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ABSTRACT 
Development of control algorithms for enhancing performance in safety-critical systems such 
as the Autonomous Emergency Braking (AEB) system is an important issue in the emerging 
field of automated electric vehicles. In this study, we model a safety distance-based 
hierarchical AEB control system constituted of a high-level Rule-Based Supervisory control 
module, an intermediate-level switching algorithm and a low-level control module. The Rule 
Based supervisor determines the required deceleration command that is fed to the low-level 
control module via the switching algorithm. In the low-level, two wheel slip control 
algorithms were developed, a Robust Sliding Mode control algorithm with an Artificial 
Neural Network (ANN) for nonlinear parameter estimation and a Gain-Scheduled Linear 
Quadratic Regulator. For the needs of this control design, a non-linear dynamic vehicle model 
was implemented whereas a constant tire-road friction coefficient was considered. The 
proposed control system was validated in Simulink, assuming a straight-line braking 
maneuver on a flat dry road. The simulation results demonstrated satisfactory emergency 
braking performance with full collision avoidance in both proposed control system 
combinations. 
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1. Introduction 

Road accidents account for a considerable loss of lives worldwide. In the European Union, 
25,000 deaths are occurring every year due to road accidents, according to EU statistics [1]. 
In order for this problem to be eliminated, new mandatory safety systems have been agreed to 
be part of the passenger vehicles’ equipment as of 2022, such as Lane Keeping Assistance, 
Advanced/Autonomous Emergency Braking (AEB), Intelligent Speed Assistance, warning 
systems, and crash-test improved safety belts. It is estimated that the proposed measures will 
help to save over 25,000 lives and avoid at least 140,000 serious injuries by 2038 [1]. These 
goals comply with Vision Zero, the EU's long-term goal of moving close to zero fatalities and 
serious injuries by 2050. Road fatalities is also a problem outside Europe. In China, for 
example, 63,700 people lost their lives during 2017 [2]. In addition to this, car collision 
accidents account for about 70%, the majority of which are rear-end accidents [2]. In the EU, 
it has been reported that the 39% of fatal road accidents are occurring in urban/inter-urban 
roads [3]. As car to car ‘nose-to-tail’ collisions are a common type amongst them, Advanced 
Emergency Braking is of particular importance for collision avoidance.  

According to EU legislation, Advanced Emergency Braking is defined as the system 
comprised of exteroceptive sensor(-s) and the control module which can automatically detect 
a potential collision and activate the vehicle braking system to decelerate the vehicle with the 
purpose of avoiding or mitigating a collision [4]. The terms “Advanced”, “Automatic” and 
“Autonomous” in the context of emergency braking for low-level vehicle autonomy seem to 
be used interchangeably [5,6]. Regulation No 131 of the Economic Commission for Europe of 
the United Nations (UN/ECE) states that the emergency braking phase is the interval starting 
when the AEB system emits a braking demand for at least 4 m/s2 deceleration to the service 
braking system of the vehicle [7]. Society of Automotive Engineers (SAE) organization, in 
SAE J3016 (Levels of Vehicle Automation), defines Automatic Emergency Braking as a 
function that is limited to providing warnings and momentary assistance to a modern car [5]. 

In the previous years, automated driving has been scientifically approached with planning and 
control methods that were developed upon several assumptions, such as: a) steady state, low 
speed operation, b) no slipping / no sliding conditions, and c) linearized dynamics, away from 
the adhesion limits [8]. Such assumptions make the vehicular motion control valid in a range 
of dynamics only, corresponding to the way average drivers operate their automobiles. 
Velenis [8] through his comprehensive research in longitudinal and lateral motion control, 
developed methods and showed that the vehicle can be controlled directly via the longitudinal 
slip at each wheel. 

Euro NCAP in the 2018 test protocols concerning car-to-car rear braking (CCRb), car-to-car 
rear stopping (CCRs) and car-to-car rear moving (CCRm), defines time to collision (TTC) as 
the remaining time before the vehicle equipped with AEB strikes the leading vehicle, 
assuming that both vehicles would continue to travel with the speed they are travelling at the 
moment TTC was calculated [6]. In the study of Das et al. [9], the same TTC definition is 
presented. However, TTC metric adoption inherits some modeling risks. This is due to its 
mathematical definition, being the ratio of relative distance divided by relative speed, which 
might lead to undesired calculation results. This issue is addressed by introducing a more 
complex piecewise TTC formula or by using the safety distance metric. Recent research work 
on AEB tends to adopt distance-based metrics [10]. 

Although the study of Autonomous Vehicle Control has been a commonplace [11-15], less 
studies have targeted control methods/algorithms to avoid or mitigate collision in the context 
of AEB. Most of these studies have considered the Time-to-Collision metric. Han et al. [16] 
proposed a TTC-based AEB control system considering the varying road-tire friction. Shin  et 



al. [17] demonstrated an adaptive TTC-based AEB control strategy considering both the 
threat that occurs at the front of the vehicle under consideration (e.g. pedestrian, leading 
vehicle) and a possible collision risk with a vehicle on the rear of the vehicle under 
consideration. Guo et al. [18] focused on a Variable Time Headway-based safety distance 
model, to address collision avoidance by using Model Predictive Control (MPC) in a system 
governed by linear vehicle dynamics. Yang et al. [2] established an Autonomous Emergency 
Braking Pedestrian (AEB-P) warning model, considering not only TTC but also braking 
safety distance. This model incorporated a Neuro-Fuzzy system trained on collected anti-
collision braking operation data of experienced drivers. 

Kim et al. [10], on the other hand, developed an AEB control algorithm which is purely 
distance based. In their study, the Minimum Stopping Distance metric was defined. Based on 
a few different car-to-car-rear braking, moving, and stopping driving scenarios, discrete 
minimum braking and stopping distance formulas for each driving scenario were defined. A 
desired deceleration command was calculated, based on the aforementioned formulas, which 
was then regulated to a low-level PI controller that delivered the deceleration requests. A 
point mass longitudinal dynamics vehicle model was considered, taking into account road 
slope and friction coefficient, the latter in the context of linear longitudinal-normal load 
relationship. 

Emergency braking has also been approached from the-road friction estimation necessity- 
point of view. Alvarez et al. [19] focused their study on the road tire coefficient μ estimation 
via state observers and the asymptotic stability of the control system they proposed. 
Emergency deceleration is highly influenced by wheel slip control whereas a critical 
parameter for autonomous vehicle dynamics control is the longitudinal slip [8]. Wheel slip 
control design has been recently reviewed comprehensively by Pretagostini et al. [20]. In this 
review, the prevailing wheel slip control methods, namely Rule Based control, Fuzzy Based 
control, PID control, Sliding Mode control (SMC), Robust control, Neural Network based 
control, Linear Quadratic Regulator (LQR) based control and Model Predictive Control were 
evaluated. It was shown that SMC and LQR are amongst the best wheel slip control strategies 
demonstrating high setpoint tracking capability, relatively high robustness and adaptability 
and moderate computational intensity.  

