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Abstract
This paper describes ODMP (Operator Distribution Method for Parallel
Planning), a parallelization method for efficient heuristic planning. The
method innovates in that it parallelizes the application of the available
operators to the current state and the evaluation of the successor states using
the heuristic function. In order to achieve better load balancing and a lift in
the scalability of the algorithm, the operator set is initially enlarged, by
grounding the first argument of each operator. Additional load balancing is
achieved through the reordering of the operator set, based on the expected
amount of imposed work. ODMP is effective for heuristic planners, but it
can be applied to planners that embody other search strategies as well. It has
been applied to GRT, a domain–independent heuristic planner, and CL, a
heuristic planner for simple Logistics problems, and has been thoroughly
tested on a set of Logistics problems adopted from the AIPS-98 planning
competition, giving quite promising results.

1 Introduction

A challenging feature of modern artificial intelligence applications is the
ability to distribute the workload among several processors, in order to increase
the execution speed. Although the technology of parallel architectures is quite
mature and a large number of parallel systems are available at a reasonable cost,
there are not many software products that can exploit these capabilities.

Many researchers have tried to find parallelization techniques for AI
applications, focusing mainly on ways to distribute the search tree among the
existing processors (Rao et al. 1987, Kumar et al. 1988, Powley and Korf 1989,
Kumar and Rao 1990, Cook 1997, Cook and Varnell 1999). These techniques,
which have been enriched with load balancing (Kumar et al. 1994) and operator
reordering (Powley and Korf 1989, Powley et al. 1991, Cook et al. 1993), produce
quite efficient parallel algorithms. However, there are two main problems related
with the kind of parallelization based on the distribution of the search space: a) a
great number of states is examined more than once, since the state-space is not
always split in disjoined parts and b) these techniques impose a significant
quantity of redundant search in subtrees that do not lead to any solution.

Planners are Artificial Intelligence applications, which given an initial state
I, a set of actionsA and a set of goalsG, produce a sequence of actions (called
plan), which if applied toI achievesG. These programs are in many cases
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embedded in systems that must exhibit real-time behavior, so they are usually
equipped with heuristic functions and other types of guidance, in order to respond
promptly. The heuristic functions speed up the planning process by narrowing
down the search in a small subtree around the solution path. Since the size of this
subtree is close to the length of the solution, parallelization methods based on the
distribution of the search space are ineffective.

This paper describes ODMP (Operator Distribution Method for parallel
Planning), an innovative approach for exploiting parallelism in heuristic planning.
The approach distributes to the available processors the tasks of a) finding the
actions that can be applied to a given state, b) constructing the successor states
and c) evaluating the new states using the heuristic function. It also describes
three techniques that extend the original method and offer additional speedup in
the parallel programs. The extended method has been applied to GRT (Vrakas et
al. 1999) and CL (Vrakas et al. 2000) planners with remarkable success.

The rest of the paper is organized as follows: Section 2 reviews related work
on the field of parallel planning and search methods. Section 3 presents an
overview of ODMP, while section 4 introduces the Operator Reordering
Technique, the Semi-Grounded Operators Technique and the Distributed Agenda
Architecture Technique, three extensions to the basic parallelization method.
Section 5 gives a brief description of the two planning paradigms used in the
experiments and section 6 presents the results of the experiments and an analysis
on the efficiency of ODMP. Finally, section 7 concludes the paper and poses
future directions.

2 Related Work

Kumar et al. (1988) review a set of strategies for parallel best-first search of
state-space graphs. The strategies they present are classified to be either
distributed or centralized, based on the existence or not of local agendas. In both
cases the heuristic function is used to order the states in the agenda, i.e. the first
state in the agenda is the one with the smallest estimated distance from a goal
state.

In the centralized model, each one of theN processors undertakes the best
state of the global agenda, which has not yet been assigned to any other processor.
At the end of each expansion the successor states are placed back to the global
agenda. The main advantage of this approach, as discussed by Irani and Shih
(1986), is that it does not result in much redundant search. However, the global
agenda is accessed by all the processors very frequently, causing the processors to
remain idle for quite a long time, due to contention.

On the other hand, in the distributed model each processor maintains its own
local agenda and thus there is little need for synchronization. This model usually
uses the IDA* search algorithm initially presented by Powley et al. (1991). IDA*
is a version of Iterative Deepening search, where the next level of search is
determined by the heuristic function in use. The state-space is initially divided and
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distributed to the existing processors. The segmentation of the initial state-space
can be done in several ways. Powley and Korf (1989) introduced PWS, a tree
distribution method in which each processor searches at a unique depth.

