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Antipatterns provide information on commonly occurring solutions to problems that generate negative
consequences. The number of software project management antipatterns that appears in the literature
and the Web increases to the extent that makes using antipatterns problematic. Furthermore, antipat-
terns are usually inter-related and rarely appear in isolation. As a result, detecting which antipatterns
exist in a software project is a challenging task which requires expert knowledge. This paper proposes
SPARSE, an OWL ontology based knowledge-based system that aims to assist software project managers
in the antipattern detection process. The antipattern ontology documents antipatterns and how they are
related with other antipatterns through their causes, symptoms and consequences. The semantic rela-
tionships that derive from the antipattern definitions are determined using the Pellet DL reasoner and
they are transformed into the COOL language of the CLIPS production rule engine. The purpose of this
transformation is to create a compact representation of the antipattern knowledge, enabling a set of
object-oriented CLIPS production rules to run and retrieve antipatterns relevant to some initial symp-
toms. SPARSE is exemplified through 31 OWL ontology antipattern instances of software development
antipatterns that appear on the Web.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A successful way for solving newly encountered problems is by
subconsciously applying a solution that has been previously ap-
plied successfully to a similar problem (Laplante & Neil, 2006). This
approach requires experience through successes and failures and
expertise in order to identify such problem and solution pairs
and then document them as patterns (Alexander, 1979). In soft-
ware engineering, design patterns describe a recurring problem
and its solution. Design patterns can reduce development time
by providing proven development paradigms (Gamma, Helm,
Johnson, & Vlissides, 1994). By documenting design patterns, soft-
ware developers and architects can reuse design patterns in order
to prevent subtle issues that can cause major problems. The useful-
ness of studying the successful ways of solving problems has been
well proved in software engineering by the valuable concept of de-
sign patterns. However, design patterns focus on coding and archi-
tectural issues and can not be used in order to document and share
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software project management knowledge. In software project
management, it is much easier to identify a defective situation
than to implement a solution to a given problem.

The primary cause of software project failure is the lack of
appropriate software project management. In project manage-
ment, commonly occurring repeated bad practices are referred to
as antipatterns. Antipatterns are the latest generation of design
pattern research. Software project success or failure can be attrib-
uted to the incorrect handling of one or more project variables:
people, technology and process (Brown, McCormick, & Thomas,
2000). Antipatterns have been proposed as mechanisms for man-
aging these project variables. These mechanisms describe how to
arrive at a good (refactored) solution from a fallacious solution that
has negative consequences (Brown et al., 2000). As a result, manag-
ers are able to avoid the specious solution(s) that have resulted in
finding themselves in an unhealthy situation for the organization
and the individual (Laplante & Neil, 2006). Using antipatterns, a
software project can be managed more effectively by bringing in-
sight into the causes, symptoms, consequences, and by providing
successful repeatable solutions (Brown, Malveau, McCormick, &
Mowbray, 1998).

The number of antipatterns that appears documented in the
literature (Brown et al., 1998, 2000; Laplante & Neil, 2006) and
the Web (Pattern Community Antipattern Catalogue, 2010;
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Table 1
Antipattern structure.

Name A short name that conveys the antipattern’s meaning
Central concept The short synopsis of the antipattern
Dysfunction The problems and symptoms of the current practice
Explanation The expanded explanation including causes and

consequences
Band-aid A short term coping strategy for those who cannot

refactor it
Self-repair The first step for someone perpetuating the antipattern
Refactoring What changes should be done to remedy the situation
Identification A list of questions for diagnosis of the antipattern

Table 2
Attributes relating software project management antipatterns.

Causes A list which identifies the causes of this antipattern
Symptoms A list which contains the visible symptoms of this

antipattern
Consequences A list which contains the consequences that result

from this antipattern
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Software Project Antipattern-Pardon, 2010; Software Project
Management Antipattern Blog, 2010; Wikipedia Antipatterns,
2010) is increasing. Furthermore, there are significant challenges
for software project managers in using antipatterns during a soft-
ware project, because antipatterns are usually related to other
antipatterns and rarely appear in isolation (Brown et al., 2000;
McCormick, 1999). Documenting antipatterns is also a difficult
task. Managers need to decide which template to use from a vari-
ety of antipattern templates (Brown et al., 2000; Laplante & Neil,
2006) available. Furthermore, the antipatterns that appear on the
Web are documented in a more unofficial manner that usually
do not conform to templates. This introduces difficulty in under-
standing antipatterns and identifying how such antipatterns are
inter-related with other antipatterns, which are properly
documented.

Based on formalisms (Settas, Bibi, Sfetsos, Stamelos, & Gerogiannis,
2006; Settas & Stamelos, 2007a) and models (Settas, Sowe, &
Stamelos, 2009; Settas & Stamelos, 2008) tools that can assist man-
agers in carrying out project management related tasks using
antipatterns can be developed. In spite of numerous software pro-
ject management antipattern formalisms and methodologies pro-
posed, the computer-mediated dissemination of knowledge
encoded in software project management antipatterns still re-
mains an open issue. As a result, managing software projects using
antipatterns is not popular in the practitioners’ community.
For antipatterns to become a widespread practice, a knowledge-
based system that assists managers in detecting antipatterns is
required.

In this paper, we describe SPARSE (symptom-based antipattern
retrieval system using Semantic Web technologies), our approach
to assist the antipattern detection process according to the symp-
toms that are visible during a software project, by introducing
Semantic Web technologies and tools. SPARSE is an ontology sup-
ported knowledge-based system that is based on the DL knowledge
representation formalism, providing an ‘‘upper-level’’ OWL ontol-
ogy for describing antipattern resources and their relationships,
in terms of symptoms, causes and consequences. Based on the
inferencing capabilities of the Pellet DL reasoner (Sirin, Parsia,
Grau, Kalyanpur, & Katz, 2007), the ontological knowledge is im-
ported as an object-oriented (OO) model in the COOL language of
the CLIPS production rule engine (Riley, 1991), where OO produc-
tion rules derive conclusions and assist project managers to
determine antipatterns. The antipattern OWL ontology has been
populated with data on 31 antipatterns that exist on the Web
(Pattern Community Antipattern Catalogue, 2010; Software Project
Management Antipattern Blog, 2010; Software Project Antipattern-
Pardon, 2010; Wikipedia Antipatterns, 2010).

The main contribution of SPARSE is that it offers an extensible
framework under which antipatterns may be semantically defined,
managed and discovered, using already established Semantic Web
standards and tools, such as OWL ontologies and DL reasoners. In
that way, SPARSE can propose directly related but also semanti-
cally retrieved antipatterns, according to a list of visible symptoms
that may exist in a software project.

