applies faster the domain-specific ABox entailments than the
corresponding generic entailments of the traditional EOR systems, enhancing
their scalability in terms of ABox reasoning time and memory utilization.

3 Entailment Classification

The DLE framework is based on the classification of entailments into terminological,
hybrid and exceptional. In this section we present the necessary and sufficient condi-
tions for performing such a classification. Notice that, since we are based on a DL
reasoner, the DLE framework is not compatible with RDF ontologies and handles
only the OWL vocabulary [29]. Thus, we do not capture relationships such as that
owl:Class is equivalent or subclass to rdfs:Class, owl:Thing is equivalent or
subclass to rdfs:Resource or owl:ObjectProperty is equivalent or subclass to
rdfs:Property. Furthermore, owl:ObjectProperty and owl:DatatypePrope-
rty are disjoint sets [29]. Since we approach the entailment-based reasoning from the
OWL perspective, we substitute any reference to rdfs:Resource and rdfs:Class
in entailment rules with owl:Thing and owl:Class, respectively (Table 1).

We present a definition of an entailment rule that we follow in the rest of the paper.

Definition 1. An entailment rule for an RDF graph G is of the form

〈s1 p1 o1〉 〈s2 p2 o2〉 … 〈sn pn on〉 → 〈s′1 p′1 o′1〉 〈s′2 p′2 o′2〉 … 〈s′m p′m o′m〉,

where n ≥ 1, m ≥ 1, si, s′i, pi and p′i are RDF URI references or blank nodes, and oi
and o′i are RDF URI references, blank nodes or literals. The 〈sn pn on〉 triples denote
the condition of the entailment and the 〈s′m p′m o′m〉 triples the conclusion. The condi-
tion of the rule denotes the RDF triples that should exist in G, and the conclusion the
RDF triples that should be added in G.

If n = 0, then all the conclusion triples should always exist in G (axiomatic triples

[14][17]). If m = 0, then the entailment denotes that the triple pattern of the body
should be viewed as inconsistent (inconsistency entailment).

3.1 Terminological and Assertional Triples

We present a classification of triples into terminological (T-triples) and assertional
(A-triples), according to the OWL DL vocabulary V [29] of their components (pre-
fixes have been omitted).

Definition 2. A triple t = 〈s p o〉 is a terminological triple, denoted as tT = 〈s p o〉T, iff
- p ∈ {domain, range, subClassOf, subPropertyOf, inverseOf, equiva-

lentProperty, equivalentClass, intersectionOf, unionOf, com-
plementOf, onProperty, hasValue, someValuesFrom, allValues-
From, maxCardinality, minCardinality, cardinality, disjoint-
With}, or

- p = type ∧ o ∈ {ObjectProperty, DatatypeProperty, FunctionalProp-
erty, InverseFunctionalProperty, SymmetricProperty, Transi-
tiveProperty, Class, Restriction}.

A T-triple denotes information about the TBox of the ontology (class and property

axioms), such as subclass relationships, class equivalence, property types, etc. The A-
triples are defined as the complement of the terminological.

Definition 3. A triple t = 〈s p o〉 is an assertional triple, denoted as tA = 〈s p o〉A, iff it
is not a terminological, that is tA ⇔ ¬tT.

Intuitively, an A-triple denotes information about the ABox of the ontology, such
as instance class membership or instance equality/inequality (sameAs
/differentFrom) (we consider the oneOf construct as simple i : C assertions).
Thus, 〈p domain c〉T and 〈p type FunctionalProperty〉T, whereas 〈x sameAs y〉A.
Therefore, a triple component can either be bound to a term of the OWL vocabulary
or not be bound. In the former case, we refer to the component as constant, whereas in
the latter as variable (blank node). For example, the triple 〈p domain c〉 has a variable
subject and object, and a constant predicate. We use the notation var(c) to denote that
the c component of the triple is a variable.

3.2 Terminological, Hybrid and Exceptional Entailments

Based on the triple classification of section 3.1, we define the terminological, hybrid
and exceptional entailments.

Definition 4. An entailment is considered as a terminological (T-entailment), if and
only if it contains only T-triples in its conclusion.

Definition 5. An entailment is considered as a hybrid (H-entailment), if and only if it
contains both T- and A-triples in its condition and only A-triples in its conclusion.

Definition 6. An entailment is considered as an exceptional (E-entailment), if and
only if it contains only A-triples in its condition and conclusion.

Table 1 depicts some indicative examples of entailment classification, as well as
some eRDFS entailments needed for OWL TBox reasoning [14] (denoted as extX).

4 Reasoning on the DLE Framework

The reasoning on the DLE framework is based on two reasoning paradigms over two
distinct KBs that cooperate.

