
1

A Heuristic for Planning based on Action Evaluation
Dimitris Vrakas and Ioannis Vlahavas

Department of Informatics
Aristotle University of Thessaloniki

[dvrakas,vlahavas]@csd.auth.gr

Abstract
This paper proposes a domain independent heuristic for

state space planning, which is based on action evaluation.
The heuristic obtains estimates for the cost of applying each
action of the domain by performing a forward search in a
relaxed version of the initial problem. The estimates for the
actions are then utilized in a backward search on the
original problem. The heuristic, which has been further
refined by a goal-ordering technique, has been implemented
in AcE (Action Evaluation), a state space heuristic planner,
and thoroughly tested on a variety of toy problems.

Introduction
State space planning is the simplest form of planning and
has been an active research area for many years. However,
a large part of the AI researchers in Planning, abandoned it
and focused on other areas, since they regarded it to be non
promising. This was totally justifiable, since even with the
heuristics that were available at that time the search in the
space of states was combinatorial explosive. However, 6-7
years ago, McDermott with his work on UNPOP and later
Geffner with ASP/HSP, urged a large part of the planning
community to re-consider state space planning. They
showed that with the appropriate heuristics, state space
planning can be very efficient.

A large number of scientists were interested in this
promising area. As a result, during the last few years a
quite large number of state-space planning systems showed
with remarkable performance. These planners extended the
ideas, proposed by McDermott and Geffner, and utilize the
power of more refined heuristic functions, in order to
traverse the state of space using variations of known search
strategies. Most of these planners create their heuristic by
solving a relaxed problem, from which they extract
estimates for the distances between the facts of the domain
and the goals. The distances of the independent facts are
then combined to provide the search with estimates for the
distances of whole states.

In this paper we propose a different approach in state-
space, heuristic planning, which is based on estimated
distances between the domain’s actions, rather than facts,
and the goals. Basing the estimates on actions rather than
facts, enables the heuristic to keep better track of the
various interactions between the facts, and therefore
produce better estimates. The proposed heuristic is
embodied in a regression planner employing a weighted
A* search strategy, which is thoroughly tested on a large

variety of problems, adopted from the last AIPS-00
planning competition. The efficiency of the new planner,
called AcE, is assessed through comparative tests with 5 of
the most efficient planners in this category.

The rest of the paper is organized as follows: Section 2
presents an overview of the research in the area of state
space, heuristic planning. Section 3 describes the heuristic
of AcE among with an extension based on goal orderings.
Section 4 addresses certain implementation issues and
section 5 presents experimental results of Ace and most of
the state-of-the-art planners presented over the last years.
Finally section 6 concludes the paper and poses future
directions.

Related Work
Two of the most promising trends in domain-independent
planning were presented over the last few years.

The first one consists of the transformation of the
classical search in the space of states to other kinds of
problems, which can be solved more easily. Examples of
this category are the SATPLAN (Kautz and Selman 1996)
and BLACKBOX (Selman, Levesque and Mitchell 1992)
planning system, the evolutionary GRAPHPLAN (Blum
and Furst 1995) and certain extensions of GRAPHPLAN
as the famous STAN (Long and Fox 1998) planner.

SATPLAN and BLACKBOX transform the planning
problem into a satisfiability problem, which consists of a
number of boolean variables and certain clauses between
these variables. The goal of the problem is to assign values
to the variables in such a way that establishes all of the
clauses.

GRAPHPLAN on the other hand creates a concrete
structure, called the planning graph, where the nodes
correspond to facts of the domain and edges to actions that
either achieve or delete these facts. Then the planner
searches for solutions in the planning graph.
GRAPHPLAN has the ability to produce parallel plans,
where the number of steps is guaranteed to be minimum.

Fox and Long developed STAN, a powerfull planning
system, extending GRAPHPLAN with State Analysis
techniques. Apart from the State Analysis techniques, the
efficiency of STAN is due to the construction of the
planning graph in STAN, which is done very efficiently
through bit-wise operators on vectors of bits. In its latest
version, called Hybrid STAN (Fox and Long 2000), the
system is cable of identifying specific sub-problems (e.g.
TSP sub-problems) from the definition of the original

2

problem. The planner then uses specialized techniques to
tackle each of the sub-problems separately.

The second category is based on a relatively simple idea
where a general domain independent heuristic function is
embodied in a heuristic search algorithm such as Hill
Climbing, Best-First Search or A*. A detailed survey of
search algorithms can be found in (Korf 1998). Examples
of planning systems in this category are UNPOP
(McDermott 1996), the ASP/HSP family (Bonet, Loerincs
and Geffner 1997, Bonet and Geffner 1999), GRT
(Refanidis and Vlahavas 1999, 2001), AltAlt(Nguyen,
Kambhampati and Nigenda 2000) and FF (Hoffmann
2000), which was awarded for outstanding performance in
the last AIPS-00 planning competition.

The planners of the latter category rely on the same idea
to construct their heuristic function. They relax the
planning problem by ignoring the delete lists of the domain
operators and starting either from the Initial State or the
Goals they construct a leveled graph of facts, noting for
every fact f the level at which it was achieved L(f). In order
to evaluate a state S, the heuristic function takes into
account the values of L(f) for each f ∈ S.

McDermott’s UNPOP was the first planner in the area
of state space heuristic planning. UNPOP extended the
well-known Means-ends analysis by building a graph,
named greedy regression-match graph, consisting of
subgoals and actions that achieve these subgoals. The
subgoals of a planning problem are the goals of the
problem and the preconditions of actions that achieve other
subgoals. The creation of the greedy regression-match
graph starts from the goals of the problem and proceeds
backwards until all the subgoals at the last level exist in the
Initial state of the problem. The information drawn from
this graph is then used in the search phase in order to: a)
estimate the distance between a given state S’ and the
Initial state and b) prune the actions that do not appear in
the graph. The search starts from the goals and proceeds
backwards, reconstructing at each intermediate state a new
greedy regression-match graph.

