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1. Introduction1

Studies ranging from clinical trials and meta-analyses to systematic re-2

views are published at an exponential rate. This information is crucial to3

medical practitioners and researchers who rely on the latest published find-4

ings for their clinical decision-making process in order to provide better pa-5

tient care. However, due to the exponential growth of biomedical literature,6

following the latest developments requires spending an exorbitant amount of7

valuable time. Even though Machine Learning (ML), with the use of Nat-8

ural Language Processing (NLP) has gained ground towards advancing the9

field of Biomedical Informatics [1], Drug-Drug Interactions (DDI) identifica-10

tion from biomedical literature, constitutes an area with a lot of room for11

improvement.12

During the drug discovery and development process, the preclinical re-13

search phase aims to determine the safety of a new potential drug candidate14

where new drugs get tested for efficacy, toxicity and Pharmacokinetic (PK)15

information. These trials are conducted by scientists and aim to determine16

the side effects, adverse events and the possible interactions with other drugs.17

Changes in the PK and Pharmacodynamic (PD) properties of a drug are the18

main cause of DDIs, which may result in Adverse Drug Reactions (ADR).19

DDI identification refers to the task of identifying the effect produced by a20

combination of two or more drugs.21

Numerous drug databases, such as DrugBank, PharmGKB, Stockley,22

DailyMed, WebMD, National Drug File and Kyoto Encyclopedia of Genes23

and Genomes exist, which provide medical professionals the ability to re-24

trieve DDI information. However, due to the aforementioned rapid growth25

of biomedical literature, a large quantity of valuable DDI information re-26

mains hidden in articles and publications, making the task of maintaining27

an up-to-date drug knowledge base a challenging endeavor. Studies suggest28

further facilitation of access to this type of sources due to the high number of29

interacting drug combinations and the limited ability of prescribers to iden-30

tify them [2]. Therefore, the effective automatic extraction of drug entities31

and their interactions can contribute significantly to pharmacovigilance, also32

known as drug safety, and provide up-to-date information to drug databases.33

DDI information retrieval requires an extensive workload involving topic34

identification, evidence search, evidence synthesis and recommendations gen-35

eration. The process of locating evidence is the most critical step, due to the36

absence of a single archive containing all available information on DDI. The37
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broad range of sources in combination with the emergence of new evidence38

make the extraction of DDI information extremely difficult. Current meth-39

ods of extraction employed by medical practitioners and researchers rely on40

a comprehensive search strategy for manually locating relevant information41

from clinical trials, case reports and systematic reviews [3]. Therefore, the42

automatic extraction of drug entities and their interactions from biomedical43

literature aims to significantly speed up this process by identifying the drug44

names and their relationships, retrieving the most relevant DDI information.45

The objective of the DDI task is to discover mentions of drug named46

entities in text and extract drug interaction relations between drug entity47

pairs. The entity and interaction types studied in this work are from the48

gold standard dataset that was introduced with the SemEval DDI Extraction49

Challenge 2013 [4, 5].50
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Figure 1: Example of a DDI extraction task sentence and the resulting drug entities and
interaction triples.

In recent years, various methods for the extraction of DDIs have been pro-51

posed, based either on a single task, Drug Name Entity Recognition (DNER)52

or DDI classification, or DDI extraction in an end-to-end approach, which53

can be divided into joint and pipelined approaches.54

DNER approaches aim to recognize drug entity mentions in biomedical55

texts and classify them into predefined categories. However, while DNER is56

related to the conventional Named Entity Recognition (NER) task, domain-57

specific challenges exists due to variations in the naming of a drug, frequent58

occurrences of abbreviations and acronyms [6] and complex naming schemes59

with numbers and symbols.60

Comparably, DDI classification approaches focus solely on the task of61

classifying the relation of drug pairs in biomedical texts. The drug entities are62

from datasets where each entity pair is labeled with the predefined relation63

types. The types “advice”, “mechanism’ ’, “effect” and “int” denote the types64

of interactions between two drugs and correspond to the positive class. The65
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types “false” or “none” that are used interchangeably, denote the absence of66

an interaction between two drugs and correspond to the negative class.67

For the end-to-end DDI extraction task, joint and pipelined methods fo-68

cus on the overall task of DDI extraction by implementing both DNER and69

DDI classification in a single system. Joint modeling methods approach the70

tasks of recognizing drug entities and classifying their relation as a single71

biomedical entity and relation extraction task. However, due to the many72

overlapping relations in biomedical texts, the current proposed methods con-73

vert the task into a tagging problem.74

Pipelined methods separate the biomedical relation extraction and classi-75

fication into two distinct tasks and address them in a sequential manner. Ini-76

tially, the drug entities are extracted from the given literature using DNER77

techniques and all possible drug entity pairs in a given text are formed.78

Subsequently, the pairs are classified into predefined task-specific categories,79