Definition 7. The DLE framework consists of two distinct knowledge bases DLE =
(DLKB, RKB) where:
- DLKB is the DL component’s KB, with DLKB = 〈T〉, where T is the ontology

TBox (concept and role axioms), and
- RKB is the rule engine’s KB, with RKB = 〈RB, A〉, where RB is the rule base

of the rule engine that contains the entailment rules and A is the ABox of the on-
tology (instance and role assertions).

The two KBs are distinct in the sense that the information flows only from the

DLKB to the RKB (unidirectional) in order to populate the RB with entailments.

4.1 Reasoning on the DL Component

Basic DL reasoning problems include class equivalence, concept subsumption, satis-
fiability and realization. Since the DLKB does not consider ABoxes, the DL compo-
nent of the DLE framework is not used for instance realization.

Table 1. Classification examples of some common entailment rules.

Terminological Entailment Rules (T-entailments)
rdfs8 〈c type Class〉T → 〈c subClassOf Thing〉T
rdfs11 〈c subClassOf d〉T 〈d subClassOf k〉T → 〈c subClassOf k〉T
rdfp12c 〈c subClassOf d〉T 〈d subClassOf c〉T → 〈c equivalentClass d〉T
rdfp13c 〈p subPropertyOf q〉T 〈q subPropertyOf p〉T → 〈p equivalentProperty q〉T
ext1 〈p domain c〉T 〈c subClassOf d〉T → 〈p domain d〉T
ext2 〈p domain c〉T 〈b subPropertyOf p〉T → 〈b domain c〉T
Hybrid Entailment Rules (H-entailments)
rdfs2 〈p domain c〉T 〈x p y〉A → 〈x type c〉A
rdfp8ax 〈p inverseOf q〉T 〈x p y〉A → 〈y q x〉A
rdfs9 〈c subClassOf d〉T 〈x type c〉A → 〈x type d〉A
rdfp1 〈p type FunctionalProperty〉T 〈x p y〉A 〈x p z〉A → 〈y sameAs z〉A
rdfp4 〈p type TransitiveProperty〉T 〈x p y〉A 〈y p z〉A → 〈x p z〉A
rdfp14a 〈r hasValue y〉T 〈r onProperty p〉T 〈x p y〉A → 〈x type r〉A
Exceptional Entailment Rules (E-entailments)
rdfs4a 〈x p y〉A → 〈x type Thing〉A
rdfs4b 〈x p y〉A → 〈y type Thing〉A
rdfp6 〈x sameAs y〉A → 〈y sameAs x〉A
rdfp7 〈x sameAs y〉A 〈y sameAs z〉A → 〈x sameAs z〉A
rdfp11 〈x p y〉A 〈x sameAs x′ 〉A 〈y sameAs y′ 〉A → 〈x′ p y′ 〉A

The use of DL TBox reasoning in the DLE framework makes redundant the T-
entailments. These entailments generate T-triples (Definition 4), such as subclass and
class equivalence relationships, domain and range restrictions, property equivalence,
etc. Since these TBox semantics are handled by the DL reasoner, the T-entailments
are ignored, decoupling the TBox inference procedure from any entailment-based
approach. As we explain in the next section, each T-triple of an H-entailment is sub-
stituted with a query to the DLKB. In that way, we are not concerned about how to
implement the TBox semantics in the DLE framework, but only how to use them at the
instance level via ABox entailments.

To exemplify, consider the rdfs11 entailment for subclass transitivity. For every
three concepts C, D, E ∈ T of the DLKB:

if T B C D and T B D E, then DLKB B C E.

Practically, by querying the DLKB for the indirect superclasses of a concept, all

the concepts that belong to the subclass transitive closure are returned (as well as their
equivalents), thus the rdfs11 entailment is natively supported.

Consider also the intersectionOf construct. A class C is contained in the inter-
section of the classes C1,…, Cn by saying that C is a subclass of each class Cn. This is
also the inference result of a DL reasoner:

if T B C ≡ C1 … Cn, then DLKB B C Cn.

Thus, by querying the DL reasoner for the superclasses of C, the intersection
classes Cn are also returned (a similar approach is followed for the semantics of the
unionOf construct). Notice that the iff semantics of class intersection (and union)
require ABox reasoning and thus, the DLE framework handles them at the instance
level by entailments. The same holds for class restrictions, e.g. ∀R.C. The DL rea-
soner is used also to facilitate entailment-free TBox consistency check, e.g. inconsis-
tent subclass relationships of disjoint classes.