The direct ancestor of UNPOP was Bonet, Loerincs &
Geffner’s HSP (Bonet, Loerincs and Geffner 1997)
planning system. Given an Initial state I, HSP constructs a
graph of facts starting from I by adding the facts that are
added by actions whose preconditions already exist in the
graph. A value v(f) is assigned to each fact f in the graph
corresponding to the number of actions needed to achieve
this fact starting from I. If all the preconditions of an
action a already exist in the graph, HSP assigns a value
v(a) to action a, where v(a) =)(∑ ifv for each fi ∈

prec(a). The value of v(a) is then inherited to the facts in
the add list of a using the following formula:

))(),(min()(avqvqv ii = for each qi∈ add(a).

The expansion of the graph stops when all the goals of
the domain are included in the graph. In the search phase
HSP starts from the Initial state and proceeds forwards
with a Hill Climbing strategy (A* in the case of ASP)
constructing the graph from scratch at each intermediate
state.

In (Bonet and Geffner 1999) Bonet and Geffner present
a variation of HSP called HSP-R. HSP-R uses the same
heuristic function and the same search strategy as HSP, but
searches the state-space backwards, starting from the goals
and regressing them until it reaches the Initial state. The
graph is still constructed in the same direction as in HSP
and this enables HSP-R to compute the heuristic function
only once and thus speed up the planning process.

The latest member of the HSP/ASP family is the HSP2
planner (Bonet and Geffner 2000), which integrates HSP
and HSP-R under a common environment from which
apart from the direction of the search, the user can also
select the heuristic function that will guide the search.

GRT is another extension to HSP, which was developed
by Refanidis and Vlahavas. GRT creates a graph, similar
to the one created by HSP, starting from the goals of the
problem and proceeding backwards. The graph is created
only once and it is used to extract a heuristic function that
will be later used to guide the search. The search starts
from the Initial state and proceeds forwards, using a best
first search strategy. The main innovation of GRT is the
use of Related Facts, which monitor the interactions
between the facts in the graph. GRT has been also
improved with a number of techniques for enriching
incomplete goal states, eliminating irrelevant objects from
the problem.

Nigenda, Nguyen and Kambhampati presented a hybrid
planning system, named AltAlt, which was created using
programming modules from STAN and HSP-R. In the first
phase, AltAlt uses the module from STAN to create a
planning graph similar to the one created by
GRAPHPLAN. From the planning graph AltAlt creates an
admissible heuristic function. The heuristic function is
used in the second phase to guide the backward hill-
climbing search, which is performed in an HSP-R manner.

One of the latest planners in this category and the most
effective according to the results of the AIPS-00 planning
competition is Hoffmann’s FF planning system. The
construction of the heuristic function in FF is done in a
process very similar to GRAPHPLAN. FF starts from the
Initial state and constructs a leveled graph with the facts of
the domain, noting for each fact the level at which it was
achieved. In the next phase FF performs a relaxed
backward search on the fixpoint (the graph of the facts)
trying to find a sketch plan containing parallel steps. The
sketch plan, which may not be valid, is then used in a
forward enforced hill-climbing search in two ways. Firstly,
the length of the sketch plan is used as an estimate for the

3

distance between the Initial state and the goals and
secondly a set of helpful actions, i.e. the actions at the first
level of the sketch plan, is extracted which helps in cutting
down the branching factor of the search.

The latests planner in the category of domain-
independent, heuristic, state- space planning is BP (Vrakas
and Vlahavas 2001). BP is a bi-directional planner, which
consists of two independent search modules (the
progression and the regression) that interleave their
execution. Each module is equipped with a simple
heuristic, based on HSP, enhanced with a goal-ordering
technique for further heuristic improvement. BP starts with
the progression module and changes direction every time it
perceives that the heuristic is no longer able to guide the
search.

Evaluating actions
Most of the state-of-the-art planners in this category,

such as GRT, HSP/ASP, HSPr and AltAlt, note for every
fact of the domain its estimated distance from the goals (or
from the initial state) and then use these values in order to
evaluate a whole state (usually by summing up the values
of the included facts).

Their main inefficiency sources from the facts that they
consider the facts of the domain to be completely
independent and the cost of achieving a set of facts is equal
to the sum of the costs of achieving each one of them
separately. However, this is rarely the case since in the
attempt to achieve a certain fact many other facts are also
achieved in the way.

GRT partially deals with this problem with the
introduction of related facts. Two facts p and q are related
with each other if:

a) The action that achieved p, during the
construction of the heuristic, also achieves q or
the opposite.

b) q is already noted as related with one of the
preconditions of the action achieving p.

Although, the related facts are able to track only a small
subset of the interactions between the facts of the domain,
they manage to refine the heuristic of GRT and they prove
to be useful in many domains (Refanidis and Vlahavas
2001).

FF, adopts a different strategy for keeping track of the
possible interactions between the facts of the domain. In
order to construct its heuristic, FF builds a graph similar to
that of GRAPHPLAN and uses this graph to extract a
relaxed partially ordered relaxed plan, the size of which is
the estimated distance between the current state and the
goals. From the way in which the relaxed plan is
constructed FF is able to discover a large portion of the
interactions. However, the fact that FF has to search in
both directions in order to construct its heuristic, enforces

it to reconstruct it at each state (or at least in a large
number of states) during the actual search.