forming the entities-relation triple, as shown in Figure 1.80

Early approaches used pattern-based methods that rely on hand-crafted81

patterns to classify drug interactions, which are time-consuming and rely82

on domain expert knowledge. With the emergence of annotated corpora,83

ML approaches have achieved great success and recent research has shown84

great promise in using Deep Neural Networks (DNN) for all DDI extraction85

related tasks. However, traditional ML and DNN approaches rely heavily on86

laborious feature engineering and feature selection.87

In our previous work [7], we proposed an attention-based “Bi-LSTM-88

CNN” model for the single task of DDI classification. This paper expands on89

our previous methodology by proposing an end-to-end Neural Network-based90

learning approach to the pipelined extraction of biomedical entities and the91

classification of the interactions between them. We aim to provide a simpli-92

fied approach to the recognition of named drug entities and the classification93

of their interactions by taking advantage of the Transformer architecture [8]94

and the BERT Language Model (LM) that have been shown to improve NLP95

tasks [9].96

First, with the use of in-domain pre-trained weights, we expand on Bio-97

BERT to recognize the drug named entities and classify them into four cat-98

egories. Then, we apply a set of rules to correct possible misclassifications99

from the previous step, and create all combination of drug pairs and filter100

sentences where no relation exists. Finally, with the use of BioBERT, the101

relation of the drug pairs is classified into one of the five aforementioned cat-102

egories. The main contribution of our work can be summarized as follows:103
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1. We approach this task with no preprocessing and feature engineering,104

eliminating the complexity of data preparation.105

2. We develop a complete system by using a pipelined approach to extract106

drug entities and classify their relations.107

3. We apply a set of non-complex rules to prepare the data for the relation108

classification step.109

4. We explore the effectiveness of different pre-trained weights from dif-110

ferent domains. The experimental results show that the pre-trained111

weights from the biomedical domain are the most effective and can112

further improve the performance.113

We conducted the experiments on the DDI Extractions 2013 dataset and114

our results show that our pipelined method outperforms the existing ap-115

proaches to the DDI extraction task and achieves state-of-the-art perfor-116

mance in both the Drug Named Entity Recognition task and the overall DDI117

extraction task.118

2. Related Work119

The Drug-Drug Interaction extraction task is a Relationship Extraction120

(RE) task that extracts semantic relationships between different entities from121

text. The subtasks consists of the recognition of named entities and the clas-122

sification of their relationships, extracting triples using NLP techniques [10].123

Drug names are extracted using Drug Named Entity Recognition (DNER)124

techniques and the interactions between drugs are classified using Relation-125

ship Classification (RC) techniques. The appearance of the SemEval-2013126

DDI Task [11] extraction challenge enabled researchers to evaluate the effec-127

tiveness of NLP-based DDI extraction methods on the same gold standard128

corpus. As a result, various end-to-end DDI extraction models focusing on129

pipelined and joint methods have been proposed.130

The pipelined methods, as mentioned previously, treat the extraction of131

DDIs as two separated tasks, DNER and Relation Classification. DNER132

is a traditional Named Entity Recognition task, specific to the biomedical133

domain. Typical NER methods are based on Deep Learning (DL) tech-134

niques while DNER methods utilize manually generated semantic and syn-135

tactic features. These methods are evaluated on the CoNLL 2003 dataset136

[12], which is considered as the benchmark corpus. State-of-the-art NER137

systems take advantage of Transformers, a novel architecture that handles138
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long-range dependencies in sequence-to-sequence tasks. Transformers, in the139

form of stacked encoders also serve as bases for BERT [13], while the best140

performing NER system similarly uses shallow bidirectional Transformers.141

However, the Global Context enhanced Deep Transition (GCDT) architec-142

ture described in Liu Y. et al. [14], which has no statistically significant143

differences in performance, make use of combinations of contextualized text144

representations and deep Recurrent Neural Networks (RNNs), along with an145

encoder for sequence classification to achieve similar performance.146

Transitioning to the biomedical domain, the existence of varying in scope147

corpora that can be considered as benchmark datasets, render the identifi-148

cation of a clear state-of-the-art DNER system difficult. However, BioBERT149

[15], which is a fine-tuned BERT model trained on biomedical literature150

from PubMed, appears to outperform most DNER systems in almost all151

datasets. As an exception, CollaboNet[16] outperforms BioBERT on the152

JNLPBA dataset [17] for cell-line identification. Their proposed method153

uses a combination of three pre-trained Bi-LSTM-CRF architecture DNERs154

on chemicals, diseases and genes, to be used as extra-linguistic information155

in tandem with a weighted-pooling mechanism.156

Similarly, due to the different proposed approaches focusing on either the157

complete DDI extraction task or only the RC sub-task, a clear state-of-the-158

art DDI extraction system is difficult to identify in the literature. Recent159

publications range from focusing on a single task in the extraction process,160

either DNER or RE, to joint and pipelined end-to-end systems [7]. Most161

RE and RC models treat this task as a supervised multiclass classification162

problem, with the exception of a few clustering methods [18]. The supervised163

approaches can be roughly divided into two categories: feature-based and164

DNN-based.165

Current feature-based approaches rely heavily on manually generated fea-166

tures such as Part-of-Speech (POS) tags, syntactic and dependency parsing,167

obtained with laborious feature engineering and feature selection [19]. Like-168

wise, kernel-based approaches that use syntactic information also proved169

effective for this work [20, 21]. DNN-based approaches which are able to170

learn the latent semantic features and better representations through the171

training process and consequently minimize the dependency on feature en-172

gineering and preprocessing techniques, prove to be very effective in the RC173

task [22, 23]. Similarly, graph-based models, based on Graph Convolutional174

Networks, have been applied to this task and achieved good results with the175

use of the Entity Pair Graph concept in combination with a Graph Neural176
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Network model that is able to incorporate semantic features from a sentence177