This paper is divided in six sections, which are organized as fol-
lows: Section 2 describes the background, the related work and the
literature review used in our research. Section 3 describes the anti-
pattern ontology, data collection and SWRL rules used in SPARSE.
Section 4 describes the rule program of SPARSE. This includes a
description of the COOL model, validation rules, the object-
oriented mapping procedure and how SPARSE searches for antipat-
terns. In Section 5, the process of creating new instances of the
antipattern ontology and using SPARSE to propose directly related
but also semantically retrieved antipatterns, is described. Finally,
in Section 6, the findings are summarized, future work is proposed
and conclusions are drawn.
2. Background and related work

2.1. Software antipatterns

Antipatterns provide real-world experience in recognizing
recurring problems in software development and provide the tools
to enable developers, architects and managers to identify these
problems and determine their underlying causes (Brown et al.,
1998). Another benefit of using antipatterns in software develop-
ment is that these mechanisms provide a common vocabulary of
expressing and identifying problems and discussing solutions.
There exist different kinds of antipatterns (Brown et al., 1998):
Software Development, Software Architecture and Software Project
Management antipatterns. Laplante and Neil (2006) have also doc-
umented environmental antipatterns which are the result of mis-
guided corporate strategy or uncontrolled socio-political forces.

Software projects not only fail because of their inherent com-
plexity, but also because of poor project management. Ineffective
software project management is a major factor that contributes
to software project failure. Software project management antipat-
terns are caused by the lack of understanding of how to manage
software development projects (Brown et al., 2000). These mecha-
nisms define a bad project management practice through a
description of its causes, symptoms and consequences. The refac-
tored solution is what makes antipattern beneficial by describing
how to avoid the antipattern as well as how to resolve the prob-
lems caused by the antipattern.

Various templates can be used in order to document antipat-
terns. Brown et al. (1998) has proposed several templates that
can be used to document antipatterns according to the level of de-
tail that the antipattern author wishes to use. The full antipattern
template contains a number of optional and required sections. Lap-
lante’s informal presentation style is a more compact template that
focuses on identifying the dysfunction and remedies for all those
involved (Laplante & Neil, 2006) (see Table 1).

Antipatterns can appear isolated but can also be related with
other antipatterns. The later type is referred to as interacting antip-
atterns (Brown et al., 2000) and is evident when a project manage-
ment antipattern causes a software development antipattern or an
architecture antipattern. SPARSE focuses on software project man-
agement antipatterns but takes into account the fact that these
antipatterns can be related with other types of antipatterns. Antip-
atterns can be related through the attributes of Table 2.



Fig. 1. Example dataset of how antipatterns can be related through their attributes.
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Fig. 1 illustrates an example relationship between three different
antipatterns, through their causes, symptoms and consequences.

In this example, the ‘‘Death by Planning’’ project management
antipattern interacts with the other two antipatterns through the
symptom ‘‘Inaccurate schedule’’. SPARSE operates with a symptom
based approach. If a project manager has selected the ‘‘Inaccurate
schedule’’ symptom, SPARSE can report the directly matching
‘‘Death by Planning’’ antipattern but also detects the other two re-
lated antipatterns of the example and other semantically related
antipatterns. The following sections describe the underlying tech-
nology of SPARSE and the architecture of the proposed knowl-
edge-based system.

2.2. OWL ontologies and description logic reasoning

The Web Ontology Language (OWL)1 is the W3C recommenda-
tion for creating and sharing ontologies in the Web and its theoret-
ical background is based on the Description Logic (DL) (Baader, 2003)
knowledge representation formalism, a subset of predicate logic. For
example, OWL DL and OWL Lite are based on SHOIQðDÞ and
SHINðDÞ, respectively. An OWL ontology is actually a finite set of
DL axioms, such as axioms about concepts, concept inclusions
(C v D), role definitions, role inclusions (R v S), concept assertions
(C(a)) and role assertions (R(a, b)), where C, D are concepts, R, S are
roles and a, b are instances. These axioms can be divided into two
categories, namely the TBox and the ABox of the ontology. The TBox
consists of the concept and role definitions/inclusions, and the ABox
of concept and role assertions. Intuitively, the TBox refers to the
schema of the ontology, whereas the ABox to the instances.

The formal semantics of the OWL language enable the applica-
tion of reasoning techniques in order to make logical derivations.
These derivations are performed by the reasoners, which are sys-
tems able to handle and apply the semantics of the ontology lan-
guage. There are several OWL DL reasoners (Haarslev & Möller,
2003; Sirin et al., 2007; Tsarkov & Horrocks, 2006) that implement
DL algorithms, such as the tableaux-based algorithms (Baader &
Sattler, 2001). Assuming that KB ¼ ðT ;AÞ is a DL knowledge base
with the TBox T and the ABox A, basic DL reasoning problems
include:

� Concept equivalence. Two concepts C and D are equivalent in T if
and only if T � C v D and T � D v C:
1 http://www.w3.org/TR/owl-features/.
� Concept subsumption. A concept C is subsumed by D in T if and
only if C u :D is not satisfiable in T .
� Satisfiability. A concept C is satisfiable in T if and only if C is not

subsumed by \ (owl:Nothing) or ðT ; fi : CgÞ is consistent.
� Realization. is an instance of C according to the KB if and only if
ðT ;A [ fi : :CgÞ is not consistent.

2.3. Semantic Web and rule-based systems

Rule-based systems have been extensively used in several
applications and domains, such as e-commerce, personalization,
games, businesses and academia. The ability of manipulating and
using semantically annotated information into rule systems is vital
for both businesses and the successful proliferation of Semantic
Web technologies, since it enables the already existing and well-
known infrastructure of rule engines to gain access in the new evo-
lution of Semantic Web.

There are practically two approaches for the development of
rule-based applications in the Semantic Web, following a tight or
a loose combination of rules and ontologies. In the first approach,
the rule engine is used both for reasoning on the ontological
knowledge and for running the rule program. Such approaches,
known also as homogeneous (Antoniou et al., 2005), treat rule
and ontology predicates homogeneously, as a new single logic lan-
guage. The general idea is that rules can use unary and binary pred-
icates from the ontology (i.e., classes and properties), as well as
predicates that occur only in rules (rule predicates).