This paper proposes a different approach in the
construction of the heuristic function, based on action
evaluation, which is able to keep track of the great
majority of interactions between the domain’s facts and yet
needs to be constructed only once at the beginning.

The heuristic of AcE is constructed in the forward
direction, starting from the initial state and proceeds
towards the goals, calculating the distances between the
initial state and all the actions of the domain (or at least all
the actions that can be achieved from the initial state). The
distance, noted as dist, for a given action A is calculated by
the following rules:

(())

1, ()
()

1 (), ()
X MPS prec A

if prec A I
dist A

dist X if prec A I
∈

 ⊆⎧⎪= ⎨ + ⊄⎪⎩ ∑
where MPS(S) is a function returning the set of actions
{Ap} achieving all the facts of S with the minimum
accumulated cost of dist(Ap). Note that MPS never returns
actions with undefined dist.

In order to find the minimum set of actions achieving a
specific state, MPS(S) has to calculate all the possible
combinations of actions achieving S, and this process is
combinatorial explosive. In AcE, MPS(S) is approximated
using a greedy algorithm, which is outlined in figure 1.

Function MPS(S)
Input: a set of facts S
Output: a set of actions achieving S with near minimum
accumulated dist
Set G = ∅
S S S I= − ∩
Repeat

f is the first fact in S
Let act(f) be the set of actions achieving f
for each action A in act(f) do

val(A)=dist(A) / | ()add A S∩ |

Let A’ be an action in act(f) that maximizes val
Set 'G G A= ∪
Set S = S - (')add A S∩

Until S = ∅
Return G

Figure 1. MPS Function

In the worst case, each action A’ selected by MPS will
only achieve one fact of S and therefore the complexity of
MPS will be |S|*N, where N is the number of the domain’s
actions. Since |S|<<N the order of the complexity is O(N2).

In the average case, the actions achieving a fact f are a
small subset of the domain’s actions and the size of the
subset is N/K, where K is comparable to |S| for each state S

4

of the domain. Therefore the complexity of MPS is
|S|*N/K, which is in the order of O(N).

We will illustrate the heuristic function of AcE with a
concrete example of the Blocks-world domain. Suppose
that the initial state of the problem is the one shown in
figure 2.

The actions that can be applied to the initial state of the
problem in figure 2 are: put-down(C) and stack(C,A) and
therefore: dist(put-down(C))=1 and dist(stack(C,A))=1.
In order to calculate dist(un_stack(A,B)) we need
MPS(prec(un_stack(A,B)):
S= {handempty,on(A,B),clear(A)}
S S S I= − ∩ = {handempty}
f=handempty
act(f) = {put_down(C), stack(C,A)}, note here that all the
other actions achieving f have undefined dist, so they are
not taking into account.
A’ = put_down(C) both actions in act(f) have the same val,
so one of them is arbitrarily selected.
G = {put_down(C)}
S = ∅
MPS({handempty,on(A,B),clear(A)})={put_down(C)} and
dist(un_stack(A,B))=1+dist(put_down(C)) =1+1 = 2.

Similarly the algorithm proceeds with the rest of the
domain’s actions. When distances have been assigned to
all the domain’s actions, AcE starts searching the state-
space starting from the goals. During the search, the
estimated distances of the actions are used to evaluate all
the intermediate states.

In order to calculate the heuristic value a given state S1

(h(S1)), AcE uses MPS(S1) to find the near minimum set of
actions achieving the facts of S1 and then sums up the
distances of the actions in MPS(S1). This can be seen as the
process of evaluating an action AS1 for which: prec(AS1) =
S1.

For example, in order to evaluate state Sa of figure
3, we calculate MPS(Sa):
S= {ontable(B),ontable(C),holding(A),clear(B),clear(C)}
S S S I= − ∩ ={ontable(C),holding(A),clear(B),clear(C)}
f=ontable(C)
act(f)={put_down(C)}
A’ = put_down(C)
G={put_down(C)}
S={ holding(A),clear(B)}
f=holding(A)
act(f)={pick-up(A),unstack(A,B),unstack(A,C)}

A’=unstuck(A,B)
G={put_down(C), unstuck(A,B)}
S = ∅
MPS(Sa)={put_down(C), unstuck(A,B)} and
h(S1)=dist(put_down(C)) + dist(unstuck(A,B)) = 1 + 2 =3

Similarly, h(Sb) for Sb={ontable(A), ontable(C), holding(B),

clear(A), clear(C)} is equal to dist(put_down(C)) +
dist(put_down(A)) + dist(pick_up(B)) = 1 + 3 + 4 = 8

It is clear from the above examples that the heuristic of
AcE still produces overestimates. This can be overcome by
keeping track of the MPS for all the domain’s actions,
apart from the distances, and taking also into account part
of the delete lists. It remains in our direct future plans to
investigate this type of heuristic refinement. However, the
heuristic as it is behaves satisfactory and it generally
succeeds in guiding the search to the most promising
states.
Refining the heuristic with Goal Ordering
Goal ordering for planning has been an active research
topic over the last years and a number of techniques have
been successfully adopted by state-of-the-art planning
systems. The research so far has been focused on two
tasks: a) how to automatically extract as much information
as possible about orderings among the goals of the
problem, with minimum computational cost and b) how to
use this information during planning. McCluskey and
Porteous with their work on PRECEDE (McCluskey and
Porteous 1997) proposed a method for identifying goal
orderings between pairs of atomic facts, based on direct
domain analysis. The more recent work of Koehler and
Hoffman on GAM (Koehler and Hoffmann 2000) have
resulted in two techniques for identifying goal orderings,
one based on domain analysis and another utilizing the
information gained by the construction of a planning
graph. The simplest and yet quite effective orderings
extracted by these techniques have been described as
reasonable orders and are based on the following idea:

