
A Visual Programming Tool for Designing Planning Problems for

Semantic Web Service Composition

Dimitris Vrakas1, Ourania Hatzi2, Nick Bassiliades1, Dimosthenis
Anagnostopoulos2 and Ioannis Vlahavas1

1Dept. Of Informatics, Aristotle University Of Thessaloniki,
Thessaloniki, 54124, Greece

{dvrakas, nbassili, vlahavas}@csd.auth.gr
2Department of Geography, Harokopio University, Athens, Greece

{raniah, dimosthe}@hua.gr

Abstract

This chapter is concerned with the issue of knowledge representation for AI Planning

problems, especially those related to Semantic Web Service composition. It discusses

current approaches in encoding planning problems using the PDDL formal language

and it presents ViTAPlan, a user-friendly visual tool for planning. The tool is built on

top of HAPRC, a rule-configurable planning system, which automatically adapts to

each problem, in order to achieve best performance. Apart from HAPRC, ViTAPlan

can be interfaced with any other planning system that supports the PDDL language.

More than just being a user friendly environment for executing the underlying

planner, the tool serves as a unified planning environment for encoding a new

problem, solving it, visualizing the solution and monitoring its execution on a

simulation of the problem’s world. The tool consists of various sub-systems, each one

accompanied by a graphical interface, which collaborate with each other and assist the

user, either a knowledge engineer, a domain expert, an academic or even an end-user

in industry, to carry out complex planning tasks, such as composing complex

Semantic Web Services from simple ones, in order to achieve complex tasks. The key

feature of ViTAPlan is a visual programming module that enables the user to encode

new planning problems just by using visual elements and simple mouse operations.

The visual tool performs a validity check on the visual program created by the user

 1

and then compiles it to PDDL files that are ready to be used by any planning system.

Finally, the planning system will solve the planning problem and then export the plan

in an appropriate Web Service composition language to a Web Service execution

monitoring system or just publish it in a UDDI registry.

Keywords: Automated Planning; Graphical Interfaces; Machine Learning;

Knowledge Engineering; Semantic Web Service Composition

1. Introduction

Planning is the process of finding a sequence of actions (steps), which if executed by

an agent (biological, software or robotic) result in the achievement of a set of

predefined goals. The sequence of actions mentioned above is also referred to as plan.

The actions in a plan may be either specifically ordered and their execution should

follow the defined sequence (linear plan) or the agent is free to decide the order of

executions as long as a set of ordering constraints are met. For example, if someone

whishes to travel by plane, there are three main actions that he/she has to take: a) buy

a ticket, b) go to the airport and c) board on the plane. A plan for traveling by plane

could contain the above actions in a strict sequence as the one defined above (first do

action a, then b and finally c), or it could just define that action c (board on plane)

should be executed after the first two actions. In the second case the agent would be

able to choose which plan to execute, since both a→b→c, and b→a→c sequences

would be valid.

The process of planning is extremely useful when the agent acts in a dynamic

environment (or world) which is continuously altered in an unpredictable way. For

 2

instance, the auto pilot of a plane should be capable of planning the trajectory that

leads the plane to the desired location, but also be able to alter it in case of an

unexpected event, like an intense storm.

The software systems that automatically (or semi- automatically) produce plans

are referred to as Planners or Planning Systems. The task of drawing a plan is

extremely complex and it requires sophisticated reasoning capabilities which should

be simulated by the software system. Therefore, Planning Systems make extensive

use of Artificial Intelligence techniques and there is a dedicated area of AI called

Automated Planning.

Automated Planning has been an active research topic for almost 40 years and

during this period a great number of papers describing new methods, techniques and

systems have been presented that mainly focus on ways to improve the efficiency of

planning systems. However, there are not many successful examples of planning

systems adapting to industrial use. From a technical point of view, this can be mainly

explained by four reasons: a) There is a general disbelief by managers and workers in

industry that AI tools can really assist them, b) There is a need for systems that

combine methods from many areas of AI, such as Planning, Scheduling and

Optimization, c) The industry needs more sophisticated algorithms than can scale up

to solve real-world problems and d) In order for workers in industry to make use of

these intelligent systems, they must be equipped with user friendly interfaces that: i)

allow the user to intervene in certain points and ii) can reason about the provided

solution.

The greatest problems that one faces when he/she tries to contact companies and

organizations for installing a planning system, come from the workers themselves.

These problems concern two issues: a) It has been noticed that people find it hard to

 3

trust automated systems when it comes to crucial processes. Many people still think

that they can do better than machines. b) There is a quite widespread phobia towards

computers and automated machines due to the lack of information. A large number of

people are afraid of being replaced or governed by machines and they try to defend

their posts by rejecting everything new.

Although it is necessary for researchers to specialize in very specific parts of their

research area, commercial systems, dealing with real time problems, have to combine

techniques and methods from many areas. It has been shown that AI Planning

techniques for example, are inadequate to face with the complexity and the generality

of real world problems. For example, it has been proven that Scheduling and

Constraint solving techniques can handle resources more efficiently. Commercial

applications must combine methods from many areas of AI and probably from other

areas of computer science as well.

Another issue that must be dealt with is the large gap between toy problems used

by researchers for developing and testing their algorithms and the actual problems

faced by people in industry. Researchers are usually unaware of the size of real world

problems or they simplify these problems in order to cope with them. However, these

algorithms prove themselves inadequate to be adopted by commercial software. So it

is a general conclusion that researchers should start dealing with more realistic

problems. This research direction was also given during the last AIPS Planning

competitions where there was a tendency to test planners on problems closer to

reality.

Last but certainly not least is the direct need of software based on AI tools to be

accompanied with user friendly interfaces. Since the user will be a manager or even a

simple worker in a company and not a computer scientist, the software must be easy

 4

to use. Furthermore, it must enable the user to intervene in certain points for two

reasons: a) Mixed initiative systems can deal with real-world problems better and b)

people in companies do not like to take commands and therefore a black box which

can not reason about its output will not do. So it is necessary for the software to

cooperate with the user in the process of solving the problem in hand, since people

have a more abstract model of the problem in their mind and are better in improvising,

while computers can deal with lower levels of the problem more efficiently.

1.1. Semantic Web Service Composition

The Web is becoming more than just a collection of documents; applications and

services are coming to the forefront. Web services will play a crucial role in this

transformation as they will become the basic components of Web-based applications

(Leymann, 2003). A Web service is a software system identified by a URI, whose

public interfaces and bindings are defined and described using XML. Its definition

can be discovered by other software systems. These systems may then interact with

the Web service in a manner prescribed by its definition, using XML based messages

conveyed by internet protocols (Booth et al., 2003).

The use of the Web services paradigm is expanding rapidly to provide a

systematic and extensible framework for application-to-application (A2A) interaction,

built on top of existing Web protocols and based on open XML standards. Web

services aim to simplify the process of distributed computing by defining a

standardized mechanism to describe, locate, and communicate with online software

systems. Essentially, each application becomes an accessible Web service component

that is described using open standards.

 5

When individual Web Services are limited in their capabilities, they can be

composed to create new functionality in the form of Web Processes. Web Service

composition is the ability to take existing services (or building blocks) and combine

them to form new services (Piccinelli, 1999) and is emerging as a new model for

automated interactions among distributed and heterogeneous applications. To truly

integrate application components on the Web across organization and platform

boundaries merely supporting simple interaction using standard messages and

protocols is insufficient (Aalst, 2003) and Web services composition languages, such

as WSFL (Leymann, 2001), XLANG (Thatte, 2001) and BPEL4WS (Thatte, 2003),

are needed to specify the order in which WSDL services and operations are executed.

Automatic application interoperability is hard to achieve with low cost without the

existence of the Semantic Web. Semantic Web is the next big step of evolution in the

Web (Berners-Lee et al., 2001) that includes explicit representation of the meaning of

information and document content (namely semantics), allowing the automatic and

accurate location of information in the WWW as well as the development of

intelligent web-based agents that will facilitate cooperation among heterogeneous

web-based computer applications and electronic devices. The combination of the

Semantic Web with Web Services (namely Semantic Web Services) will achieve the

automatic discovery, execution, composition and monitoring of Web Services

(McIlraith et al., 2001) through the use of appropriate Web Service descriptions, such

as OWL-S (OWL Services, 2003), that allow the semantics of the descriptions to

become comprehensible by other agents-programs through ontologies.

