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Abstract 

This chapter is concerned with the issue of knowledge representation for AI Planning 

problems, especially those related to Semantic Web Service composition. It discusses 

current approaches in encoding planning problems using the PDDL formal language 

and it presents ViTAPlan, a user-friendly visual tool for planning. The tool is built on 

top of HAPRC, a rule-configurable planning system, which automatically adapts to 

each problem, in order to achieve best performance. Apart from HAPRC, ViTAPlan 

can be interfaced with any other planning system that supports the PDDL language. 

More than just being a user friendly environment for executing the underlying 

planner, the tool serves as a unified planning environment for encoding a new 

problem, solving it, visualizing the solution and monitoring its execution on a 

simulation of the problem’s world. The tool consists of various sub-systems, each one 

accompanied by a graphical interface, which collaborate with each other and assist the 

user, either a knowledge engineer, a domain expert, an academic or even an end-user 

in industry, to carry out complex planning tasks, such as composing complex 

Semantic Web Services from simple ones, in order to achieve complex tasks. The key 

feature of ViTAPlan is a visual programming module that enables the user to encode 

new planning problems just by using visual elements and simple mouse operations. 

The visual tool performs a validity check on the visual program created by the user 
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and then compiles it to PDDL files that are ready to be used by any planning system. 

Finally, the planning system will solve the planning problem and then export the plan 

in an appropriate Web Service composition language to a Web Service execution 

monitoring system or just publish it in a UDDI registry. 

 

Keywords: Automated Planning; Graphical Interfaces; Machine Learning; 

Knowledge Engineering; Semantic Web Service Composition 

 

1. Introduction 

Planning is the process of finding a sequence of actions (steps), which if executed by 

an agent (biological, software or robotic) result in the achievement of a set of 

predefined goals. The sequence of actions mentioned above is also referred to as plan. 

The actions in a plan may be either specifically ordered and their execution should 

follow the defined sequence (linear plan) or the agent is free to decide the order of 

executions as long as a set of ordering constraints are met. For example, if someone 

whishes to travel by plane, there are three main actions that he/she has to take: a) buy 

a ticket, b) go to the airport and c) board on the plane. A plan for traveling by plane 

could contain the above actions in a strict sequence as the one defined above (first do 

action a, then b and finally c), or it could just define that action c (board on plane) 

should be executed after the first two actions. In the second case the agent would be 

able to choose which plan to execute, since both a→b→c, and b→a→c sequences 

would be valid. 

The process of planning is extremely useful when the agent acts in a dynamic 

environment (or world) which is continuously altered in an unpredictable way. For 
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instance, the auto pilot of a plane should be capable of planning the trajectory that 

leads the plane to the desired location, but also be able to alter it in case of an 

unexpected event, like an intense storm. 

The software systems that automatically (or semi- automatically) produce plans 

are referred to as Planners or Planning Systems. The task of drawing a plan is 

extremely complex and it requires sophisticated reasoning capabilities which should 

be simulated by the software system. Therefore, Planning Systems make extensive 

use of Artificial Intelligence techniques and there is a dedicated area of AI called 

Automated Planning. 

Automated Planning has been an active research topic for almost 40 years and 

during this period a great number of papers describing new methods, techniques and 

systems have been presented that mainly focus on ways to improve the efficiency of 

planning systems. However, there are not many successful examples of planning 

systems adapting to industrial use. From a technical point of view, this can be mainly 

explained by four reasons: a) There is a general disbelief by managers and workers in 

industry that AI tools can really assist them, b) There is a need for systems that 

combine methods from many areas of AI, such as Planning, Scheduling and 

Optimization, c) The industry needs more sophisticated algorithms than can scale up 

to solve real-world problems and d) In order for workers in industry to make use of 

these intelligent systems, they must be equipped with user friendly interfaces that: i) 

allow the user to intervene in certain points and ii) can reason about the provided 

solution. 

The greatest problems that one faces when he/she tries to contact companies and 

organizations for installing a planning system, come from the workers themselves. 

These problems concern two issues: a) It has been noticed that people find it hard to 
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trust automated systems when it comes to crucial processes. Many people still think 

that they can do better than machines. b) There is a quite widespread phobia towards 

computers and automated machines due to the lack of information. A large number of 

people are afraid of being replaced or governed by machines and they try to defend 

their posts by rejecting everything new. 

Although it is necessary for researchers to specialize in very specific parts of their 

research area, commercial systems, dealing with real time problems, have to combine 

techniques and methods from many areas. It has been shown that AI Planning 

techniques for example, are inadequate to face with the complexity and the generality 

of real world problems. For example, it has been proven that Scheduling and 

Constraint solving techniques can handle resources more efficiently. Commercial 

applications must combine methods from many areas of AI and probably from other 

areas of computer science as well. 

Another issue that must be dealt with is the large gap between toy problems used 

by researchers for developing and testing their algorithms and the actual problems 

faced by people in industry. Researchers are usually unaware of the size of real world 

problems or they simplify these problems in order to cope with them. However, these 

algorithms prove themselves inadequate to be adopted by commercial software. So it 

is a general conclusion that researchers should start dealing with more realistic 

problems. This research direction was also given during the last AIPS Planning 

competitions where there was a tendency to test planners on problems closer to 

reality. 

Last but certainly not least is the direct need of software based on AI tools to be 

accompanied with user friendly interfaces. Since the user will be a manager or even a 

simple worker in a company and not a computer scientist, the software must be easy 
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to use. Furthermore, it must enable the user to intervene in certain points for two 

reasons: a) Mixed initiative systems can deal with real-world problems better and b) 

people in companies do not like to take commands and therefore a black box which 

can not reason about its output will not do. So it is necessary for the software to 

cooperate with the user in the process of solving the problem in hand, since people 

have a more abstract model of the problem in their mind and are better in improvising, 

while computers can deal with lower levels of the problem more efficiently. 

1.1. Semantic Web Service Composition 

The Web is becoming more than just a collection of documents; applications and 

services are coming to the forefront. Web services will play a crucial role in this 

transformation as they will become the basic components of Web-based applications 

(Leymann, 2003). A Web service is a software system identified by a URI, whose 

public interfaces and bindings are defined and described using XML. Its definition 

can be discovered by other software systems. These systems may then interact with 

the Web service in a manner prescribed by its definition, using XML based messages 

conveyed by internet protocols (Booth et al., 2003).  