Kumar, Rao and Ramesh (Kumar and Rao 1990, Rao et al. 1987) describe a
different approach where the search tree is segmented vertically, i.e. after a
sufficient number of states has been generated, each processor undertakes one of
them, considering it to be the root and searches the generated subtree.

A large number of variations of these techniques have been proposed over
time. For example, Diane Cook proposed a hybrid approach (Cook and Varnell
1999, Cook 1997), which combines IDA* with vertical segmentation techniques
and seems to outperform all the other methods.

In the above methods, after the initial distribution of the state-space, some
intercommunication is necessary, since some of the processors may be working on
promising parts of the search tree, while the others contribute little or nothing to
the process of finding a solution. Moreover, the communication is necessary for
load balancing, since the local agenda of a processor may become empty if many
non-expandable states have been reached (Kumar et al. 1994). Load balancing
includes the transfer of states from one local agenda to another, in order to
equalize the workload in all processors. This transfer can be performed directly or
via a global memory structure, called blackboard.

There are two main problems related to both kinds (horizontal and vertical)
of parallelization based on the distribution of the search space:

a) a great number of states is examined more than once, since the state-
space is not always split in disjoined parts and

b) the states that are expanded are more than necessary.

Parallelization methods, which rely on horizontal distribution of the search
space (e.g. IDA*), partially deal with problem (a), since different levels of the
search space usually contain only a small number of states in common. However,
these methods examine all the states at a given level before proceeding to the next
one, causing problem (b). The alternative approach (vertical segmentation) suffers
from both problems. The subtrees cannot be disjoined, since a state can usually be
approached in various ways. Furthermore, a subtree might be promising (i.e. it
contains a short solution), while the others are not, and yet the algorithm will
examine all of them.

The latter problem becomes more severe as the heuristic function produces
better estimates, since the set of promising states will become narrower and
narrower. For example, if the heuristic function is perfect, a simple hill climbing
technique will examine onlyl states, wherel is the length of the optimal solution.
Any one of the parallelization methods described previously will workN (number
of processors) times more, since while one of the processors will be examining the
solution’s states, the others will be wasted at useless parts of the search space, or
they will be re-examining the same promising states. Even if the accuracy of the
heuristic estimate is less than 100%, but still acceptable, the overhead imposed by
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the examination of redundant states would not allow the parallel algorithm to
perform well.

3 The Operator Distribution Method

ODMP (OperatorDistributionMethod for ParallelPlanning) is a method for
parallel planning, in which the task of finding and applying the applicable actions
to a given state is performed in parallel. Suppose that we haveM operators andN
processors, whereM>N. Initially, the operators are distributed to the available
processors and then each processor is responsible for:

a) finding the applicable ground actions originating from the operators
assigned to it,

b) applying the ground actions to the current state to produce the successor
states and

c) evaluating the successor states through the heuristic function.

The distribution of the operators is done dynamically. Initially each
processor is assigned one operator and the rest of them are stored in a global data
structure, theOperator Pool, and are distributed on demand.

The distribution of the operators could be done statically at the beginning of
the planning task. However, the amount of work imposed by each one of them
cannot be accurately known a priori and the method would have resulted in an
unfair distribution of work. The dynamic approach, which has been adopted by
ODMP, succeeds in balancing the workload among processors, but imposes some
overhead due to memory contention while accessing theOperator Pool. However,
this overhead is negligible (as shown by the experimental results) compared to the
speedup due to the balanced workload.

ODMP was motivated by the need for an effective parallelization method for
heuristic, state-space planners, which usually exhibit the following characteristics:

a) They produce plans of relatively good quality, which means that
parallelization methods that alter their solutions are usually undesirable.

b) The number of states they examine, in order to solve a problem, is
relatively close to the length of the solution they produce. Since the states
in the solution path have to be visited sequentially, the number of states
that can be processed in parallel is quite limited. Therefore, parallelization
methods that rely on the distribution of states are bound not to perform
well.
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Problem Solution length
(GRT)

Expanded
states (GRT)

Solution
length (CL)

Expanded
states (CL)

Total states

Prob09 96 251 84 571 6.4 *106

Prob10 117 203 109 437 3.6 *106

Prob12 48 75 41 535 3.2 *107

Prob13 79 173 69 939 8.7 *107

Prob14 104 153 98 179 8.2 *106

Prob16 62 93 62 227 7.9 *106

Prob17 53 76 47 207 1.1 *106

Prob18 195 564 173 1035 5.4 *107

Prob19 174 515 157 898 3.0 *107

Table1: Number of states that are examined by the GRT and CL heuristic planners.