"A pair of goals A and B can be ordered so that B
is achieved before A if it isn’t possible to reach a state
in which A and B are both true, from a state in which
A is true, without having to temporarily destroy A."
(McCluskey and Porteous 1997).
IPP (Koehler and Hoffmann 2000) and FF(Hoffmann

2000) make use of reasonable orderings during planning
through the construction of a goal agenda that divides the
goals into an ordered set of sub-goals. The planners

A

B

C
ontable(B)

holding(C)

on(A,B)

clear(A)

Figure 2

CB

A
ontable(B)

ontable(C)

holding(A)

clear(B)

clear(C)

Figure 3

5

sequentially achieve the first sub-goal in the agenda, which
has not yet been achieved. Experimental results have
shown that the use of the goal agenda yields in
significance improvement in terms of both planning time
and plan quality.

AcE adopts a slightly different method to compute
reasonable orderings between goals, which is based on
mutual exclusions between facts of the domain. Since the
planner calculates the set of binary mutual exclusions, in
order to use them for the regression phase, the overhead
imposed by the calculation of reasonable orderings is
negligible. Function OB (Ordered Before), which is
outlined in Figure 4, is iteratively ran on every pair of
goals in order to identify the possible orderings between
the goals of the problem.

Function OB
Input: Goals a and b

Output: True (a should be ordered before b) or
False
For each action O: a∈add(O)
begin

MutexPre=false
For each fact f: f∈prec(O)

If mx(b,f)=true MutexPre=true
If MutexPre = false return false

end
Return true

Figure 4: The OB Function

The orderings extracted by OB are used in the planning
phase, in order to refine the results of the heuristic
functions and not to divide the goals into sub-sets. More
specifically, after the evaluation of a state S by the
heuristic function, AcE searches state S for possible
violations of the goal orderings. Fact f of a state S is
violating the goal ordering if:

f∈Goals and ∃ goal g: g∉S and OB(g,f)=true
For every ordering violation in state S, the estimated

distance between S and the Goals is increased by a
constant number (10 at the current implementation), since
at a later point the ordering breaches will have to destroyed
and re-achieved after the correct ordering has been
reinstated.

Consider, for example, the case of figure 5:
1 1S S I− ∩ ={ontable(A),clear(B)}
2 2S S I− ∩ ={ontable(A),ontable(C),clear(A),clear(B)}

Since (2 2S S I− ∩) ⊇ (1 1S S I− ∩), MPS(S2) ⊇
MPS(S1) and therefore h(S2) ≥ h(S1). However, it is clear
that I is closer to S2 than to S1. The goal-ordering
technique, however, will notice that
OB(on(A,B),on(C,A))=true and although on(C,A) exists in
S1, on(A,B) does not, so S1 will be penalized and therefore
S2 will be preferred from S1.

Implementation issues
This section discusses certain implementation issues of

the AcE planning system, concerning the adopted search
strategy and the internal representation of the important
information. It also addresses certain problems that arise
during the application of the planner in specific domains
and presents two techniques for enriching and simplifying
the problems definitions that deal with the above problems.

Search strategy
AcE employs a weighted A* search strategy which

starts from the goals of the problem and moves backwards
until it reaches the initial state. A state S in weighted A* is
evaluated using the following formula:

e(S) = w*h(S) + d(S),
where h(S) is the value of the heuristic function for state S,
d(S) is the number of steps that were performed to reach S
and w is a constant real number between 0 and 1. If we set
w to 1, then the algorithm becomes best-first and if we set
w equal to 0, the algorithm becomes breadth first. The
value of w in Ace is 0.75, meaning that the evaluation of
state is 75% based on the result of the heuristic function
and 25% based on the already walked distance.

Ace has a closed list, which is index by a hash table, in
which it keeps all the already expanded states, in order to
avoid revisiting them in the future.

The states that have not yet been expanded are kept in
an agenda, the size of which is limited to a constant
number N. If the size of the agenda grows larger than N at
some point during search, only the N best states (according
to the heuristic function) will remain in the agenda, while
the rest will be pruned.

By pruning states from the agenda, AcE risks its
completeness (i.e. the pruned states may be leading to a
solution), but this is a necessary concession since
otherwise the memory requirements may grow outside the
available resources. In AcE N is 5000, which seemed to be
more than enough. In fact, in our tests with smaller values
of N, the only problems faced by AcE were in the large
MIC-10 problems, since all the other problems could be
very easily solved even with N=200.

As stated above, AcE is a regression planner. Although
in progression the task of finding if an action is applicable
and produce the successor states is trivial, this is hardly the

A

B

C

A B

C

A B C

Initial S1 S2

Figure 5

6

case with regression. The goals rarely constitute a
complete state and they describe a set of states rather than
a single state. Therefore, the criterion for action
applicability must be more sophisticated.

The regressibility criterion adopted by AcE makes
excessive use of mutual exclusive relations between pairs
of facts (Blum and Furst 1995). Two facts p and q are said
to be mutually exclusive, denoted as mx(p,q), if no valid
state can contain both of them. More specifically, an
action A can be applied (backwards) to a state S, if:

1) ∅≠∩ SAadd)(: A must have at least one

add-effect in S.
2) ∅=∩ SAdel)(: A must have no delete effects

in S.
3)),(:),(),,(qpmxSqAaddpqp ∈∈¬∃ :

There must be no mutual exclusions between add-
effects of A and facts of S.

4))),()((),,(AdelAprecpqp −∈¬∃
),(: qpmxSq ∈ : There must be no mutual

exclusions between the facts in S and the implied
add-effects of A. A fact f is said to be implied by
an action A, if it belongs to the preconditions but
not in the delete list of A.