In the second approach, an external DL reasoner is interfaced to
the rule engine. In such architectures, also known as hybrid
(Antoniou et al., 2005), a modular architecture of two subsystems
is followed, each of which deals with a distinct portion of the
knowledge base. More specifically, they combine the reasoning
capabilities of the DL reasoning paradigm and the rule execution
capabilities of a rule engine, separating rule and ontology
predicates.
2.4. Motivation

There are three underlying technologies involved in SPARSE: (a)
ontologies, through the use of the OWL ontology language, (b) DL
reasoners, through the use of the Pellet DL reasoner and (c) produc-
tion rule engines, through the use of the CLIPS production rule en-
gine. In the following we justify the decision of using these
technologies and tools.

http://www.w3.org/TR/owl-features/
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2.4.1. Antipatterns and ontologies
Ontologies have been created by the AI community in order to

facilitate knowledge sharing and reuse by interweaving human
understanding with machine processability (Van Harmelen,
2003). In the domain of antipatterns, ontologies can be used as a
vocabulary of terms for describing the task/domain knowledge of
antipatterns. The antipattern ontology contains information of
antipatterns and antipattern attributes and describes how these
attributes are interconnected in an antipattern and between sev-
eral related antipatterns. By defining a top level ontology for
describing antipatterns, we have the following advantages.

1. Collaborative definition of antipatterns, allowing software pro-
ject managers to create antipatterns using new ontology
instances of causes, symptoms and consequences or using any
such attributes that have already been documented. The stan-
dard-based and open-world nature of OWL ontologies allow
their extension, reuse and merge, creating an antipattern
knowledge base that encapsulates different perspectives,
according to the project they appear in.

2. Semantic processing of antipatterns, based on DL algorithms
(DL reasoners). DL reasoners ensure the semantic consistency
of the ontology-based antipatterns, as well as the derivation
of any implicit (hidden) knowledge that derives from the anti-
pattern definitions. In SPARSE we have used the Pellet DL rea-
soner (Sirin et al., 2007) as the underlying reasoning
infrastructure.

3. Exploitation of the research that has been done on the combina-
tion of rules and ontologies. In that way, we are able to express
richer semantic relationships among antipatterns, in a more
declarative way. SPARSE is able to incorporate logical conse-
quences expressed as SWRL rules (Horrocks et al., 2004) that
are handled by the underlying Pellet DL reasoner.

2.4.2. Antipatterns and rule-based systems
Antipatterns can benefit software managers by catering for the

collaborative exchange of software project management knowl-
edge using software tools. Knowledge-based systems are a branch
of applied artificial intelligence (AI), and can transfer knowledge
from a human to a computer (Liao, 2005). The computer can then
make inference and arrive at conclusions in order to provide spe-
cific advise to its users (Turban & Aronson, 2001). Different meth-
odologies can be used to develop a knowledge-based system such
as rule-based systems, neural networks and fuzzy expert systems
(Liao, 2005). SPARSE follows the rule-based approach, using the
CLIPS production rule engine and the COOL language in order to
build a knowledge based expert system over the OO antipattern
model that derives from DL reasoning. Therefore, SPARSE follows
the hybrid paradigm.

In SPARSE we make a distinction between the ontology infer-
ence rules and the domain rules that are used for deriving conclu-
sions over the ontological knowledge (CLIPS production rules). The
former are used at the ontology reasoning level and they are
embedded into the DL reasoning procedure in order to infer the
appropriate semantic relationships among antipatterns. The latter
are used for defining the rule-based applications over the OO mod-
el of the extensional ontological knowledge, without altering the
ontology itself. In that way we give the opportunity to use an effi-
cient and well-known production rule engine in order to develop
the rule-based application of SPARSE over a shared ontology in a
hybrid manner.

Object-oriented model. OWL is built upon RDF and RDFS and has
the same syntax, the XML-based RDF syntax (Beckett, 2004). A
more machine processable syntax is the N-Triples format (Grant
& Beckett, 2004), that is a textual format for RDF graphs which
stems directly from the RDF/XML syntax. More specifically,
N-Triples is a line-oriented format where each triple must be writ-
ten on a separate line, and consists of a subject, a predicate and an
object.

A common way of representing the asserted and inferred OWL
ontology axioms in a rule engine is to store the ontology triples
in the form of facts. The limitation of the triple-based represen-
tation is that it is not able to exploit any form of semantics that
could potentially exist in the environment where the mapping
will take place. In that way, all the triples should be explicitly
stated, following a brute force approach with increased space
requirements. We argue that the semantics of an OO
environment can be effectively used in order to represent the in-
stance-related DL reasoner axioms in an OO model that embeds
the notion of class subsumption transitivity. In SPARSE, instead
of defining the CLIPS rule-based application directly over the
ontology triples that derive from DL reasoning, we perform a
transformation of the derived ontological knowledge of Pellet
into the COOL OO language of CLIPS. The purpose of this transfor-
mation is twofold:

1. The generated OO knowledge base is more compact than the
corresponding triple-based model. This happens since the OO
model exploits the environmental class and property semantics,
such as class and property inheritance, in contrast to the
triple-based model that needs to state explicitly all the relevant
relationships. In that way, we are able to group the related
information about an antipattern instance in a single resource
represented as an object and we can have direct access to all
of its properties and values by exploiting the message passing
mechanism of CLIPS.

2. The rule-based application of SPARSE consists of OO production
rules that match objects and not triple-based facts. We consider
the utilization of domain rules as a more intuitive rule program-
ming paradigm than of the triple-based rules, using OO nota-
tions and semantics that are well established.

2.5. Related work

The majority of antipattern literature is concerned with docu-
menting new antipatterns. This includes books (Brown et al.,
1998, 2000; Laplante & Neil, 2006), conference proceedings and
journal papers (Kuranuki & Hiranabe, 2004; Laplante, Hoffman, &
Klein, 2007; Krai & Zemlicka, 2007), but also Web sites (Pattern
Community Antipattern Catalogue, 2010; Wikipedia Antipatterns,
2010) and blogs (Software Project Management Antipattern Blog,
2010). This provides researchers, field practitioners and academics
with a wide variety of antipatterns on all software antipattern
types including software project management.

Previous work has proposed a variety of formalisms that can be
used in order to represent software project management antipat-
terns such as Bayesian networks (Settas et al., 2006) and ontologies
(Settas & Stamelos, 2007a, 2007b). Methodologies such as the
Dependency structure matrix (Settas & Stamelos, 2008) and
semantic social networks (Settas et al., 2009) have addressed the
issue of ontology similarity and resolved the complexity between
inter-related antipatterns. Given two antipattern ontologies, the
same entity can be described using different terminology. There-
fore, the detection of similar antipattern ontologies is a difficult
task. The three layered antipattern semantic social network (Settas
et al., 2009) involves the social network, the antipattern ontology
network and the concept network. Social Network Analysis (SNA)
techniques can be used to assist software project managers in find-
ing similar antipattern ontologies. For this purpose, SNA measures
can be extracted from one layer of the semantic social network to
another and use this knowledge to infer new links between anti-
pattern ontologies.