4.2 Transforming H-Entailments

Since we do not consider T-entailments, the RKB does not contain any T-triple and
thus, the H-entailments would never be activated. In order to cope with the missing
TBox triple information, we substitute each T-triple of the condition of an H-
entailment with a query to the DL component in order to ground the TBox-related
variables (vars) of the remaining A-triples. We call this procedure entailment reduc-
tion, because the H-entailments are reduced to domain-specific E-entailments, which
we call dse-entailments. Therefore, for a specific H-entailment, it is possible to gener-
ate more than one dse-entailment. There are two advantages behind the reduction:
- Since the dse-entailments are generated based on the ontology TBox axioms, the
RB will contain only the entailments that are needed, in contrast to the tradi-
tional EOR paradigm where all the entailments are preloaded. For example, a
transitive role-free ontology will result in a transitive entailment-free RB, reduc-
ing the number of the rules need to be checked in each cycle.

- The dse-entailments contain less conditional elements than the initial H-
entailments, since the T-triples are removed. Thus, the dse-entailments have
lower complexity and thus, they are activated faster by the rule engine.

DL queries. A T-triple tt can be transformed into a TBox query for the DL compo-
nent, denoted as tT \ DLQ(tT), in order to retrieve the ontology values that corre-
spond to the variables of the T-triple. Similarly, the set T of the conditional T-triples
of an H-entailment H can be transformed into a conjunction query, denoted as DLQH,
that corresponds to each T-triple, that is T \ DLQ(t1T) ∧ … ∧ DLQ(tnT), ∀tnT ∈ T.

To exemplify, using a predicate-like syntax for the DL queries, the T-triple 〈p do-
main c〉T of the rdfs2 entailment can be transformed into the query:

DLQrdfs2 : 〈p domain c〉T \ domain(var(p), var(c)),

retrieving all the properties of the DLKB with their domain constraints. Similarly, the
T-triples of the rdfp14a entailment can be transformed into:

DLQrdfp14a : {〈r hasValue y〉T, 〈r onProperty p〉T} \
 hasValue(var(r), var(y)) ∧ onProperty(var(r), var(p)),

retrieving the properties and their restriction values for every hasValue restriction.

T-dependency. We introduce the notion of T-dependency between an A-triple (tA)
and a T-triple (tT), according to whether tA has a variable component that exists in tT.

Definition 8. An A-triple tA is T-dependent to a T-triple tT, denoted as tA z tT, iff
∃var(c) ∈ tA : var(c) ∈ tT. Each such c variable of a T-dependent triple is called T-
dependent variable and it is denoted as [c] in the entailment rule.

For example, both the t2A = 〈x p y〉A and t3A = 〈x type c〉A A-triples of the rdfs2 h-

entailment are T-dependent to t1T = 〈p domain c〉T, that is t2A z t1T and t3A z t1T,
since var(p) ∈ t2A, var(c) ∈ t3A and var(p), var(c) ∈ t1T. On the other hand, in the
rdfp1 H-entailment only the A-triples t2A = 〈x p y〉A and t3A = 〈x p z〉A are T-dependent
to t1T = 〈p type FunctionalProperty〉T, since �var(c) ∈ t1T : var(c) ∈ t4A = 〈y
sameAs z〉A. The T-dependency denotes the A-triples whose T-dependent variables
should be grounded, due to the removal of the T-triple on which they depend.

Generating the dse-entailments. An H-entailment H is reduced by removing the T-
triples of its condition and applying a DLQH query. The results of the query are used
to ground the T-dependent variables of the A-triples, generating domain-specific
versions of H (dse-entailments). The H-entailment reduction can be considered as the
procedure of grounding the T-dependent variables of a pseudo-rule.

Definition 9. The pseudo-rule PRH for the H-entailment H, is the entailment-like rule
we obtain after the removal of any T-triple of the H’s condition, and it is of the form

〈[si] pi oi〉A … 〈sk [pk] ok〉A … 〈sn pn [on]〉A →
〈[sl] pl ol〉A … 〈sm [pm] om〉A … 〈so po [oo]〉A … 〈su pu ou〉A,

where [x] denotes the T-dependent variables of the entailment. The pseudo-rule is
actually a template rule which can be loaded in the RB as a valid rule (dse-
entailment) after the grounding of its T-dependent variables.

For example, the pseudo-rule PRrdfs2 for the rdfs2 entailment that we obtain after
the removal of its T-triples is the following:

〈x [p] y〉A → 〈x type [c]〉A,

where [p] and [c] are the two T-dependent variables of the entailment. Thus, based on
the DLQrdfs2 query, we can ground (G[PRrdfs2(p, c)]) the T-dependent variables as:

∀(p, c) ∈ DLQrdfs2 : G[〈x [p] y〉A → 〈x type [c]〉A],

generating as many rules as the pairs (property, domain) are in the ontology. For
example, for two properties pk and pm with the classes ck and cm as domain constraints,
respectively, we will obtain the following dse-entailments:

〈x pk y〉A → 〈x type ck〉A,
〈x pm y〉A → 〈x type cm〉A.