The use of the Web services paradigm is expanding rapidly to provide a 

systematic and extensible framework for application-to-application (A2A) interaction, 

built on top of existing Web protocols and based on open XML standards. Web 

services aim to simplify the process of distributed computing by defining a 

standardized mechanism to describe, locate, and communicate with online software 

systems. Essentially, each application becomes an accessible Web service component 

that is described using open standards.  
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When individual Web Services are limited in their capabilities, they can be 

composed to create new functionality in the form of Web Processes. Web Service 

composition is the ability to take existing services (or building blocks) and combine 

them to form new services (Piccinelli, 1999) and is emerging as a new model for 

automated interactions among distributed and heterogeneous applications. To truly 

integrate application components on the Web across organization and platform 

boundaries merely supporting simple interaction using standard messages and 

protocols is insufficient (Aalst, 2003) and Web services composition languages, such 

as WSFL (Leymann, 2001), XLANG (Thatte, 2001) and BPEL4WS (Thatte, 2003), 

are needed to specify the order in which WSDL services and operations are executed. 

Automatic application interoperability is hard to achieve with low cost without the 

existence of the Semantic Web. Semantic Web is the next big step of evolution in the 

Web (Berners-Lee et al., 2001) that includes explicit representation of the meaning of 

information and document content (namely semantics), allowing the automatic and 

accurate location of information in the WWW as well as the development of 

intelligent web-based agents that will facilitate cooperation among heterogeneous 

web-based computer applications and electronic devices. The combination of the 

Semantic Web with Web Services (namely Semantic Web Services) will achieve the 

automatic discovery, execution, composition and monitoring of Web Services 

(McIlraith et al., 2001) through the use of appropriate Web Service descriptions, such 

as OWL-S (OWL Services, 2003), that allow the semantics of the descriptions to 

become comprehensible by other agents-programs through ontologies. 

Composing Web Services will become harder as the available web services 

increase. Therefore, automating web service composition is important for the survival 
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of web services in the industrial world. One very promising technique to compose 

Semantic Web Services is to use planning techniques (Milani, 2003). 

Using planning, the Web Service composition problem can be described as a goal 

or a desired state to be achieved by the complex service and the planner will be 

responsible to find an appropriate plan, i.e. an appropriate sequence of simple web 

service invocations, to achieve the desire state (Carman et al., 2003). In this way, not-

predetermined web services can exist on users demand. The abilities of simple web 

services will be described in OWL-S and can be considered as planning operators. 

1.2. Chapter Scope and Outline 

This chapter describes ViTAPlan (Vrakas and Vlahavas, 2003a, 2003b, 2005), a 

visual tool for adaptive planning, which is equipped with a rule system able to 

automatically fine-tune the planner based on the morphology of the problem in hand. 

The tool has been developed for the HAP planning system, but it can be used as a 

graphical platform for any other modern planner that supports the PDDL language 

(Ghallab et. al, 1998). The tool consists of various sub-systems that collaborate in 

order to carry out several planning tasks and provides the user with a large number of 

functionalities that are of interest to both industry and academia. ViTAPlan 

interfacing with the user and the rest of the world is currently extended in order to be 

used as a visual tool to aid the composition of complex Semantic Web Services out of 

simpler ones, by visually describing the composition problem as a planning problem. 

The rest of the chapter is organized as follows: The next section presents an 

overview of the work related to automated planning systems, graphical environments 

for planning, Semantic Web Service composition approaches based on planning and 

visual tools for Web Service composition. Section 3 discusses certain representation 
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issues concerning planning problems and presents the various versions of the PDDL 

definition language. Section 4 describes the architecture of the visual tool and briefly 

describes the contained sub-systems. Sections 5, 6 and 7 present the modules of 

ViTAPlan in more detail. More specifically, Section 5 analyzes the graphical tool for 

visualizing and designing problems and domains and illustrates the use of the sub-

system with concrete examples. The next section presents the execution module that 

interfaces the visual tool with the planning system and the knowledge module that is 

responsible for the automatic configuration of the planning parameters. Section 7, 

finally, discusses certain issues concerning the sub-systems that visualize the plans 

and simulate their execution in virtual worlds. The last section concludes the chapter 

and poses future directions, including currently developing extensions to ViTAPlan to 

be used for Semantic Web Service composition. 

2. Related Work 

Two of the most promising trends in building fast domain-independent planning 

systems were presented over the last few years.  

 The first one consists of the transformation of the classical search in the 

space of states to other kinds of problems, which can be solved more easily. Examples 

of this category are the SATPLAN (Kautz and Selman 1996) and BLACKBOX 

(Kautz and Selman 1998) planning system, the evolutionary GRAPHPLAN (Blum 

and Furst 1995) and certain extensions of GRAPHPLAN as the famous STAN 

planner (Long and Fox 1998). 

 SATPLAN and BLACKBOX transform the planning problem into a 

satisfiability problem, which consists of a number of boolean variables and certain 
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clauses between these variables. The goal of the problem is to assign values to the 

variables in such a way that all of the clauses are established.  

GRAPHPLAN on the other hand creates a concrete structure, called the planning 

graph, where the nodes correspond to facts of the domain and edges to actions that 

either achieve or delete these facts. Then the planner searches for solutions in the 

planning graph. GRAPHPLAN has the ability to produce parallel plans, where the 

number of steps is guaranteed to be minimum. 

 The second category is based on a relatively simple idea where a general 

domain independent heuristic function is embodied in a heuristic search algorithm 

such as Hill Climbing, Best-First Search or A*. Examples of planning systems in this 

category are the ASP/HSP family (Bonet and Geffner 2001), AltAlt (Nguyen, 

Kambhampati and Nigenda 2002), FF (Hoffmann and Nebel 2001), YAHSP (Vidal 

2004) and Macro FF (Botea et al., 2005). 

 The planners of the latter category rely on the same idea to construct their 

heuristic function. They relax the planning problem by ignoring the delete lists of the 

domain operators and starting either from the Initial State or the Goals they construct 

a leveled graph of facts, noting for every fact f the level at which it was achieved L(f). 

In order to evaluate a state S, the heuristic function takes into account the values of 

L(f) for each  f ∈ S. 

 The systems presented above are examples of real fast planners that are able 

to scale up to quite difficult problems. However, there are still open issues to be 

addressed that are crucial to industry, such as temporal planning or efficient handling 

of resources. Although there has been an effort during the last few years to deal with 

these issues there is still only a small number of systems capable of solving near real 

world problems. 
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 An example of this trend is the SGPlan system (Chen, Wah and Hsu 2005), 

which won the won the first prize in the suboptimal temporal metric track and a 

second prize in the suboptimal propositional track in the Fourth International Planning 

Competition (IPC4). The basic idea behind SGPlan is to partition problem constraints 

by their subgoals into multiple subsets, solve each subproblem individually, and 

resolve inconsistent global constraints across subproblems based on a penalty 

formulation. 