Table 1 illustrates the above statements for the two heuristic planners (GRT
and CL) used for our experiments (a detailed description of these planners can be
found in section 5). For the experiments we adopted a set of logistics problems
(Veloso 1992) from the AIPS (International Conference on Artificial Intelligence
Planning Systems) 1998 planning competition. Columns 2 and 4 present the
lengths (number of actions) of the solutions that were produced by GRT and CL
planners respectively. Columns 3 and 5 present the number of states that were
expanded by GRT and CL planners respectively, in order to solve the problems
and finally column 6 presents the total number of states in the search space of
each problem. As we can see from table 1, the number of states that are examined
by the planners is quite small with respect to the size of the search space (i.e. the
number of examined states are approximately 1/105 of the total states).
Furthermore, the number of states that have to be examined is relatively close to
the length of the solution (e.g. the number of examined states can be as low as
150% of the solution's length).

ODMP deals effectively with the characteristics of efficient heuristic
planners. The quality of the solutions is not affected at all and no additional states
have to be examined in order to solve the problem. Moreover, since the
parallelization method does not depend on the number of states, the efficiency of
ODMP is not affected by the quality of the heuristic function in use.

The parallelization is implemented usingN of threads (usually equal to the
number of available processors) that run simultaneously. The process that is
created when the program is invoked is referred as the controlling thread. The
controlling thread, whose algorithm is outlined in figure 1, is responsible for
initializing, synchronizing and controlling the rest of the threads (denoted as
planning threads). Figure 2 presents the algorithm that each one of the planning
threads, which are used to solve the planning problem, executes. In figures 1 and
2 SB denotes the current best state in the global agenda of the planner.N is the
number of planning threads that will be created by the algorithm.
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As mentioned before, the distribution of the operators is done dynamically.
At the beginning of each cycle, all the domain’s operators are copied in a shared
data structure, theOperator Pool. When a planning thread has finished processing
its current operator, it requests a new one from theOperator Pool, until the latter
becomes empty. Apart from theOperator Pool, an additional one (theAction
Pool) is used to parallelize the task of forming and evaluating the successor states.
Parallelizing the tasks of finding the applicable ground actions and forming and
evaluating the successor states in separate steps results in better load-balancing.

As presented in figures 1 and 2, the controlling thread updates the value of
SB only when all the planning threads have become inactive (step 5c in figure 1).
This guarantees thatSB will always be assigned to the globally best state in the
agenda and thus preserves the integrity of the original (sequential) planner, with
respect to the produced plans.

1. Evaluate the Initial State using the heuristic functionh and insert
<Initial State, h(Initial State)> in theGlobal Agenda.

2. SetSB=Initial State.

3. CreateN planning threads(N is user defined).

4. Put all planning threads to sleep.

5. WhileGoals⊄ SB do

Begin

5a. Put the domain’s operators in theOperator Pool.

5b. Awaken the planning threads.

5c. Wait for all of the planning threads to become inactive.

5d. Assign the best state in theGlobal Agendato SB.

End

6. Return the Plan.

Figure 1. The algorithm of the Controlling Thread of ODMP



- 7 -

1. WhileOperator Pool ∅≠ do

Begin

1a. Extract the first operatorO from theOperator Pool.

1b. Find all the grounded actions, resulting fromO, which can be applied toSB.

1c. Send the list of grounded actions to theAction Pool.

End

2. While theAction Poolis not empty or there is at least one processor at step 1 do

Begin

2a. Extract the first actionA from theAction Pool.

2b. ApplyA to SB to produceS'.

2c. Evaluate the distance ofS' from the goal state through the heuristic

functionh.

2d. Put <S’,h(S’)> in theGlobal Agenda.

End

3. Go to sleep

Figure 2. The algorithm of the Planning Threads of ODMP

4 Extending the Operator Distribution Method

Although the previous algorithm results in a significant speedup of the
planning process, it can be further improved by tackling three of its main
inefficiencies, namely: a) the unbalanced distribution of the workload, b) the
limitation in the scalability and c) the idle time due to memory contention.