One of the advantages of the entailment reduction is that the complexity of the dse-

entailments is lower than the corresponding H-entailments. The time needed for the
rdfs2 H-entailment to be activated is O(n2), where n is the size of the partial closure
graph under construction [17], whereas the reduced one can be handled in O(pn),
where p is the number of the grounded entailments generated from an H-entailment.
Similarly, the rdfp14a H-entailment requires O(n3) time, while the reduced entailment
runs in O(pn). Generally, if O(nt) is the complexity of an H-entailment, where t is the
number of triples of the condition, the reduced entailments have O(pnt-k) complexity,
where k is the number of T-triples (that are removed). We should mention that:
- The reduction results in a RB that contains more entailments than the initial H-

entailments, since for each H-entailment more than one rule might be generated
(p rules). However, in section 5 we show that such an RB terminates the ABox
reasoning procedure faster than the corresponding generic H-entailment RB.

- The RB contains only ABox-related entailments. Thus, only updates related to
instances can be handled. We elaborate further on this in section 7.

4.3 Basic Reasoning Steps in a Forward Chaining DLE Framework

The E-entailments are the only entailments that are predefined in the DLE framework,
since they cannot be reduced, following the approach of the convectional EOR para-
digm. Assuming that EA and PR are the sets of the A-entailments and the pseudo-rules
(reduced H-entailments) that will be supported by the DLE-based implementation, the

algorithm of Fig. 1 depicts the reasoning methodology using a forward chaining rule
engine. Initially, the TBox of the ontology is loaded into the DL reasoner in order to
classify the ontology (lines 1 and 2). Then, the ABox is loaded into the rule engine
(line 3) in order to create the internal rule engine representation, for example triple
facts. Moreover, the predefined E-entailments are loaded into the RB (line 4). In
order to generate the dse-entailments, i.e. the grounded pseudo-rules, we conduct the
necessary DLQH queries to the DL component in order to retrieve the values for the
T-dependent variables of the H entailments. The resulting rules are loaded into the
RB, populating it with the domain specific dse-entailments (lines 5, 6 and 7). Finally,
the rule engine runs and materializes the semantics in the form of derived triples.

5 Testing the ABox Reasoning Performance

We conducted experiments to test the scalability of the dse-entailments against the
conventional implementation of the same set of entailments in the same rule engine.
We used three rule engines (Bossam [33], the forwardRETE rule engine of Jena [28]
and Jess [22]) and developed six prototype implementations: three DLE-based, using
the Pellet reasoner as the DL component, and three generic, i.e. direct implementation
of the entailments following the conventional EOR paradigm. Each prototype was
tested on the UOBM [26], Vicodi and wine ontologies1. Table 2 depicts the number of
entailment rules that each implementation involves. Notice that:
- Our intention is to test the behaviour of a rule engine following the DLE and the

generic EOR paradigms and not to compare these two paradigms on different
rule engines, since each rule engine has a different performance.

- We are not concerned about the completeness of reasoning, since it depends on
the number of the implemented entailments2. We want only to test the scalability
of the prototypes in terms of rule application time and memory utilization.

- The response time of queries over the ABoxes between a DLE-based and the
corresponding generic implementation in the same rule engine is the same, since
both approaches result in the same KB (inferred triples).

1 We obtained Vicodi and wine from kaon2.semanticweb.org/download/test_ontologies.zip
2 A set of OWL entailment rules can be found in http://www.agfa.com/w3c/euler/owl-rules.

BEGIN
1. T ← load(TBox)
2. classify(DLKB)
3. A ← load(ABox)
4. for each eA ∈ EA do RB ← load(eA)
5. for each prH ∈ PR do
6. for each (x1,…,xn) ∈ DLQH do
7. RB ← load(G[prH(x1,…,xn)])
8. RKB.run()
END

Fig. 1. The reasoning steps involved in a production rule-based DLE system.

Moreover we should mention that a fair comparison of the DLE prototypes with
existing EOR systems that use the same rule engines is not feasible since this requires
the implementation of the same set of entailments that the reasoners support, as well
as to follow the same implementation principles or potential optimizations. However,
the Bossam OWL reasoner does not provide the full set of the supported entailments,
and the Jena OWL reasoner and OWLJessKB implement some semantics internally
without entailments, such as the class intersection (Jena reasoner) or using defque-
ries and deffunctions (OWLJessKB). In order to conduct a fair comparison, we
re-implemented directly the same set of entailments in the three rule engines. The
experiments ran on Windows XP with 3.2 GHz processor, 2 GB RAM and 1.2 GB
maximum Java heap space.