Composing Web Services will become harder as the available web services

increase. Therefore, automating web service composition is important for the survival

 6

of web services in the industrial world. One very promising technique to compose

Semantic Web Services is to use planning techniques (Milani, 2003).

Using planning, the Web Service composition problem can be described as a goal

or a desired state to be achieved by the complex service and the planner will be

responsible to find an appropriate plan, i.e. an appropriate sequence of simple web

service invocations, to achieve the desire state (Carman et al., 2003). In this way, not-

predetermined web services can exist on users demand. The abilities of simple web

services will be described in OWL-S and can be considered as planning operators.

1.2. Chapter Scope and Outline

This chapter describes ViTAPlan (Vrakas and Vlahavas, 2003a, 2003b, 2005), a

visual tool for adaptive planning, which is equipped with a rule system able to

automatically fine-tune the planner based on the morphology of the problem in hand.

The tool has been developed for the HAP planning system, but it can be used as a

graphical platform for any other modern planner that supports the PDDL language

(Ghallab et. al, 1998). The tool consists of various sub-systems that collaborate in

order to carry out several planning tasks and provides the user with a large number of

functionalities that are of interest to both industry and academia. ViTAPlan

interfacing with the user and the rest of the world is currently extended in order to be

used as a visual tool to aid the composition of complex Semantic Web Services out of

simpler ones, by visually describing the composition problem as a planning problem.

The rest of the chapter is organized as follows: The next section presents an

overview of the work related to automated planning systems, graphical environments

for planning, Semantic Web Service composition approaches based on planning and

visual tools for Web Service composition. Section 3 discusses certain representation

 7

issues concerning planning problems and presents the various versions of the PDDL

definition language. Section 4 describes the architecture of the visual tool and briefly

describes the contained sub-systems. Sections 5, 6 and 7 present the modules of

ViTAPlan in more detail. More specifically, Section 5 analyzes the graphical tool for

visualizing and designing problems and domains and illustrates the use of the sub-

system with concrete examples. The next section presents the execution module that

interfaces the visual tool with the planning system and the knowledge module that is

responsible for the automatic configuration of the planning parameters. Section 7,

finally, discusses certain issues concerning the sub-systems that visualize the plans

and simulate their execution in virtual worlds. The last section concludes the chapter

and poses future directions, including currently developing extensions to ViTAPlan to

be used for Semantic Web Service composition.

2. Related Work

Two of the most promising trends in building fast domain-independent planning

systems were presented over the last few years.

 The first one consists of the transformation of the classical search in the

space of states to other kinds of problems, which can be solved more easily. Examples

of this category are the SATPLAN (Kautz and Selman 1996) and BLACKBOX

(Kautz and Selman 1998) planning system, the evolutionary GRAPHPLAN (Blum

and Furst 1995) and certain extensions of GRAPHPLAN as the famous STAN

planner (Long and Fox 1998).

 SATPLAN and BLACKBOX transform the planning problem into a

satisfiability problem, which consists of a number of boolean variables and certain

 8

clauses between these variables. The goal of the problem is to assign values to the

variables in such a way that all of the clauses are established.

GRAPHPLAN on the other hand creates a concrete structure, called the planning

graph, where the nodes correspond to facts of the domain and edges to actions that

either achieve or delete these facts. Then the planner searches for solutions in the

planning graph. GRAPHPLAN has the ability to produce parallel plans, where the

number of steps is guaranteed to be minimum.

 The second category is based on a relatively simple idea where a general

domain independent heuristic function is embodied in a heuristic search algorithm

such as Hill Climbing, Best-First Search or A*. Examples of planning systems in this

category are the ASP/HSP family (Bonet and Geffner 2001), AltAlt (Nguyen,

Kambhampati and Nigenda 2002), FF (Hoffmann and Nebel 2001), YAHSP (Vidal

2004) and Macro FF (Botea et al., 2005).

 The planners of the latter category rely on the same idea to construct their

heuristic function. They relax the planning problem by ignoring the delete lists of the

domain operators and starting either from the Initial State or the Goals they construct

a leveled graph of facts, noting for every fact f the level at which it was achieved L(f).

In order to evaluate a state S, the heuristic function takes into account the values of

L(f) for each f ∈ S.

 The systems presented above are examples of real fast planners that are able

to scale up to quite difficult problems. However, there are still open issues to be

addressed that are crucial to industry, such as temporal planning or efficient handling

of resources. Although there has been an effort during the last few years to deal with

these issues there is still only a small number of systems capable of solving near real

world problems.

 9

 An example of this trend is the SGPlan system (Chen, Wah and Hsu 2005),

which won the won the first prize in the suboptimal temporal metric track and a

second prize in the suboptimal propositional track in the Fourth International Planning

Competition (IPC4). The basic idea behind SGPlan is to partition problem constraints

by their subgoals into multiple subsets, solve each subproblem individually, and

resolve inconsistent global constraints across subproblems based on a penalty

formulation.

 Another system able to handle planning problems that incorporate the notion

of time and consumable resources is the LPG-TD planner (Gerevini, Saetti and Serina

2004), which is an extension of the LPG planning system. Like the previous version

of LPG, the new version is based on a stochastic local search in the space of particular

“action graphs” derived from the planning problem specification. In LPG-TD, this

graph representation has been extended to deal with the new features of PDDL 2 (Fox

and Long 2003), as well to improve the management of durative actions and of

numerical expressions.

 There are also some older systems that combine planning with constraint

satisfaction techniques in order to deal with complex problems with time and

constraints. Such systems include the Metric FF Planner (Hoffmann 2003), the S-

MEP (Sanchez and Mali 2003) and the SPN Neural Planning Methodology

(Bourbakis and Tascillo 1997).

 As far as user interfaces are concerned, there have been several approaches

from institutes and researchers to create visual tools for defining problems and

running planning systems, such as the GIPO system (McCluskey, Liu and Simpson

2003) and the SIPE-2 (Wilkins, Lee and Berry, 2003). Moreover, there is a number of

approaches in building visual interfaces for specific applications of planning. The

 10

http://ftp.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sanchez:Javier.html

PacoPlan project (Vrakas et. al., 2002) aims at building a web-based planning

interface for specific domains. AsbruView (Kosara and Miksch 2001) is a visual user

interface for time-oriented skeletal plans representing complex medical procedures.

Another example of visual interfaces for planning is the work of the MAPLE research

group at the university of Maryland (Kundu et. al., 2002), which concerns the

implementations of a 3D graphical interface for representing hierarchical plans with

many levels of abstractions and interactions among the parts of the plan. Although

these approaches are very interesting and provide the community with useful tools for

planning, there is still a lot of work to be done in order to create an integrated system

that meets the needs of the potential users.

 Various works (McIlraith and Fadel, 2002), (Marcugini and Milani, 2002),

(Thakkar et al., 2002), (Wu et al., 2003), (Sheshagiri et al., 2003), (Sirin et al., 2004)

propose to use a planning model to give a semantics to the behaviour of web services,

and to use planners in order to generate compositions of them (i.e. plans) for reaching

complex goals on the web.

 There are many issues to be tackled both from the planning community and

the web service community in order to handle web service composition as a planning

problem (Koehler and Srivastava, 2003). Some of them are the following:

• New expressive languages for representing web service actions, unifying

existing standards of PDLL (Ghallab et. al, 1998) and OWL-S (OWL

Services, 2003).

• Efficient planners produce quality plans that synthesize complex web services.

• Web Service plan verification (Berardi et al., 2003).

• Efficient Web Service plan execution (Varela et al., 2003).

 11

• Monitoring web service plan execution and repairing the plan in cases where

web service execution failed (Blythe et al., 2003).

• Mixing information retrieval and plan execution (Thakkar et al., 2003), (Kuter

et al., 2005).

 An approach of using HTN planning in the realm of Web Services was

proposed in (Sirin et al., 2004), facilitating the SHOP2 system (Nau et al., 2003),

which belongs to the family of ordered task decomposition planners where tasks are

planned in the same order that they will be executed, which reduces the complexity of

the planning problem greatly.. Planners based on that principle, accept goals as task

lists, where compound tasks may consist of compound tasks or primitive tasks; goal

tasks are not supported. Hence, ordered task decomposition system do not plan to

achieve a defined (declarative) goal, but rather to carry out a given (complex or

primitive) task.