Fig. 2. The concept hierarchy of the antipattern ontology.
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The architecture of PROMAISE (Settas & Stamelos, 2007b) pro-
vided the framework for the implementation of the expert system
using Semantic Web techniques. The PROMAISE intelligent sys-
tem (Settas & Stamelos, 2007b) has been proposed as a frame-
work to allow an antipattern knowledge base to be created and
updated dynamically using the antipattern OWL ontology. The
antipattern ontology specified the conceptual structure of the
antipattern knowledge base, encoded tacit software project man-
agement knowledge into computer understandable form and
allowed the sharing and reuse of this knowledge by software
tools. Furthermore, the issue of capturing and quantifying
uncertainty in the antipattern ontology has been addressed by
including the concepts of antipattern BN models and their corre-
sponding OWL ontology in the design of the generic antipattern
ontology.

Design patterns have been used successfully in recent years in
the software engineering community in order to share knowledge.
The issue of providing expert advice to developers regarding the
selection of design patterns has been discussed in the literature
(de Souza & Ferreira, 2002; Dietrich & Elgar, 2005; Henninger,
2006; Moynihan, Suki, & Fonseca, 2006). Moynihan et al. (2006)
proposed the development of a prototype expert system for the
selection of design patterns that are used in object-oriented soft-
ware. The prototype system represents an initial step towards pro-
viding an automated solution regarding the design pattern
application problem, i.e. leading a designer to a suitable design pat-
tern which is applicable to the problem at hand. Design patterns
have also been used as a different approach to help designers pro-
mote reuse in rule-based knowledge systems (de Souza & Ferreira,
2002). In this work, design patterns described a reusable architec-
ture for rule-based systems. The aim of these patterns was to con-
stitute a design catalog that can be used by designers to
understand and create new rule-based systems, thus promoting re-
use in these systems.

Semantic Web technologies have also been applied in the con-
text of design patterns in order to create a distributed repository
of patterns that relate problems to solutions through typed rela-
tionships that manifest a systems design method (Henninger,
2006). Defining the criteria for pattern languages in a formal med-
ium, such as Description Logic (DL) in OWL, facilitated a degree of
utility not afforded in informal representations. In addition to log-
ical inference, the author in Henninger (2006) identified that rules
can be applied to the pattern descriptions and relationships to fur-
ther enrich pattern languages. The Web ontology language (OWL)
has been used to formally define design patterns and some related
concepts such as pattern participant, pattern refinement, and pat-
tern instance (Dietrich & Elgar, 2005). The resulting prototype Java
client accesses the pattern definitions, detects patterns in Java soft-
ware, and analyzes some scan results.

Despite of the extensive body of literature of design pattern
applications on knowledge based systems and Semantic Web tech-
nologies, as far as we are aware, the research summarized in this
paper represents the first implementation of a knowledge based
system that supports software project managers in the antipattern
selection process.
3. The antipattern OWL ontology

SPARSE provides an initial top-level antipattern OWL ontology
as a starting point for defining antipatterns. The ontology consists
of 7 concepts, 21 roles (19 object and 2 datatype roles), 192 indi-
viduals and 7 SWRL rules. The current DL expressivity is
ALCHNðDÞ, that is, ALC with role hierarchies, cardinality restric-
tions and datatype properties. The ontology can be extended,
both with OWL constructs and SWRL rules, according to user
requirements. In this section we describe the default semantic
capabilities that are provided through the ontology.
3.1. Concept definitions

The antipattern ontology consists of seven concepts whose hier-
archical relationships are depicted in Fig. 2. In addition to the intu-
itive Antipattern concept, we have included three more
concepts as subclasses of the Antipattern concept in order to
demonstrate the way the ontology hierarchy can be extended with
custom concepts according to managers’ needs. In the rest of this
section we analyze the concept definitions and semantics using
the DL syntax.

The Cause concept is used in order to define the causes of the
ontology. It has been defined as the subclass of the intersection
of three universal role restrictions (see Section 3.2 for more details
about the roles of the ontology):

Cause v 8causeToCause:Cause u
8causeToSymptom:Symptom u
8causeToConsequence:Consequence

In that way, for a Cause instance, all of its values in the cau-

seToCause role belong to the Cause concept, all of its values in
the causeToSymptom role belong to the Symptom concept and
all of its values in the causeToConsequence role belong to the
Consequence concept.

The Symptom concept is used in order to define the symptoms
of the ontology. It has been defined as the subclass of the intersec-
tion of four universal role restrictions:

Symptom v¼ 8symptomToCause:Cause u
8symptomToSymptom:Symptom u
8symptomToConsequence:Consequence u
P 1symptomToConsequence:>

The definition is similar to the Cause concept, apart from an
additional restriction on the symptomToConsequence role that
defines the existence of at least one value in the role.

The Consequence concept is used in order to define the conse-
quences of the ontology and it has been defined as the subclass of a
single universal restriction:

Consequence v¼ 8consequenceToConsequence:Consequence

The Antipattern concept is the root concept of the antipat-
tern hierarchy and is defined in terms of at least one cause,
symptom and consequence instance values in the corresponding
roles:
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Consequence v¼ 8hasCause:Cause u
8hasSymptom:Symptom u
8hasConsequence:Consequence u
P 1 hasCause:> u
P 1 hasSymptom:> u
P 1 hasConsequence:>

The other three antipattern-related concepts have been defined
directly as subclasses of the Antipattern concept, that is,

SoftwareDevelopment v Antipattern

SoftwareArchitecture v Antipattern

SoftwareProjectManagement v Antipattern

It is important at this point to mention that the concept and in-
stance classification, as well as the consistency checking, are per-
formed by the Pellet DL reasoner. Therefore, the open-world
semantics are followed, that is, unstated information does not nec-
essarily mean negated information. For that reason, the role
restrictions we have described for the concept definitions do not
act as constraints, in terms of database constraints. For example,
it is valid to define an instance of the concept Symptom without
specifying a symptomToConsequence value or an antipattern in-
stance without a hasSymptom value, since the reasoner assumes
that such a value exists but has not been stated yet (open world).
However, all the values in the symptomToConsequence role of a
symptom instance will be classified in the Consequence concept
(necessary condition). In order to determine ontology inconsisten-
cies in terms of value constraints (e.g. integrity constraints), we ap-
ply a set of CLIPS production rules that we describe in Section 4.2.

3.2. Role definitions

The ontology roles allow the definition of basic knowledge re-
lated to antipattern causes, symptoms and consequences, as well
as to their correlations. Table 3 depicts a summary of the defined
roles. In the rest of this section we describe in detail the definition
of each role using the OWL RDF/XML syntax.

3.2.1. Documentation roles
The ontology defines two datatype roles for providing human-

readable textual descriptions for ontology instances. The title
Table 3
The roles of the antipattern ontology.