Fig. 2 depicts the ABox reasoning performance of each prototype in each ontology
dataset. Each graph displays also the memory requirements of each implementation.
UOBM. We used a dataset of almost 810,000 triples (Fig. 2 (a)). DLE Bossam rea-
soned considerably faster than the Generic Bossam. In particular, it reasoned on five
times more triples until it reached the memory limit. DLE Jena displayed a notably
better performance than the Generic Jena, processing almost 200,000 more triples
without reaching the memory limit. Finally, DLE Jess managed to process faster a
dataset twice the size of the one processed by the Generic Jess.
Vicodi. These experiments were performed on three datasets (Fig. 2 (b)). DLE Jess
demonstrated a better performance than the Generic Jess both in terms of reasoning
time and memory utilization. DLE Jena processed the first two datasets in almost the
same time to the Generic Jena but with better memory utilization, enabling the proc-
essing also of the third dataset without reaching the memory limit. The same behav-
iour observed in DLE Bossam that managed to process the first two datasets without
reaching the memory limit. In contrast to DLE Jess, DLE Bossam and DLE Jena seem
to be affected by the number of the dse-entailments (1,159) of their rule base. How-
ever, the memory utilization remains still in lower levels than the generic prototypes.
Wine. The wine experiments used a dataset of about 110,000 triples (Fig. 2 (c)). DLE
Bossam processed the dataset significantly faster than the Generic Bossam, using half
of the available memory. Generic Jena displayed a poor reasoning performance, while
the DLE Jena managed to load the dataset in a reasonable time limit. Finally, Generic
Jess processed only half triples than DLE Jess before reaching the memory limit.

Fig. 3 (a) depicts the TBox reasoning times of the prototypes. Since the DLE im-
plementations are based on Pellet for TBox reasoning, they have the same TBox rea-
soning performance. Except for the wine ontology, Pellet achieves faster TBox infer-
encing than the generic entailment-based approaches. Bear in mind that the generic
prototypes had been implemented with a limited number of T-entailments (16 entail-
ments), while Pellet performs full TBox reasoning. The average dse-entailments gen-
eration time of the three DLE-prototypes is 250 ms (lines 5, 6 and 7 in Fig. 1).

Table 2. The number of the entailments involved in the DLE and Generic implementations.

 DLE Implementations
(dse-entailments + exceptional)

Generic Implementations
(generic entailments)

UOBM 323
Vicodi 1,164
wine 592

34
(16 terminological + 13 hybrid + 5 exceptional)

In order to give a gist about the ABox reasoning performance of Pellet and
KAON2, we present in Fig. 3 (b) the time needed by Pellet, KAON2 and DLE Jena to
retrieve the instances on some datasets (since KAON2 performs reasoning on demand
and thus, a query is required). We forced Pellet to completely realize the ABoxes
which is close to the total materialization approach of our six prototypes, since we
used forward chaining rule engines. For TBoxes with medium and large complexity,
i.e. many class restriction, intersection or equivalence axioms, such as the UOBM and
wine ontologies, Pellet does not perform well compared to the DLE approach, empha-
sizing the need for scalable implementations. On simple TBoxes, such as the Vicodi
ontology which contains only simple subclass axioms, Pellet performs better, but
KAON2 depicts the best performance, exploiting the ability to reason on demand.
However, on the other two ontologies of medium and large TBox complexity, the
DLE implementation performs better, especially on UOBM, even if it follows the
complete materialization approach. Notice that the results of Fig. 3 (b) cannot be
considered as a fair comparison, due to the limited semantics that the DLE prototype
supports and the different rule paradigm that it follows. A comparison of KAON2
with a backward chaining DLE implementation would be more meaningful. However,
Fig. 3 (b) gives a gist about the weak and strong points of each reasoning paradigm.

(a) UOBM

1

10

100

1000

10000

0 100 200 300 400 500 600 700 800 900

#triples (thousands)

Ti
m

e
(s

ec
)

DLE Bossam Generic Bossam
DLE Jena Generic Jena
DLE Jess Generic Jess

1.2GB1.2GB

1.2GB

251MB

1.2GB

1.2GB

(b) Vicodi

1 10 100 1000

DLE Bossam

Generic Bossam

DLE Jena

Generic Jena

DLE Jess

Generic Jess

Time (sec)

220K triples

110K triples

55K triples450MB
900MB

52MB
94MB

181MB436MB
825MB

183MB
411MB

458MB
960MB

950MB

(c) wine

1

10

100

1000

10000

0 20 40 60 80 100 120
#triples (thousands)

Ti
m

e
(s

ec
)

DLE Bossam Generic Bossam
DLE Jena Generic Jena
DLE Jess Generic Jess

1GB

700MB

150MB

812MB

680MB

710MB

Fig. 2. Results on ABox reasoning.