If we apply (backwards) action A to state S, the resulting
state S’ will be the following:

)())((' AprecAaddSS ∪−=

Representation
After the parsing of the input files (domain file and

problem file) and in order to speed up the planning
process, AcE creates all the (grounded) facts of the domain
and the (grounded) actions that can be achieved from the
initial state of the problem. These facts and actions are
stored in tables and AcE assigns to each fact and actions a
unique integer number, Based on these numbers Ace
makes all the necessary links between facts and actions.
For example, for each fact f it creates four lists of actions
containing:

a) The actions that have f in their preconditions
b) The actions that have f in their add-effects
c) The actions that have f in their delete lists
d) The actions that have f in their preconditions and

not in their delete lists.
These integers and the appropriate lists are then utilized

during the search. A state is represented as a one-
dimensional table of integers and in order to find the
actions that are applicable to a state S, AcE performs a
limited search in the appropriate lists of actions of the facts
in S.

Enrichment of initial states
During the experiments, we noticed that AcE faced

unreasonable difficulties in handling the problems of the
MIC-10 domain. The problems originated from the fact
that the board action had an add-effect (boarded), which
was never deleted and there was no other predicate (e.g.
not_boarded) noting its negation. These resulted in
situation were the planner would select to board a
passenger even though the latest was already boarded.
Ace would, frequently, come to endless loops selecting in
each iteration to add the board action at its plan.

In order to deal with this problem, which has also been
faced by GRT, we enhanced AcE with a method that
checks for predicates that appear in the add lists of an
action, are never deleted and there is no other precondition
that serves as the negation of these predicates. In this case
the method automatically enriches the domain encoding
with a predicate (playing the role of negation) and adds
this predicate to the initial state and to the preconditions of
all the appropriate actions.

For example, in the MIC-10 domain it adds to the initial
state one fact for every passenger noting that he is initially
not boarded. It then modifies the operator board to include
not-boarded in its preconditions.

Simplifications of Initial states
A second case, where AcE modifies the problem’s

definition is the one where the initial state contains
redundant information. For example, in the Blocks world
domain with the 3 operators definition used in (Refanidis
and Vlahavas 2001) the fact handempty remains at the
initial state of he problems, although no operator is making
use of it. Another example is certain problems of the
Logistics domain, where there are packages at the initial
state, with initial locations, that are absent from the goals.
These facts not only may confuse the planners, but they
can also increase the branching factor with unnecessary
actions.

In order to cope with this problem, AcE is equipped
with another technique that identifies whether a fact is
useful, in order to achieve the goals, or not. The technique,
which is executed before the actual search, starts from the
goals and recursively proceeds backwards identifying
useful facts, until no more useful facts can be found.

A fact f is noted as useful if:
a) f belongs to the goals of the problem or
b) f is a precondition to an action achieving an other

useful fact.
After the identification of useful facts, the technique can

safely remove all the facts from the problem definition that
are not identified as useful.

7

Experimental Results
In order to evaluate the efficiency of AcE we compared

it, on a large variety of problems used in the last AIPS-00
planning competition, with 5 state-of-the-art planning
systems that were distincted in the AIPS-00 competition.
The planners are (in alphabetical order): AltAlt, FF, GRT,
HSP-2 and STAN. We used problems from all the domains
(Blocks world, Logistics, Mic-10 and FreeCell) used in th
competition.

The results of the tests are presented in tables: 1, 2, 3
and 4 for the Blocks world, the Logisics, the MIC-10 and
the Freecell domain respectively. For each planner we
present the number of steps in the solution (column with
L) and the time, in seconds, needed to solve the problem
(column with T). A dash in a cell indicates that the
specific problem coud not be solved in the 180 seconds
CPU time limit, or that the planner ran out of memory.
Plan legths typed in bold indicate the shortest plan found
by all planners.

The platform used for the results is a SUN
ENTERPRISE 3000 unix station with 256 MB of shared
memory and 2 SPARC-1 processors running at 167 MHz.
The underlying operating system is SUN Solaris 2.7. The
codes of all the planners were available through the World
Wide Web.

Blocks
AcE managed to solve more problems than any other

planner in the Blocks domain. It solved 39 out of 42
problems, 1 more than HSP-2 and 6 more than FF. The
plans created by AcE were quite good and in 24 problems
they were the shortest found of all planners. Concerning
planning time, AcE needed less than 2 seconds for each
problem up to 14-1 and less than one minute (except for
15-0) for the rest of the problems.

Logistics
The problems of the Logistics domain were quite easy

and the majority of them were solved by all planners.
Only AltAlt missed 5 out of the 37 problems and GRT
missed one. Concerning planning time and solution length,
AcE did better than HSP-2 and AltAlt but was
outperformed from FF, STAN and GRT.

AltAlt FF GRT HSP-2 STAN AcE
Prob L T L T L T L T L T L T

4-0 6 0.1 6 0 6 0 10 0 6 0.1 6 0
4-1 10 0.1 10 0 10 0 10 0.1 10 0 10 0
4-2 6 0.1 6 0 6 0 6 0.1 6 0 6 0
5-0 12 0.1 12 0 12 0.1 18 0.1 12 0.1 12 0
5-1 10 0.1 10 0 18 0.1 14 0.1 10 0.1 10 0
5-2 18 0.1 16 0 20 0.1 20 0.1 16 0.1 16 0
6-0 12 0.1 20 0 40 0.2 24 0.1 12 0.1 12 0
6-1 10 0.4 10 0 14 0.1 14 0.1 10 0.3 10 0
6-2 32 0.3 20 0 32 0.1 28 0.1 20 0.3 20 0
7-0 26 0.3 20 0 22 0.1 22 0.1 20 0.2 24 0.1
7-1 24 0.9 22 0.1 56 0.4 32 0.2 22 1 22 0.1
7-2 20 0.7 22 0.3 48 0.4 28 0.3 20 0.7 20 0.1
8-0 18 0.7 18 0 38 0.6 26 0.3 18 0.9 18 0.2
8-1 20 0.4 - - 44 0.4 30 0.5 20 1 20 0.2
8-2 16 0.6 16 0 50 0.4 28 0.3 16 0.6 16 0.2
9-0 40 6.8 - - 116 3.1 48 0.9 30 1.5 30 0.4
9-1 36 1.2 28 0.1 104 3.1 42 2.9 28 1.5 38 0.4
9-2 34 3.1 26 0 44 0.3 40 1.1 26 0.9 26 0.3