 Such a HTN based planning system decomposes the desired task into a set of

sub-tasks, and these tasks into another set of sub-tasks (and so forth), until the

resulting set of tasks consists only of primitive tasks, which can be executed directly

by invoking atomic operations. During each round of task decomposition, it is tested

whether certain given conditions are violated. The planning problem is successfully

solved if the desired complex task is decomposed into a set of primitive tasks without

violating any of the given conditions.

 In (Sirin et al., 2004; Wu et al., 2003) a transformation method of OWL-S

processes into a hierarchical task network is presented. OWL-S processes are, like

HTN task networks, pre-defined descriptions of actions to be carried out to get a

certain task done, which makes the transformation rather natural. The advantage of

the approach is its ability to deal with very large problem domains; however, the need

 12

to explicitly provide the planner with a task it needs to accomplish may be seen as a

disadvantage, since this requires descriptions that may not always be available in

dynamic environments.

 Another approach in using planning techniques for Semantic Web Service

composition is in (Sheshagiri et al., 2003), where their planner uses STRIPS-style

services to compose a plan, given the goal and a set of basic services. They have used

the Java Expert Shell System (JESS) (Friedman-Hill 2002) to implement the planner

and a set of JESS rules that translate DAML-S (a precursor to OWL-S) descriptions of

atomic services into planning operators.

 In order to enable the construction of composite web services, a number of

composition languages have been proposed by the software industry. However, the

handiwork of specifying a business process with these languages through simple text

or XML editors is tough, complex and error prone. Visual support can ease the

definition of business processes.

 In (Martinez et al. 2005), a visual composition tool for web services written in

BPEL4WS, called ZenFlow, is described. ZenFlow provides several visual facilities

to ease the definition of a composite web services such as multiple views of a process,

syntactic and semantic awareness, filtering, logical zooming capabilities and

hierarchical representations.

 In (Pautasso and Alonso, 2005), the JOpera system is presented. JOpera

tackles the problems of visual service composition and efficient and scalable

execution of the resulting composite services by combining a visual programming

environment for Web services with a flexible execution engine capable of interacting

with Web services through the SOAP protocol, described with WSDL, and registered

with an UDDI registry.

 13

 To the best of our knowledge, there is no visual tool that combines visual

planning problem design with web service composition.

3. Problem Representation

Planning Systems usually adopt the STRIPS (Stanford Research Institute Planning

System) notation for representing problems (Fikes and Nilsson, 1971). A planning

problem in STRIPS is a tuple <I,A,G> where I is the Initial state, A a set of available

actions and G a set of goals.

States are represented as sets of atomic facts. All the aspects of the initial state of

the world, which are of interest to the problem, must be explicitly defined in I. State I

contains both static and dynamic information. For example, I may declare that object

John is a truck driver and there is a road connecting cities A and B (static information)

and also specify that John is initially located in city A (dynamic information). State G

on the other hand, is not necessarily complete. G may not specify the final state of all

problem objects either because these are implied by the context or because they are of

no interest to the specific problem. For example, in the logistics domain the final

location of means of transportation is usually omitted, since the only objective is to

have the packages transported. Therefore, there are usually many states that contain

the goals, so in general, G represents a set of states rather than a simple state.

Set A contains all the actions that can be used to modify states. Each action Ai has

three lists of facts containing:

a) the preconditions of Ai (noted as prec(Ai))

b) the facts that are added to the state (noted as add(Ai)) and

c) the facts that are deleted from the state (noted as del(Ai)).

The following formulae hold for the states in the STRIPS notation:

 14

• An action Ai is applicable to a state S if prec(Ai) ⊆ S.

• If Ai is applied to S, the successor state S’ is calculated as:

 S’ = S \ del(Ai)∪ add(Ai)

• The solution to such a problem is a sequence of actions, which if applied to I

leads to a state S’ such as S’⊇G.

Usually, in the description of domains, action schemas (also called operators) are

used instead of actions. Action schemas contain variables that can be instantiated

using the available objects and this makes the encoding of the domain easier.

The choice of the language in which the planning problem will be represented

strongly affects the solving process. On one hand, there are languages that enable

planning systems to solve the problems easier, but they make the encoding harder and

pose many representation constraints. For example, propositional logic and first order

predicate logic do not support complex aspects such as time or uncertainty. On the

other hand there are more expressive languages, such as natural language, but it is

quite difficult to enhance planning systems with support for them.

3.1. The PDDL Definition Language

PDDL stands for Planning Domain Definition Language. PDDL focuses on

expressing the physical properties of the domain that we consider in each planning

problem, such as the predicates and actions that exist. There are no structures to

provide the planner with advice, that is, guidelines about how to search the solution

space, although extended notation may be used, depending on the planner. The

features of the language have been divided into subsets referred to as requirements,

and each domain definition has to declare which requirements will put into effect.

Moreover, unless stated otherwise, the closed-world assumption holds.

 15

The domain definition in PDDL permits inheritance. Each definition consists of

several declarations which include the aforementioned requirements, types of entities

used, variables and constants used, literals that are true at all times called timeless,

and predicates. Besides, there are declarations of actions, axioms and safety

constraints, which are explained in the following three paragraphs.

Actions enable transitions between successive situations. An action declaration

mentions the parameters and variables involved, as well as the preconditions that must

hold for the action to be applied. As a result of the action we can have either a list of

effects or an expansion, but not both. The effects which can be both conditional and

universally quantified, express how the world situation changes after the action is

applied. The expansion decomposes the action into simpler ones, which can be in a

series-parallel combination, arbitrary partially ordered, or chosen among a set. It is

used when the solution is specified by a series of actions rather than a goal state.

Furthermore, several additional constructs can be used, which impose additional

preconditions and maintenance conditions.

Axioms, in contrast to actions, state relationships among propositions that hold

within the same situation. The necessity of axioms arises from the fact that the action

definitions do not mention all the changes in all predicates that might be affected by

an action. Therefore, additional predicates are concluded by axioms after the

application of each action. These are called derived predicates, as opposed to

primitive ones.

Safety constraints in PDDL are background goals which may be broken during the

planning process, but ultimately they must be restored. Constraint violations present

in the initial situation do not require to be fulfilled by the planner.

 16

In PDDL, we can add axioms and action expansions modularly using the construct

addendum. In addition, there are build-in predicates, under certain requirements, for

expression evaluation, often used with certain types of entities that may change values

as a result of an action, called fluents.

After having defined a planning domain, one can define problems with respect to

it. A problem definition in PDDL must specify an initial situation and a final situation,

referred to as goal. The initial situation can be specified either by name, or as a list of

literals assumed to be true, or both. In the last case, literals are treated as effects,

therefore they are added to the initial situation stated by name. The goal can be either

a goal description, using function-free first order predicate logic, including nested

quantifiers, or an expansion of actions, or both. The solution given to a problem is a

sequence of actions which can be applied to the initial situation, eventually producing

the situation stated by the goal description, and satisfying the expansion, if there is

one.

PDDL 2.1 (Fox and Long, 2003) was designed to be backward compatible with

PDDL, and to preserve its basic principles. It was developed by the necessity for a

language capable of expressing temporal and numeric properties of planning domains.

The extensions introduced were numeric expressions, durative actions and a new

optional field in the problem specification that allowed the definition of alternative

plan metrics to estimate the value of a plan.

PDDL 2.2 (Edelkamp and Hoffmann 2004) added derived predicates, which are

an evolution of the axioms construct of the original PDDL. In addition, timed initial

literals were introduced, which are facts that become true or false at certain time

points known to the planner beforehand, independently of the actions chosen to be

carried out by the planner.

 17

In PDDL 3.0 (Gerevini and Long, 2005) the language was enhanced with

constructs that increase its expressive power regarding the plan quality specification.

The constraints and goals are divided into strong, which must be satisfied by the

solution, and soft, which may not be satisfied, but are desired. Evidently, the more

soft constraints and goals a plan satisfies, the better quality it possesses. Each soft

constraint and goal may be associated with a certain importance which, when

satisfied, contributes to the plan quality. Moreover, there are state trajectory

constraints which impose conditions on the entire sequence of situations visited and

not only on the final situation. Finally, this version allows nesting of modal operators

and preferences inside them.