6 Related Work

To the best of our knowledge, the existing EOR systems, such as OWLJessKB [23],
Bossam [33], BaseVISor [27], Jena [28] and OWLIM [21], follow the same approach:
the asserted ontological knowledge is transformed into facts and TBox and ABox
entailment rules are applied. Although some systems offer the possibility to attach a
DL reasoner for both TBox and ABox OWL reasoning, e.g. Jena, none of them has
considered the possibility of using a DL reasoner in parallel with the rule engine for
OWL reasoning. The DLE framework works towards this idea, combining the TBox
inferencing capabilities of DL reasoners with the scalability of the EOR paradigm.

In [43] and [25], the entailments were enhanced with a dependency information,
denoting the rules that should be checked after the firing of each entailment. Although
this improves the performance, it is very difficult to manage such rule bases, since
any modification needs the reconfiguration of the correlations. Furthermore, our ex-
periments have shown that it is not the number of the rules that matters most, but the
complexity of their condition. Although the RB of the DLE approach contains more
rules than the conventional EOR paradigm, the inferencing procedure terminates
faster. However, we believe that a combination of the DLE with the approach of [43]
and [25] would increase even more the performance.

KAON2 [19] reduces OWL into disjunctive Datalog [18]. Its reasoning procedure
is based totally on rules and it is focused mainly on query answering. As it was men-
tioned in [35], DL reasoners have better classification performance on complex
TBoxes than KAON2. The DLE framework tries to embed this DL TBox efficiency
into the EOR paradigm. The ABox performance of KAON2 depends on the TBox,
having an increased performance on simple TBoxes.

Instance Store [15] combines a DL reasoner with a relational database. The idea is
to use the DL reasoner for TBox reasoning and the database to store the ABox. The
limitation of this approach is that it deals only with role-free ontologies, i.e. ontolo-
gies that contain only axioms of the form i : C. However, the use of a database is the
only solution when the ABox exceeds the size of main memory (see also [43] and
Owlgres [36] for DL-Lite). DLE has been only tested in main memory.

In [5] the embedding of different RDF entailments (including eRDFS) in F-Logic
is presented that can be used to extend RDF or to align RDF and OWL DL. The DLE

(a) TBox Reasoning

0,1

1

10

DLE Generic DLE Generic DLE Generic

Bossam Jena Jess

Ti
m

e
(s

ec
)

UOBM w ine Vicodi
Average dse-entailment generation: 250 ms

0,1

1

10

100

1000

UOBM
(24,800 triples)

Vicodi
(107,734 triples)

w ine
(3,619 triples)

Ti
m

e
(s

ec
)

Pellet KAON2 DLE Jena

83MB

475MB

179MB

48MB

47MB

29MB

10MB

94MB

12MB

(b) Pellet, DLE Jena and KAON2 instance retrieval times

Fig. 3. (a) TBox reasoning times, and (b) Pellet, KAON2 and Jena DLE instance retrieval times.

approach is focused only on the OWL language, defining an OWL reasoning frame-
work based both on a DL reasoner and a rule engine.

The notion of generating ABox rules in the conventional EOR paradigm was
briefly introduced in [30] and [31], where both the TBox and ABox reasoning are
performed only by a rule engine (RDF MT). DLE extends and enhances our previous
research, defining a new EOR reasoning paradigm (dedicated to OWL ontologies)
using DL reasoning for TBox inferencing and ABox entailment generation.

7 Conclusions and Future Work

In this paper we presented an approach for embedding the TBox inferencing capabili-
ties of DL reasoners into the EOR paradigm, resulting in an OWL-oriented reasoning
framework. In that way we are able to capture OWL TBox semantics without apply-
ing TBox entailments, as well as to enhance the EOR scalability in terms of reasoning
time and memory utilization. This is achieved by generating “engine-friendly” ABox
entailments, with less conditional elements in their body (thus less complex) than the
corresponding generic entailments of the traditional EOR paradigm.

We tested three DLE-based implementations against the three traditional EOR im-
plementations, using three well known rule engines. The experiments have shown that
although the DLE prototypes need to apply more rules than the corresponding EOR,
they achieve better reasoning performance (at least on the tested ontologies) in terms
of rule application time and memory utilization. We conclude that a DLE approach
can considerably enhance the performance of existing EOR systems (regarding OWL
reasoning), such as the Jena, OWLJessKB and Bossam OWL reasoners. More ex-
periments, however, need to be conducted in order to investigate the impact of the
number of the dse-entailments on the reasoning performance.