 Another system able to handle planning problems that incorporate the notion 

of time and consumable resources is the LPG-TD planner (Gerevini, Saetti and Serina 

2004), which is an extension of the LPG planning system. Like the previous version 

of LPG, the new version is based on a stochastic local search in the space of particular 

“action graphs” derived from the planning problem specification. In LPG-TD, this 

graph representation has been extended to deal with the new features of PDDL 2 (Fox 

and Long 2003), as well to improve the management of durative actions and of 

numerical expressions. 

 There are also some older systems that combine planning with constraint 

satisfaction techniques in order to deal with complex problems with time and 

constraints. Such systems include the Metric FF Planner (Hoffmann 2003), the S-

MEP (Sanchez and Mali 2003) and the SPN Neural Planning Methodology 

(Bourbakis and Tascillo 1997). 

 As far as user interfaces are concerned, there have been several approaches 

from institutes and researchers to create visual tools for defining problems and 

running planning systems, such as the GIPO system (McCluskey, Liu and Simpson 

2003) and the SIPE-2 (Wilkins, Lee and Berry, 2003). Moreover, there is a number of 

approaches in building visual interfaces for specific applications of planning. The 
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PacoPlan project (Vrakas et. al., 2002) aims at building a web-based planning 

interface for specific domains. AsbruView (Kosara and Miksch 2001) is a visual user 

interface for time-oriented skeletal plans representing complex medical procedures. 

Another example of visual interfaces for planning is the work of the MAPLE research 

group at the university of Maryland (Kundu et. al., 2002), which concerns the 

implementations of a 3D graphical interface for representing hierarchical plans with 

many levels of abstractions and interactions among the parts of the plan. Although 

these approaches are very interesting and provide the community with useful tools for 

planning, there is still a lot of work to be done in order to create an integrated system 

that meets the needs of the potential users. 

 Various works (McIlraith and Fadel, 2002), (Marcugini and Milani, 2002), 

(Thakkar et al., 2002), (Wu et al., 2003), (Sheshagiri et al., 2003), (Sirin et al., 2004) 

propose to use a planning model to give a semantics to the behaviour of web services, 

and to use planners in order to generate compositions of them (i.e. plans) for reaching 

complex goals on the web. 

 There are many issues to be tackled both from the planning community and 

the web service community in order to handle web service composition as a planning 

problem (Koehler and Srivastava, 2003). Some of them are the following: 

• New expressive languages for representing web service actions, unifying 

existing standards of PDLL (Ghallab et. al, 1998) and OWL-S (OWL 

Services, 2003). 

• Efficient planners produce quality plans that synthesize complex web services. 

• Web Service plan verification (Berardi et al., 2003). 

• Efficient Web Service plan execution (Varela et al., 2003). 
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• Monitoring web service plan execution and repairing the plan in cases where 

web service execution failed (Blythe et al., 2003). 

• Mixing information retrieval and plan execution (Thakkar et al., 2003), (Kuter 

et al., 2005). 

 An approach of using HTN planning in the realm of Web Services was 

proposed in (Sirin et al., 2004), facilitating the SHOP2 system (Nau et al., 2003), 

which belongs to the family of ordered task decomposition planners where tasks are 

planned in the same order that they will be executed, which reduces the complexity of 

the planning problem greatly.. Planners based on that principle, accept goals as task 

lists, where compound tasks may consist of compound tasks or primitive tasks; goal 

tasks are not supported. Hence, ordered task decomposition system do not plan to 

achieve a defined (declarative) goal, but rather to carry out a given (complex or 

primitive) task. 

 Such a HTN based planning system decomposes the desired task into a set of 

sub-tasks, and these tasks into another set of sub-tasks (and so forth), until the 

resulting set of tasks consists only of primitive tasks, which can be executed directly 

by invoking atomic operations. During each round of task decomposition, it is tested 

whether certain given conditions are violated. The planning problem is successfully 

solved if the desired complex task is decomposed into a set of primitive tasks without 

violating any of the given conditions. 

 In (Sirin et al., 2004; Wu et al., 2003) a transformation method of OWL-S 

processes into a hierarchical task network is presented. OWL-S processes are, like 

HTN task networks, pre-defined descriptions of actions to be carried out to get a 

certain task done, which makes the transformation rather natural. The advantage of 

the approach is its ability to deal with very large problem domains; however, the need 
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to explicitly provide the planner with a task it needs to accomplish may be seen as a 

disadvantage, since this requires descriptions that may not always be available in 

dynamic environments. 

 Another approach in using planning techniques for Semantic Web Service 

composition is in (Sheshagiri et al., 2003), where their planner uses STRIPS-style 

services to compose a plan, given the goal and a set of basic services. They have used 

the Java Expert Shell System (JESS) (Friedman-Hill 2002) to implement the planner 

and a set of JESS rules that translate DAML-S (a precursor to OWL-S) descriptions of 

atomic services into planning operators. 

 In order to enable the construction of composite web services, a number of 

composition languages have been proposed by the software industry. However, the 

handiwork of specifying a business process with these languages through simple text 

or XML editors is tough, complex and error prone. Visual support can ease the 

definition of business processes.  

 In (Martinez et al. 2005), a visual composition tool for web services written in 

BPEL4WS, called ZenFlow, is described. ZenFlow provides several visual facilities 

to ease the definition of a composite web services such as multiple views of a process, 

syntactic and semantic awareness, filtering, logical zooming capabilities and 

hierarchical representations. 

 In (Pautasso and Alonso, 2005), the JOpera system is presented. JOpera 

tackles the problems of visual service composition and efficient and scalable 

execution of the resulting composite services by combining a visual programming 

environment for Web services with a flexible execution engine capable of interacting 

with Web services through the SOAP protocol, described with WSDL, and registered 

with an UDDI registry.  
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 To the best of our knowledge, there is no visual tool that combines visual 

planning problem design with web service composition. 

3. Problem Representation 

Planning Systems usually adopt the STRIPS (Stanford Research Institute Planning 

System) notation for representing problems (Fikes and Nilsson, 1971). A planning 

problem in STRIPS is a tuple <I,A,G> where I is the Initial state, A a set of available 

actions and G a set of goals.  

States are represented as sets of atomic facts. All the aspects of the initial state of 

the world, which are of interest to the problem, must be explicitly defined in I. State I 

contains both static and dynamic information. For example, I may declare that object 

John is a truck driver and there is a road connecting cities A and B (static information) 

and also specify that John is initially located in city A (dynamic information). State G 

on the other hand, is not necessarily complete. G may not specify the final state of all 

problem objects either because these are implied by the context or because they are of 

no interest to the specific problem. For example, in the logistics domain the final 

location of means of transportation is usually omitted, since the only objective is to 

have the packages transported. Therefore, there are usually many states that contain 

the goals, so in general, G represents a set of states rather than a simple state.  