Role Description

title The title of a resource
description The description of a resource
causeToCause Correlates two causes
causeToConsequence Correlates a cause with a consequence
causeToSymptom Correlates a cause with a symptom
symptomToSymptom Correlates two symptoms
symptomToCause Correlates a symptom with a cause
symptomToConsequence Correlates a symptom with a consequence
consequenceToConsequence Correlates two consequences
hasCause Defines a cause for an antipattern
hasPrimaryCause Defines a primary cause
hasSecondaryCause Defines a secondary cause
hasImplicitCause Defines an implicit cause

hasSymptom Defines a symptom for an antipattern
hasPrimarySymptom Defines a primary symptom
hasSecondarySymptom Defines a secondary symptom
hasImplicitSymptom Defines an implicit symptom

hasConsequence Defines a consequence for an antipattern
hasPrimaryConsequence Defines a primary consequence
hasSecondaryConsequence Defines a secondary consequence
hasImplicitConsequence Defines an implicit consequence
role can be used in order to define a short title for an instance
and the description role can be used in order to provide a de-
tailed documentation. Intuitively, the title role can be used as
the human-readable description of an ontology instance rdf:ID.
Both roles are necessary for the successful interaction of the pro-
ject manager with the interface of SPARSE. For that reason, SPARSE
informs the user about the absence of values for any of the two
roles for an instance (see Section 4.2).

<owl:D�atatypeProperty rdf:ID="title">

<rdfs:range rdf:resource="& xsd;string"/>

</owl:DatatypeProperty>
<owl:D�atatypeProperty rdf:ID="description">

<rdfs:range rdf:resource="& xsd;string"/>
</owl:DatatypeProperty>

3.2.2. Cause, symptom and consequence object roles
The antipattern ontology allows the definition of correlations

among causes, symptoms and consequences. In that way, the
ontology reasoning procedures, that is, the Pellet DL reasoner and
the SWRL rules, are able to infer correlations that are not explicitly
stated in the ontology, exploiting the antipattern knowledge that
has been created by different managers. In this section, for simplic-
ity, we describe only the roles that correlate a cause with a cause, a
symptom and a consequence.

The causeToCause object role allows the correlation of a cause
with another cause. In that way, there is no need to state explicitly
all the causes of a specific antipattern. The ontology reasoning pro-
cedure through the SWRL rules that we describe in Section 3.4, is
able to infer all the relevant (implicit) causes for a specific antipat-
tern following the causeToCause relations.

<owl:ObjectProperty rdf:about="#causeToCause">

<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="#Cause"/>

</owl:ObjectProperty>

The causeToSymptom object role allows the correlation of a
cause with a symptom. The ontology reasoning procedure on this
role allows the inference of additional symptoms for a specific anti-
pattern, following the causeToSymptom relationships of asserted
or inferred causes.

<owl:ObjectProperty rdf:about="#causeToSymptom">

<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="#Symptom"/>

</owl:ObjectProperty>

The causeToConsequence object role allows the correlation of
a cause with a consequence. Similar to the previous role, the ontol-
ogy reasoning procedure on this role allows the inference of addi-
tional consequences for a specific antipattern, based on asserted or
inferred causes.

<owl:ObjectProperty
rdf:about="#causeToConsequence">
<rdfs:domain rdf:resource="#Cause"/>
<rdfs:range rdf:resource="#Consequence"/>

</owl:ObjectProperty>

Similar object roles to the above are also used for describing
symptoms. In this paper, we assume that for consequences, the
antipattern ontology defines only the consequenceToConse-

quence role, since SPARSE uses a symptom based approach and
also the relationships between consequences and symptoms are
better described through the symptoms of an antipattern.
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3.2.3. Antipattern roles
The hasCause, hasSymptom and hasConsequence roles are

used to define the causes, symptoms and consequences of an anti-
pattern, respectively. Note that due to the ontology reasoning pro-
cedure, an antipattern might result with more causes, symptoms or
consequences than it has been initially defined with, as we have
explained in the previous section.
Tab
Sou

S

W

P

S

<owl:ObjectProperty rdf:about="#hasCause">
<rdfs:domain rdf:resource="#Antipattern"/>
<rdfs:range rdf:resource="#Cause"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSymptom">

<rdfs:domain rdf:resource="#Antipattern"/>

<rdfs:range rdf:resource="#Symptom"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasConsequence">

<rdfs:domain rdf:resource="#Antipattern"/>

<rdfs:range rdf:resource="#Consequence"/>

</owl:ObjectProperty>

For each one of the above roles, the ontology defines three sub-
properties of the form hasPrimaryX, hasSecondaryX and has-

ImplicitX, with X being Cause, Symptom or Consequence. The
values of the properties of the first two types are explicitly stated
in the ontology, whereas the values of the properties of the third
type derive after ontology reasoning. For example, the subproper-
ties of the hasSymptom role are defined as:
<owl:ObjectProperty rdf:ID="hasPrimarySymptom">
<rdfs:subPropertyOf rdf:resource="#hasSymptom"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasSecondarySymptom">

<rdfs:subPropertyOf rdf:resource="#hasSymptom"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasImplicitSymptom">

<rdfs:subPropertyOf rdf:resource="#hasSymptom"/>
Fig. 3. The SWRL rules of SPARSE.
</owl:ObjectProperty>

The purpose of the subproperty relationships is to allow an
additional level of granularity during the definition of the antipat-
tern’s causes, symptoms and consequences that is used by the
underlying antipattern retrieval mechanism to sort the results
(see Section 4.4). For example, the antipatterns that match a spe-
cific symptom in their hasPrimarySymptom role are considered
more relevant than the antipatterns that match the same symp-
tom in their hasSecondarySymptom role. The implicit subprop-
erties are used by the SWRL rules in order to insert the values
they infer.
le 4
rces of antipatterns used in the antipattern OWL ontology.

ource Antipattern

ikipedia antipatterns Death march, Groupthink, Smoke a

attern community, Wiki antipattern, catalogue Analysis Paralysis, Architectre by Im
Blowhard Jamboree, Corn Cob, Carb
Waterhole, Egalitarian Compensati
Wall, Leading Request, Shoot The M
Thrown Over The Wall, Train The T

oftware Project Management Blogs Pardon my dust, Project Managers
3.3. OWL ontology data collection

For the purposes of this paper, the antipattern ontology has been
populated with data on 31 antipatterns that exist on the Web. Table 4
contains the sources of antipatterns used in the OWL ontology. The
most popular antipattern repositories that exist on the Web at the
moment are the Wikipedia Antipatterns Web page (Wikipedia
Antipatterns, 2010), the Pattern Community Antipattern Catalogue
(Pattern Community Antipattern Catalogue, 2010) and software pro-
ject management blogs (Software Project Management Antipattern
Blog, 2010; Software Project Antipattern-Pardon, 2010).