10-0108 53.5 34 0 108 1.3 46 0.7 34 5 38 0.5
10-1 40 2.3 38 5.8 108 11 44 1.1 32 136 52 0.6
10-2 - - 34 0.3 124 11 48 1.1 35 9 36 0.5
11-0 36 27.0 34 0.1 50 0.6 54 1.9 - - 36 0.7
11-1 36 2.8 - - 134 4.5 46 2.3 - - 30 0.8
11-2 56 37.4 34 0 128 3.7 48 2.8 - - 38 0.9
12-0 36 3.1 44 1.1 114 12 58 11 34 99 34 0.9
12-1 38 11.8 34 0.1 68 11 56 9 34 12 44 1.2
13-0 - - 42 0.1 - - 64 10 - - 44 1.6
13-1 - - - - 128 90 70 6 - - 44 1.5
14-0 40 6.6 40 0.1 88 26 68 62 - - 40 1.8
14-1 48 16.2 42 0.7 - - 68 72 - - 42 1.9
15-0 - - - - - 70 23 - - 46 65
15-1 - - 52 0.2 - - 72 36 - - 64 2
16-1 - - - - - - 86 16 - - 62 11
16-2 - - 52 0.1 - - 86 16 - - - -
17-0 60 37.4 - - - - 90 97 - - 64 28
17-1 - - - - - - 84 61 - - 58 29
18-0 - - - - - - 90 149 - - - -
18-1 - - 64 0.2 - - 94 58 - - 76 52
19-0 - - 62 0.2 - - - - - - - -
19-1 - - 58 0.1 - - - - - - 64 19
20-0 - - 60 0.2 - - - - - - 62 22
20-1 - - 72 0.2 - - - - - - 82 45

Table 1: Blocks world domain

8

AltAlt FF GRT HSP-2 STAN AcE
Prob L T L T L T L T L T L T

4-0 24 0.1 20 0 20 0.1 26 0.2 20 0.1 23 0
4-1 21 0.1 10 0 19 0.1 25 0.2 19 0.1 25 0
4-2 17 0.1 15 0 15 0.1 15 0.2 15 0 17 0.1
5-0 31 0.1 27 0.1 27 0.1 36 0.3 27 0 32 0.1
5-1 19 0.1 17 0 17 0.1 21 0.2 17 0 20 0.1
5-2 8 0.1 8 0 8 0.1 10 0.1 8 0 8 0
6-0 29 0.2 25 0 25 0.1 34 0.3 25 0 32 0.1
6-1 16 0.1 14 0 14 0.1 16 0.2 14 0.1 16 0.1
6-9 31 0.1 24 0.1 25 0.1 28 0.2 25 0 30 0.1
7-0 - - 36 0.1 38 0.2 52 2 37 0.2 47 0.4
7-1 - - 44 0.1 44 0.2 56 1 44 0.1 51 0.3
8-0 39 0.5 31 0.1 32 0.2 40 0.9 31 0.1 39 0.3
8-1 55 0.5 44 0.1 45 0.2 60 1.1 45 0.1 54 0.4
9-0 50 0.5 36 0.1 38 0.2 51 1.2 36 0.1 47 0.4
9-1 36 0.4 30 0.1 31 0.2 43 1.2 30 0.1 34 0.4

10-0 57 1.2 46 0.1 47 0.4 59 2.8 46 0.1 54 1
10-1 52 1.1 42 0.1 43 0.3 57 2.8 42 0.3 54 0.9
11-0 63 1.4 49 0.1 52 0.4 69 4.4 49 0.1 63 1
11-1 74 1.5 60 0.2 66 0.5 86 5.1 61 0.5 73 1
12-0 54 1.3 42 0.1 - - 57 4.4 42 0.2 54 1
12-1 95 2.2 73 0.2 74 0.6 98 4.5 68 0.5 78 1.1
13-0 - - 75 0.5 85 1.1 102 14.2 75 1.4 94 3
13-1 - - 66 0.4 73 0.9 82 11.6 66 0.6 83 3.5
14-0 74 3.6 58 0.2 68 0.9 82 11.9 59 0.7 77 3.9
14-1 93 4.7 83 0.7 75 0.9 98 14.5 71 0.8 93 3.7
15-0 98 4.9 82 0.4 86 1.2 107 15.9 80 1.5 103 4.5
15-1 89 4.9 70 0.3 72 1 98 14.3 68 0.8 85 3.8
16-0 114 10 93 0.8 97 1.8 121 32.7 89 2.3 106 6.9
16-1 109 9.9 85 0.6 91 1.6 116 32.5 83 1.8 97 6.1
17-0 116 10 99 0.9 107 2.1 125 30.6 93 1.7 116 8
17-1 120 11 93 1 102 2 133 37.6 95 2.4 117 7.4
18-0 154 15 126 3.5 139 2.6 172 52 117 4 145 12
18-1 - - 87 0.9 89 1.7 105 42.8 78 0.8 97 9.2
19-0 130 20 103 1.3 113 2.8 144 75.8 101 3.1 127 15
19-1 118 18 93 1 100 2.6 124 60.3 89 1.4 119 16
20-0 141 21 118 1.6 137 3.5 154 118 110 4.1 131 13
20-1 134 21 111 1.1 114 2.9 155 72.9 106 3.6 127 14

Table 2: Logistics domain

Mic-10
AcE did clearly better then HSP-2 and AltAlt in the

Mic-10 domain, concerning both planning time and plan
length. AcE produced plans of, at least, equal quality to
those produced by GRT, although the latter was quite
faster on average. AltAlt and STAN produced near optimal
plans in all problems in very little time (FF needed less
than a second for each problem).