4. The Visual Tool

ViTAPlan (Visual Tool for Adaptive Planning) is an integrated environment for

designing new planning problems, solving them and obtaining visual representations

of the plans – solutions. The architecture of the visual tool, which is outlined in Figure

1, consists of the following sub-systems, which are discussed in more detail later in

the chapter: a) designing, b) configuration, c) solving, d) visualizing and e)

simulating.

 18

HAP Problem Domain

Execution

Designing Simulating

Visualizing

Configuration

Problem
Analyzer

Rule
System

ViTAPlan

User

Figure 1. ViTAPlan's Architecture

 The designing module provides visual representations of planning domains

and problems through graphs that assist the user in comprehending their structure.

Furthermore, the user is provided with graphical elements and tools for designing new

domains and new problems over existing domains. This module communicates with

the file system of the operating system, in order to save the designs in a planner –

readable format (i.e. PDDL planning language) and also load and visualize past

domains and problems.

 The configuration module of ViTAPlan deals with the automatic fine-tuning

of the planning parameters. This task is performed through two steps that are

implemented in different sub-systems. The first one, called Problem Analyzer, reads

the description of the problem from the input files, analyzes it and outputs a vector of

numbers that correspond to the values of 35 measurable attributes that quantify the

morphology of the problem in hand. The Rule System, which is consulted after the

analysis of the problem, contains a number of rules that associate specific values or

value ranges of the problems’ attributes with configurations of the planning

parameters that guarantee good performance.

 19

 The execution module inputs the description of the problems (PDDL files of

the domain and the problem) along with the values of the planner’s parameters and

executes the planner (HAP or any other system attached to ViTAPlan) in order to

obtain a solution (plan) to the problem. The planner’s parameters can be adjusted

either by hand or automatically via the configuration module.

 The last two sub-systems (visualization and simulation) present the plan that

was inputted from the execution module in several forms. The visualization module

presents the plan as a directed graph, through which the user can identify the positive

and negative interactions among the actions and experiment with different orderings

in which the plan’s steps should be executed. The second module simulates the

problem’s world presenting all the intermediate states that occur after the execution of

each action.

5. Visual Design of Planning Problems

The Design module of ViTAPlan serves as a tool for a) visualizing the structure of

planning domains and problems in order to get a better understanding of their nature

and b) designing new domains or new instances (problems) of existing domains with

a user – friendly tool that can be used by non PDDL experts. The steps that a typical

user must go through in order to design a new problem through ViTAPlan are the

following: a) create the entity-relation model, b) design the operators, c) specify one

or more problems, d) check the validity of the designs and e) translate the visual

representations in PDDL language in order to solve the problem(s).

 20

5.1. The Entity – Relation Model

The entities-relations diagram is a directed graph containing two types of nodes and

one type of arcs connecting the nodes. The first type of nodes, called entity, is

represented in the design as a circle and corresponds to an object class of the domain.

The second type is represented by the visual tool as a rectangle and is used to specify

relations between the domain’s classes. The edges connect rectangular with circular

nodes and are used to specify which classes take part in each relation.

 Consider the gripper domain for example, where there is a robot with N

grippers that moves in a space, composed of K rooms that are all connected with each

other. All the rooms are modeled as points and there are connections between each

pair of points and therefore the robot is able to reach all rooms starting from any one

of them with a simple movement. In the gripper domain there are L numbered balls

which the robot must carry from their initial position to their destination.

 The diagram for the Gripper domain, which was used in the AIPS-98

planning competition, is illustrated in Figure 2. There are three object classes in the

domain, namely room, ball and gripper that are represented with circles. There is no

class defined for the robot, since the domain assumes the presence of only one

instance of it and therefore there is no need for an explicit definition.

Figure 2. Entities-relations diagram for gripper

 21

 The domain has four predicates: a) at-robby, which specifies the position of

the robot and it is connected only with one instance of room, b) at which specifies the

room in which each ball resides and therefore is connected with an instance of ball

and an instance of room, c) carry which defines the alternative position of a ball, i.e it

is hold by the robot and therefore it is connected with an instance of ball and an

instance of gripper and d) free which is connected only with an instance of gripper

and states that the current gripper does not hold any ball.

 Note here that although PDDL, requires only the arity for each predicate and

not the type of objects for the arguments, the interface obliges the user to connect

each predicate with specific object classes and this is used for the consistency check

of the domain design. According to the design of Figure 2, the arity of predicate

carry, for example, is two and the specific predicate can only be connected with one

object of class ball and one object of class gripper.

5.2. Representing Operators

The definition of operators in ViTAPlan follows a declarative schema, which is

different from the classical STRIPS approach, although there is a direct way to

transform definitions from one approach to the other. More specifically, an operator in

the visual environment is represented with two lists, namely Pre and Post, that

contain the facts that must hold in a state S1 in order to apply the operator and the facts

that will be true in state S2 which will result from the application of the operator on S1

respectively. The relations between these lists and the three lists (Prec, Add, Del) of

the STRIPS notation are the following:

From STRIPS to ViTAPlan:

Pre(A) = Prec(A)

 22

Post(A) = Add(A) ∪ (Prec(A) – Del(A))

From ViTAPlan to STRIPS:

Prec(A) = Pre(A)

Add(A) = Post(A) - Pre(A)

Del(A) = Pre(A) – Post(A)

 Each operator in the interface is represented with a labeled frame, which

contains a column of object classes in the middle, two columns of predicates on the

two sides of it and connections between the object classes and the predicates. The un-

grounded facts that are generated by the classes and the predicates in the left column

define the Pre list of the operator while the Post list is defined by the predicates in the

right column.

 For example, in the gripper domain there are three operators: a) move which

allows the robot to move between rooms, b) pick which is used in order to lift a ball

using a gripper and c) drop which is the direct opposite of pick and is used to leave a

ball on the ground

 The move operator is related with two instances of the room class (room1

and room2) which correspond to the initial and the destination room of the robot’s

move. The Pre and Post lists of the operator contain only one instance of the at-robby

relation. In the Pre list the at-robby is connected to room1, while the latter is replaced

by room2 in the Post list. The definition of the move operator is presented in Figure 3.

Figure 3. The move operator

 23

 The second operator (pick), which is presented in Figure 4, contains one

instance from three entities, namely ball1, room1 and gripper1 that correspond to the

ball that resided on the room and was picked by a robot’s gripper. The Pre list defines

that both the ball and the robot must be in the same room and that the gripper must be

free. The new fact that is contained in the Post list is that the gripper holds the ball,

while the freedom of the gripper and the fact that the ball resides on the room are

deleted. The fact that the robot is in room1 is contained in both lists (Pre and Post)

since it is not deleted.

Figure 4. The pick operator

 Similarly we define the drop operator which is presented in Figure 5. This

operator is the direct opposite of the pick operator and in fact it is produced by

exchanging the Prec and Post lists of the latter.

Figure 5. The drop operator

 24

5.3. Representing Problems

The designing of problems in the interface follows a similar model with that of

operators. Problems can be formed by creating a list of objects, two lists of predicates

and a number of connections among them. The list which is created by the predicates

in the left column and the objects corresponds to the initial state of the problem, while

the goals are formed by the predicates of the right column.

 Figure 6 presents a problem of the gripper domain, which contains two

rooms (rooma and roomb), three balls (ball1, ball2 και ball3) and the robot has two

grippers (left and right). The initial state of the problem defines the starting locations

of the robot and the balls and that both grippers are free. The goals specify the

destinations of the three balls.

 One of the key enhancements of ViTAPlan-2 over the past versions concerns

the ability to use a predefined chain of objects that can be utilized for the definition of

many kinds of facts. Consider for example the case where in gripper the moves of the

robot are restricted by a relation (e.g. connected) which specifies which movements

are feasible. If we suppose that the map of the rooms is the one presented in Figure 7,

then this would require the user to add the connected relation 7 times in the problem’s

definition and each time to make the appropriate connections (see Figure 8). This can

become a severe problem for large and complex maps.

 25

Figure 6. A Problem of the gripper domain

1

2

3

4

Figure 7. A map for a gripper problem

 There is a number of cases where similar maps are required. For example in

the hanoi domain, according to the definition adopted by the planning community, the

problem file must specify for each possible pair of pegs and discs which of the two is

smaller. For a simple problem with three pegs and 5 discs, this yields 39 smaller

relations.