and topological features for relation classification [24].178

State-of-the-art systems employ joint entity and relation modelling meth-179

ods instead of pipelined methods, converting the DNER and RC tasks to a180

single task. The approach of Luo et al. [25], called “Att-BiLSTM-CRF”,181

uses a combination of three embeddings, pre-trained word embeddings from182

a word2vec model, pretrained ELMo embeddings and character embeddings183

that are learned in the process by a very simplistic NER system. The main184

model consists of a BiLSTM network that creates latent representations from185

the three concatenated inputs, an attention mechanism over the hidden states186

of the Bi-LSTM to assign scores to the latent features produced, and a CRF187

layer used for predictions. The character embeddings are following the ap-188

proach of Ma et al. [26] to extract features based on the characters. Addi-189

tionally, in order to overcome the vast amount of overlapping relations that190

are present in the biomedical literature, a tagging scheme and extraction191

rules in combination with ELMo embeddings was employed to improve the192

performance of the “Att-BiLSTM-CRF” system.193

In contrast to the above systems, our approach removes the dependency194

on feature-engineering and preprocessing, incorporating a rule-set in a pipe-195

line, producing an end-to-end system that can be used to extract entities and196

the relations between them.197

3. Materials and Methods198

This section describes the dataset and our method in detail and provides199

an overview of the pipelined approach to recognizing drug named entities200

and classifying their interactions in pairs. The data preparation, training,201

tuning and evaluation phase, are also described as shown in Figure 3. The202

pipeline consists of two distinct classification models for Drug Named Entity203

Recognition and Relation Classification. We apply a small set of hand-crafted204

rules to filter the output of the DNER model before passing it as input to205

the RC model and finally classifying drug entity pairs in a sentence. In both206

phases, the only preprocessing step consists of tokenization and no additional207

features are generated. Our models are trained, evaluated and tested with the208

published task-specific dataset and hyperparameter tuning was performed on209

the evaluation dataset. The process is described in detail in the following210

sections.211
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Figure 2: The TP-DDI Pipeline.

3.1. Dataset212

The DDI Extraction 2013 corpus [4] is a semantically annotated corpus of213

documents that consists of sentences describing drug entities and drug-drug214

interactions from the DrugBank database and MedLine abstracts. DrugBank215

consists of manually curated texts that combine detailed drug data with216

comprehensive drug target information, while MedLine is a bibliographic217

database that contains biomedical publications. It has been manually anno-218

tated with pharmacological substances (drug named entities) and the inter-219

action for all possible drug pair combinations. It serves as the gold standard220

dataset for the DDI extraction task and it has been annotated and reviewed221

by two expert annotators.222

The DDI corpus is comprised of 784 documents describing drug inter-223

actions from the DrugBank database and 233 MedLine abstracts selected224

from the query ‘drug-drug interactions’. A summary of the main features225

and statistics of the corpus is presented in Table 1. The target of the task226

of drug-drug interactions recognition in biomedical literature is to determine227

whether there is a relationship between two candidate drug entities in a given228

sentence, as defined in SemEval-2013 Shared Task [5].229

The entities for the recognition of the drug named entities in the corpus230

are annotated with the types drug, group, brand and drug n. Generic drug231

names are defined as drug, while branded drug names and drug group names232

as brand and group respectively. Finally, active substances that are not233

approved for human use are defined as drug n.234

The drug-drug interactions for the classification task in the corpus are235

annotated with the following types:236

• advice: Advice is the type that is designated to the drug-drug inter-237

actions within which a recommendation or advice relating to the con-238
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comitant use of a pair of drugs involved in them is described.239

• effect: Effect is assigned when the impact of the drug-drug interaction240

is described. It can be a pharmacological effect, signs or symptoms,241

a clinical finding, an unspecified alternation of the effect or action of242

a single drug, a rise of the toxicity or protective effect, or therapeutic243

failure. Furthermore, this type is assigned when a pharmacodynamic244

mechanism or effect of interaction is described in the sentence.245

• mechanism: The type mechanism is assigned when a pharmacokinetic246

mechanism is described, including changes in levels or concentration of247

the entities. However, this type can also be assigned when the mecha-248

nism of interaction is pharmacodynamic.249

• int: This type is assigned when an interaction in the sentence occurs250

but does not provide any information about the type of interaction, so251

none of the other types can be assigned.252

• false: This type is assigned when the a drug pair that occurs in the253

sentence has no interaction.254

The dataset provides a single training set for both named entity recog-255

nition and relation classification tasks and test sets specific to each of the256

two tasks. The sets are comprised of instances separated in documents that257

contain paragraphs separated by sentences. For each sentence in the dataset,258

the drug entities and their types, the drug entity off-sets and the drug pairs259

along with their interaction are annotated. The drug entity off-sets contain260

the starting and ending position of each entity in the corresponding sentence.261