The workload cannot be uniformly distributed to the available processors.
The work imposed by each operator depends on the number of states that will be
eventually produced by the application of this operator to the current state. Since
this number can vary from zero to several hundreds, or even thousands for hard
problems, depending on the current state, it is quite possible for some processors
to stay idle for quite a long time waiting for the others to finish.

The scalability of the parallelization algorithm is limited by the number of
the domains' operators. This number is usually small, since the common practice
is to use general operators with many arguments for the encoding of the domains.
For example, in the logistics domain, used in AIPS-98 and AIPS-00 planning
competitions, there are only six operators:Load-Truck, Load-Airplane, Unload-
Truck, Unload-Airplane, Drive-TruckandFly-Airplane.

The processors stay idle for some period of time due to contention. In the
algorithms presented in figures 1 and 2, there are three shared memory structures
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(the operator pool, the action pool and theglobal agenda) that are accessed
frequently by all processors.

In order to overcome these problems we have developed a number of
techniques that can be considered as independent modules and can be added to the
basic parallelization method presented in section 3. These techniques are the
Operator Reordering, the Semi-Grounded Operator Setsand the Distributed
Agenda Architecturethat are presented in the following subsections.

4.1 Operator Reordering Technique

A number of Operator Reordering variations have been proposed as a means
of changing the order in which the branches of the search space are traversed
(Kumar et al. 1988, Cook et al. 1993). Inspired by these methods we studied the
effect of operator reordering on the efficiency of ODMP. Our aim was not to
reorder the search space, since ODMP uses a best first method that always
expands the most promising state. However, a convenient order in the set of
operators would result in a more balanced distribution of the workload.

Suppose we haveN processors,M operators (O1,O2,..,OM), each of which
requires x tu (time units) on average to be processed, and another operator,
denoted asOM+1, which requiresy tu. We also suppose thaty is much greater than
x andy is less than the time needed by theN-1 processors to process the operators
O1,O2,..,OM in parallel (y>>x, y<M*x/(N-1)).

In the worst-case,OM+1 is placed last in the set of operators. After
approximatelyM*x/N tu, all the processors will be idle andOM+1 will be the only
operator in the set. One processor will undertakeOM+1 and there will be a period
of y tu, where only one processor will be working and the remainingN-1
processors will stay idle.

In the best-case,OM+1 is placed first in the operators set. Aftery tu there will
be M-(N-1)*y/x operators in the set and the process will continue normally. Even
if y>M*x/(N-1), the restN-1 processors will remain idle fory-M*x/(N-1) tu.

We illustrate the previous example using concrete parameters: Suppose
N=10, M=100, x=5 andy=35. In the worst-case scenario, theN processors would
have worked in parallel forx*M/N= 5*100/10= 50tu and one of them for another
35, resulting in a total execution time (for one iteration) of 85tu. On the other
hand, in the best-case scenario, after 35tu the processors would have processed
OM+1 and another 63 operators. After another 15tu, there would be only 7
operators in the set. These 7 operators could be processed in parallel using 7
processors (3 would remain idle) in 5tu. So the total execution time would be 55
tu.

According to our experience, the time spent for a given operatorOi is
affected by the number of actions originating from it (denoted asA(Oi)), therefore
a good method would be to place the operators in the set in a decreasing order of
A(O). However, for a given operatorOi the value ofA(Oi) depends on the state it
has to be applied and it cannot be known a priori.
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The ODMP Operator Reordering Techniqueis a simpler one, in which the
operators are ordered once at the beginning and retain this order for the rest of the
planning process. Since we cannot know a priori the actual value ofA(O), the
ordering is done using the upper bound ofA(O) instead.

For example, in a logistics problem with 5 cities, 7 airplanes, 5 trucks, 3
places per city and 2 cargoes, the maximum values ofA(O) for the Fly and
Load_truckoperators are the following:

Amax(Fly) = (7 airplanes * 4 possible target cities) = 28 and

Amax(Load_truck)= (2 cargoes * 5 trucks) = 10.

4.2 The Semi-Grounded Operator Set Technique

Although the ODMP Operator Reorderingtechnique described above
succeeds in balancing the workload among the processors, the problem of the
limitation in the scalability remains unsolved. In order to lift the bound in the
scalability of our method, we developed an additional technique which works in a
preliminary phase and increases the number of work packages that can be
processed in parallel.