Figure 8. The connections between the rooms

 26

 In order to deal with this problem, ViTAPlan-2 contains a tool for building

maps which makes it easier for the user to define multiple relations between pairs of

objects that belong to the same entity. The user can use simple drag ‘n drop operations

in order to define single and duplex connections between them. For example, the case

described in Figure 8 can be easily encoded in ViTAPlan-2 using the map tool as

shown in Figure 9.

Figure 9. The map tool

5.4. Syntax and Validity Checking

The visual environment besides the automation and the convenient way in which new

domains and problems are designed, also performs a number of validity checks in the

definitions, in order to assist the user in this really complex task. The entities-relations

diagram, which is probably the most important part of the design of new domains is

further used by ViTAPlan-2 as a reference model for the checks.

Each time the user tries to connect an instance of an entity E to an instance of a

relation R, the tool checks if:

 27

i. This specific connection generates a fact that has already been defined in the

same operator or in the problem. In this case the connection is rejected, since

PDDL does not allow redefinitions of the same fact inside the same scope.

ii. The definition of the relation in the entities-relations diagram contains a

connection to the entity in which E belongs.

iii. There is an empty slot in R which according to the diagram should be

connected to objects of the same class as that of E.

 The checks listed above are also performed dynamically at each attempted

change in the entities-relations diagram. For example, if the user deletes a connection

between an entity and a relation, ViTAPlan will automatically delete any instance of

this connection from all the operators and the definition of the problem. A similar

update will also take place in the definition of the operators and in the problem, if the

user deletes an entire relation or an entity.

 Finally, a number of checks are also performed during the compilation of the

design in PDDL. More specifically these checks contain:

• The case where no operator is defined

• The definition of empty operators

• The definition of void operators, i.e. operators with empty Pre and Post lists

• The definition of effectless operators (Pre ≡ Post)

• The definition of empty problems

• Semi-connected edges which lead to incomplete facts

5.5. Translation to PDDL

The domains and the problems that are designed in ViTAPlan are automatically

compiled to the PDDL definition language, in order to allow their solving using

 28

different planning systems. The environment contains a PDDL editor which enables

the user to see and even modify the PDDL files of his designs. For example, the

gripper domain and the specific problem used in this section are presented in Figure

10 and Figure 11 respectively.

Figure 10. The gripper domain in PDDL

Figure 11. The PDDL file of a gripper's problem

 29

6. System Configuration and Problem Solving

One of the main features of ViTAPlan is to allow the use of the underlying planning

system in a friendlier and more accurate way. This interface between the user and the

planning engine is carried out by the execution module of the visual environment. The

inputs that must be supplied to the planning system are: a) the domain file, b) the

problem file and c) the values of the planning parameters, in case of adjustable

planners.

Figure 12. Selecting the input files

 From the initial screen of the interface, which is shown in Figure 12, the user

uses common dialogues and graphical elements in order to browse for the domain and

problem files that will be inputted to the planner. From the same screen the user can

also execute the planner and obtain the solution (plan), along with statistics

concerning the execution, such as the planning time and the length of the plan. The

way the results of the planner are presented to the user is shown in Figure 13.

 30

Figure 13. Solving the problem

 There are three ways for tuning the planner’s parameters in ViTAPlan: a)

using the default values provided by the system, b) let the user assign the values by

hand or c) use the configuration module in order to have the parameters set

automatically. The user can select among the first two ways through the settings

window presented in Figure 14. The parameters presented in this window correspond

to the HAP planner which is embodied in ViTAPlan.

Figure 14. Setting the planning parameters

 31

6.1. Hap planner

HAP, is a highly adjustable planning system that can be customized by the user

through a number of parameters. These parameters concern the type of search, the

quality of the heuristic and several other features that affect the planning process. The

HAP system is based on the BP (Bi-directional Planner) planning system (Vrakas and

Vlahavas 2002a) and uses an extended version of the ACE (Vrakas and Vlahavas

2002b) heuristic.

 HAP is capable of planning in both directions (progression and regression).

The system is quite symmetric and for each critical part of the planner, e.g.

calculation of mutexes, discovery of goal orderings, computation of the heuristic,

search strategies etc., there are implementations for both directions. The direction of

search is the first adjustable parameter of HAP used in tests, with the following

values: a) 0 (Regression or Backward chaining) and b) 1 (Progression or Forward

chaining).

 As for the search itself, HAP adopts a weighted A* strategy with two

independent weights: w1 for the estimated cost for reaching the final state and w2 for

the accumulated cost of reaching the current state from the starting state (initial or

goals depending on the selected direction). For the tests with HAP, we used four

different assignments for the variable weights which correspond to different

assignments for w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3, w2 =1), c) 2 (w1 =2, w2

=1) and d) 3 (w1 =1, w2 =1).

 The size of the planning agenda (denoted as sof_agenda) of HAP also affects

the search strategy and it can also be set by the user. For example, if we set

sof_agenda to 1 and w2 to 0, the search algorithm becomes pure Hill-Climbing, while

by setting sof_agenda to 1, w1 to 1 and w2 to 1 the search algorithm becomes A*.

 32

Generally, by increasing the size of the agenda we reduce the risk of not finding a

solution, even if at least one exists, while by reducing the size of the agenda the

search algorithm becomes faster and we ensure that the planner will not run out of

memory. For the tests we used three different settings for the size of the agenda: a) 1,

b) 100 and c) 1000

 The OB and OB-R functions introduced in BP and ACE respectively, are also

adopted by HAP in order to search the states of the search for violations of orderings

between the facts of either the initial state or the goals, depending on the direction of

the search. For each violation contained in a state, the estimated value of this state that

is returned by the heuristic function, is increased by violation penalty, which is a

constant number supplied by the user. For the experiments of this work we tested the

HAP system with three different values of violation_penalty: a) 0, b) 10 and c) 100.

 The HAP system employs the heuristic function of the ACE planner, plus

two variations of it, which are in general more fine-grained. There are

implementations of the heuristic functions for both planning directions. All the

heuristic functions are constructed in a pre-planning phase by performing a relaxed

search in the opposite direction of the one used in the search phase. During this

relaxed search the heuristic function computes estimations for the distances of all

grounded actions of the problem.

 The user may select the heuristic function by configuring the heuristic_order

parameter. The three acceptable values are: a) 1 for the initial heuristic, b) 2 for the

first variation and c) 3 for the second variation.

 HAP also embodies a technique for simplifying the definition of the sub-

problem in hand. This technique eliminates from the definition of the sub-problem

(current state and goals) all the goals that have already been achieved in the current

 33

state and do not interfere in any way with the achievement of the remaining goals. In

order to do this the technique performs, off-line before the search process, a

dependency analysis on the goals of the problem. The parameter remove_subgoals is

used to turn on (value 1) and off (value 0) this feature of the planning system.

 The last parameter of HAP is equal_estimation, which defines the way in

which states with the same estimated distances are treated. If equal_estimation is set

to 0 then between two states with the same value in the heuristic function, the one

with the largest distance from the starting state (number of actions applied so far) is

preferred. If equal_estimation is set to 1, then the search strategy will prefer the state,

which is closer to the starting state.

6.2. Configuration Module

The Configuration module of ViTAPlan is a sub-system able to adjust the planning

parameters in an automatic manner. This feature is currently available only for use

with the HAP planning system, although the methodology for the automatic

configuration of planning parameters is general and can be applied to other planners

as well (Tsoumakas et. al., 2004).

 The automatic configuration is based on HAP-RC (Vrakas et. al., 2003),

which uses a rule system in order to automatically select the best settings for each

planning parameter, based on the morphology of the problem in hand. HAP-RC,

whose architecture is outlined in Figure 15 is actually HAP with two additional

modules (Problem Analyzer and Rule System) which are utilized off-line, just after

reading the representation of the problem in order to fine tune the planning parameters

of HAP.