Sentences that contain more than one drug pair have all possible drug pairs262

annotated, leading to multiple instances with the corresponding interaction263

from a single sentence.264

Furthermore, the dataset is extremely unbalanced in relation to both265

named entities and interaction types. For the drug entities, 64% of the in-266

stances belong to the type drug and 23% to the type group, while the types267

brand and drug n constitute only 10% and 3% of the instances respectively.268

For the interaction types, which include “advice”, “mechanism”, “effect”,269

“int” and “none” or “false”, 85% of the instances are negative and the re-270

maining 15% positive. Moreover, the distribution of each type in the positive271

samples is unbalanced, where the number of instances for the type “int” is272

remarkably less than the other types.273
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Training Set DNER Test Set RC Test Set
DB ML DB ML DB ML

Documents 572 142 54 58 158 33
Sentences 5675 1301 145 520 973 326

E
n
ti

ty
T

y
p

es

drug 8197 1228 180 171 1518 346
group 3206 193 65 90 626 41
brand 1423 14 53 6 347 22
drug n 103 401 5 115 21 119

D
D

Is

mechanism 1260 62 - - 279 24
effect 1548 152 - - 301 62
advice 819 8 - - 215 7
int 178 10 - - 94 2
false/none 22216 1555 4381 356

Table 1: DDI corpus statistics

3.2. BERT Language Model274

BERT [27] (Bidirectional Encoder Representations from Transformers), is275

a context-sensitive word representation model that utilizes bidirectionality in276

Transformers [28] trained on large-scale unsupervised corpora to obtain con-277

textualized representations of each word in a sentence. Since BERT aims to278

generate a language representation, only the encoder part of the Transform-279

ers is used and comes in two architectures, BERT-base and BERT-large with280

12 layers and 24 layers in the encoder stack respectively. Previous Language281

Models (LM) incorporated unidirectional LMs (left-to-right or right-to-left),282

while BERT uses a Masked Language Model (MLM) that predicts randomly283

masked words in a sequence, making it able to learn bidirectional represen-284

tations. According to the authors of BERT, incorporating information from285

bidirectional representations, rather than single directional representations,286

is crucial for representing words in natural language.287

As a general purpose LM, BERT is pre-trained on large-scale corpora288

from the English Wikipedia and BooksCorpus. However, biomedical domain-289

specific literature contains a substantial number of domain-specific proper290

nouns and terms that are not present in general purpose corpora. As a291

result, NLP models designed for general purpose language understanding292

often obtain poor performance in biomedical information retrieval tasks.293

To alleviate this, in this work, we use BioBERT [15], which is a biomed-294

ical domain-specific Language Representation Model (LRM) based on the295
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BERT LM and pre-trained on large-scale biomedical corpora from PubMed296

abstracts (PubMed) and PubMed Central full-text articles (PMC). Accord-297

ing to the authors of BioBERT, bidirectional representations are also critical298

in biomedical text mining since complex relationships between biomedical299

terms often exist in a biomedical corpus [29].300

BERT and BioBERT obtain state-of-the-art performance on most general301

purpose and biomedical domain-specific NLP tasks respectively, while requir-302

ing minimal task-specific architectural modification. The basic structure of303

BERT and by extension BioBERT is comprised of self-attention encoders304

(SA-encoder) that obtain the corresponding context-specific representations305

using the sequence and the mask matrix. The downstream task layer enables306

the model to fine-tune to the task specific output.307

In this work, we focus on the Drug Named Entity Recognition and Re-308

lation Classification tasks for extracting DDIs, which are further detailed in309

subsections 3.4 and 3.6, respectively.310

3.3. TP-DDI pipeline311

We present a DDI extraction pipeline consisting of two separate models,312

the DNER sequence-to-sequence model and the DDI classification model as a313

three-step process. Initially, the sentence sequences pass through the DNER314

model, classifying each token based on predefined labels. In the second step,315

the output passes through a set of rules to filter out the instances where no316

interaction between drug pairs is present and preemptively correct mislabeled317

tokens. Finally, the previous output is fed to the DDI classifier, categorizing318

the interaction between the drug pairs in each sentence. The output of the319

pipeline is an entity-interaction-entity triple.320

For both classification tasks (DNER and DDI), the BERT architecture321

was used and additional layers were introduced to fine-tune each model for322

each corresponding task. Furthermore, to reduce the complexity in feature323

engineering and preprocessing, our approach consists of tokenization only.324

Therefore, we utilize WordPiece (WP) tokenization [30] which represents325

out-of-vocabulary words by frequent subwords (e.g. tetrahydropyridine - te326

##tra ##hy ##dr ##opy ##rid ##ine). It was observed that using327

cased vocabulary results in slightly better performance in downstream tasks328

as presented in this work. In both models, the original vocabulary of BERT-329

base was used. This approach allows the interchangeable use of existing330

models based on both BERT and BioBERT.331
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Due to the compatibility of BioBERT with BERT, pretrained weights332

on general domain corpora can be re-used. Furthermore, existing models333

based on BERT and BioBERT can be interchangeably used and any out-of-334

vocabulary words can still be represented and fine-tuned for the biomedical335

domain using the original WordPiece vocabulary of BERT.336

3.4. Drug Named Entity Recognition Model337

The Drug Named Entity Recognition, which is a sequence-to-sequence338

task, is tackled with the first model in our pipeline. The model follows the339

BERT architecture and a dense layer is added to tag each token based on340

the tagging scheme. The tagging scheme follows Inside-Outside-Before (IOB)341

format for each entity type (i.e. I-DRUG N, B-GROUP) when the type of342

drug is important. This format introduces less complexity to the DNER343

model and consequently to the overall pipeline compared to BIOES/BILOU344

formats which offer marginal improvement in performance. For split word345

tokens we assign an X annotation to all subsequent subwords and mirror the346

same action to the corresponding labels, maintaining the alignment between347

the tokens and their respective labels. Alternatively, we omit the type infor-348