Using SPARSE, an antipattern can be categorized in any or all
three different types of antipatterns: development, architecture
or management. In the dataset used in this paper there exist a total
of 30 software project management antipatterns, 10 development
antipatterns and five architectural antipatterns. This implies that
some antipatterns belong to two or more categories.

Each antipattern is associated with at least one symptom and
the total number of symptoms that exist in the ontology is 63. Also
there exist 65 causes and 51 consequences.
3.4. SWRL rules

SPARSE comes with a set of seven SWRL rules that are used by
the Pellet DL reasoner in order to infer new antipattern causes,
symptoms and consequences based on their correlations. Fig. 3
presents the set of the SWRL rules. Note that all inferred values
are inserted into the corresponding implicit role. We follow such
an approach since the explanation mechanism of SPARSE (see Sec-
tion 4.4.3) needs to know whether a value has been derived after
ontology reasoning or it has been explicitly stated in the ontology,
in order to generate the appropriate explanation message.
Quantity

nd mirrors, Software bloat 4

plication, An Athena, Appointed Team, Architects Dont Code,
on Copy His Manager, Death By Planning, Decision By Arithmetic, Dry
on, Email Is Dangerous, Emperors New Clothes, Fear Of Success, Glass

essenger, Smoke and Mirrors, The BLOB, The Customers are Idiots,
rainer, Untested But Finished, Yet Another Meeting Will Solve It

25

who write specs 2
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To exemplify, consider an ontology that defines an antipattern
antip to have the symptom sym1 (hasSymptom(antip, sym1))
and that symptom sym1 is correlated with symptom sym2 (symp-
tomToSymptom(sym1, sym2)). By incorporating the SWRL rules in
the ontology reasoning procedure, we are able to infer also that
antipattern antip has the (implicit) symptom sym2 (rule 7 in
Fig. 3). Such type of reasoning is very useful since it enables the
collaborative definition of antipattern relationships, drawing con-
clusions using relationships that have been modeled by different
project managers, without requiring from them to be aware of
the complete domain knowledge.

It is worth mentioning the OWL two language (Grau et al.,
2008), an extension to OWL that allows the SWRL rules of SPARSE
to be expressed directly as property chains. For example, the rule 7
of Fig. 3 is actually a property chain of the form

hasSymptom o symptomToSymptom ! hasImplicitSymptom

that can be expressed in OWL two as

<rdf:D�escription>

<rdfs:subPropertyOf rdf:resource="#hasImplicit-

Symptom"/>
<owl:p�ropertyChain rdf:parseType="Collection">

<rdf:Description rdf:about="#hasSymptom"/>
<rdf:Description rdf:about="#symptomToSymp-

tom"/>
</owl:propertyChain>

</rdf:Description>

We plan to move to the OWL two language, as soon as the
underlying tools of SPARSE, i.e. the OWLAPI and the Pellet DL rea-
soner, provide stable and full support for OWL 2.
4. The rule program of SPARSE

SPARSE is based on the reasoning capabilities of the CLIPS pro-
duction rule engine in order to apply the antipattern matching
algorithm. In this section we make a short introduction to the
CLIPS production rule engine, we refer briefly to the basic elements
of the mapping procedure of the Pellet inferred knowledge base on
the COOL language of CLIPS and we analyze the antipattern match-
ing algorithms that are implemented over the generated COOL
model.
2 http://clipsrules.sourceforge.net/.
4.1. The COOL model

CLIPS is a RETE-based production rule engine written in C that
was developed in 1985 by NASA’s Johnson Space Center and it
has undergone continual refinement and improvement ever since.
Today it is widely used throughout the government, industry and
academia. Some of its main features are stability, speed, extensibil-
ity and low cost (public domain software).

One of the most interesting capabilities of CLIPS is that inte-
grates the production rule paradigm with the model, which can
be defined using the COOL (CLIPS object-oriented language) lan-
guage of CLIPS. In that way, classes, attributes and objects can be
matched in the production rule conditions (LHS), as well as to be
altered on rule actions (RHS), presenting a fully dynamic behavior.

The semantics of CLIPS are the usual production rule semantics:
rules whose condition is successfully matched against the current
data are triggered and placed in the conflict set. The conflict reso-
lution mechanism selects a single rule for firing its action, which
may alter the data. Rule condition matching is performed incre-
mentally, through the RETE algorithm.
Concerning the OO model, the semantics of CLIPS are the usual
of an OO programming environment. CLIPS supports abstraction,
inheritance, encapsulation, polymorphism and dynamic binding.
Some of the main OO features of CLIPS include:

� Single and multiple inheritance. It is possible to define multiple
direct superclasses for a CLIPS class. In that way, each object
of a subclass belongs also to all superclasses.
� Attribute inheritance. Class attributes are inherited to subclasses

as well.
� Message-based functionality. Each object is able to receive and

send messages to other objects. Every action related to objects
is performed via messages, such as the insertion of values into
object attributes (put message) or for reading the attribute val-
ues of an object (get message).
� Single and multifield attributes. Each attribute can be defined as a

single slot, taking only a single value, or as a multifield (multi-
slot) attribute, able to take more than one values in a form of a
list.

Fig. 4a depicts the basic COOL syntax for defining classes and
objects. A class is defined by specifying the name, one or more
superclasses, and zero, one or more multislot (attribute) definitions
with type constraints. The type constraint is used to restrict the
type of datatype attributes, and the allowed-classes constraint
denotes the class type of the objects that a multislot can take, using
the INSTANCE-NAME type constraint. The built-in USER class of
COOL must be the root class of the class hierarchy. An object is de-
fined by specifying the name inside brackets ([and]), which is actu-
ally the object ID, the class type and any multislot value. Fig. 4b
depicts the object pattern syntax that is used in CLIPS production
rules in order to match objects in the body of rules. An object is
matched if it satisfies the is-a class constraint, the name con-
straint and the constraints about multislot values. A variable,
which is denoted as ?x (a multislot variable is denoted as ?x),
can be used at any place, except for the multislot name.2
4.2. Validation rules

The rule program of SPARSE contains a set of validation produc-
tion rules that check the OO KB for simple inconsistencies, such as
the absence of object titles or descriptions. Furthermore, there are
rules that treat some OWL restrictions as database constraints, as
we have described in Section 3.1. For example, the following

http://clipsrules.sourceforge.net/
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production rule informs users about symptom objects that do not
define any symptomToConsequence value.