Although we define an entailment-free TBox framework, the DLE still depends on
entailments for ABox reasoning. Thus, it is still a rule-based approach with all the
modelling strengths and weaknesses comparing it to the DL paradigm, such as the
limited modelling capabilities with incomplete information, the closed-world reason-
ing or the Unique Name Assumption (UNA) (see [4][34][38] for details).

In section 4 we mentioned that DLE is a unidirectional framework able to handle
updates only on instances. However, in the hybrid paradigm, there is the notion of the
bidirectional combination, allowing the rule program to alter the ontological informa-
tion of the DL component [8][20][46]. This would be an interesting extension of the
DLE framework and we plan to implemented it by indexing appropriately the dse-
entailments in order to modify the RB according to TBox updates.

We are working on releasing a stable, DIG-compliant and more complete, in terms
of supported ABox entailments, Jena-based DLE system, since with the Jena rule
engine we achieved the best combination of memory utilization and reasoning per-
formance. We plan also to implement a DLE system using the backward-chaining rule
engine of Jena. As a practical application of the DLE framework, we consider the
domain of OWL-S Semantic Web Service discovery and composition, where there is
the need of efficient TBox reasoning on complex TBoxes, and scalable ABox reason-
ing on service advertisements that point to TBox concepts (inputs/outputs).

Acknowledgments. This work was partially supported by a PENED program (No.
03ΕΔ73), jointly funded by the European Union and the Greek government (GSRT).

References

1. Antoniou, G., Damasio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., Patel-
Schneider, P.F.: Combining Rules and Ontologies, REWERSE Deliverables, REWERSE-
DEL-2005-I3-D3, 2005.

2. Baader, F.: The Description Logic Handbook : Theory, Implementation and Applications.
Cambridge University Press.

3. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia
Logica, 69(1), 5-40. Springer.

4. de Bruijn, J., Lara, R., Polleres, A., Fensel, D.: OWL DL vs. OWL Flight: Conceptual
Modeling and Reasoning for the Semantic Web, International Conference on World Wide
Web, ACM Press, pp. 623-632, 2005.

5. de Bruijn, J., Heymans, S.: Logical foundations of (e)RDF(S): Complexity and reasoning.
International Semantic Web Conference (+ 2nd ASWC), Springer, pp. 86-99, 2007.

6. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and
Description Logics. Intelligent and Cooperative Information Systems, pp. 227-252, 1998.

7. Drabent, W., Henriksson, J., Maluszynski, J.: HD-rules: A Hybrid System Interfacing
Prolog with DL-reasoners, Applications of Logic Programming to the Web, Semantic Web
and Semantic Web Services, CEUR-WS, vol. 287, pp. 76-90, 2007.

8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Program-
ming with Description Logics for the Semantic Web, Knowledge Representation and Rea-
soning, pp. 141-151, 2004.

9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: NLP-DL: A Knowledge-Representation
System for Coupling Nonmonotonic Logic Programs with Description Logics, International
Semantic Web Conference, Galway, Ireland, 2005.

10. Grant, J., Beckett, D.: RDF Test Cases. 2004, http://www.w3.org/TR/rdf-testcases/.
11. Grosof, B. N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining

Logic Programs with Description Logic, WWW, ACM Press, pp. 48-57, 2003
12. Haarslev, V., Moller, R.: Racer: A Core Inference Engine for the Semantic Web, Interna-

tional Workshop on Evaluation of Ontology-based Tools, pp. 27-36, 2003.
13. Haarslev, V., Moller, R.: An Empirical Evaluation of Optimization Strategies for ABox

Reasoning in Expressive Description Logics, Description Logics, vol. 22, 1999.
14. Hayes, P.: RDF Semantics. 2004, http://www.w3.org/TR/rdf-mt/.
15. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: Description Logic Reason-

ing with Large Numbers of Individuals, Description Logics, vol. 104, pp. 31-40, 2004.
16. Horst, H.J.: Extending the RDFS Entailment Lemma, In Proceedings of the International

Semantic Web Conference. Springer, pp. 77-91, 2004.
17. Horst, H.J.: Completeness, Decidability and Complexity of Entailment for RDF Schema

and a Semantic Extension Involving the OWL Vocabulary, Journal of Web Semantics, vol.
3(2-3), pp. 79-115, 2005.

18. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ- Description Logic to Disjunctive Data-
log Programs, Knowledge Representation and Reasoning, Canada, pp. 152-162, 2004.