Set A contains all the actions that can be used to modify states. Each action Ai has 

three lists of facts containing:  

a) the preconditions of Ai (noted as prec(Ai)) 

b) the facts that are added to the state (noted as add(Ai)) and 

c) the facts that are deleted from the state (noted as del(Ai)). 

The following formulae hold for the states in the STRIPS notation: 
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• An action Ai is applicable to a state S if prec(Ai) ⊆ S.  

• If Ai is applied to S, the successor state S’ is calculated as: 

 S’ = S \ del(Ai)∪ add(Ai) 

• The solution to such a problem is a sequence of actions, which if applied to I 

leads to a state S’ such as S’⊇G. 

Usually, in the description of domains, action schemas (also called operators) are 

used instead of actions. Action schemas contain variables that can be instantiated 

using the available objects and this makes the encoding of the domain easier. 

The choice of the language in which the planning problem will be represented 

strongly affects the solving process. On one hand, there are languages that enable 

planning systems to solve the problems easier, but they make the encoding harder and 

pose many representation constraints. For example, propositional logic and first order 

predicate logic do not support complex aspects such as time or uncertainty. On the 

other hand there are more expressive languages, such as natural language, but it is 

quite difficult to enhance planning systems with support for them. 

3.1. The PDDL Definition Language 

PDDL stands for Planning Domain Definition Language. PDDL focuses on 

expressing the physical properties of the domain that we consider in each planning 

problem, such as the predicates and actions that exist. There are no structures to 

provide the planner with advice, that is, guidelines about how to search the solution 

space, although extended notation may be used, depending on the planner. The 

features of the language have been divided into subsets referred to as requirements, 

and each domain definition has to declare which requirements will put into effect. 

Moreover, unless stated otherwise, the closed-world assumption holds. 
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The domain definition in PDDL permits inheritance. Each definition consists of 

several declarations which include the aforementioned requirements, types of entities 

used, variables and constants used, literals that are true at all times called timeless, 

and predicates. Besides, there are declarations of actions, axioms and safety 

constraints, which are explained in the following three paragraphs.   

Actions enable transitions between successive situations. An action declaration 

mentions the parameters and variables involved, as well as the preconditions that must 

hold for the action to be applied. As a result of the action we can have either a list of 

effects or an expansion, but not both. The effects which can be both conditional and 

universally quantified, express how the world situation changes after the action is 

applied. The expansion decomposes the action into simpler ones, which can be in a 

series-parallel combination, arbitrary partially ordered, or chosen among a set. It is 

used when the solution is specified by a series of actions rather than a goal state. 

Furthermore, several additional constructs can be used, which impose additional 

preconditions and maintenance conditions.  

Axioms, in contrast to actions, state relationships among propositions that hold 

within the same situation. The necessity of axioms arises from the fact that the action 

definitions do not mention all the changes in all predicates that might be affected by 

an action. Therefore, additional predicates are concluded by axioms after the 

application of each action. These are called derived predicates, as opposed to 

primitive ones.  

Safety constraints in PDDL are background goals which may be broken during the 

planning process, but ultimately they must be restored. Constraint violations present 

in the initial situation do not require to be fulfilled by the planner.  
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In PDDL, we can add axioms and action expansions modularly using the construct 

addendum. In addition, there are build-in predicates, under certain requirements, for 

expression evaluation, often used with certain types of entities that may change values 

as a result of an action, called fluents. 

After having defined a planning domain, one can define problems with respect to 

it. A problem definition in PDDL must specify an initial situation and a final situation, 

referred to as goal. The initial situation can be specified either by name, or as a list of 

literals assumed to be true, or both. In the last case, literals are treated as effects, 

therefore they are added to the initial situation stated by name. The goal can be either 

a goal description, using function-free first order predicate logic, including nested 

quantifiers, or an expansion of actions, or both. The solution given to a problem is a 

sequence of actions which can be applied to the initial situation, eventually producing 

the situation stated by the goal description, and satisfying the expansion, if there is 

one.  

PDDL 2.1 (Fox and Long, 2003) was designed to be backward compatible with 

PDDL, and to preserve its basic principles. It was developed by the necessity for a 

language capable of expressing temporal and numeric properties of planning domains. 

The extensions introduced were numeric expressions, durative actions and a new 

optional field in the problem specification that allowed the definition of alternative 

plan metrics to estimate the value of a plan.  

PDDL 2.2 (Edelkamp and Hoffmann 2004) added derived predicates, which are 

an evolution of the axioms construct of the original PDDL. In addition, timed initial 

literals were introduced, which are facts that become true or false at certain time 

points known to the planner beforehand, independently of the actions chosen to be 

carried out by the planner.  
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In PDDL 3.0 (Gerevini and Long, 2005) the language was enhanced with 

constructs that increase its expressive power regarding the plan quality specification. 

The constraints and goals are divided into strong, which must be satisfied by the 

solution, and soft, which may not be satisfied, but are desired. Evidently, the more 

soft constraints and goals a plan satisfies, the better quality it possesses. Each soft 

constraint and goal may be associated with a certain importance which, when 

satisfied, contributes to the plan quality. Moreover, there are state trajectory 

constraints which impose conditions on the entire sequence of situations visited and 

not only on the final situation. Finally, this version allows nesting of modal operators 

and preferences inside them.  

4. The Visual Tool 

ViTAPlan (Visual Tool for Adaptive Planning) is an integrated environment for 

designing new planning problems, solving them and obtaining visual representations 

of the plans – solutions. The architecture of the visual tool, which is outlined in Figure 

1, consists of the following sub-systems, which are discussed in more detail later in 

the chapter: a) designing, b) configuration, c) solving, d) visualizing and e) 

simulating. 

 18



 
HAP Problem Domain 

Execution 

Designing Simulating 

Visualizing 

Configuration 

Problem 
Analyzer 

Rule 
System 

ViTAPlan 

User 

Figure 1. ViTAPlan's Architecture 

 The designing module provides visual representations of planning domains 

and problems through graphs that assist the user in comprehending their structure. 

Furthermore, the user is provided with graphical elements and tools for designing new 

domains and new problems over existing domains. This module communicates with 

the file system of the operating system, in order to save the designs in a planner – 

readable format (i.e. PDDL planning language) and also load and visualize past 

domains and problems. 

 The configuration module of ViTAPlan deals with the automatic fine-tuning 

of the planning parameters. This task is performed through two steps that are 

implemented in different sub-systems. The first one, called Problem Analyzer, reads 

the description of the problem from the input files, analyzes it and outputs a vector of 

numbers that correspond to the values of 35 measurable attributes that quantify the 

morphology of the problem in hand. The Rule System, which is consulted after the 

analysis of the problem, contains a number of rules that associate specific values or 

value ranges of the problems’ attributes with configurations of the planning 

parameters that guarantee good performance. 
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 The execution module inputs the description of the problems (PDDL files of 

the domain and the problem) along with the values of the planner’s parameters and 

executes the planner (HAP or any other system attached to ViTAPlan) in order to 

obtain a solution (plan) to the problem. The planner’s parameters can be adjusted 

either by hand or automatically via the configuration module.  