Taking together the recent EU requirements towards Vision Zero and the shortage of 
publications on distance-based, non-linear control approaches for AEB design, we propose an 
intelligent momentary assisted control for AEB. In the proposed AEB control: a) the collision 
risk is determined in terms of the relative distance to the leading vehicle which is compared 
against an adaptive velocity based relative distance threshold, b) the outcome of this 
comparison is fed to a Rule Based Supervisor, and c) the low-level control module has been 
designed so that it efficiently regulates the longitudinal slip target that corresponds to the 
desired deceleration. Focusing on robust and adaptive wheel slip control, a Sliding Model 
control algorithm and a Gain Scheduled Linear Quadratic Regulator were designed and 
compared in the context of the AEB performance. 

2. Modeling and Control Methods 

In this section, the modeling of the system as well as the AEB control design are presented. 
The dynamical model representing the vehicle equipped with AEB (henceforth will be 
referred as EGO vehicle) is comprised of a system of non-linear differential equations. These 
equations will be referred hereinafter as longitudinal and lateral equations of motion. As the 
maneuver under consideration is an autonomous straight-line braking, the equations of motion 
are simplified to describe non-linear, pure longitudinal motion. The dynamics that represent 
the leading vehicle’s motion are not analyzed. Instead, given the leading vehicle’s trajectory, 



the non-linear dynamics of the EGO vehicle are analyzed and the AEB control system is 
designed so that it delivers the required emergency braking maneuver. The AEB control 
system follows a hierarchical structure. More specifically, the high-level control is provided 
by the Rule Based Supervisory Control system that plans the deceleration actions. The 
intermediate-level control is provided by the Switching Algorithm that coordinates the control 
actions based on the severeness of the potential collision risk. The low level-control delivers 
the commands from the upper levels by robustly controlling the slip dynamics. The 
environment is comprised of a flat, dry road. Figure 1 demonstrates the schematic of the 
EGO-leading vehicle interaction. Figure 2 depicts in more detail the architecture of the EGO 
vehicle with the hierarchical control structure. 

 
Figure 1. Illustration of the EGO-Lead Vehicle interaction 

 
Figure 2. Illustration of the EGO vehicle supplied with the hierarchical-structured AEB control system. λftarget  ,  

λrtarget  are front and rear longitudinal slip targets. 

As wheel slip control is of particular importance in Autonomous Emergency Braking 
applications, two different low-level controllers are designed, from the control algorithm 
perspective: a) a Robust Sliding Mode wheel slip controller and b) a Gain-Scheduled Linear 
Quadratic Regulator for the emergency braking maneuver stabilization. These controllers are 
analyzed in the related sections.   

2.1 EGO Vehicle Modeling 
In this study, dynamics of the EGO vehicle are represented by the dynamic non-linear bicycle 
model coupled with non-linear tire models. This single-track model achieves a satisfactory 
level of fidelity [21] as it can be considered an equilibrium point on the tradeoff between high 
fidelity, computationally intense models (e.g. high order Multi-Body-Dynamics Models) and 
low fidelity, computationally cheap models (e.g. Point Mass models, kinematic models with 
linear tire response, etc.). Constructing this model, the following assumptions have been 
made: 

Wheel Slip 
ControllerRule Based 

Supervisory Control

Road 
Condition 
(e.g. dry 
asphalt)

PID Speed 
Regulator

𝑥𝑥,EGO desired , 𝑥𝑥,EGO desired

-
+

λfactual , λractual

λftarget , λrtarget

Non-Linear Vehicle 
Model

torqueWSCf, torqueWSCr 

torqueDrv

torqueDrvf 

torqueDrvr

+
𝑥𝑥,EGO desired

_

𝑥𝑥,EGO actual

AEB-Speed Regulator 
Switching algorithm fFx, fRx, 𝑥𝑥,EGO actual , 𝑥𝑥,EGO actual

μ,peak

Δx =X,GVT - X,EGO

Relative Distance 
Threshold Δx,thres

𝑓𝑓𝐹𝐹𝐼𝐼, 𝑓𝑓𝑅𝑅𝐼𝐼



a) On each axle, the two wheels are represented by a single equivalent wheel with 
characteristics that will be presented later in this section. 

b) Total vehicle mass is lumped in the vehicle center-of-gravity (C.O.G) whereas 
reaction (normal) loads are occurring on the front and rear axles, respectively. 

c) Tire longitudinal/lateral friction forces on each axle are estimated using the 
Pacejka MF model. 

d) This vehicle architecture can encompass electric prime movers on each axle, all 
of them having the ability to serve as regenerative braking actuators. 

e) It is assumed that required braking torque is provided by the best strategy, either 
hydraulic friction brake (HFB) assisted or electric motor and HFB assisted.  

f) The braking torque blending strategy, as well as the modelling of the electric 
motors and the hydraulic brake system, are out of the scope of this study. 

g) Brake actuation delays are neglected. 

In this paper, the vehicular motion was studied with respect to an inertial frame of reference 
{XI, YI, ZI}, both in the current section and in 2.2.1.1, whilst in the analysis of the low-
level control (paragraphs 2.2.2 & 2.2.3) the vehicular/ slip dynamics were studied with 
respect to the wheel’s frame of reference, according to the literature demonstrated in the 
respective sections.  

The vehicle’s equation of motion is: 

𝑥̈𝑥,𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = −(𝑓𝑓𝐹𝐹𝐹𝐹+𝑓𝑓𝑅𝑅𝑅𝑅)

𝑚𝑚,𝑣𝑣𝑣𝑣ℎ
  (2.1.1)  

where 𝑥̈𝑥,𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the acceleration component along the x axis of the inertial frame of 
reference {XI, YI, ZI} fixed at the origin, 𝑓𝑓𝑖𝑖𝑖𝑖 are the longitudinal forces of the front/rear tires 
(i={F, R}) and 𝑚𝑚,𝑣𝑣𝑣𝑣ℎ is the total vehicle mass. 

In this study, the practical slip ratio definition [22] is used for the needs of the wheel slip 
control design and control logic deployment: 

𝜆𝜆𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖−𝜔𝜔𝑖𝑖𝑅𝑅
|𝑉𝑉𝑖𝑖𝑖𝑖|   (2.1.2)  

where 𝜔𝜔𝑖𝑖 is the rotational speed of the front/rear wheel (i={F, R}) and 𝑉𝑉𝑖𝑖𝑖𝑖 is the translational 
speed of the front/rear wheel. 