 34

Problem file Domain file

Parser

Problem Analyzer

Rule system

HAP

Problem representation

Values of A01 to A35

Values of planning parameters

Figure 15. HAP-RC Architecture

 The role of the Problem Analyzer is to identify the values of a specific set of

35 problem characteristics (noted as A1 to A35). These characteristics include

measurable attributes of planning problems, such as number of facts per predicate and

the branching factor of the problem, that present the internal structure of the problems

in a quantified way. After the identification of the values of the attributes, which may

require a limited search in the problem, the analyzer feeds the Rule system with a

vector containing the values for the 35 problem attributes.

 The Rule system contains a number of rules of the following format:

If preconditions list Then actions list

The preconditions of the rules check if the values of the problem’s attributes comply

with some constraints on them, while the actions set one or more planning parameters

to specific values. For example, the rule:

If A24<1.8 and A17<9.7 Then direction=1 and closer=yes

will trigger in a given problem if the values of A24 (ratio between the branching

factors of the two directions) and A17 (standard deviation of the average number of

actions deleting a fact) are smaller than 1.8 and 9.7 respectively. If this rule is

 35

eventually fired, then the planning direction will be set to forward and the search

algorithm will use the technique for overcoming plateaus.

 What these rules actually do, is to propose setups for the planning parameters

that worked efficiently in similar problems in the past. This knowledge has been

extracted from Machine Learning techniques on data produced by thorough

experiments with the HAP system. More specifically, we tested all the possible

combinations of the parameters of HAP on a large set of problems from various

domains and for each run we kept record of the values of the problem attributes, the

specific setup for HAP and the value of a metric combining planning time and plan

length. The data set was then fed to a Machine Learning tool in order to learn a rule-

based classification model that would discriminate between good and bad values of

the metric based on the rest of the attributes.

 The Configuration module of ViTAPlan-2 also provides the user with the

option to use the Problem Analyzer and the Rule System of HAP-RC in order to

automatically fine-tune the planning parameters of HAP. The relevant window of the

interface is shown in Figure 16. This window is divided in three parts: a) the first part

shows the discretized values for the 35 problem characteristics, as produced by the

Problem analyzer, b) the second part provides the user with the list of the rules that

comprise the core knowledge of the system and c) the last part provides the user with

the proposed values for the planning parameters of HAP.

 The values of the problem’s attributes are presented in order to check for the

triggered rules, but more importantly to assist the knowledge engineer or the domain

expert in decoding the internal structure of the problem and extract useful insights

from it. The tool presents the following information for each one of the 35 attributes:

a) the code name (e.g A07), b) a description of the attribute (e.g. Standard deviation of

 36

the number of facts per predicate), c) the arithmetic value, d) a discretized value (e.g.

small) and e) the usual upper and lower limit for its value.

 The rules are shown in the appropriate frame of the environment sorted by

decreasing order of their confidence, as this was calculated by the learning algorithm.

ViTAPlan presents all the rules, but the user is able to control the viewable part of the

rules through two controls that select only the triggered rules or the rules that affect a

specific parameter (e.g. heuristic function).

 From the set of triggered rules, ViTAPlan makes an initial choice, selecting

the rules with the highest confidence factor that are not in conflict with any other

already selected rule. We say that two rules are in conflict, if they propose different

setups for the same parameter. The configuration module uses the initial subset of

selected rules in order to calculate the values of the parameters and present them to

the user, leaving each unset parameter to its default value.

Figure 16. The rule system

 Instead of just accepting or rejecting the proposed parameter setting, the user

has the ability to interfere with the rule system, thus modifying the adopted conflict

resolution strategy. More specifically, the user may either include a new rule in the

 37

firing set, or request the removal of a selected one and thus alter the firing set and

therefore the setup of the parameters. Each time the user requests the firing of a new

rule Ri, the module automatically checks the resulting firing set for conflicts and

removes all the rules that propose contradictory values for the parameters affected by

Ri.

Consider for example the case in Figure 17, which presents a portion of the triggered

rules, i.e. those that require values for the attributes A01 to A35 that are compatible

with the problem in hand. The initial selection contains rules 49, 74 and 154 that

define the values 100, 2, 3 and 0 for the parameters penalty, heuristic, search_strategy

and direction respectively.

Figure 17. The initial firing set

 Lets also suppose that the user requests rule number 35 (the first rule in

Figure 17) to be included in the firing set. Rule 35 is in contradiction with rule 49,

since the first sets penalty to 500 while the second sets it to 100 and with rule 154 for

the same reason. There is no contradiction with rule 74, since the only common

parameter is heuristic and they propose the same value (2) for it. Therefore after the

inclusion of rule 35, rules 49 and 154 are removed from the firing set as shown in

Figure 18. The proposed setup of the planner’s parameters becomes the following:

closer=1, penalty=500, heuristic=2, search_strategy=3 and direction=0.

 38

Figure 18. The final firing set

6.3. Embedding other planning systems

The current version of ViTAPlan embodies the HAP system, but the environment is

open and the user can easily attach any other planner that reads the PDDL language.

The communication protocol between the visual environment and the planner

(including HAP) is outlined in Figure 19.

ViTAPlan-2 Environment

Planner

Domain Problem Plan Pre-processor

Description

Settings

Plan in X’s format

Plan in ViTAPlan’s format

Description

Figure 19. Communication with the planner

 As already discussed the data that should be transmitted between ViTAPlan

and the planning system are: a) the description of the domain and the problem, b)

optionally the settings for the planner’s parameters and c) the plan that solves the

problem.

 Concerning the description of the problem, ViTAPlan is able to extract

PDDL files, which is the standard definition language for all modern planners.

Therefore it is trivial to submit the problem to any new planning system.

 39

 For each configurable parameter, ViTAPlan needs a description, the option

used to set this parameter in the planner and the domain of values. This information

must be specified by the user in order to add a new planner in the environment. The

current version of ViTAPlan supports only discrete values for the domains of the

parameters, but this can very easily be extended to support continuous values or other

data types (e.g. booleans). For example, Table 1 presents part of the information that

should be inputted to ViTAPlan-2 in order to connect it with the LPG planning system

(Gerevini, Saetti and Serina, 2003).

Table 1. Specification of LPG’s parameters

Parameter Option Values
Heuristic identifier -h 1,2
Max number of restarts -restarts 1,2,3,4,5,6,7,8,9….
Nois
…

e added to Walksat -noise 0,0.1,0.2,0.3….

 The output of any planner to a given problem is a sequence of actions that

achieve the predefined goals. However, since there has not been a standard for

describing plans yet, each planner may present the sequences of actions in a different

way. Therefore a necessary step in order to attach a different planning system X on

ViTAPlan, is to format its output, either by modifying the system, or by adding a pre-

processor that reads the plan in X’s format and transforms it. Figure 20 presents an

example of a plan in ViTAPlan’s format.

3: (load hoist1 crate0 truck0 distributor0)

2: (lift hoist1 crate0 pallet1 distributor0)

1: (drive truck0 distributor1 distributor0)

Begin of Plan

Figure 20. A plan’s excerpt in ViTAPlan’s format

 40

7. Plan Representations

There are two modules for visualizing the plans in ViTAPlan: the execution

simulation which simulates the execution of the plan in a virtual world and the steps

visualization that presents the plan as an action graph.

7.1. World Simulation

This module of ViTAPlan allows the user to execute the plan that was acquired from

the execution sub system and trace the changes that occur to the world as the actions

of the plan are sequentially applied. Figure 21 presents the simulation module, which

consists of three parts. The first one is a scroll bar, through which the user can browse

for a specific action of the plan. The other two parts present the states of the world

before the application of the selected action (left part) and after it (right part)

respectively.

Figure 21. Execution simulation

 In the example presented in Figure 21 the first action of the plan is selected

and therefore the state presented in the left part is the initial one, while the one in the

right part is the first intermediate state. The tool uses proper color coding in order to

discriminate the facts in four categories:

i. facts of the preceding state that are deleted by the action

ii. new facts that are added to the new state

 41

iii. propagated facts

iv. static facts

7.2. Graph based Representations

 The second option for the user is to view the actions of the plan on a

timeline, as shown in Figure 22. The timeline for the plan presents for each action the

point in which it is scheduled to be executed and the facts in its precondition and add

lists. Moreover, the visualization shows the interactions between the actions in the

plan. More specifically, for each action A the user is able to see connections between:

i. each precondition of A and the most recent action that achieved it

ii. each fact that is deleted by A and the most recent action that established it

iii. each fact that is added by A and the following actions that have it in their

preconditions

Figure 22. Step graph

 The connections represented by the arcs in the graph present in graphical

way all the interactions (positive and negative) between the steps of the plan and

therefore allow the user to:

 42

i. Comprehend the specific sorting in which the steps have been ordered and

why a specific action should be placed before (or after) another one.

ii. Replace an action or a set of actions with other, taking care so as not to violate

the interactions, and thus produce modified or alternative plans.

iii. Find parallelizations in the plan execution and therefore reduce the total

execution time and the cost of its application.