According to the Semi-Grounded Operator Settechnique, the set of
operators is expanded through the consideration of all the possible instantiations
of the operators's first argument. We call the resulting operatorssemi-grounded
operatorsand the expanded setsemi-grounded operator set.

Consider, for example, a logistics problem with 3 cities (city1, city2 and

city3 ), 1 plane (A321), 2 places per city (center, airport ), 3 trucks (truck1,

truck2 and truck3 ) and 4 cargoes (cargo1, cargo2, cargo3 and cargo4 ). The
initial operator set includes the following six operators:

[Fly(A,S,D), Drive(T,S,D), Load_plane(C,A,L), Unload_plane(C,A,L),

Load_truck(C,T,L), Unload_truck(C,T,L) ]

where A, C, D, L, S and T are variables representing airplanes, cargoes,
destination-locations, locations, source-locations and trucks respectively. The
semi-grounded operator setcontains one instantiation of thefly operator, three
instantiations of thedrive operator and four of each one of the other operators. For
example, the three semi-groundedDrive operators are the following:
[Drive(truck1,S,D), Drive(truck2,S,D), Drive(truck3,S,D)]. The total size of the
expanded set is twenty.

The semi-grounded operator set contains a larger number of operators than
the initial set, but the amount of work needed to process the two sets is the same,
since the number of actions that will eventually be generated by these sets will be
equal. So, the technique is capable of generating a relatively large number of
disjoined segments of operators, which is equivalent to the initial operator set.

The efficiency of the parallel algorithm can benefit from this technique in several
ways:
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•� The bound in the scalability is lifted, since the algorithm can utilize more
processors.

•� The workload is more balanced, since it is split in more portions.

The choice of the argument, which will be used to generate the semi-
grounded operators, can affect the efficiency of ODMP. Due to the way in which
the domains are encoded, the first argument is usually a rational choice and this
approach is adopted by our algorithm.

4.3 Distributed Agenda Architecture Technique

In the case of applying ODMP to a heuristic planner relying on a best-first
or a similar search strategy, an additional technique can be adopted that can
drastically reduce the time wasted due to contention. According to this technique,
the centralized agenda architecture proposed in figure 2 is replaced by a
distributed architecture that minimizes the idle time due to contention, while
preserving the integrity of the search method.

According to theDistributed Agenda Architecture Technique, apart from the
global agenda, each processor maintains a local one where it stores all the states it
has produced from the beginning of the planning process. At the end of each
iteration, it extracts the best state from the local agenda and places it in the global
one.

It is quite clear that this technique reduces the number of accesses to shared
data, since the number of insertions in the global agenda at each iteration isN (the
number of processors), whereN<<bF (the branching factor of the search space).

In order to prove that this technique maintains the integrity of the search
method, it is enough to show that at each iteration the globally best state is
considered for expansion. But since no states are pruned by the above technique,
the globally best state at each iteration will be stored either in the global agenda or
in a local one and it will be eventually promoted for expansion.

4.4 Assembling the Big Picture

In order to combine the above methods together and apply them to a
planning system, certain issues have to be addressed:

The Operator Reorderingtechnique and the creation of theSemi-Grounded
Operator Setboth work in preliminary phases and can cooperate in order to
improve the efficiency of the parallelization. In order to optimize the algorithm,
the operator set is initially ordered using theOperator Reorderingtechnique,
without taking into account the first argument of the operators. The output of this
technique is then used to create theSemi-Grounded Operator Setthat is used as
input to the main planning algorithm.

The implementation of the parallel algorithm follows the common practice
in parallel systems, i.e. there is a controlling thread that is responsible for the
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preliminary steps and the management of the other threads, carrying out the main
planning process. Figure 3 presents an overview of the controlling threads
algorithm, while figure 4 outlines the algorithm run by the planning threads.

1. Use the Operator Reordering technique to order the operators, without taking
into account the operator's first argument.

2. Ground the operator's first argument to produce the Semi-Grounded Operator
Set.

3. Insert <Initial State, h(Initial State)> in the Global Agenda.

4. Create N planning threads.

5. Initialize all the Local Agendas to∅ .

6. Set SB= Initial State.

7. While Goals⊄ SB do

Begin

7a. Put the domain’s operators in the Operator Pool.

7b. Awaken the planning threads.

7c. Wait for the planning threads to become inactive.

7d. Assign the best state in the Global Agenda to SB.