19. KAON2, http://kaon2.semanticweb.org/.
20. Kattenstroth, H., May, W., Schenk, F.: Combining OWL with F-Logic Rules and Defaults,

Applications of Logic Programming to the Web, Semantic Web and Semantic Web Ser-
vices. Vol. 287 (pp. 60-75), CEUR-WS, 2007.

21. Kiryakov, A., Ognyanov, D., Manov, F.: OWLIM - A Pragmatic Semantic Repository for

OWL. Scalable Semantic Web Knowledge Base Systems, pp. 182-192, Springer, 2005.
22. Jess, http://herzberg.ca.sandia.gov/.
23. Kopena, J.: OWLJessKB, http://edge.cs.drexel.edu/assemblies/software/owljesskb/
24. Levy, A.Y., Rousset, M.: Combining Horn Rules and Description Logics in CARIN. Artifi-

cial Intelligence. Elsevier, vol. 104(1-2), pp. 165-209., 1998.
25. Li, H., Wang, Y., Qu, Y., Pan, J.Z.: A Reasoning Algorithm for pD*, 1st Asian Semantic

Web Conference, pp. 293-299, Springer, 2006.
26. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a Complete OWL Ontology

Benchmark, Third European Semantic Web Conf. (ESWC), pp. 125-139, 2006.
27. Matheus, C., Dionne, B., Parent, D., Baclawski, K., Kokar, M.: BaseVISor: A Forward-

Chaining Inference Engine Optimized for RDF/OWL Triples, In Digital Proceedings of the
5th International Semantic Web Conference, ISWC 2006, Athens, GA, Nov. 2006.

28. McBride, B.: Jena, Implementing the RDF Model and Syntax Specification, International
Workshop on the Semantic Web, vol. 40, CEUR-WS, 2001.

29. McGuinness, D.L., Harmelen, F.: OWL Web Ontology Language Overview, W3C Rec-
ommendation. http://www.w3.org/TR/owl-features/.

30. Meditskos, G., Bassiliades, N.: Rule-based OWL Ontology Reasoning Using Dynamic
ABOX Entailments, 18th European Conference on Artificial Intelligence (ECAI), pp. 731-
732, IOS Press, Patras, Greece, 2008.

31. Meditskos, G., Bassiliades, N.: A Rule-Based Object-Oriented OWL Reasoner, IEEE
Transactions on Knowledge and Data Engineering, vol.20, no.3, pp.397-410, March 2008.

32. Mei, J., Lin, Z., Boley, H.: ALC: An Integration of Description Logic and General Rules, In
Proceedings of the Web Reasoning and Rule Systems. Springer, pp. 163-177, 2007.

33. Minsu, J., Sohn, J.C.: Bossam: An Extended Rule Engine for OWL Inferencing. Rules and
Rule Markup Languages for the Semantic Web, pp. 128-138, 2004.

34. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming Live
Together Happily Ever After?, International Semantic Web Conference, pp. 501-514, 2006.

35. Motik, B., Sattler, U.: A Comparison of Reasoning Techniques for Querying Large De-
scription Logic ABoxes, Logic for Programming Artificial Intelligence and Reasoning, pp.
227-241, 2006.

36. Owlgres, http://pellet.owldl.com/owlgres
37. Pan J.Z., Horrocks, I.: RDFS(FA) and RDF MT: Two Semantics for RDFS, International

Semantic Web Conference, pp. 30-46, Springer, 2003.
38. Patel-Schneider, P. F., Horrocks, I.: A Comparison of Two Modelling Paradigms in the

Semantic Web, International Conference on World Wide Web, pp 3-12, ACM Press, 2006.
39. Rosati, R.: Towards expressive KR systems integrating datalog and description logics,

Workshop on Description Logics, CEUR-WS, vol. 22, pp. 160-164, 1999.
40. Rosati, R.: Semantic and Computational Advantages of the Safe Integration of Ontologies

and Rules. In Proc. Principles and Practice of Semantic Web Reasoning, pp. 50-64, 2005.
41. Rosati, R.: DL+log: Tight Integration of Description Logics and Disjunctive Datalog. Prin-

ciples of Knowledge Representation and Reasoning, AAAI Press, pp 68-78, 2006.
42. Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database Engine,

ACM SIGMOD Record, 23(2), 442-453, 1994.
43. Sesame, http://openrdf.org/
44. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-DL

Reasoner, Journal of Web Semantics, 5(2), 51-53, 2007.
45. Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description. In Pro-

ceedings of Automated Reasoning, Springer, pp. 292-297, 2006.
46. Wang, K., Billington, D., Blee, J., Antoniou, G., Combining Description Logic and Defea-

sible Logic for the Semantic Web, Rules and Rule Markup Languages for the Semantic
Web, pp. 170-181, Springer, 2004.