The longitudinal friction coefficients 𝜇𝜇𝑖𝑖𝑖𝑖, estimated using Pacejka’s Magic Formula model 
[22] are given by: 

𝜇𝜇𝑖𝑖𝑖𝑖 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1(𝐵𝐵𝑠𝑠𝑖𝑖𝑖𝑖)) (2.1.3) 

where 𝐷𝐷 is the coefficient that represents peak road-tire adhesion, 𝐵𝐵 is the stiffness 
coefficient, 𝐶𝐶 is the shape factor (Table 1) and 𝑠𝑠𝑖𝑖𝑖𝑖 is the theoretical front/rear slip ratio [22]. 

The normal load on each tire accounts for the static load at zero acceleration/deceleration plus 
the dynamic load due to longitudinal load transfer, defined as follows [21]: 

𝑓𝑓𝐹𝐹𝐹𝐹 = 𝑙𝑙𝑅𝑅 𝑚𝑚,𝑣𝑣𝑣𝑣ℎ 𝑔𝑔−ℎ 𝜇𝜇𝑅𝑅𝑅𝑅 𝑚𝑚,𝑣𝑣𝑣𝑣ℎ 𝑔𝑔 
𝑙𝑙𝐹𝐹+𝑙𝑙𝑅𝑅+ℎ(𝜇𝜇𝐹𝐹𝐹𝐹 −𝜇𝜇𝑅𝑅𝑅𝑅)   (2.1.4) 

𝑓𝑓𝑅𝑅𝑅𝑅 =  𝑚𝑚,𝑣𝑣𝑣𝑣ℎ 𝑔𝑔 − 𝑓𝑓𝐹𝐹𝐹𝐹  (2.1.5) 



where 𝑔𝑔 is the gravitational acceleration, 𝑙𝑙𝐹𝐹, 𝑙𝑙𝑅𝑅 are the distances of the front and rear axle 
from the vehicle’s center-of-gravity (C.O.G) and ℎ  is the height of the C.O.G. The 
longitudinal friction forces are equal to: 

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 , i={F, R}  (2.1.6) 

Finally, the wheel dynamics are presented, as they are of particular importance, in the context 
of Autonomous Emergency Braking control design: 

𝜔̇𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �𝑓𝑓𝐹𝐹𝐹𝐹𝑅𝑅 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�/𝐽𝐽  (2.1.7) 

𝜔̇𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)/𝐽𝐽  (2.1.8) 

where 𝜔̇𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝜔̇𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are the front and rear wheel rotational accelerations and 𝐽𝐽 is the 
wheels’ mass moment of inertia. 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are the front and rear control torques 
that will be provided either by the wheel slip control module when there is urge for 
momentary emergency braking assistance or by the speed regulator in case of cruising 
operation. These control modules as well as the high-level supervisory control along 
with the switching algorithm to intervene between emergency and non-emergency 
situations, will be analytically described in the next section. 

Table 1. Vehicle Data used in this study, corresponding to the electric vehicle used in Siampis 
et al. [23] 

𝑚𝑚,𝑣𝑣𝑣𝑣ℎ = 1420 𝑘𝑘𝑘𝑘  ℎ = 0.55 𝑚𝑚  
𝑔𝑔 = 9.81 𝑚𝑚/𝑠𝑠2  𝑅𝑅 = 0.3 𝑚𝑚  
𝐵𝐵 = 24, 𝐶𝐶 = 1.5, 𝐷𝐷 = 0.9  𝐼𝐼𝐼𝐼 = 1027.8 𝑘𝑘𝑘𝑘𝑚𝑚2  
𝑙𝑙𝐹𝐹 = 1.01 𝑚𝑚 ,𝑙𝑙𝑅𝑅 = 1.452 𝑚𝑚 𝐽𝐽 = 0.6 𝑘𝑘𝑘𝑘𝑚𝑚2   
 

2.2 Autonomous Emergency Braking Control 
2.2.1.1 Rule based supervisory control  
We consider a high-level control system driven by Rule Based logic in order to ensure that a 
target deceleration defined by the tire’s maximum capacity at the road friction limit is 
provided. The Rule Based Supervisory Control (RBSC hereinafter) supervises the AEB 
system’s progress towards achieving its goal by devising a set of verbal rules. Rule Based 
systems include a Rule Base coupled to an Inference Mechanism. These systems’ typical 
operation implies that given some input data, the system will be capable of drawing 
meaningful conclusions, according to the conditions that the system meets [24]. In the context 
of this study, the conditions the vehicle under test (EGO hereinafter) meets are considered and 
based on the execution of the rules a desired output to follow is generated. The inputs to the 
RBSC are: the peak friction coefficient μ (based on road condition), EGO vehicle’s actual 
longitudinal speed 𝑥𝑥,̇ EGO actual, the relative distance of lead vehicle (GVT hereinafter) w.r.t 
EGO vehicle Δx, and a defined relative distance threshold Δx,Thres, which acts as an adaptive 
tuning parameter in order to establish a safety distance from the GVT at all times. In this 
study, it is assumed that the GVT is precisely tracked by the exteroceptive sensors (e.g. 
Radar, Lidar) and that the EGO vehicle’s kinematic quantities are available by internal 
sensors, State Estimators and/or GPS at all times. 

Peak achievable deceleration is defined as -μg, where g is gravitational acceleration.  
EGO vehicle’s minimum braking distance xbr,min is defined as follows: 



 xbr,min = (𝑥̇𝑥𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)2 
2𝜇𝜇𝑔𝑔

  (2.2.1.1.1) 

where 𝑥𝑥,̇ EGO actual is the EGO vehicle’s longitudinal speed at a time instance.  

Based on (2.2.1.1.1), the relative distance threshold is a function of speed, plus an additional 
static safety distance margin (margin): 

Δx,Thres = xbr,min + margin  (2.2.1.1.2) 

It is obvious that relative distance threshold is capable of adaptation to the velocity the vehicle 
undergoes at a time instance. 

Finally, the target deceleration is defined as: 

𝑥̈𝑥𝐸𝐸𝐸𝐸𝐸𝐸,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = (𝑥̇𝑥𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)2

−2𝑥𝑥𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚
 (2.2.1.1.3) 

Taking into consideration equations (2.2.1.1.1)- (2.2.1.1.3), the RBSC logic is assembled as 
follows:  

ON DrivingwithLeadingTraffic 

IF DeltaX is equal to or less than DeltaXthres  

THEN  

 applydecel(Desiredecel=TARGET) 

ELSE 

 applydecel(Desiredecel=ZERO) 

As stated above, the logic consists of an Event-Driven Rule [25] that is activated when 
longitudinal motion is detected on the EGO vehicle and a braking/slow moving leading 
vehicle is detected. In addition to this, the Reasoning method RBSC adheres to is forward 
chaining. 