mation from the IOB format from all drug named entities, treating them as349

a single type.350

Initially, the input sequence passes through WP tokenization. After-351

wards, a “[CLS]” and “[SEP]” token is added to the input of the word tokens352

at the beginning and the end of each sentence, respectively. Segment em-353

beddings, to allow the encoder to distinguish between sentences, are added354

and finally position embeddings are also added to each token to indicate the355

position in the sentence. Fundamentally, the encoder stack maps sequences356

to sequences resulting in the output consisting of a sequence of the same357

size as the input vector. Finally, the output is a dense layer with softmax358

classification where each token is a assigned a probability for each class. A359

detailed overview of the model architecture is shown in Figure 3.360

3.5. Rules361

A set of rules that is applied to all instances, filters the output of the362

DNER model before passing it as input to the DDI classification model. The363

output of the DNER model consists of line-separated word tokens repre-364

sented by frequent subwords and a separate label set with the entity types365

for each word token. Depending on the phase (i.e. training/testing phase,366
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Vitamin D dosage must be determined with care in patients undergoing treatment with digitalis 

Tokens:

Single Sentence:
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Figure 3: Drug Named Recognition model architecture. TB denotes the BERT Trans-
former Blocks.

inference) the sentences either pass through all transformations and filters or367

only through a subset of them.368

Initially, the DNER model outputs get inverse transformed to build the369

sentences. To achieve this, we applied regular expressions to recreate each370

sentence based on on the “[CLS]” and “[SEP]” tokens. In the second step,371

the frequent subwords get merged and each word in each sentence is joined to372

form a whitespace-separated string. Additionally, tokens labeled with the X373

annotation get replaced with the appropriate label. Special cases where the374

WP tokenizer created tokens from special character (“!”, “?”, “/”, etc.), are375

combined with the word token they belong to. Every transformation applied376

to the word tokens is mirrored to the label list to keep the correct indices for377

each word and label. Afterwards, by matching the joint sentences with the378

inferred labels from the DNER model, the entity type information is mapped379

to each word in each sentence.380

Despite the satisfying performance of the DNER model, a perfect pre-381

diction is not possible. To preemptively correct possible mislabeled tags, we382

heuristically look for instances where the model misclassified a word token in383

the sequence. This validation process is executed efficiently as it takes place384
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within one iteration of the data structure containing the complete sequence385

list, resulting in a time complexity of O(n). For example, in instances where386

a word token is labeled as Before (B) ahead of a Inside (I) of different entity387

types (i.e. B-DRUG, I-GROUP), the type information of the tag I is replaced388

with the prior tag of B. Afterwards, the sentences and the entity types get389

parsed and multi-word entities are treated as a single whitespace-separated390

entity. Instances where only one drug entity is present in the sentence, get391

discarded. The most commonly used rules are the ones responsible for de-392

coding the subword tokens, replacing the X annotation with the appropriate393

label, while the label-correcting rules are applied to approximately 3% of all394

instances, reflecting the DNER models’ performance. The rules are presented395

in Table 2.396

Rule Outcome
if token.startwith(’X’) AND
prev tag=’B’

Replace ’X’ with ’I’ if it is a subword
token and previous tag is ’B’

if token.startwith(’X’) AND
prev tag=’I’

Replace ’X’ with ’I’ until the tag
changes

if prev tag=’B’ AND cur tag=’I’
AND prev label NOT cur label

Correct the label of ’I’ with the label
of the previous tag

if prev tag=’I’ AND cur tag=’I’ AND
prev tag NOT cur tag

Correct the label of ’I’ with the label
of the previous tag

Table 2: Summary of rules

To prepare the data for the DDI classification model, all possible combi-397

nations of the recognized drug entities are created. Sentences that contain398

more than one drug pair (i.e. more than two drug entities), have all possible399

drug pairs combinations generated, leading to multiple instances with the400

corresponding interaction from a single sentence. Finally, the special tokens401

“< e1 >”, “< /e1 >” and “< e2 >”, “< /e2 >” are inserted in front and at402

the end of each entity of the target entity pair for each sentence.403

3.6. Drug-Drug Interaction Classification model404

The DDI classification, which is a Relation Classification task, is tackled405

in the second and final model in our pipeline. The model is based on S.406

Wu et al. [31], where entity information is used to enrich the pre-trained407

BERT model. As shown in Figure 4, for each sentence that contains two408

target entities e1 and e2, the special tokens “< e1 >”, “< /e1 >” and409
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“< e2 >”, “< /e2 >” at both the beginning and end of each entity are410

inserted, in order to make BERT capture the location information of the two411

entities. Similarly to the DNER models step, “[CLS]” and “[SEP]” tokens are412

added to the beginning and end of each sentence accordingly. For example,413

after inserting the special entity separation tokens, for a sentence with target414

entities “Fenfluramine” and “guanethidine” the text will be converted to:415

“[CLS] “< e1 >” Fenfluramine “< /e1 >” may increase slightly the effect of416

antihypertensive drugs, e.g., “< e2 >” guanethidine “< /e2 >”, methyldopa,417

reserpine. [SEP]”418

Given a sentence with a target entity pair, the final hidden layer output419

of the model before classification is the concatenated output of three hidden420

layers. The first hidden layer consists of a fully connected layer with a tanh421

activation function for the first token (i.e. “[CLS]”) in the sentence. The422

vectors for each entity are calculated by averaging the hidden state vectors423

representing each entity e1 and e2 accordingly. Afterwards, the resulting424

entity vectors are passed through a fully connected layer with tanh activation.425