 The last two sub-systems (visualization and simulation) present the plan that 

was inputted from the execution module in several forms. The visualization module 

presents the plan as a directed graph, through which the user can identify the positive 

and negative interactions among the actions and experiment with different orderings 

in which the plan’s steps should be executed. The second module simulates the 

problem’s world presenting all the intermediate states that occur after the execution of 

each action. 

5. Visual Design of Planning Problems 

The Design module of ViTAPlan serves as a tool for a) visualizing the structure of 

planning domains and problems in order to get a better understanding of their nature 

and b) designing new domains or new instances (problems) of existing domains with 

a user – friendly tool that can be used by non PDDL experts. The steps that a typical 

user must go through in order to design a new problem through ViTAPlan are the 

following: a) create the entity-relation model,  b) design the operators, c) specify one 

or more problems, d) check the validity of the designs and e) translate the visual 

representations in PDDL language in order to solve the problem(s). 
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5.1. The Entity – Relation Model 

The entities-relations diagram is a directed graph containing two types of nodes and 

one type of arcs connecting the nodes. The first type of nodes, called entity, is 

represented in the design as a circle and corresponds to an object class of the domain. 

The second type is represented by the visual tool as a rectangle and is used to specify 

relations between the domain’s classes. The edges connect rectangular with circular 

nodes and are used to specify which classes take part in each relation.  

 Consider the gripper domain for example, where there is a robot with N 

grippers that moves in a space, composed of K rooms that are all connected with each 

other. All the rooms are modeled as points and there are connections between each 

pair of points and therefore the robot is able to reach all rooms starting from any one 

of them with a simple movement. In the gripper domain there are L numbered balls 

which the robot must carry from their initial position to their destination. 

 The diagram for the Gripper domain, which was used in the AIPS-98 

planning competition, is illustrated in Figure 2. There are three object classes in the 

domain, namely room, ball and gripper that are represented with circles. There is no 

class defined for the robot, since the domain assumes the presence of only one 

instance of it and therefore there is no need for an explicit definition.  

 

 

Figure 2. Entities-relations diagram for gripper 
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 The domain has four predicates: a) at-robby, which specifies the position of 

the robot and it is connected only with one instance of room, b) at which specifies the 

room in which each ball resides and therefore is connected with an instance of ball 

and an instance of room, c) carry which defines the alternative position of a ball, i.e it 

is hold by the robot and therefore it is connected with an instance of ball and an 

instance of gripper and d) free which is connected only with an instance of gripper 

and states that the current gripper does not hold any ball. 

 Note here that although PDDL, requires only the arity for each predicate and 

not the type of objects for the arguments, the interface obliges the user to connect 

each predicate with specific object classes and this is used for the consistency check 

of the domain design. According to the design of Figure 2, the arity of predicate 

carry, for example, is two and the specific predicate can only be connected with one 

object of class ball and one object of class gripper. 

5.2. Representing Operators 

The definition of operators in ViTAPlan follows a declarative schema, which is 

different from the classical STRIPS approach, although there is a direct way to 

transform definitions from one approach to the other. More specifically, an operator in 

the visual environment is represented with two lists, namely Pre and Post, that 

contain the facts that must hold in a state S1 in order to apply the operator and the facts 

that will be true in state S2 which will result from the application of the operator on S1 

respectively. The relations between these lists and the three lists (Prec, Add, Del) of 

the STRIPS notation are the following: 

From STRIPS to ViTAPlan: 

Pre(A) = Prec(A) 
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Post(A) = Add(A) ∪ (Prec(A) – Del(A))  

From ViTAPlan to STRIPS: 

Prec(A) = Pre(A) 

Add(A) = Post(A) - Pre(A) 

Del(A) =  Pre(A) – Post(A) 

 Each operator in the interface is represented with a labeled frame, which 

contains a column of object classes in the middle, two columns of predicates on the 

two sides of it and connections between the object classes and the predicates. The un-

grounded facts that are generated by the classes and the predicates in the left column 

define the Pre list of the operator while the Post list is defined by the predicates in the 

right column. 

 For example, in the gripper domain there are three operators: a) move which 

allows the robot to move between rooms, b) pick which is used in order to lift a ball 

using a gripper and c) drop which is the direct opposite of pick and is used to leave a 

ball on the ground 

 The move operator is related with two instances of the room class (room1 

and room2) which correspond to the initial and the destination room of the robot’s 

move. The Pre and Post lists of the operator contain only one instance of the at-robby 

relation. In the Pre list the at-robby is connected to room1, while the latter is replaced 

by room2 in the Post list. The definition of the move operator is presented in Figure 3. 

 

Figure 3. The move operator 
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 The second operator (pick), which is presented in Figure 4, contains one 

instance from three entities, namely ball1, room1 and gripper1 that correspond to the 

ball that resided on the room and was picked by a robot’s gripper. The Pre list defines 

that both the ball and the robot must be in the same room and that the gripper must be 

free. The new fact that is contained in the Post list is that the gripper holds the ball, 

while the freedom of the gripper and the fact that the ball resides on the room are 

deleted. The fact that the robot is in room1 is contained in both lists (Pre and Post) 

since it is not deleted. 

 

Figure 4. The pick operator 

 Similarly we define the drop operator which is presented in Figure 5. This 

operator is the direct opposite of the pick operator and in fact it is produced by 

exchanging the Prec and Post lists of the latter. 

 

Figure 5. The drop operator 
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5.3. Representing Problems 

The designing of problems in the interface follows a similar model with that of 

operators. Problems can be formed by creating a list of objects, two lists of predicates 

and a number of connections among them. The list which is created by the predicates 

in the left column and the objects corresponds to the initial state of the problem, while 

the goals are formed by the predicates of the right column. 

 Figure 6 presents a problem of the gripper domain, which contains two 

rooms (rooma and roomb), three balls (ball1, ball2 και ball3) and the robot has two 

grippers (left and right). The initial state of the problem defines the starting locations 

of the robot and the balls and that both grippers are free. The goals specify the 

destinations of the three balls. 