FreeCell
For some reason, AltAlt did not manage to solve any ot

the FreeCell problems. FreeCell proved to be a quite hard
domain also for STAN and HSP-2. STAN solved only 8
problems and HSP-2 only 11 out of the total of 25. FF
solved all the problems and was faster than GRT and AcE,
but produced quite lengthy plans. GRT and AcE produced

plans of almost the same quality (GRT did slightly better),
with AcE being faster on average.

AltAlt FF GRT HSP-2 STAN AcE
Prob L T L T L T L T L T L T

2-0 7 0 7 0 7 0 8 0 7 0 7 0
2-1 7 0 7 0 7 0 7 0 7 0 7 0
3-0 10 0 10 0 11 0 12 0.1 11 0 11 0
3-1 11 0 11 0 11 0.1 11 0.1 11 0 11 0
4-0 15 0.1 14 0 14 0.1 15 0.1 14 0 14 0
4-1 15 0.1 13 0 13 0.1 14 0.1 13 0 14 0
5-0 18 0.1 17 0 18 0.1 20 0.1 17 0 18 0.1
5-1 18 0.1 17 0 17 0.1 18 0.1 17 0 19 0.1
6-0 21 0.2 19 0.1 20 0.2 23 0.3 20 0.1 22 0.2
6-1 22 0.3 19 0 20 0.2 23 0.2 19 0 20 0.2
7-0 23 0.4 23 0.1 25 0.3 27 0.4 23 0.1 23 0.3
7-1 24 0.4 23 0.1 27 0.3 28 0.4 24 0.1 24 0.3
8-0 28 0.7 27 0.1 29 0.4 32 0.7 27 0.2 28 0.5
8-1 31 0.8 27 0.1 29 0.4 31 0.6 27 0.1 29 0.5
9-0 33 1.1 31 0.1 33 0.6 36 0.9 31 0.2 33 0.9
9-1 31 1.1 30 0.1 33 0.6 34 0.9 30 0.3 31 0.9

10-0 35 1.9 33 0.1 34 0.7 39 1.5 33 0.4 34 1.1
10-1 37 1.9 32 0.1 33 0.7 39 1.3 34 0.3 33 1.1
11-0 41 2.9 37 0.2 41 1.1 42 1.9 37 0.6 41 2
11-1 38 2.8 34 0.1 35 1 44 1.9 35 0.7 37 1.7
12-0 41 3.5 40 0.2 41 1.3 48 2.7 40 0.8 41 2.5
12-1 43 3.5 40 0.2 43 1.4 47 2.6 41 0.8 43 2.6
13-0 46 4.9 44 0.3 45 1.7 50 3.6 44 0.4 46 4
13-1 45 4.7 42 0.2 42 1.8 51 5.6 42 0.8 43 3.2
14-0 49 8.1 45 0.2 47 2.1 55 4.9 45 1 48 4
14-1 50 6.7 47 0.3 52 2.3 55 5.2 47 0.9 50 4.5
15-0 52 11 46 0.3 49 2.6 58 6.5 47 1.1 51 6.9
15-1 52 9 50 0.3 56 2.9 59 6.7 52 1.2 58 7
16-0 55 12 53 0.4 55 3.3 63 8.3 54 1.3 56 9
16-1 59 14 52 0.4 52 3.4 63 8.2 52 1.6 56 10
17-0 59 15 56 0.5 60 4.2 68 11.8 59 1.4 59 13
17-1 57 19 54 0.4 58 4 67 11.5 55 1.6 56 15
18-0 63 20 59 0.5 63 5.1 71 14.5 59 1.8 63 15
18-1 63 24 58 0.6 62 4.9 71 13.1 59 2 62 14
19-0 68 26 62 0.7 69 6.3 75 20.2 63 2.7 68 17
19-1 69 25 65 0.7 69 6.3 76 16.5 65 2.7 69 19
20-0 71 33 64 0.7 70 7.3 79 20.2 65 3.1 71 21
20-1 74 40 66 0.7 69 7.1 80 25.7 67 2.6 73 24