The final hidden state output of the the DDI classification model consists of426

the outputs of the vectors for the first token and both entities e1 and e2.427

A softmax activation function is applied to the final output, generating a428

probability for the sentence to belong to each class.429

Dense Layer + Average + Activation 

<e1> Vitamin D </e1> dosage must be determined with care in patients undergoing 
treatment with <e2> digitalis </e2>

Tokens:

Single Sentence:

BERT
n-

layers

Dense Layer + Softmax

Output:

[CLS] Vitamin D treatment with digitalis <e1> </e1> </e2><e2>

V[CLS] VVi tamin VD Vtreatm ent Vwith Vdigital is Vectors:

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

advice ef fect mechanism int none

[SEP]

Figure 4: DDI classification model architecture.
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4. Results and discussion430

4.1. Experimental setup431

In order to evaluate the performance of our pipelined approach, we used432

the F1-score on the DDI Extraction 2013 dataset as described in Section 3.1.433

The F1-score metric is the harmonic mean of the Precision and Recall metrics,434

where Precision is the ratio of correctly predicted positive observations to435

the total predicted positive observations and Recall the ratio of correctly436

predicted positive observations to all observations in the actual class. The437

contribution of all classes are aggregated to calculate the average score as it438

was used in the SemEval DDI Extraction challenge and in related studies.439

We trained both Drug Named Entity Recognition and Drug-Drug Inter-440

action classification models on the 6976 sentences contained in 714 abstract441

documents from both DrubBank and MedLine using predefined train and442

test splits. We used a subset of the train set to create the evaluation sets443

and separate test sets for each model in the pipeline. We evaluated the444

DNER model with a test set consisting of 665 sentences contained in 112445

abstract documents and the DDI classification model on 1299 sentences in446

181 abstract documents.447

We experimented with pre-trained weights from BERT and BioBERT448

for both BERT-base (base) and BERT-large (large) architectures. The pre-449

trained weights used in BERT are trained on English Wikipedia and Books-450

Corpus and in BioBERT from PubMed and PubMed Central. In the base451

architecture, 12 encoder layers are stacked with a hidden layer size of 768,452

while in the large architecture, the encoder stack is comprised of 24 en-453

coder layers with a hidden layer size of 1024. Sentences were padded to the454

maximum sentence length in the training set. AdamW [32] was used as an455

adaptive optimizer that decouples the weight decay from the optimization456

step, allowing for separate optimization. A learning rate of 0.001 and decay457

of 0.01 per epoch were applied and the models were trained for 4 epochs.458

Both DNER and DDI models were individually trained using the gold459

standard dataset. For the evaluation of the pipeline, we seeded the labels460

from the dataset and assigned the labels to each sentence from the DNER461

output, according to the sentence text and target drug entity pair.462

The experiments were conducted on a computer with a single Volta V100463

16GB graphics card and a 40-core Intel CPU and we implemented our TP-464

DDI model with the Tensorflow library and the Python programming lan-465

guage.466
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4.2. Experimental results467

To investigate the contributing factors in improving the performance of468

our proposed approach, we extended the experiments to the tagging scheme469

used for training the DNER model. Initially, we used the IOB-scheme for470

each drug entity type (drug, drug n, group, brand). The primary approach471

was to retain the drug entity type information during the DDI classification472

process. Since the classification of the interactions between drug entities is473

of importance, the type of drug is not relevant to this task. Therefore, we474

reduced the complexity of the drug entity names by discarding any additional475

drug entity types (EntA) and labeling all types as drugs for the DNER task,476

since interactions can occur in all cases. Consequently, by omitting the drug477

entity types from the IOB tags, the total amount of labels and the models478

complexity is reduced. Similarly, for the DDI classification task, we exper-479

imented with replacing all drug names in each target drug entity pair with480

‘drug a’ and ‘drug b’ and every other drug mention present in the sentence481

with ‘drug n’ (TDEM). For each drug pair we encounter in a sentence, the482

sentence is reproduced, changing which entities are annotated with ‘drug a’,483

‘drug b’ and ‘drug n’ to consider all possible combinations in the classifi-484

cation process. This approach leads to a drug name-agnostic model and is485

applied to the best performing approach.486

English Wiki and BookCorpus PubMed v1.1
TP-DDI Pipeline NER F1 DDI F1 NER F1 DDI F1
Base 0.743 0.723 0.959 0.816
+ EntA 0.792 0.719 0.961 0.817
+ EntA + TDEM 0.792 0.719 0.961 0.817
Large 0.897 0.764 0.969 0.821
+ EntA 0.916 0.778 0.971 0.824
+ EntA + TDEM 0.916 0.778 0.971 0.824

Table 3: Comparison of proposed pipeline with different architectures and pre-trained
weights. “EntA” denotes drug entity types consolidation to a single class for the DNER
task, removing the drug entity type from the IOB tags. “TDEM” denotes the masking
of target drug names in the DDI classification task by replacing the drug mentions with
‘drug a’, ‘drug b’ and ‘drug n’.