RBSC logic can be readily transformed to a non-symbolic format that consists of the 
following algorithms: 

Algorithm 1: targetXdotdotGenActivation 

Input: 𝑥𝑥,̇ EGO,actual , bool isLeadingVehicleDetected, μpeak 

 while ( 𝑥𝑥,̇ EGO,actual >4) && ( isLeadingVehicleDetected == 1) do 

    targetDecelerationGenerator(Δx , 𝑥𝑥,̇ EGO,actual , μpeak) 

endwhile 

end 

Algorithm 2: targetDecelerationGenerator     

Input:  Δx , 𝑥𝑥,̇ EGO,actual, μpeak  

Output: 𝑥̈𝑥EGO,desired 

#define g 9.81 



#define margin m   //additional safety distance margin  

𝑥̈𝑥EGO,desired 0 

x,br,min   -(𝑥𝑥,̇ EGO,actual)* (𝑥𝑥,̇ EGO,actual)/(2*(-μ,peak)*g) 

Δx,thres  x,br,min + m 

 if (Δx  <= Δx,thres) 

      𝑥̈𝑥EGO,desired  - (𝑥𝑥,̇ EGO,actual)* (𝑥𝑥,̇ EGO,actual)/(2*x,br,min) 

else 

     𝑥̈𝑥EGO,desired  0 

endif  

switchingAlgorithm(𝑥̈𝑥EGO,desired, 𝑥𝑥,̇ EGO,actual) 

return  𝑥̈𝑥EGO,desired 

 

Algorithm 3: switchingAlgorithm     

Input: 𝑥̈𝑥EGO,desired , 𝑥𝑥,̇ EGO,actual 

torqueWSCf 0  

torqueWSCr 0  

torquedrv 0 

if abs(𝑥̈𝑥EGO,desired)>0 

    torqueWSCf  SlidingModeControl(isActive=1)     

    torqueWSCr  SlidingModeControl(isActive=1) 

    torquedrvProportionalIntegralDerivativeControl(isActive=0, 
𝑥𝑥,̇ EGO,actual, 𝑥̈𝑥EGO,desired)  

else 

    torqueWSCf  SlidingModeControl(isActive=0) 

    torqueWSCr  SlidingModeControl(isActive=0) 

   torquedrvProportionalIntegralDerivativeControl(isActive=1, 
𝑥𝑥,̇ EGO,actual, 𝑥̈𝑥EGO,desired) 

endif 

end 

2.2.1.2 PID Speed Regulator 
For the needs of the simulation, a system that would be capable of maintaining a constant 
speed was implemented. We consider a PID Controller that regulates EGO vehicle speed 



when there is no request by the RBSC for Autonomous Emergency Braking (AEB) 
deceleration. As the acceleration target is 0, the desired speed is defined as the speed EGO 
vehicle should cruise at when the distance between GVT and EGO just exceeded the 
minimum relative distance threshold Δx,thres ; hence, the situation is no longer considered 
worrying. The latter improves the overall motion control in the following manners: a) EGO 
vehicle manages to maintain a constant (cruising) speed by balancing the non-linear friction 
forces exerted at the wheels and b) an additional control logic has been established for the in-
between threat overcoming phases. The leading vehicle may further brake afterwards; hence, 
the AEB cycle will be repeated if required. 

The desired longitudinal speed is defined as follows: 

𝑥̇𝑥𝐸𝐸𝐸𝐸𝐸𝐸,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(t) = ∫  𝑥̈𝑥𝐸𝐸𝐸𝐸𝐸𝐸,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡

0 𝑑𝑑𝑡𝑡′ + 𝑣𝑣(0)    (2.2.1.2.1) 

The error e(t) is defined as the difference between desired and actual speed: 

𝑒𝑒(t)= 𝑥̇𝑥𝐸𝐸𝐸𝐸𝐸𝐸,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(t) - 𝑥̇𝑥𝐸𝐸𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(t)   (2.2.1.2.2) 

The implemented feedback controller is: 

torquedrv(t) = (𝑘𝑘𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝑘𝑘𝑖𝑖 ∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡′𝑡𝑡
0 + 𝑘𝑘𝑑𝑑

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑁𝑁
1+𝑁𝑁 ∫ 𝑑𝑑𝑡𝑡′𝑡𝑡

0
)  (2.2.1.2.3) 

where: 

N is a filter coefficient applied to the derivative part and 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑖𝑖, 𝑘𝑘𝑑𝑑 are the proportional, 
integral, derivative gains. It should be noted that for the selection of the gains, a tradeoff 
between stability, rise time, overshoot and steady state error elimination was considered. 
Moreover, the stability of the closed loop speed control system for the specific gains was 
confirmed using Linear Systems Analysis tools such as Nyquist Diagrams, Unit Step Input 
Tests, etc. 

The output of the speed controller is split to the front and rear axle by devising a torque 
allocation based on adhesion utilization. A similar approach is proposed in Ruiz Diez et al. 
[27]. 

2.2.2 Sliding Mode wheel slip control 
Sliding Mode Control is a non-linear control method that aims at driving the states of variable 
structure real-world systems towards their desired values. This is achieved by applying 
control actions that alter the dynamics of the systems in a fashion of applying discontinuous 
signals. The aforementioned signals exhibit a switching behavior in-between some 
mathematically defined control boundaries [28]. In the application field of wheel slip control, 
Sliding Mode is often selected as the basic control logic due to its robustness in the presence 
of parameter variations and disturbances [29]. 

Defining practical wheel longitudinal slip 𝜆𝜆𝜆𝜆 as the system state and the tracking error 𝑒𝑒(t) as 
𝑒𝑒(t)=𝜆𝜆𝑖𝑖(t)- 𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟(t), i={F, R}, one gets:   

𝑑𝑑𝜆𝜆𝑖𝑖

𝑑𝑑𝑑𝑑
= − 𝑅𝑅

𝐽𝐽 𝑉𝑉𝑖𝑖𝑖𝑖
�𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅 − 𝑇𝑇𝑖𝑖� + 𝑉̇𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖𝑖𝑖
(1 − 𝜆𝜆𝑖𝑖)  (2.2.2.1) 

𝑠𝑠(𝜆𝜆, 𝑡𝑡) = 0, 𝑠𝑠 = 𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟, 𝑠̇𝑠 = 𝜆̇𝜆𝑖𝑖 − 𝜆̇𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟   (2.2.2.2) 

Aiming for a steady state, controlled slip condition (𝜆̇𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 = 0), one gets: 

𝑠̇𝑠 = 𝜆̇𝜆𝑖𝑖  (2.2.2.3) 



Taking into consideration all the aforementioned, in order to derive a control law 𝑢𝑢 = 𝑔𝑔(𝑥𝑥, 𝑡𝑡) 
that guarantees 𝑒𝑒(t)0 for t∞, a Lyapunov function is defined as: 

𝑉𝑉 = 1
2

𝑠𝑠(𝑥𝑥, 𝑡𝑡)2 , V(0)=0,  (2.2.2.4) 

that satisfies the stability condition: 