 One of the key enhancements of ViTAPlan-2 over the past versions concerns 

the ability to use a predefined chain of objects that can be utilized for the definition of 

many kinds of facts. Consider for example the case where in gripper the moves of the 

robot are restricted by a relation (e.g. connected) which specifies which movements 

are feasible. If we suppose that the map of the rooms is the one presented in Figure 7, 

then this would require the user to add the connected relation 7 times in the problem’s 

definition and each time to make the appropriate connections (see Figure 8). This can 

become a severe problem for large and complex maps.  
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Figure 6. A Problem of the gripper domain 

 

1 

2

3

4

Figure 7. A map for a gripper problem 

 There is a number of cases where similar maps are required. For example in 

the hanoi domain, according to the definition adopted by the planning community, the 

problem file must specify for each possible pair of pegs and discs which of the two is 

smaller. For a simple problem with three pegs and 5 discs, this yields 39 smaller 

relations. 

 

 

Figure 8. The connections between the rooms 
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 In order to deal with this problem, ViTAPlan-2 contains a tool for building 

maps which makes it easier for the user to define multiple relations between pairs of 

objects that belong to the same entity. The user can use simple drag ‘n drop operations 

in order to define single and duplex connections between them. For example, the case 

described in Figure 8 can be easily encoded in ViTAPlan-2 using the map tool as 

shown in Figure 9. 

 

 

Figure 9. The map tool 

5.4. Syntax and Validity Checking 

The visual environment besides the automation and the convenient way in which new 

domains and problems are designed, also performs a number of validity checks in the 

definitions, in order to assist the user in this really complex task. The entities-relations 

diagram, which is probably the most important part of the design of new domains is 

further used by ViTAPlan-2 as a reference model for the checks. 

Each time the user tries to connect an instance of an entity E to an instance of a 

relation R, the tool checks if: 
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i. This specific connection generates a fact that has already been defined in the 

same operator or in the problem. In this case the connection is rejected, since 

PDDL does not allow redefinitions of the same fact inside the same scope.  

ii. The definition of the relation in the entities-relations diagram contains a 

connection to the entity in which E belongs.  

iii. There is an empty slot in R which according to the diagram should be 

connected to objects of the same class as that of E.  

 The checks listed above are also performed dynamically at each attempted 

change in the entities-relations diagram. For example, if the user deletes a connection 

between an entity and a relation, ViTAPlan will automatically delete any instance of 

this connection from all the operators and the definition of the problem. A similar 

update will also take place in the definition of the operators and in the problem, if the 

user deletes an entire relation or an entity. 

 Finally, a number of checks are also performed during the compilation of the 

design in PDDL. More specifically these checks contain:  

• The case where no operator is defined 

• The definition of empty operators  

• The definition of void operators, i.e. operators with empty Pre and Post lists 

• The definition of effectless operators (Pre ≡ Post) 

• The definition of empty problems 

• Semi-connected edges which lead to incomplete facts 

5.5. Translation to PDDL 

The domains and the problems that are designed in ViTAPlan are automatically 

compiled to the PDDL definition language, in order to allow their solving using 
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different planning systems. The environment contains a PDDL editor which enables 

the user to see and even modify the PDDL files of his designs. For example, the 

gripper domain and the specific problem used in this section are presented in Figure 

10 and Figure 11 respectively. 

 

 

Figure 10. The gripper domain in PDDL 

 

Figure 11. The PDDL file of a gripper's problem 
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6. System Configuration and Problem Solving 

One of the main features of ViTAPlan is to allow the use of the underlying planning 

system in a friendlier and more accurate way. This interface between the user and the 

planning engine is carried out by the execution module of the visual environment. The 

inputs that must be supplied to the planning system are: a) the domain file, b) the 

problem file and c) the values of the planning parameters, in case of adjustable 

planners.  

 

Figure 12. Selecting the input files  

 From the initial screen of the interface, which is shown in Figure 12, the user 

uses common dialogues and graphical elements in order to browse for the domain and 

problem files that will be inputted to the planner. From the same screen the user can 

also execute the planner and obtain the solution (plan), along with statistics 

concerning the execution, such as the planning time and the length of the plan. The 

way the results of the planner are presented to the user is shown in Figure 13. 
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Figure 13. Solving the problem 

 There are three ways for tuning the planner’s parameters in ViTAPlan: a) 

using the default values provided by the system, b) let the user assign the values by 

hand or c) use the configuration module in order to have the parameters set 

automatically. The user can select among the first two ways through the settings 

window presented in Figure 14. The parameters presented in this window correspond 

to the HAP planner which is embodied in ViTAPlan. 

 

 

Figure 14. Setting the planning parameters 
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6.1. Hap planner 

HAP, is a highly adjustable planning system that can be customized by the user 

through a number of parameters. These parameters concern the type of search, the 

quality of the heuristic and several other features that affect the planning process. The 

HAP system is based on the BP (Bi-directional Planner) planning system (Vrakas and 

Vlahavas 2002a) and uses an extended version of the ACE (Vrakas and Vlahavas 

2002b) heuristic. 

 HAP is capable of planning in both directions (progression and regression). 

The system is quite symmetric and for each critical part of the planner, e.g. 

calculation of mutexes, discovery of goal orderings, computation of the heuristic, 

search strategies etc., there are implementations for both directions. The direction of 

search is the first adjustable parameter of HAP used in tests, with the following 

values: a) 0 (Regression or Backward chaining) and b) 1 (Progression or Forward 

chaining). 

 As for the search itself, HAP adopts a weighted A* strategy with two 

independent weights: w1 for the estimated cost for reaching the final state and w2 for 

the accumulated cost of reaching the current state from the starting state (initial or 

goals depending on the selected direction). For the tests with HAP, we used four 

different assignments for the variable weights which correspond to different 

assignments for w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3, w2 =1), c) 2 (w1 =2, w2 

=1) and d) 3 (w1 =1, w2 =1). 

 The size of the planning agenda (denoted as sof_agenda) of HAP also affects 

the search strategy and it can also be set by the user. For example, if we set 

sof_agenda to 1 and w2 to 0, the search algorithm becomes pure Hill-Climbing, while 

by setting sof_agenda to 1, w1 to 1 and w2 to 1 the search algorithm becomes A*. 
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Generally, by increasing the size of the agenda we reduce the risk of not finding a 

solution, even if at least one exists, while by reducing the size of the agenda the 

search algorithm becomes faster and we ensure that the planner will not run out of 

memory. For the tests we used three different settings for the size of the agenda: a) 1, 

b) 100 and c) 1000 

 The OB and OB-R functions introduced in BP and ACE respectively, are also 

adopted by HAP in order to search the states of the search for violations of orderings 

between the facts of either the initial state or the goals, depending on the direction of 

the search. For each violation contained in a state, the estimated value of this state that 

is returned by the heuristic function, is increased by violation penalty, which is a 

constant number supplied by the user. For the experiments of this work we tested the 

HAP system with three different values of violation_penalty: a) 0, b) 10 and c) 100.  