As shown in Table 3, the pipeline with pre-trained weights from the487

biomedical domain in combination with target drug name masking achieves488

the best performance in the overall DDI extraction task. Additionally, the489
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larger architecture that uses twice the amount of encoder stacks and larger490

hidden layer sizes, achieves marginally better results than the base architec-491

ture. However, the training and inference time are greatly increased. Train-492

ing times for each DNER and DDI model vary between 6 to 7 hours for each493

base model and from 32 to 36 hours for each large model. An analogous494

increase is observed for inference as well, varying from 1 to 2 minutes and 8495

to 12 minutes, respectively. Furthermore, the added complexity of the large496

BERT architecture introduces difficulties in GPU memory management.497

With the implementation of the special entity separation tokens in the498

DDI classification task, the models are able to focus on the target drug499

pair in order to create better hidden representations. Therefore and most500

notably, replacing the the drug names for the DDI classification task yielded501

the same results in all cases while adding complexity to the preprocessing502

step of the pipeline. The experimental results show that both base and large503

architectures achieve the best results by reducing the drug entity types to a504

single class.505

4.3. Performance comparison506

State-of-the-art systems use varying techniques for this task, ranging from507

negative instance filtering to converting the task to a tagging problem. Fur-508

thermore, extensive feature engineering is required to achieve their reported509

performances. Therefore, in order to evaluate the effectiveness of our DDI510

extraction pipeline, we compare the performance to the baseline approaches511

presented in [25, 33, 34] and to similar pipelined and joint approaches, where512

drug names are recognized and subsequently their interactions classified.513

We compare our pipeline to “BiLSTM”, “SCNN” [33] and “HRNN” [34],514

which are the baseline relation extraction methods on golden standard enti-515

ties where only DDI relationships get classified. The “BiLSTM” model, as516

implemented by Luo et al. [25], acts as baseline and uses word and entity517

position embeddings as inputs only. Additionally, we compare to “BiLSTM-518

CRF + HRNN”, which is the previous state-of-the-art pipelined method and519

finally to “Att-BilSTM-CRF + Elmo” which is the previous state-of-the-art520

joint method.521

The experimental results in Table 4 show that our end-to-end method,522

labeled TP-DDI achieved the best overall performance and the best indi-523

vidual task performance for DNER and DDI respectively. Our set of rules524

in combination with the fine-tuned BioBERT architectures and pre-trained525
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weights are the main contributing factors. Our rules can capture the multi-526

token entities and filter instances that do not contain relationships between527

drug entities while the Transformer-based mechanisms are able to capture528

long distance dependencies and prioritize important words for the pipelines’529

predictions. The use of the large BioBERT architecture increases the perfor-530

mance by a slight margin (approximately 1%) in both DNER and DDI tasks.531

However, the increased complexity introduced to the overall system, by dou-532

bling the encoder layers from 12 to 24, increases the training and inference533

time considerably.534

Additionally, compared to the existing approaches, both pipelined and535

joint, our method removes the dependence on any kind of feature engineering536

and complex preprocessing. Furthermore, error propagation is mitigated due537

to the excellent performance of the DNER model and our rules that capture538

possible misclassified drug entities.539

DNER DDI (RE)
Method P R F1 P R F1
BiLSTM - - - 0.684 0.665 0.674
SCNN - - 0.722 0.651 0.686
HRNN - - - 0.741 0.718 0.729
BiLSTM-CRF + HRNN 0.932 0.861 0.895 0.692 0.707 0.692
Att-BilSTM-CRF + Elmo 0.905 0.939 0.922 0.750 0.752 0.751
TP-DDI (base) 0.954 0.967 0.961 0.859 0.779 0.817
TP-DDI (large) 0.974 0.968 0.971 0.864 0.788 0.824

Table 4: Performance comparison

4.4. Case study540

To analyze the advantages and disadvantages of our method, we compare541

a few prediction results of the TP-DDI (base) method with the gold standard542

labels from the DDI-Extraction 2013 dataset as shown in A.5.543

For sentence 1, the sentence describes a recommendation towards the co-544

administration of two drugs. Our method identifies the drug entities and each545

respective label correctly. Similarly, all possible drug pair combinations are546

generated and labeled correctly, consequently resulting in a correct extraction547

process.548

For sentence 2, the sentence indicates that the simultaneous use of drugs549

belonging to two drug groups may cause specific symptoms. This example550
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contains a combination of multi-token entities, initialisms, i.e. abbreviations551

of a word to its initials, as well as a drug entity that is specific to an afore-552

mentioned brand. Although our method is able to identify all drug entities553

and the labels for each entity correctly, the possible drug pair combinations554

generated for classification exceed the pairs in the gold dataset. The main555

reason is that our method is unable to identify which entities are initialisms556