8. Conclusion and Future Work

This chapter presented ViTAPlan, a unified environment for automated planning

which contains several modules with user friendly interfaces. The main feature of the

environment is the designing module which saves the user from the strict syntax of

the Planning Domain Definition Language (PDDL). The user is able to visualize and

design new domains and problems in an easy-to-use graphical way and the tool is

responsible for checking the validity of the designs and translating them in PDDL

files.

 The current version of the environment has four main functions: a) using the

planning system through a number of windows, controls and common dialogues,

which makes it much easier for a non – programmer to use the planner and

experiment with different setups of the planning parameters, b) use the Problem

Analyzer and the Rule System of HAP-RC in order to acquire useful knowledge about

the morphology of each problem and automatically fine tune the planner with the

most appropriate values for the planning parameters c) generating new domains and

problems using a visual tool and d) produce visual representations of the plans found

by the planning system, which enable the user to better understand each step in the

plan and also intervene and alter the plan at will.

 43

 In the future, we plan to improve the interface in all functions of it and

introduce others that will make it a complete tool for planning both for academic and

industrial use. It is in our direct plans to enhance the tool for designing domains and

problems with the ability to handle advanced aspects of the latest versions of PDDL,

such as treatment of numerical values, explicit representation of time and duration,

conditional effects e.t.c.

 In parallel, we are currently working on developing an interface for

ViTAPlan in order to input OWL-S documents that describe simple or complex

Semantic Web Services and automatically translate them to PDDL problem

definitions. Then, our visual tool will enable authoring of appropriate service

composition operators as planning operators that will solve the Semantic Web Service

composition problem. The Produced plan will constitute the complex Web Service

and it will be exported in an appropriate Web Service choreography language or in

OWL-S to a corresponding complex Web Service execution monitoring tool or it will

be just published at a UDDI registry.

References

1. Aalst W. van der, "Don't Go with the Flow: Web Services Composition
Standards Exposed", IEEE Intelligent Systems, Vol. 18, No. 1, pp. 72-76, 2003.

2. Berardi D., Calvanese D., De Giacomo G., Mecella M., "Reasoning about
Actions for e-Service Composition", ICAPS 2003 Workshop on Planning for
Web Services.

3. Berners-Lee T., Hendler J., and Lassila O., “The Semantic Web”, Scientific
American, 284(5), 2001, pp. 34-43.

4. Blum, A., and Furst, M., Fast planning through planning graph analysis, In
Proceedings of the 14th International Conference on Artificial Intelligence,
(Berlin, Germany 1995), pp.636-642.

 44

5. Blythe J., Deelman E., Gil Y., "Planning for workflow construction and
maintenance on the Grid", ICAPS 2003 Workshop on Planning for Web
Services.

6. Bonet, B. and Geffner, H., Planning as Heuristic Search. Artificial Intelligence,
Special issue on Heuristic Search, 129/1-2 (2001), 5-33.

7. Booth D. et al., "Web Services Architecture", W3C Working Draft, Aug. 2003.
http://www.w3.org/TR/ws-arch/

8. Botea, A., Enzenberger, M., Müller, M. and Schaeffer, J., Macro-FF: Improving
AI Planning with Automatically Learned Macro-Operators, To appear in Journal
of Artificial Intelligence Research (2005).

9. Bourbakis, N. and Tascillo, A., An SPN-Neural Planning Methodology for
Coordination of two Robotic Hands with Constrained Placement, Journal of
Intelligent and Robotic Systems archive, 19-3 (1997), 321-337,

10. Carman M., Serafini L., Traverso P., "Web Service Composition as Planning",
ICAPS 2003 Workshop on Planning for Web Services.

11. Chen, Y., Wah, B. W. and Hsu, C., Subgoal Partitioning and Resolution for
Temporal Planning in SGPlan, Journal of Artificial Intelligence Research
(2005).

12. Edelkamp, S. and Hoffmann, J., PDDL 2.2: The Language for the Classical Part
of IPC-4, in Proceedings of the International Planning Competition
International Conference on Automated Planning and Scheduling (Whistler
2004), 1-7.

13. Fikes, R. and Nilsson, N. J., STRIPS: A new approach to the application of
theorem proving to problem solving, Artificial Intelligence, Vol 2 (1971), 189-
208.

14. Fox, M. and Long, D., PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of Artificial Intelligence Research, 20
(2003), 61-124.

15. Friedman-Hill, E. J., "Jess, The Expert System Shell for the Java Platform",
2002, http://herzberg.ca.sandia.gov/jess/

16. Gerevini, A., Saetti, A. and Serina, I., Planning through Stochastic Local Search
and Temporal Action Graphs. Journal of Artificial Intelligence Research, 20
(2003), 239-290.

17. Gerevini, A., Saetti, A. and Serina, I., Planning in PDDL2.2 Domains with LPG-
TD, in International Planning Competition, 14th Int. Conference on Automated
Planning and Scheduling (ICAPS-04), abstract booklet of the competing
planners, (2004).

18. Gerevini, A. and Long, D., Plan Constraints and Preferences in PDDL3,
Technical Report R.T. 2005-08-47, Dipartimento di Elettronica per
l’Automazione, Università degli Studi di Brescia, via Branze 38, 25123 Brescia,
Italy.

19. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M.,
Weld, D. and Wilkins, D., PDDL -- the planning domain definition language.
Technical report, Yale University, New Haven, CT (1998).

 45

http://portal.acm.org/toc.cfm?id=J447&type=periodical&coll=GUIDE&dl=GUIDE&CFID=51241932&CFTOKEN=64851254
http://www.dur.ac.uk/d.p.long/pddl2.ps.gz
http://www.dur.ac.uk/d.p.long/pddl2.ps.gz
http://zeus.ing.unibs.it/lpg/pubblications/lpg-td.ps.gz
http://zeus.ing.unibs.it/lpg/pubblications/lpg-td.ps.gz

20. Hoffmann, J. and Nebel, B., The FF Planning System: Fast Plan Generation
Through Heuristic Search, Journal of Artificial Intelligence Research, 14
(2001), 253-302.

21. Hoffmann, J., The Metric-FF Planning System: Translating ``Ignoring Delete
Lists'' to Numeric State Variables, Journal of Artificial Intelligence Research, 20
(2003), 291-341.

22. Kautz, H. & Selman, B, Pushing the envelope: Planning, propositional logic and
stochastic search. In Proceedings of the 13th National Conference on Artificial
Intelligence, (Portland, Oregon 1996), pp. 1194-1201.

23. Kautz, H. & Selman, B., BLACKBOX: A new Approach to the application of
theorem proving to problem solving, In Proceedings of the AIPS-98 Workshop
on Planning as Combinatorial Search, (Pittsburgh, Pennsylvania 1998), pp. 58-
60.

24. Koehler J., Srivastava B., "Web Service Composition: Current Solutions and
Open Problems", ICAPS 2003 Workshop on Planning for Web Services, pp. 28-
35.

25. Kosara, R. and Miksch, S., Metaphors of Movement: A Visualization and User
Interface for Time-Oriented, Skeletal Plans. Artificial Intelligence in Medicine,
Special Issue: Information Visualization in Medicine, 22 (2) (2001), 111-131.

26. Kundu, K., Sessions, C., DesJardins, M. and Rheingans, P., Three-dimensional
visualization of hierarchical task network plans, in Proceedings of the 3rd
International NASA Workshop on Planning and Scheduling for Space, (Houston,
Texas, 2002).

27. Kuter U., Sirin E., Parsia B., Dana N. and James H., "Information gathering
during planning for Web Service composition", Web Semantics: Science,
Services and Agents on the World Wide Web, 3(2-3), pp. 183-205, 2005.