 The HAP system employs the heuristic function of the ACE planner, plus 

two variations of it, which are in general more fine-grained. There are 

implementations of the heuristic functions for both planning directions. All the 

heuristic functions are constructed in a pre-planning phase by performing a relaxed 

search in the opposite direction of the one used in the search phase. During this 

relaxed search the heuristic function computes estimations for the distances of all 

grounded actions of the problem.  

 The user may select the heuristic function by configuring the heuristic_order 

parameter. The three acceptable values are: a) 1 for the initial heuristic, b) 2 for the 

first variation and c) 3 for the second variation. 

 HAP also embodies a technique for simplifying the definition of the sub-

problem in hand. This technique eliminates from the definition of the sub-problem 

(current state and goals) all the goals that have already been achieved in the current 
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state and do not interfere in any way with the achievement of the remaining goals. In 

order to do this the technique performs, off-line before the search process, a 

dependency analysis on the goals of the problem. The parameter remove_subgoals is 

used to turn on (value 1) and off (value 0) this feature of the planning system. 

 The last parameter of HAP is equal_estimation, which defines the way in 

which states with the same estimated distances are treated. If equal_estimation is set 

to 0 then between two states with the same value in the heuristic function, the one 

with the largest distance from the starting state (number of actions applied so far) is 

preferred. If equal_estimation is set to 1, then the search strategy will prefer the state, 

which is closer to the starting state. 

6.2. Configuration Module 

The Configuration module of ViTAPlan is a sub-system able to adjust the planning 

parameters in an automatic manner. This feature is currently available only for use 

with the HAP planning system, although the methodology for the automatic 

configuration of planning parameters is general and can be applied to other planners 

as well (Tsoumakas et. al., 2004).  

 The automatic configuration is based on HAP-RC (Vrakas et. al., 2003), 

which uses a rule system in order to automatically select the best settings for each 

planning parameter, based on the morphology of the problem in hand. HAP-RC, 

whose architecture is outlined in Figure 15 is actually HAP with two additional 

modules (Problem Analyzer and Rule System) which are utilized off-line, just after 

reading the representation of the problem in order to fine tune the planning parameters 

of HAP.  
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Problem file Domain file 

Parser 

Problem Analyzer 

Rule system 

HAP 

Problem representation

Values of A01 to A35 

Values of planning parameters

Figure 15. HAP-RC Architecture 

 The role of the Problem Analyzer is to identify the values of a specific set of 

35 problem characteristics (noted as A1 to A35). These characteristics include 

measurable attributes of planning problems, such as number of facts per predicate and 

the branching factor of the problem, that present the internal structure of the problems 

in a quantified way. After the identification of the values of the attributes, which may 

require a limited search in the problem, the analyzer feeds the Rule system with a 

vector containing the values for the 35 problem attributes. 

 The Rule system contains a number of rules of the following format:  

If preconditions list Then actions list 

The preconditions of the rules check if the values of the problem’s attributes comply 

with some constraints on them, while the actions set one or more planning parameters 

to specific values. For example, the rule: 

If A24<1.8 and A17<9.7 Then direction=1 and closer=yes 

will trigger in a given problem if the values of A24 (ratio between the branching 

factors of the two directions) and A17 (standard deviation of the average number of 

actions deleting a fact) are smaller than 1.8 and 9.7 respectively. If this rule is 
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eventually fired, then the planning direction will be set to forward and the search 

algorithm will use the technique for overcoming plateaus.  

 What these rules actually do, is to propose setups for the planning parameters 

that worked efficiently in similar problems in the past. This knowledge has been 

extracted from Machine Learning techniques on data produced by thorough 

experiments with the HAP system. More specifically, we tested all the possible 

combinations of the parameters of HAP on a large set of problems from various 

domains and for each run we kept record of the values of the problem attributes, the 

specific setup for HAP and the value of a metric combining planning time and plan 

length. The data set was then fed to a Machine Learning tool in order to learn a rule-

based classification model that would discriminate between good and bad values of 

the metric based on the rest of the attributes. 

 The Configuration module of ViTAPlan-2 also provides the user with the 

option to use the Problem Analyzer and the Rule System of HAP-RC in order to 

automatically fine-tune the planning parameters of HAP. The relevant window of the 

interface is shown in Figure 16. This window is divided in three parts: a) the first part 

shows the discretized values for the 35 problem characteristics, as produced by the 

Problem analyzer, b) the second part provides the user with the list of the rules that 

comprise the core knowledge of the system and c) the last part provides the user with 

the proposed values for the planning parameters of HAP. 

 The values of the problem’s attributes are presented in order to check for the 

triggered rules, but more importantly to assist the knowledge engineer or the domain 

expert in decoding the internal structure of the problem and extract useful insights 

from it. The tool presents the following information for each one of the 35 attributes: 

a) the code name (e.g A07), b) a description of the attribute (e.g. Standard deviation of 
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the number of facts per predicate), c) the arithmetic value, d) a discretized value (e.g. 

small) and e) the usual upper and lower limit for its value.  

 The rules are shown in the appropriate frame of the environment sorted by 

decreasing order of their confidence, as this was calculated by the learning algorithm. 

ViTAPlan presents all the rules, but the user is able to control the viewable part of the 

rules through two controls that select only the triggered rules or the rules that affect a 

specific parameter (e.g. heuristic function). 

 From the set of triggered rules, ViTAPlan makes an initial choice, selecting 

the rules with the highest confidence factor that are not in conflict with any other 

already selected rule. We say that two rules are in conflict, if they propose different 

setups for the same parameter. The configuration module uses the initial subset of 

selected rules in order to calculate the values of the parameters and present them to 

the user, leaving each unset parameter to its default value.  

 
Figure 16. The rule system 

 Instead of just accepting or rejecting the proposed parameter setting, the user 

has the ability to interfere with the rule system, thus modifying the adopted conflict 

resolution strategy. More specifically, the user may either include a new rule in the 
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firing set, or request the removal of a selected one and thus alter the firing set and 

therefore the setup of the parameters. Each time the user requests the firing of a new 

rule Ri, the module automatically checks the resulting firing set for conflicts and 

removes all the rules that propose contradictory values for the parameters affected by 

Ri. 

Consider for example the case in Figure 17, which presents a portion of the triggered 

rules, i.e. those that require values for the attributes A01 to A35 that are compatible 

with the problem in hand. The initial selection contains rules 49, 74 and 154 that 

define the values 100, 2, 3 and 0 for the parameters penalty, heuristic, search_strategy 

and direction respectively. 