or acronyms of previous mentions in the sentence and creates pairs that in-557

clude these initialsms with their full form. However, our method extracts all558

the true drug pairs and classifies them with the correct labels.559

For sentence 3, the sentence describes an antagonistic effect between two560

drugs and includes a recommendation to counter this effect. Our method561

manages to correctly identify the drug entities and their labels and generates562

the correct pair combinations found in the sentence. However, the classifi-563

cation model mistakenly classifies the interaction type as advice instead of564

effect.565

Conclusively, our method is capable of extracting drug entity mentions566

and their relations, but needs further improvement in determining the type of567

interaction between the drug mentions. Furthermore, both DNER and DDI568

models are limited by the pre-trained (PubMed) and the DDI Extraction569

2013 datasets. This may not generalize well outside the biomedical and more570

specific the drug domain. Finally, our method, similarly to related works, is571

unable to extract relations between entities across sentences as this limitation572

is introduced by the DDI extraction task and the provided dataset.573

5. Conclusion574

In this paper, we propose an end-to-end Entity Recognition and Relation-575

ship Classification pipeline for the extraction of Drug-Drug Interactions from576

biomedical literature, that achieves state-of-the-art performance. Specifi-577

cally, we presented a Drug Named Entity Recognition (DNER) model to578

extract drug named entities, rules that are applied to the DNER models579

output and a Drug-Drug Interaction (DDI) Classification model to classify580

the interactions between the target drug pairs. Initially, drug named entities581

are extracted from biomedical texts in a sequence-to-sequence classification582

task. Then a set of rules and filters are applied before finally classifying the583

interactions between drug pairs.584

Mitigation of error propagation is achieved by preemptively correcting585

possible mislabeled tags while filtering instances that do not contain drug586
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pairs. Furthermore, by avoiding the use of feature engineering and tedious587

preprocessing, we reduce the overall complexity of the pipelined approach588

to extracting DDIs. The partitioning of the overall task into two separate589

subtasks allows for easier modification of each part in the pipeline. Conse-590

quently, both DNER and DDI classification models could be fine-tuned to591

identify adverse event mentions and classify them respectively, leveraging the592

underlying BERT architecture. With this contribution, we aim to aid in the593

drug development process as well as in the identification of possible adverse594

drug event due to simultaneous use of more than one drug.595
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Appendix A. TP-DDI prediction examples782

We manually selected three characteristic examples from the DDI-Ex-783

traction 2013 corpus and compare the gold labels with our methods predic-784

tions. These examples highlight both the cases where our proposed model785

performs well and and where it fails. Each gold entity is marked in bold and786

the type of drug is denoted in subscript for the entity contained in brackets.787

The underlined text denotes the wrong extraction results.788
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Sentence 1 [Isocarboxazid]drug should be administered with caution to patients receiv-
ing [Antabuse]brand ([disulfiram]drug, Wyeth-Ayerst Laboratories)

Gold labels Isocarboxazid, Antabuse → advise | Isocarboxazid, disulfiram → advise |
Antabuse, disulfiram → none

TP-DDI DNER: Isocarboxazid → drug | Antabuse → brand | disulfiram → drug

DDI: Isocarboxazid, Antabuse → advise | Isocarboxazid, disulfiram → advise
| Antabuse, disulfiram → none

Sentence 2 A rare, but serious, constellation of symptoms, termed serotonin syn-
drome, has been reported with the concomitant use of [selective sero-
tonin reuptake inhibitors]group ([SSRIs]group) and agents for mi-
graine therapy, such as [Imitrex]brand ([sumatriptan succinate]drug) and
[dihydroergotamine]drug.

Gold labels selective serotonin reuptake inhibitors, Imitrex → effect | selective serotonin
reuptake inhibitors, dihydroergotamine → effect | selective serotonin reup-
take inhibitors, sumatriptan succinate → effect | SSRIs, Imitrex → effect |
SSRIs, sumatriptan succinate → effect | SSRIs, dihydroergotamine → effect
| Imitrex, dihydroergotamine → none | sumatriptan succinate, dihydroergo-
tamine → none

TP-DDI DNER: selective serotonin reuptake inhibitors → group | SSRIs: group |
Imitrex: brand | sumatriptan succinate: drug | dihydroergotamine: drug

DDI: selective serotonin reuptake inhibitors, SSRIs → none | selective sero-
tonin reuptake inhibitors, Imitrex → effect | selective serotonin reuptake
inhibitors, sumatriptan succinate → effect | selective serotonin reuptake in-
hibitors, dihydroergotamine → effect | SSRIs, Imitrex → effect | SSRIs,
sumatriptan succinate → effect | SSRIs, dihydroergotamine → effect | Im-
itrex, sumatriptan succinate → none | Imitrex, dihydroergotamine → none
| sumatriptan succinate, dihydroergotamine → none

Sentence 3 [Epinephrine]drug may antagonize the neuron blockade produced by
[guanethidine]drug resulting in decreased antihypertensive effect and re-
quiring increased dosage of the latter.

Gold labels Epinephrine, guanethidine → effect

TP-DDI DNER: Epinephrine → drug | guanethidine → drug

DDI: Epinephrine, guanethidine → advice

Table A.5: Example predictions of the TP-DDI method.
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