(defr�ule validation-rule-check-symptoms
(object

(is-a Symptom)

(title ?title)

(symptom ToConsequence $?cons & :
(eq (length$ $?cons) 0)))

=>
(printout t "The symptom" ?title ". . . " crlf))

4.3. The object-oriented mapping procedure

The goal of the mapping procedure is to preserve the exten-
sional knowledge of the ontology, that is, instance class member-
ship relationships and instance role values, in terms of object
class type declarations and object attribute values, respectively.
To achieve this goal, the mapping procedure consists of two
phases: (a) the generation of an OO schema of classes with attri-
butes that is not necessarily compliant with the TBox ontology
semantics, but it is specially defined in order to preserve the ABox
semantics, and (b) the definition of the objects and their attribute
values with respect to the previously defined OO schema. The inad-
equacy of preserving the terminological semantics of OWL ontolo-
gies in the OO model does not affect the importance of our
methodology, since in many rule-based application, such as
SPARSE, we are usually interested in the extensional knowledge
of a domain, which we are able to fully represent in our OO model.

Note that the mapping approach is not intended to be used as a
framework for manipulating ontologies with rules. Instead, it is
suitable in cases where there is a need for building rule-based
applications using the extensional ontological information as the
back-end base model, following the declarative rule paradigm
rather than the procedural programming. The domain where
SPARSE targets at is fully compliant with this requirement. Based
on the antipattern ontology, the rule-based program of SPARSE
operates over the extensional knowledge of the antipattern ontol-
ogy (objects), retrieving relevant antipatterns according to an ini-
tial set of symptoms.

In this section we present the basic characteristics of the map-
ping procedure of the Pellet inferred KB on the COOL model of
CLIPS that is necessary for the legibility of the antipattern retrieval
algorithms that we present in Section 4.4. The interested reader
may refer to Meditskos and Bassiliades (2008a) and Meditskos
and Bassiliades (2008b) for more technical details.

4.3.1. Mapping ontology concepts and roles
The mapping procedure of the antipattern’s ontology TBox is

based on the subsumption hierarchy that is computed by Pellet
and results in an OO schema of classes with attributes. There are
two basic characteristics:

� For each named ontology concept, there is a corresponding OO
class. Therefore, only the named ontology concepts are mapped
on the OO model. Any restriction and anonymous concept are
used only by the Pellet DL reasoner in order to perform concept
classification and instance realization.
� For each ontology role, there is at least one attribute (multislot)

definition in an OO class. The class where the attribute is
defined is determined based on the ontology domain restric-
tions and the attribute type is determined based on the range
restrictions.

In that way, every named ontology concept and role is accessi-
ble in the OO model and they can be used in COOL production rules
in order to match appropriate objects. To exemplify, the Symptom

concept is mapped on the following defclass construct.

(defclass Symptom
(is-a Thing)

(multislot s�ymptomToConsequence
(type INSTANCE-NAME)

(allowed-classes Consequence))

(multislot symptomToSymptom

(type INSTANCE-NAME)

(allowed-classes Symptom))

(multislot symptomToCause

(type INSTANCE-NAME)

(allowed-classes Cause)))

4.3.2. Mapping ontology instances and role values
With the mapping algorithms of concepts and roles the goal is

to generate the necessary infrastructure on which the objects will
be defined, allowing instance-related information to be queried
during the development of rule-based applications. There are two
basic characteristics:

� Each instance class membership relationship in the ontology is
mapped on an appropriate object class type declaration in the
OO model. This mapping is defined in such a way, so that each
ontology instance has a corresponding OO object that can be
retrieved by querying the corresponding OO classes to the
ontology concepts where the instance belongs in the ontology.
� An ontology instance and its corresponding object have the

same values in the corresponding roles/attributes.

The above relationships are defined in terms of the Unique
Name Assumption (UNA), since the instance equality of OWL can-
not be represented directly in the OO model. To exemplify, we
present a simplified definition, for legibility purposes, of a symp-
tom instance.

(make-instance [Focus_on_cost] of Symptom
(symptomToSymptom [Direct_pressure])
(symptomToConsequence [Failure_to_deliver])
(description "The focus becomes cost than

the actual delivery")

(title "Focus on cost"))

Note that the description and title attributes are defined
in the Thing class, since they do not have any domain restriction
(see Section 3.2.1). Therefore they are accessible by all the objects
of the OO KB since every class is a direct or indirect subclass of the
Thing class, such as the Symptom class.

4.4. Searching for antipatterns

The main functionality of SPARSE is to propose antipatterns
based on a set of symptoms that users select from the antipattern
ontology. The antipatterns that are returned by SPARSE can be clas-
sified into two categories:

� Symptom-based matched antipatterns. These are the antipatterns
that contain one or more user-selected symptoms.
� Relevant antipatterns. SPARSE proposes also a set of antipatterns

that might be relevant to the symptom-based returned antipat-
terns, examining their causes and consequences.

In the rest of this section we describe in detail the two antipat-
tern matching procedures and we elaborate on the explanation



3 http://protege.stanford.edu/.
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capabilities of SPARSE that justifies the presence of a specific anti-
pattern in the result set.

4.4.1. Symptom-based matched antipatterns
The matching of antipatterns based on symptoms is performed

by a set of production rules that traverse the antipattern objects of
the COOL KB and select the ones that satisfy one or more user-
selected symptoms. The results are ordered according to a rele-
vance score that is assigned to each matched antipattern.

Assuming that Obj(A) denotes the set of all the objects of the
class A and that o.p denotes the set of values of the object o for
the attribute p, the symptom-based antipattern matching proce-
dure is depicted in Algorithm 1.

More specifically, for each object antipattern a (line 3) the algo-
rithm collects its primary, secondary, implicit and undefined
symptoms that exist also in the set of the user-selected symptoms
Q (lines 5–9). An undefined symptom s is a symptom that has not
been categorized as primary, secondary or implicit in an antipat-
tern a, that is,

isUndefinedSymptomðs; aÞ () ¼ s R a:hasPrimarySymptom^
s R a:hasSecondarySymptom^
s R a:hasImplicitSymptom

For each retrieved antipattern, the algorithm assigns a score
based on the number of symptoms that it matches against its total
number of symptoms. The way each symptom category affects the
overall score can be adjusted using four weights. The default
weight values of SPARSE is wp = wu = 1 and ws = wi = 0.4. Finally,
the results are sorted in descending order based on their score
and are presented to the user.