 

 
Figure 17. The initial firing set 

 Lets also suppose that the user requests rule number 35 (the first rule in 

Figure 17) to be included in the firing set. Rule 35 is in contradiction with rule 49, 

since the first sets penalty to 500 while the second sets it to 100 and with rule 154 for 

the same reason. There is no contradiction with rule 74, since the only common 

parameter is heuristic and they propose the same value (2) for it. Therefore after the 

inclusion of rule 35, rules 49 and 154 are removed from the firing set as shown in 

Figure 18. The proposed setup of the planner’s parameters becomes the following: 

closer=1, penalty=500, heuristic=2, search_strategy=3 and direction=0. 
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Figure 18. The final firing set 

6.3. Embedding other planning systems 

The current version of ViTAPlan embodies the HAP system, but the environment is 

open and the user can easily attach any other planner that reads the PDDL language. 

The communication protocol between the visual environment and the planner 

(including HAP) is outlined in Figure 19.  

 

ViTAPlan-2 Environment

Planner 

Domain Problem Plan Pre-processor 

Description 

Settings

Plan in X’s format 

Plan in ViTAPlan’s format 

Description 

Figure 19. Communication with the planner 

 As already discussed the data that should be transmitted between ViTAPlan 

and the planning system are: a) the description of the domain and the problem, b) 

optionally the settings for the planner’s parameters and c) the plan that solves the 

problem.  

 Concerning the description of the problem, ViTAPlan is able to extract 

PDDL files, which is the standard definition language for all modern planners. 

Therefore it is trivial to submit the problem to any new planning system.  
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 For each configurable parameter, ViTAPlan needs a description, the option 

used to set this parameter in the planner and the domain of values. This information 

must be specified by the user in order to add a new planner in the environment. The 

current version of ViTAPlan supports only discrete values for the domains of the 

parameters, but this can very easily be extended to support continuous values or other 

data types (e.g. booleans). For example, Table 1 presents part of the information that 

should be inputted to ViTAPlan-2 in order to connect it with the LPG planning system 

(Gerevini, Saetti and Serina, 2003). 

 

Table 1. Specification of LPG’s parameters 

Parameter Option Values 
Heuristic identifier -h 1,2 
Max number of restarts -restarts 1,2,3,4,5,6,7,8,9…. 
Nois
… 

e added to Walksat -noise 0,0.1,0.2,0.3…. 
  

 

 The output of any planner to a given problem is a sequence of actions that 

achieve the predefined goals. However, since there has not been a standard for 

describing plans yet, each planner may present the sequences of actions in a different 

way. Therefore a necessary step in order to attach a different planning system X on 

ViTAPlan, is to format its output, either by modifying the system, or by adding a pre-

processor that reads the plan in X’s format and transforms it. Figure 20 presents an 

example of a plan in ViTAPlan’s format.  

 

 
3: (load hoist1 crate0 truck0 distributor0)

2: (lift hoist1 crate0 pallet1 distributor0) 

1: (drive truck0 distributor1 distributor0)  

Begin of Plan 

Figure 20. A plan’s excerpt in ViTAPlan’s format  
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7. Plan Representations 

There are two modules for visualizing the plans in ViTAPlan: the execution 

simulation which simulates the execution of the plan in a virtual world and the steps 

visualization that presents the plan as an action graph. 

7.1. World Simulation 

This module of ViTAPlan allows the user to execute the plan that was acquired from 

the execution sub system and trace the changes that occur to the world as the actions 

of the plan are sequentially applied. Figure 21 presents the simulation module, which 

consists of three parts. The first one is a scroll bar, through which the user can browse 

for a specific action of the plan. The other two parts present the states of the world 

before the application of the selected action (left part) and after it (right part) 

respectively.  

 

 

Figure 21. Execution simulation 

 In the example presented in Figure 21 the first action of the plan is selected 

and therefore the state presented in the left part is the initial one, while the one in the 

right part is the first intermediate state. The tool uses proper color coding in order to 

discriminate the facts in four categories: 

i. facts of the preceding state that are deleted by the action 

ii. new facts that are added to the new state  
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iii. propagated facts  

iv. static facts 

 

7.2. Graph based Representations 

 The second option for the user is to view the actions of the plan on a 

timeline, as shown in Figure 22. The timeline for the plan presents for each action the 

point in which it is scheduled to be executed and the facts in its precondition and add 

lists. Moreover, the visualization shows the interactions between the actions in the 

plan. More specifically, for each action A the user is able to see connections between: 

i. each precondition of A and the most recent action that achieved it 

ii. each fact that is deleted by A and the most recent action that established it 

iii. each fact that is added by A and the following actions that have it in their 

preconditions  

 

 

Figure 22. Step graph 

 The connections represented by the arcs in the graph present in graphical 

way all the interactions (positive and negative) between the steps of the plan and 

therefore allow the user to: 
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i. Comprehend the specific sorting in which the steps have been ordered and 

why a specific action should be placed before (or after) another one.  

ii. Replace an action or a set of actions with other, taking care so as not to violate 

the interactions, and thus produce modified or alternative plans. 

iii. Find parallelizations in the plan execution and therefore reduce the total 

execution time and the cost of its application. 

 

8. Conclusion and Future Work 

This chapter presented ViTAPlan, a unified environment for automated planning 

which contains several modules with user friendly interfaces. The main feature of the 

environment is the designing module which saves the user from the strict syntax of 

the Planning Domain Definition Language (PDDL). The user is able to visualize and 

design new domains and problems in an easy-to-use graphical way and the tool is 

responsible for checking the validity of the designs and translating them in PDDL 

files.  

 The current version of the environment has four main functions: a) using the 

planning system through a number of windows, controls and common dialogues, 

which makes it much easier for a non – programmer to use the planner and 

experiment with different setups of the planning parameters, b) use the Problem 

Analyzer and the Rule System of HAP-RC in order to acquire useful knowledge about 

the morphology of each problem and automatically fine tune the planner with the 

most appropriate values for the planning parameters c) generating new domains and 

problems using a visual tool and d) produce visual representations of the plans found 

by the planning system, which enable the user to better understand each step in the 

plan and also intervene and alter the plan at will. 
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 In the future, we plan to improve the interface in all functions of it and 

introduce others that will make it a complete tool for planning both for academic and 

industrial use. It is in our direct plans to enhance the tool for designing domains and 

problems with the ability to handle advanced aspects of the latest versions of PDDL, 

such as treatment of numerical values, explicit representation of time and duration, 

conditional effects e.t.c.  

 In parallel, we are currently working on developing an interface for 

ViTAPlan in order to input OWL-S documents that describe simple or complex 

Semantic Web Services and automatically translate them to PDDL problem 

definitions. Then, our visual tool will enable authoring of appropriate service 

composition operators as planning operators that will solve the Semantic Web Service 

composition problem. The Produced plan will constitute the complex Web Service 

and it will be exported in an appropriate Web Service choreography language or in 

OWL-S to a corresponding complex Web Service execution monitoring tool or it will 

be just published at a UDDI registry. 
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