𝑉̇𝑉 = 1
2

𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑠𝑠(𝑥𝑥, 𝑡𝑡)2] ≤ −𝜂𝜂|𝑠𝑠|  (2.2.2.5) 

Equation (2.2.2.7) leads to the following: 

𝑠𝑠𝑠̇𝑠 ≤ −𝜂𝜂|𝑠𝑠|  =>  𝑠̇𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) ≤ −𝜂𝜂  (2.2.2.6) 

As long as 𝜂𝜂 > 0, the system is operating in sliding mode. The objective is to derive a control 
law that satisfies the stability condition. Replacing (2.2.2.3) in (2.2.2.6) gives: 

 𝜆̇𝜆𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) ≤ −𝜂𝜂   (2.2.2.7) 

Equation (2.2.2.1) combined with (2.2.2.7) result in: 

�− 𝑅𝑅
𝐽𝐽 𝑉𝑉𝑖𝑖𝑖𝑖

�𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅 − 𝑇𝑇𝑖𝑖� + 𝑉̇𝑉𝑖𝑖𝑖𝑖
𝑉𝑉𝑖𝑖𝑖𝑖

(1 − 𝜆𝜆𝑖𝑖)� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) ≤  −𝜂𝜂    (2.2.2.8) 

The control law used in this study is: 

 𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑠𝑠  (2.2.2.9) 

where 𝑇𝑇𝑒𝑒𝑒𝑒, referred as equivalent control [28], is the continuous control so that the state 
velocity vector lies in the tangential manifold, obtained by setting 𝜆̇𝜆𝑖𝑖 = 𝜆̇𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 = 0 and 
solving equation (2.2.2.1). 𝑇𝑇𝑠𝑠, on the other hand, is the switching torque that enforces the 
error dynamics to return to the sliding surface 𝑠𝑠(𝜆𝜆, 𝑡𝑡) = 0, i.e. “pressing” the system 
dynamics whenever it escapes from the surface to return to its controlled sliding motion.  

It is noted that 𝑇𝑇𝑒𝑒𝑒𝑒  can be available via implementation of equations (2.1.3)-(2.1.6) combined 
with wheel kinematic sensors’ readings. In this study, an alternative approach for estimating 
𝑇𝑇𝑒𝑒𝑒𝑒 was followed. An Artificial Neural Network (ANN) was used for this scope, trained 
offline with data from former braking simulation experiments. The ANN comprised of the 
following hyperparameters and characteristics: 

a) Input vector 𝒙𝒙 = [𝑓𝑓𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖𝑖𝑖] 
b) A feedforward structure 2-20-1 , constituted of 2 input neurons, a hidden layer with 

20 hidden neurons and an output layer with a single neuron. In the hidden layer, the 
hyperbolic tangent sigmoid activation function was selected whilst in the output layer 
a linear activation function was used 

c) The selected supervised training algorithm for the update of the appropriately sized 
input-to-hidden V and hidden-to-output layer weights W  as well as the biases b and B 
was the Levenberg- Marquardt algorithm whilst the used performance metric was 
Mean Squared Error (MSE) 

d) The maximum number of epochs was set to 3000 

In a compact form, the implemented ANN is written as: 

𝑓𝑓 = 𝑾𝑾( 2
1+𝑒𝑒−2(𝑽𝑽𝑽𝑽+𝒃𝒃) − 1)  + 𝑩𝑩                                                                                    (2.2.2.10) 

The true value of 𝑓𝑓 that was approximated by the Neural Network is equal to: 



𝑓𝑓 = − 𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅2

𝐽𝐽 𝑉𝑉𝑖𝑖𝑖𝑖
+ 𝑉̇𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖𝑖𝑖
(1 − 𝜆𝜆𝑖𝑖)                                                                               (2.2.2.11) 

The equivalent control signal 𝑇𝑇𝑒𝑒𝑒𝑒 can then be then calculated by multiplying 𝑓𝑓 or its estimate 
𝑓𝑓with the term 𝐽𝐽 𝑉𝑉𝑖𝑖𝑖𝑖

𝑅𝑅
 which is assumed to be known. Figure 3 shows the Mean Squared Error 

being efficiently reduced during the training session whilst the training algorithm successfully 
converged. Figure 4 shows the performance of the trained Neural Network in terms of 
estimating 𝑓𝑓 during a heavy deceleration maneuver. It is evident that in the simulated braking 
maneuver, the absolute value of the difference between the estimate and the actual value of 𝑓𝑓 
is bounded, with an upper bound 𝐹𝐹 that was further identified in order to proceed to the 
formulation of the variable gain of the switching torque 𝑇𝑇𝑠𝑠, demonstrated later on in this 
section. 

 
Figure 3. Mean Square error over the offline training on simulated emergency braking data. The training algorithm 
converged at epoch 779. 



 
Figure 4. Demonstration of the estimate of f (blue solid signal) calculated at every time step during an emergency 
braking maneuver versus true f (brown dashed signal). 

Discontinuous Sliding mode control is considered fully capable in terms of robustness, 
however the high frequency switching based chattering has been characterised undesirable in 
practical applications where wear plays an important role. To tackle the issue of chattering, 
[30] proposed a Continuous Sliding Mode control law. Zhou et al. [30] defined Continuous 
Sliding Mode control as a continuous law in the fashion of state feedback control, retaining, 
however, the positive features of the classical SMC. The aforementioned control algorithm 
was further analysed with regards to its boundary layer equivalence property and stability. 
Basrah et al. [29] proposed a Sliding Mode Wheel Slip Controller formed by a continuous 
equivalent control signal as well as a piecewise function for the switching torque 𝑇𝑇𝑠𝑠. When 
the absolute value of 𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 is below a defined threshold, Ts becomes a linear signal with 
a slope of a varying amplitude according to the operating conditions of the physical system. 
When the threshold is exceeded, Ts recovers its discontinuous switching actions. To further 
improve chattering phenomenon, the aforementioned saturation function was enriched with 
the boundary thickness parameter 𝛷𝛷. Buckholtz [31] proposed a sliding mode control law for 
wheel slip dynamics control with an approximate equivalent control law due to the (bounded) 
uncertainty of the deceleration signal. Furthermore, this approach was combined with a 
saturation function of 𝑠𝑠 so that chattering would be improved. It is remarkable that the 
aforementioned control law has different signs compared to the one in [29], because of the 
different longitudinal friction and braking torque sign convention. 