Table 3: MIC-10 domain

9

AltAlt FF GRT HSP-2 STAN AcE
Prob L T L T L T L T L T L T

2-1 - - 9 0.6 9 3 9 10 9 0.4 9 1.8
2-2 - - 8 0.7 8 3 8 9.1 8 0.5 9 2.1
2-3 - - 9 0.6 9 3 9 11 8 0.3 8 1.8
2-4 - - 9 0.6 9 3 8 9.9 8 0.2 9 1.8
2-5 - - 9 0.6 9 3 9 10 10 0.6 10 1.8
3-1 - - 21 1.2 16 5.5 18 58.6 - - 17 4
3-2 - - 20 1.3 14 5.3 15 40.2 16 0.4 13 3.4
3-3 - - 17 1.2 14 5.3 15 75.2 - - 14 3.8
3-4 - - 22 1.1 14 5.3 16 133 14 0.9 13 3.6
3-5 - - 20 1.3 16 5.3 17 67 18 0.6 13 3.6
4-1 - - 26 2.8 24 8 - - - - 23 5.8
4-2 - - 26 2.3 19 8 - - - - 20 6.1
4-3 - - 32 2.5 20 7.9 - - - - 24 6.5
4-4 - - 23 2 21 8 - - - - 19 5.9
4-5 - - 33 4.1 22 7.8 25 134 - - 19 6.1
5-1 - - 37 4.3 29 11 - - - - 30 11
5-2 - - 33 3 24 11 - - - - 30 12
5-3 - - 44 4.9 27 11 - - - - 32 12
5-4 - - 40 3.5 27 11 - - - - 29 11
5-5 - - 34 3.9 30 11 - - - - 32 14
6-1 - - 43 9.5 38 15 - - - - 38 16
6-2 - - 42 4.6 31 15 - - - - 30 11
6-3 - - 43 4.7 32 15 - - - - 34 13
6-4 - - 48 9.8 34 15 - - - - 33 15
6-5 - - 52 7 38 15 - - - - 38 12

Table 4: FreeCell domain

Conclusion and Future Work
This paper presented a different approach to domain-

independent heuristic planning in state spaces. The
proposed heuristic is not based on distances between
independent facts and the goals, but on distances between
actions and the goals. This enables the heuristic to keep
track of more interactions and yet remain simple enough to
be executed with little computational cost.

The proposed heuristic has been embodied in a weighted
A* regression planner, called AcE, and the planner has
been tested on a variety of toy problems and compared
with state-of-the-art planning systems. The results are
quite promising, since they show that AcE is at least
comparable to the planners excelling in the planning
competitions.

It is in our direct future planners to investigate ways of
further refining the heuristic. One possible way of doing
this is by keeping track of more information for every
action, than just its estimated distance, and taking also into
account part of the information provided by the delete lists
of the actions. Furthermore, we plan to extend AcE to
handle many of the new features in PDDL 2.1, such as
time and resources.

References

Blum, L., and Furst M., 1995. Fast planning through
planning graph analysis, In Proeedings of the 14th Int. Joint
Conference on Artificial Intelligence, 636-642. Montreal,
Canada.

Bonet, B. and Geffner, H. 1999. Planning as Heuristic
Search: New Results, In Proceedings of the 5th European
Conference on Artificial Intelligence. Durham UK.

Bonet, B. and Geffner, H. 2000. Planning as Heuristic
Search, Artificial Intelligence, Forthcoming.

Bonet, B., Loerincs, G., and Geffner, H., 1997. A robust and
fast action selection mechanism for planning, In
Proceedings of the 14th Int. Conference of the American
Association of Artificial Intelligence (AAAI-97), 714-719.
Providence, Rhode Island.

Fikes, R., and Nilsson, N., 1971. STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving.
Artificial Intelligence, 2: 189-208.

Fox, M. and Long, D., 2000. Hybrid STAN: Identifying and
Managing Combinatorial Subproblems in Planning. In
Proceedings of 19th UK Planning and Scheduling SIG
Workshop,.

Hoffmann, J. 2000. A Heuristic for Domain Independent
Planning and its Use in an Enforced Hill-climbing
Algorithm, In Proceedings of the 12th Int. Symposium on
Methodologies for intelligent Systems.

Kautz, H. and Selman, B., 1996. Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search. In
Proceedings of the Thirteen National Conference on
Artificial Intelligence (AAAI-96). Portland, Oregon, USA.

Koehler, J. and Hoffmann, J. 2000. On Reasonable and
Forced Goal Orderings and their Use in an Agenda-Driven
Planning Algorithm, Journal of Artiicial Intelligence
Research 12.

Korf, R. 1998. Artificial intelligence search algorithms,
CRC Handbook of Algorithms and Theory of Computation,
Atallah, M. J. (Ed.), CRC Press, Boca Raton, FL, pp. 36-1 to
36-20

Long, D. and Fox, M. 1998. Efficient Implementation of the
Plan Graph in STAN, JAIR, 10, pp. 87-115.

McCluskey, T. and Porteous, J. 1997. Engineering and
Compiling Planning Domain Models to Promote Validity
and Efficiency, Artificial Intelligence 95.

McDermott, D. 1996. A Heuristic Estimator for Means-End
Analysis in Planning, In Proceedings, AIPS-96

Nguyen, X., Kambhampati, S. and Nigenda, R. 2000,
AltAlt: Combining the advantages of Graphplan and
Heuristics State Search, In Proceedings, 2000 International

10

Conference on Knowledge-based Computer Systems,
Bombay, India.

Porteous, J. and Sebastia, L., 2000, Extracting and ordering
Landmarks for Planning, In Proceedings, 18th Workshop of
the UK Planning and Scheduling SIG

Refanidis, I., and Vlahavas, I., 1999, GRT: A Domain
Independent Heuristic for STRIPS Worlds based on Greedy
Regression Tables, In Proceedings, 5th European
Conference on Planning, Durham, UK, pp. 346-358.

Refanidis, I. and Vlahavas, I. The GRT Planner: Backward
Heuristic Construction in Forward State-Space Planning,
Journal of Artificial Intelligence Research 15:115-161.

Selman, B., Levesque, H. and Mitchell, D., 1992. A New
Method for solving Hard Stisfiability Problems. In
Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), 440-446. San Jose, California, USA.

Vrakas, D. and Vlahavas, I, 2001. Combining Progression
and Regression in State-Space Heuristic Planning, In Pre-
Proceedings of the 6th European Conference on Planning, 1-
12. Toledo, Spain.