28. Leymann F., "Web Services Flow Language (WSFL 1.0)", IBM, May 2001.
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

29. Leymann F., "Web Services: Distributed Applications without Limits - An
Outline", Proc. Database Systems for Business, Technology and Web (BTW
2003), Weikum G., Schöning H., Rahm E., (Eds.), GI-Edition - Lecture Notes in
Informatics (LNI), P-26, Bonner Köllen Verlag, 2003.

30. Long, D. and Fox, M., Efficient Implementation of the Plan Graph in STAN,
Journal of Artificial Intelligence Research, 10 (1998), 87-115.

31. Marcugini S., Milani A., "Automated Planning of Web Services, Proceedings of
the 3rd International Conference on Electronic Commerce, ICEC 2002, Hong
Kong, October 2002.

32. Martinez A., Patinio-Martinez M., Jimenez-Peris R., Perez-Sorrosal F.
"ZenFlow: A VisualWeb Service Composition Tool for BPEL4WS", IEEE
Symp. on Visual Languages and Human-Centric Computing, Dallas, Texas,
Sept. 2005.

33. McCluskey, T. L., Liu, D. and Simpson, R., GIPO II: HTN Planning in a Tool-
supported Knowledge Engineering Environment, in Proceedings of the 13th

 46

http://scom.hud.ac.uk/scomtlm/Artform/pubs/icaps03.ps
http://scom.hud.ac.uk/scomtlm/Artform/pubs/icaps03.ps

International Conference on Automated Planning and Scheduling, (Trento,
Italy,2003), pp. 92-101.

34. McIlraith, S., Son, T.C. and Zeng, H., "Semantic Web Services", IEEE
Intelligent Systems. Special Issue on the Semantic Web. 16(2):46--53,
March/April, 2001.

35. McIlrait S., Fadel R., "Planning with Complex Actions", Proc. AIPS 2002
Workshop on Exploring Real World Planning, Toulouse, France, April 2002.

36. Milani Alfredo, "Planning and Scheduling for the Web Roadmap", Technical
Coordination Unit for Planning and Scheduling for the Web, PLANET Network
of Excellence, March 2003, http://www.dipmat.unipg.it/~milani/webtcu/

37. Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., and
Yaman, F., "SHOP2: An HTN planning system", Journal of Artificial
Intelligence Research, 20, pp. 379-404, 2003.

38. Nguyen, X., Kambhampati, S. and Nigenda, R., AltAlt: Combining the
advantages of Graphplan and Heuristics State Search, in Proceedings of the
2000 International Conference on Knowledge-based Computer Systems,
(Bombay, India 2002).

39. OWL Services Coalition, "OWL-S: Semantic Markup for Web Services", OWL-
S 1.0 Release, 2003, http://www.daml.org/services/owl-s/1.0/

40. Pautasso C., Alonso G., "JOpera: a Toolkit for Efficient Visual Composition of
Web Services", International Journal of Electronic Commerce, 9(2), pp. 107-
141, Winter 2004/2005.

41. Piccinelli G., "Service Provision and Composition in Virtual Business
Communities", Tech. Report HPL-1999-84, Hewlett-Packard, Palo Alto, CA,
1999. http://www.hplhp.com/techreports/1999/HPL-1999-84.html

42. Sanchez, J., Mali, A. D., S-MEP: A Planner for Numeric Goals, in Proceedings
of the 5th IEEE International Conference on Tools with Artificial Intelligence
(Sacramento, USA 2003), pp. 274-283.

43. Sheshagiri M., des Jardins M., Finin T., "A Planner for Composing Services
Described in DAML-S", ICAPS 2003 Workshop on Planning for Web Services.

44. Sirin E., Parsia B., Wu D., Hendler J. and Nau D., "HTN planning for Web
Service composition using SHOP2", Web Semantics: Science, Services and
Agents on the World Wide Web, 1(4), pp. 377-396, 2004.

45. Thakkar S., Knoblock G.A., Ambite J.L., and Shahabi C., "Dynamically
Composing Web Services from On-line Source", Workshop on Intelligent
Service Integration, The Eighteenth National Conference on Artificial
Intelligence (AAAI), Edmonton, Alberta, Canada, 2002 ,
http://www.isi.edu/info-agents/dotnet/aaaiworkshop2002.pdf

46. Thakkar S., Knoblock C., Ambite J.L., "A View Integration Approach to
Dynamic Composition of Web Services", ICAPS 2003 Workshop on Planning
for Web Services.

47. Thatte S., "XLANG: Web Services for Business Process Design", Microsoft,
Redmond, Wash., 2001. http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm

 47

http://ftp.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sanchez:Javier.html

48. Thatte S. (ed.),"Business Process Execution Language for Web Services
(Version 1.1)", May 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel

49. Tsoumakas, G., Vrakas, D., Bassiliades, N. and Vlahavas, I., Lazy Adaptive
Multicriteria Planning, in Proceedings of the 16th European Conference on
Artificial Intelligence, (Valencia, Spain 2004), pp. 693-697.

50. Varela M. L. R., Aparicio J. N., do Carmo Silva S., "A Scheduling Web Service
based on XML-RPC", ICAPS 2003 Workshop on Planning for Web Services.

51. Vidal, V., A Lookahead Strategy for Heuristic Search Planning, in Proceedings
of the Fourteenth International Conference on Automated Planning and
Scheduling (Whistler, British Columbia, Canada 2004), pp. 3-7.

52. Vrakas, D. and Vlahavas, I., Combining progression and regression in state-
space heuristic planning. in Proceedings of the 6th European Conference on
Planning, (Toledo Spain, 2002), pp. 1-12.

53. Vrakas, D. and Vlahavas, I., A heuristic for planning based on action evaluation,
in Proceedings of the 10th International Conference on Artificial Intelligence:
Methodology, Systems and Applications, (Varna, Bulgaria, 2002), pp. 61-70.

54. Vrakas, D., Gkioulekas, G., Refanidis, I., Sakellariou, I. and Vlahavas, I., The
PACOPLAN Project – A Parallel Constraint Planner with Java Interface.
http://lpis.csd.auth.gr/projects/pacoplan (2002).

55. Vrakas, D., Tsoumakas, G., Bassiliades, N. and Vlahavas, I., Learning rules for
Adaptive Planning, in Proceedings of the 13th International Conference on
Automated Planning and Scheduling. (Trento, Italy, 2003), pp. 82-91.

56. Vrakas, D. and Vlahavas, I., A Graphical Interface for Adaptive Planning, in
Proceedings of the Doctoral Consortium of the 13th International Conference
on Automated Planning and Scheduling, (Trento Italy, 2003), pp. 137-141.

57. Vrakas, D. and Vlahavas, I., ViTAPlan: A Visual Tool for Adaptive Planning, in
Proceedings of the 9th Panhellenic Conference on Informatics, (Thessaloniki,
Greece, 2003), pp. 167-177.

58. Vrakas, D. and Vlahavas, I., A Visualization Environment for Planning,
International Journal on Artificial Intelligence Tools, Vol 14 – No. 6 (2005), pp.
975-998

59. Wilkins, D. E., Lee, T. J. and Berry, P., Interactive Execution Monitoring of
Agent Teams, Journal of Artificial Intelligence Research, 18 (2003), pp. 217-
261.

60. Wu D., Sirin E., Hendler J., Nau D., Parsia B., "Automatic Web Services
Composition Using SHOP2", ICAPS 2003 Workshop on Planning for Web
Services.

 48

http://www.ai.sri.com/%7Ewilkins/papers/ex-mon-jair.pdf
http://www.ai.sri.com/%7Ewilkins/papers/ex-mon-jair.pdf

	1. Introduction
	1.1. Semantic Web Service Composition
	1.2. Chapter Scope and Outline

	2. Related Work
	3. Problem Representation
	3.1. The PDDL Definition Language

	4. The Visual Tool
	5. Visual Design of Planning Problems
	5.1. The Entity – Relation Model
	5.2. Representing Operators
	5.3. Representing Problems
	5.4. Syntax and Validity Checking
	5.5. Translation to PDDL

	6. System Configuration and Problem Solving
	6.1. Hap planner
	6.2. Configuration Module
	6.3. Embedding other planning systems

	7. Plan Representations
	7.1. World Simulation
	7.2. Graph based Representations

	8. Conclusion and Future Work