Taking into account the aforementioned, in this study the following piecewise function with a 
varying gain due to the 𝑉𝑉𝑖𝑖𝑖𝑖 term was implemented for the switching torque:  

𝑇𝑇𝑠𝑠 =        �

 
− 𝑚𝑚𝐽𝐽𝑉𝑉𝑖𝑖𝑖𝑖

𝑅𝑅
( 𝑠𝑠

𝛷𝛷
), 𝑖𝑖𝑖𝑖 � 𝑠𝑠

𝛷𝛷
� ≤ 1,

− 𝑚𝑚𝐽𝐽𝑉𝑉𝑖𝑖𝑖𝑖
𝑅𝑅

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠), 𝑖𝑖𝑖𝑖 � 𝑠𝑠
𝛷𝛷

� >  1 
� (2.2.2.12) 

 

Parameter 𝛷𝛷 represents boundary thickness whilst 𝑚𝑚 is a positive number linked to 𝑛𝑛, the 
positive number for the stability condition in (2.2.2.6) to hold. Parameter 𝑚𝑚 steers the variable 



gain 𝑚𝑚𝑚𝑚𝑉𝑉𝑖𝑖𝑖𝑖
𝑅𝑅

 to compensate for uncertainties injected using the estimate of the equivalent torque 
term in (2.2.2.9). As it can be shown in Figure 5, the parameter 𝑚𝑚 was tuned as appropriate, 
so that the variable gain 𝑚𝑚𝑚𝑚𝑉𝑉𝑖𝑖𝑖𝑖

𝑅𝑅
 would be greater than 𝐽𝐽𝑉𝑉𝑖𝑖𝑖𝑖

𝑅𝑅
(𝑛𝑛 + 𝐹𝐹). In addition to this, it is 

noted that the system behavior depends drastically on the value of 𝛷𝛷. If 𝛷𝛷 is small enough, 
then chattering exists, as the linear system with a high gain is unstable. Instead, if 𝛷𝛷 is high 
enough then properties of sliding mode can be lost. In this study, parameter 𝛷𝛷 was selected, 
considering the need for chattering reduction of the error signal in the sliding manifold. 

 
Figure 5. Illustration of the robustness of the designed variable gain against the parameter f that injected 
uncertainty. The green line shows the designed variable gain, which is greater than the upper bound F (black 
dotted signal) of the absolute difference between f and 𝑓𝑓 (orange dotted signal). 

2.2.3 Trajectory stabilization for the emergency braking condition via Gain-Scheduled LQR 
control 

In order to compare Sliding Mode Wheel Slip Control based emergency braking with another 
State-of-the-art wheel slip control method, a linear quadratic regulator (LQR) is designed to 
control the non-linear vehicle model during the emergency maneuver. As the system cannot 
be expressed as a Linear Time Invariant state space model, the gain scheduling approach is 
adopted to tackle challenges that non-linearity inherits. 

The wheel dynamics comprise of a non-linear system of the form: 

𝑥̇𝑥 = �
𝑓𝑓(𝑥𝑥, 𝑢𝑢)
𝑔𝑔(𝑥𝑥, 𝑢𝑢)�  

𝑦𝑦 = ℎ(𝑥𝑥) (2.2.3.1) 

Setting 𝑥̇𝑥 = �𝑉̇𝑉𝑖𝑖𝑖𝑖
𝜔̇𝜔𝑖𝑖

� , 𝑢𝑢 = 𝑇𝑇𝑖𝑖 and 𝑦𝑦 = 𝜆𝜆𝑖𝑖 , where 𝑉̇𝑉𝑖𝑖𝑖𝑖 is the longitudinal acceleration of the 

front/rear wheel and 𝜔̇𝜔𝑖𝑖 the rotational acceleration of the front/rear axle, we obtain: 

�𝑉̇𝑉𝑖𝑖𝑖𝑖
𝜔̇𝜔𝑖𝑖

� =  �
−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1(𝐵𝐵𝜆𝜆𝑖𝑖))

(1/𝐽𝐽)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1(𝛣𝛣𝜆𝜆𝑖𝑖)�𝑅𝑅 − (1/𝐽𝐽)𝑇𝑇𝑖𝑖
�  (2.2.3.2) 



where 𝑚𝑚𝑖𝑖 corresponds to front/rear axle load divided by gravitational acceleration. As 
previously stated, longitudinal load transfer 𝛥𝛥𝛥𝛥𝑖𝑖 is considered too, in this study, as it is 
strongly influencing tire longitudinal friction forces. 

Emergency deceleration, thus, can be defined as a time-varying reference trajectory with the 
following dynamics, based on a constant slip target 𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 that corresponds to the required 
vehicle deceleration for the given road condition: 

𝑉̇𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 =    −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1�𝐵𝐵𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟�)  (2.2.3.3) 

𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟)/𝑅𝑅  (2.2.3.4) 

𝑇𝑇𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 = −𝐽𝐽𝜔̇𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 + �𝑚𝑚𝑖𝑖 ± 𝛥𝛥𝛥𝛥𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1�𝛣𝛣𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟�� 𝑅𝑅 , 𝑚𝑚𝑖𝑖 ± 𝛥𝛥𝛥𝛥𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚,𝑣𝑣𝑣𝑣ℎ𝑙𝑙𝑖𝑖
𝑙𝑙𝐹𝐹+𝑙𝑙𝑅𝑅

±
𝑚𝑚,𝑣𝑣𝑣𝑣ℎ�𝑉̇𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟�ℎ

(𝑙𝑙𝐹𝐹+𝑙𝑙𝑅𝑅)𝑔𝑔
 , 𝑖𝑖 = {𝐹𝐹, 𝑅𝑅}   (2.2.3.5) 

 

For the calculation of 𝛥𝛥𝛥𝛥𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟, a mapping approach could be alternatively used that has been 
introduced by [21]. In the latter study, longitudinal friction coefficients for each tire, obtained 
by the MF model, were used for the determination of the normal loads without the need for an 
analytical expression including the acceleration term. 

Equation (2.2.3.5) forms the feedforward control input 𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . In order to ensure that 
EGO vehicle stabilizes around the required reference trajectory, the system described in 
(2.2.3.2) was linearized and afterwards feedback controlled about the discussed reference 
trajectory. The Jacobians of the system were calculated to obtain the incremental model. 
Ignoring high-order terms, one gets: 

 �𝛥𝛥𝑉̇𝑉𝑖𝑖𝑖𝑖
𝛥𝛥𝜔̇𝜔𝑖𝑖

� =  �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝜔𝜔𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝜔𝜔𝑖𝑖

� |𝑉𝑉𝑖𝑖𝑖𝑖=𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 ,𝜔𝜔𝑖𝑖=𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 �𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖
𝛥𝛥𝜔𝜔𝑖𝑖

� + �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇𝑖𝑖

� |𝑇𝑇𝑖𝑖=𝑇𝑇𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝛥𝛥𝛥𝛥𝑖𝑖  , 𝛥𝛥𝛥𝛥𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 ,

𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 , 𝛥𝛥𝜔𝜔𝑖𝑖 = 𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 , 𝛥𝛥𝑉̇𝑉𝑖𝑖𝑖𝑖 =  𝑉̇𝑉𝑖𝑖𝑖𝑖 − 𝑉̇𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 , 𝛥𝛥𝜔̇𝜔𝑖𝑖 = 𝜔̇𝜔𝑖𝑖 − 𝜔̇𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟  
(2.2.3.5) 