4.4.2. Proposing relevant antipatterns
Apart from the symptom-based matched antipatterns, SPARSE

proposes also a set of potentially useful antipatterns that are rele-
vant to the former antipattern in terms of their causes and conse-
quences. Algorithm 2 summarizes the approach. More specifically,
the algorithm finds antipatterns that have common causes and/or
consequences with one or more symptom-based matched antipat-
terns. In this case, for simplicity, we do not take into consideration
any category difference of causes and consequences (primary, sec-
ondary, implicit and undefined), but we treat them as equivalent.
The overall score of an antipattern is computed as the mean value
of the partial scores of the antipattern with the symptom-based re-
trieved antipatterns that matches (lines 11–14).
4.4.3. Explanations
SPARSE implements an explanation mechanism that presents to

users in textual form the relationships that resulted in the
inclusion of a specific antipattern in the result set. In the case of
a symptom-based matched antipattern, SPARSE presents the
user-selected symptoms that the antipattern satisfies, along with
their category. In the case of a relevant antipattern to one or more
symptom-based matched antipatterns, SPARSE presents all the
relationships that the antipattern shares with the symptom-based
matched antipatterns, along with their category. In the next sec-
tion, we present the capabilities of SPARSE, along with the basic
steps that should be followed in order to define and detect
antipatterns.

5. Using sparse

In order to populate SPARSE with new antipatterns, software
project managers can use any OWL ontology editor, e.g. Protégé,3

in order to define antipattern ontology concepts and roles (as de-
scribed in Section 3). Besides populating the antipattern ontology,
the main functionality of SPARSE is to propose related antipatterns
according to the symptoms that exist in a software project. In this
section, the process of creating new instances of the antipattern
ontology is described. This section also describes how SPARSE can
be used in order to propose directly related but also semantically re-
trieved antipatterns, according to a set of symptoms that exist in a
software project.

5.1. Populating the OWL antipattern ontology using protégé

The first step that software project managers need to do before
populating the ontology with new antipatterns is to understand
the existing antipatterns and antipattern attributes that are

http://protege.stanford.edu/
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already documented in the ontology. As already mentioned, for the
purposes of this paper, the OWL antipattern ontology has been
populated with data from 31 antipatterns that exist on the Web.
The ontology also contains 63 symptoms, 65 causes and 51 conse-
quences. Therefore, it is important to use an ontology editor in or-
der to explore the existing antipatterns and attributes by reading
the associated description that is provided in plain text in the
Fig. 5. The individuals

Fig. 6. Example SPARSE window containing error messages because the req
ontology. This will enable users of SPARSE to reuse existing anti-
pattern attributes for the creation of new antipatterns. Alterna-
tively, software project managers can use SPARSE in order to
understand the existing antipatterns and the reasons why they
are related. Understanding the data that already exists in the ontol-
ogy, is an important step towards reducing redundancy and dupli-
cation of antipatterns or antipattern attributes.
tab in Protege 4.0.

uired concepts for a new antipattern have not been defined properly.
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The following properties can be defined for a new antipattern or
antipattern attributes: title, description, causeToCause,
causeToConsequence, causeToSymptom, symptomToCause,
symptomToConsequence, symptomToSymptom, consequen-

ceToConsequence, hasCause, hasSymptom, hasConsequense.
In order to create a new antipattern instance, an ontology editor
should be used, such as Protégé. In this case, the above ontology
Fig. 7. Example SPARSE window containing error messages becau

Fig. 8. Selecting a set of symptoms that ex
roles can be found in the individual tab of Protege (Fig. 5) through
which new antipatterns and attributes can be created.

The proposed order in which roles and concepts should be en-
tered is the following: first Consequences and possible
consequenceToConsequence values should be entered.
Symptoms should then be entered together with symptomToCon-

sequence values. Causes can now be defined together with
se the title and description fields have not been completed.

ist in a software project using SPARSE.
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causeToConsequenceandcauseToSymptomvalues. Finally, users
can define the antipattern and relate it with existing symptoms,
causes and consequences through the hasCause, hasSymptom
and hasConsequense roles. Users should be able to familiarize
themselves fairly quickly with the concepts and roles that already
exist in the OWL ontology. For example, every antipattern should
have at least one cause, symptom and consequence. Also every
symptom should have at least one or more symptom to consequence
value. If the predefined concepts and roles are not taken into
Fig. 9. The result window of SPARSE displaying related antipatterns that m

Fig. 10. The explanation window of SPARSE describin
account, the inconsistencies will appear on a window when launch-
ing SPARSE (Fig. 6).

In this case, Protégé should be used again in order to correct the
identified inconsistencies and enable SPARSE to be launched prop-
erly. Other important roles are the title and description of an
antipattern or antipattern attribute. This is mandatory to be com-
pleted and if, for example, the title is left uncompleted, SPARSE will
display an error message window (Fig. 7) requesting for this incon-
sistency to be resolved.
ight exist in a software project based on the set of selected symptoms.

g why an antipattern might be a relevant result.



7646 D.L. Settas et al. / Expert Systems with Applications 38 (2011) 7633–7646
5.2. Using SPARSE to detect related antipatterns

SPARSE is available as a desktop application. Users can
download SPARSE together with the OWL antipattern ontology
from the Web.4 SPARSE can be launched by executing the .JAR file.
The associated OWL ontology should then be imported from the File
menu. SPARSE will then display the available symptoms that can be
selected for program execution (Fig. 8).

After selecting a set of symptoms users can execute SPARSE. The
result window displays two sets of antipattern (Fig. 9). On the left
hand side there are the related symptom-based antipatterns,
which are antipatterns linked through their symptoms. Antipat-
terns that appear on the right hand side are related through causes
or consequences. By clicking on an antipattern SPARSE displays the
description and the refactored solution of the antipattern.

The process of selecting antipatterns has been discussed in Sec-
tion 4. SPARSE can provide explanations to its users on the reasons
that a specific antipattern has been proposed. Fig. 10 illustrates an
example of the explanations that SPARSE provides on how a selected
symptom linked through causes and consequences of other
antipatterns.

6. Summary and conclusion

Semantic Web technologies and knowledge-based systems
have provided antipatterns with new knowledge acquisition, rep-
resentation and sharing options. The proposed intelligent system
can bring the software project managers’ attention to focus on
antipatterns that are specifically suitable to a specific software pro-
ject. Hence, a software project manager who wishes to detect
antipatterns will not require expertise to determine which antipat-
tern is most likely to appear at a given moment.

Antipatterns offer a common vocabulary of terms that helps
software project managers to communicate better. However, with
the growing number of antipatterns appearing in the literature and
the Web with no relationships between each other, antipatterns
sometimes contradict, duplicate, or are inconsistent with each
other. SPARSE offers a framework to capture software project man-
agement knowledge and foster a community of software project
management contributors. We believe that this is an important
step towards resolving many of the problems that currently plague
the antipattern community.

As future work related to the proposed system, SPARSE can be
used to create a community of antipattern authors who contribute
knowledge by creating new instances of antipatterns. Eventually,
SPARSE will motivate the use of antipatterns in software project
management. Evaluation of the proposed software tool is neces-
sary in order to determine its suitability as a communication med-
ium for the antipattern community. Finally, the feasibility of using
SPARSE as a tool for teaching software project management should
also be investigated.
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