𝛥𝛥𝜆𝜆𝑖𝑖 = � 𝜕𝜕ℎ
𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖

𝜕𝜕ℎ
𝜕𝜕𝜔𝜔𝑖𝑖

� |𝑉𝑉𝑖𝑖𝑖𝑖=𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 ,𝜔𝜔𝑖𝑖=𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 �𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖
𝛥𝛥𝜔𝜔𝑖𝑖

� , 𝛥𝛥𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟  (2.2.3.6) 

The incremental model therefore is: 

𝐴𝐴11(𝑡𝑡) =  −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1 �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
� 𝐶𝐶

1

1 + �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
�

2 𝐵𝐵
𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
2) 

𝐴𝐴12(𝑡𝑡) =  −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1 �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
� 𝐶𝐶

1

1 + �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
�

2 𝐵𝐵
−𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
) 

𝐴𝐴21(𝑡𝑡)

= (𝑅𝑅/𝐽𝐽)(𝑚𝑚𝑖𝑖 ± 𝛥𝛥𝛥𝛥𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1 �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
� 𝐶𝐶

1

1 + �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
�

2 𝐵𝐵
𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
2) 



𝐴𝐴22(𝑡𝑡)

= (𝑅𝑅/𝐽𝐽)(𝑚𝑚𝑖𝑖 ± 𝛥𝛥𝛥𝛥𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1 �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
� 𝐶𝐶

1

1 + �𝐵𝐵
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
�

2 𝐵𝐵
−𝑅𝑅

𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
) 

�𝛥𝛥𝑉̇𝑉𝑖𝑖𝑖𝑖
𝛥𝛥𝜔̇𝜔𝑖𝑖

� =  �
𝐴𝐴11(𝑡𝑡) 𝐴𝐴12(𝑡𝑡)
𝐴𝐴21(𝑡𝑡) 𝐴𝐴22(𝑡𝑡)� �𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖

𝛥𝛥𝜔𝜔𝑖𝑖
� + � 0

(−1/𝐽𝐽)� 𝛥𝛥𝛥𝛥𝑖𝑖  (2.2.3.7) 

𝛥𝛥𝛥𝛥𝛥𝛥 = �
𝜔𝜔𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟

2

−𝑅𝑅
𝑉𝑉𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟

� �𝛥𝛥𝑉𝑉𝑖𝑖𝑖𝑖
𝛥𝛥𝜔𝜔𝑖𝑖

�  (2.2.3.8) 

Equations (2.2.3.7), (2.2.3.8) form a Linear Time Varying (LTV) system. The LTV has the 
desired state space model format: 

𝛥𝛥𝑥̇𝑥 = 𝐴𝐴(𝑡𝑡)𝛥𝛥𝛥𝛥 + 𝐵𝐵(𝑡𝑡)𝛥𝛥𝑢𝑢   (2.2.3.9) 

𝛥𝛥𝛥𝛥 = 𝐶𝐶(𝑡𝑡)𝛥𝛥𝛥𝛥 (22)   (2.2.3.10) 

The control law that stabilizes the system’s trajectory about the reference conditions is 
defined as follows: 

 𝑢𝑢(𝑡𝑡) = 𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) + 𝛥𝛥𝑢𝑢∗(𝑡𝑡)  (2.2.3.11) 

𝛥𝛥𝑢𝑢∗(𝑡𝑡) = 𝛫𝛫(𝑡𝑡)𝛥𝛥𝑥𝑥(𝑡𝑡)  (2.2.3.12) 

The time-varying scheduled gain 𝛫𝛫(𝑡𝑡) was obtained by solving the Riccati Differential 
Equation online, based on the feasible planned and simulated trajectory that is available via 
(2.2.3.3), (2.2.3.4) and (2.2.3.7): 

−dP(t)/dt = 𝐴𝐴(𝑡𝑡)𝑇𝑇 P(t) + P(t)A(t) − P(t)B(t) 𝑅𝑅−1 𝐵𝐵(𝑡𝑡)𝑇𝑇P(t) + Q  (2.2.3.13) 

 𝛫𝛫(𝑡𝑡) = −𝑅𝑅−1𝐵𝐵(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡)  (2.2.3.14) 

The positive semi-definite and definite respectively 𝑄𝑄 , 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑅𝑅 matrices were designed 
by prioritizing state deviation & final state deviation minimization against control effort in the 
Finite Horizon LQR optimization problem: 

min�𝐽𝐽(𝑢𝑢)� = min �∫ (𝛥𝛥𝛥𝛥(𝑡𝑡)𝑇𝑇𝑄𝑄𝑄𝑄𝑄𝑄(𝑡𝑡) + Δ𝑢𝑢(𝑡𝑡)𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡))𝑑𝑑𝑑𝑑𝑇𝑇
0 � + 𝛥𝛥𝑥𝑥(𝑇𝑇)𝑇𝑇𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛥𝛥𝛥𝛥(𝑇𝑇) 

 (2.2.3.15) 

subject to: 

𝛥𝛥𝑥̇𝑥 = 𝐴𝐴(𝑡𝑡)𝛥𝛥𝛥𝛥 + 𝐵𝐵(𝑡𝑡)𝛥𝛥𝑢𝑢 , 

where 𝑇𝑇 is final time, corresponding to the end of the planned emergency braking trajectory 
and 𝛥𝛥𝑥𝑥(𝑇𝑇) is final state deviation. 

Concerning computational intensity, the average execution time for the simulation of the 
planned deceleration trajectory presented in Section 3, and thus the generation of 𝐴𝐴(𝑡𝑡) and 
𝐵𝐵(𝑡𝑡) matrices, was 0.25 seconds. The average execution time for solving the Riccati 
Differential Equation in a backward recursion manner via Dynamic Programming was 0.10 
seconds. Therefore, a total of approximately 0.35 seconds was required for the online 
calculation of the LQR time varying gain, which, event-wise, was performed in a similar 
fashion to the Sequential Linear Quadratic algorithm implemented by [32], the latter being 
proposed for real-time implementation. The simulations were conducted on a computer with 
the following characteristics: a) an Intel Core i5-9300HF CPU 2400 MHz- 4 cores b) 8 



gigabytes of RAM c) an nVIDIA GeForce GTX 1650 graphics card c) Operating System 
Microsoft Windows 10 d) MATLAB R2021a programming environment, network licensed 
with SIMULINK and e) the selected solver was ode45 and timestep size was set to 0.001. 

Finally, it should be noted that the actual determination of 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡) inherits 
uncertainties. These uncertainties’ identification is out of the scope of the Gain-Scheduled 
LQR trajectory stabilization method proposed in this section, where the linearization of the 
nonlinear wheel dynamics was performed in a purely deterministic fashion. It was assumed 
that knowledge of the models illustrated in this section was to a great extent available. 

3. Simulation Results & Analysis 

The system was implemented in MATLAB and simulations were performed with 
MATLAB/SIMULINK. To demonstrate the validity of the control approach for the 
momentary assisted autonomous emergency braking, we are presenting the following virtual 
test case corresponding to the following extreme condition: The Lead Vehicle is 10 m ahead 
of the EGO vehicle in the longitudinal direction (no lateral offset), when it suddenly 
decelerates with -8 m/s2. Both vehicles were at 100 km/h at that moment, when the Lead 
Vehicle starts to heavily decelerate. According to (2.2.1.1.2), the minimum braking distance 
for the EGO vehicle travelling with 100 km/h, on a flat, dry road (μ =0.9), to be brought to a 
complete halt, plus the additional distance margin, which was set to 1 meter, is approximately 
45 meters (Figure 7). This value corresponds to the relative distance threshold Δx,Thres  as 
previously discussed. The aforementioned scenario could possibly correspond to an extreme 
case in which the EGO vehicle was not controlled by any means before, so it is totally to the 
power of the momentary assisted AEB to mitigate the severity of the collision risk and/or 
ideally to avoid the collision.  

The AEB algorithm managed to safely decelerate EGO vehicle and bring the vehicle to a 
complete halt respecting the safety distance margin of 1 meters (Figs 7 and 12). The 
simulation ended when the threat had been repelled and the speed of both vehicles was about 
0. Both low level controllers, Sliding Mode controller and Gain-Scheduled LQR managed to 
provide sufficient deceleration by controlling the slip and thus had successfully followed the 
desired longitudinal velocity trace, as it can be seen in Figs 6 and 11. However, the Sliding 
Model controller repelled the collision risk faster than the Linear Quadratic Regulator (Figs 6 
and 11). In addition to this, in terms of longitudinal slip error, Sliding Mode achieved near 0% 
relative error in the first emergency deceleration phase whilst the relative slip error of LQR 
was 4.4%, respectively (Figs 9, 10 and 14, 15, respectively). The latter could be explained by 
the fact that LQR was designed about a reference {wheel translational/rotational speed, 
braking torque} trajectory based on an approximation model, which is an estimate of the real 
system while the SMC was robustly designed in the actual, non-linear vehicle model to 
reduce slip error to zero. 

Results are illustrated in Figures 6-15 where the overall goal has been achieved. 

 



 
Figure 6. Illustration of desired longitudinal speed trace (blue line) and actual longitudinal speed trace (green line) 
of the EGO with RBSC and Sliding Mode Wheel Slip Control. The vertical lines highlight the time interval 
(between t1=1.676-t2=2.157 seconds) when the potential collision risk is repelled, and the speed regulator is on. 

 

 
Figure 7. Illustration of the relative EGO- GVT vehicle distance (green line) and relative distance threshold (blue 
line). RBSC and Sliding Mode Wheel Slip Control adapts to the relative distance threshold in less than 1.7 sec and 
then retains the required distance limit. 

 



 
Figure 8. Illustration of the EGO vehicle (equipped with RBSC and SMC) longitudinal speed (green line) and 
Lead vehicle (GVT) longitudinal speed (blue line) 

  

 

  

 
Figure 9. Illustration of the Sliding Mode Wheel Slip Controller performance (green signal) regarding front wheel 
slip target (blue signal). Between t1=1.676-t2=2.157 seconds wheel slip control is deactivated whilst PID Speed 
Regulator is aiming at maintaining a cruising speed. 



 
Figure 10. Illustration of the Sliding Mode Wheel Slip Controller performance regarding rear wheel slip target. 
Between t1=1.676-t2=2.157 seconds wheel slip control is deactivated whilst PID Speed Regulator is aiming at 
maintaining a cruising speed. 

 

 
Figure 11. Illustration of desired longitudinal speed trace (blue line) and actual longitudinal speed trace (green 
line) of the EGO with RBSC and LQR. The vertical lines highlight the time interval (between t1=1.780-t2=2.524 
seconds) when the potential collision risk is repelled, and the speed regulator is on. 

 



 
Figure 12. Illustration of the relative EGO- GVT vehicle distance (green line) and relative distance threshold (blue 
line). RBSC and LQR sufficiently adapts to the relative distance threshold (in less than 1.8 sec) and then retains 
the required distance limit. 

 
Figure 13. Illustration of the EGO vehicle (equipped with RBSC and Gain-Scheduled LQR) longitudinal speed 
(green line) and Lead vehicle (GVT) longitudinal speed (blue line). 

 



 
Figure 14. Illustration of the LQR slip controller performance regarding front wheel slip target. Between t1=1.780 
and t2=2.524 seconds, wheel slip control is deactivated whilst PID Speed Regulator is aiming at maintaining a 
cruising speed. 

 
Figure 15. Illustration of the LQR slip controller performance regarding rear wheel slip target. Between t1=1.780 
and t2=2.524 seconds, wheel slip control is deactivated whilst PID Speed Regulator is aiming at maintaining a 
cruising speed. 

4. Conclusions 

In this study, a safety distance based hierarchical AEB control system was proposed. The 
hierarchical AEB control structure is constituted of a) a high-level Rule-Based Supervisory 
control module, b) an intermediate-level switching algorithm, and c) a low-level control 
module. The control system was also augmented with a Speed Regulator for the in-between 
collision threat phases that the EGO vehicle undergoes. Two distinct control design 
approaches were studied, differing only in the low level. The first incorporated a Robust 
Sliding Mode wheel slip control and the second a Gain-Scheduled Linear Quadratic Regulator 



for heavy deceleration trajectory stabilization. The two control system combinations were 
validated in Simulink through a straight-line emergency braking maneuver simulation.  

During the emergency deceleration phase, the AEB system with Sliding Mode low-level 
control achieved longitudinal slip relative error near 0%, whilst the overall speed trace 
following ability was satisfactory and the defined safety distance threshold was respected. At 
the end of the simulated emergency maneuver, the desired relative distance of 1 meter with 
respect to the leading vehicle was successfully achieved and maintained. The AEB system 
with LQR low-level control achieved a greater longitudinal slip relative error compared to 
Sliding Mode controller, accounting for approximately 4.4% during the emergency 
deceleration phase. The overall speed trace following ability was satisfactory and the defined 
safety distance threshold was respected. At the end of the simulated emergency maneuver, the 
desired relative distance of 1 meter with respect to the leading vehicle was successfully 
achieved and maintained, as in the case of Sliding Mode low-level control. Therefore, full 
collision avoidance was achieved in both proposed control system combinations. The 
hierarchical control structure proposed in this study is flexible and extendable to be 
implemented on autonomous vehicles for momentary assisted emergency braking. 
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