End

8. Return the Plan.

Figure 3: The algorithm of the controlling thread (Extended ODMP)

1.While the Operator Pool is not empty do

Begin

1a. Request an Operator O.

1b. Apply O to SB to create the successor states.

1c. Evaluate the successor states through the heuristic function.

1d. Place the successor states among with their values in the Local Agenda.

End

2.Send the best state of the Local Agenda to the Global Agenda

3.Go to sleep

Figure 4: The algorithm of the planning threads (Extended ODMP)
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5 Planning Paradigms

In order to test the efficiency of ODMP in practice we embodied it in two
heuristic planners, GRT Planner and CL planner, and run various experiments
with the parallel programs. This section provides a brief description of the two
planning paradigms.

5.1 The GRT Planner

The GRT planner is a domain-independent heuristic planner (Refanidis and
Vlahavas 1999). It adopts the pure STRIPS representation (Fikes and Nilsson
1971) and searches forward in the space of the states. The planner has been
inspired by the ASP planner (Bonet et al. 1997), but it has been differentiated in
several ways.

GRT solves planning problems in two phases: the pre-processing phase and
the search phase. The main idea of the planner is to compute off-line, in the pre-
processing phase, estimates for the distances between the domains facts and the
goals. The word 'distance' refers to the number of goal regression levels needed to
achieve a specific fact. This information is stored in a table, which is indexed by
the facts of the domain. This table is named GREEDY REGRESSIONTABLE, which
the acronym GRT comes from.

In order to produce better estimates, GRT introduces the notion of related
facts in the goal regression process. These are facts that have been achieved either
by the same or by subsequent actions, without the last action deleting the firstly
achieved facts. The cost for achieving a set of un-related facts simultaneously is
the sum of their individual costs, while the cost for achieving a set of related facts
is the cost of the last achieved fact.

The search phase consists of a simple best-first search strategy. Based on
the distances of the individual facts from the goals, and the information about
their relations, GRT obtains estimates for the distances between the intermediate
states and the goals, which are used to guide the search.

A B

C

C

B

A

Initial State Goal State

Figure 5: A 3-blocks problem
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Fact Distance from goals Related facts
(on C table) 0 -
(on B C) 0 -
(on A B) 0 -
(clear A) 0 -
(on A table) 1 (clear B)
(clear B) 1 (on A table)
(on B table) 2 (on A table) (clear A) (clear B) (clear C)
(clear C) 2 (on A table) (clear A) (clear B) (on B table)
(on C B) 3 (on A table) (clear A) (on B table) (clear C)
... ... ...

Table 2: Part of the Greedy Regression Table
for the 3-blocks problem

5.1.1 An Example of GRT
We illustrate the GRT phases with the block world problem of figure 5. Part

of the Greedy Regression Table for this problem is shown in table 2. Let us
compute the distance between the initial state and the goals. The initial state
consists of the following facts:

(on A table) (clear A) (on B table) (on C B) (clear C)
All the above facts are related, with the fact (on C B) being the last achieved. So
the distance of all the facts is the distance of the last achieved, i.e. 3, which in this
case is also the actual distance.

The above approach is followed to estimate the distances between all the
intermediate states that arise during the forward search phase and the goals. GRT
always selects to expand the state with the smallest estimated distance.

5.1.2 N-Best first search

GRT embodies a simple best-first algorithm and behaves very well in a
variety of domains, including those used in AIPS-98. For the purposes of this
research, we slightly modified the search algorithm and especially the agenda, in
order to cope with more complex problems. The agenda in the current version has
a limited size and the search algorithm is similar to the N-best-first used in one of
ASP’s versions (Bonet et al. 1997). Since the size of the agenda is kept under a
threshold, the memory requirements of the modified GRT are quite low and thus
GRT can handle even more difficult problems.

5.2 The Cargo Location Heuristic Planner

ODMP has also been tested on CL (Cargo Location) Planner (Vrakas et al.
2000), a simple best-first planner that uses a domain-dependent heuristic
algorithm for logistics worlds. The planner estimates the distances between each
intermediate state and the goals, taking into consideration the current locations
and the destinations of the cargoes that have to be transferred.

To be more specific, for each cargoc, CL assigns an integer varying from 0
to 12, which represents the estimated number of steps for this cargo to reach its
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destination (dc). Then, the sum of these distances is the estimate for the distance
between each intermediate state and the goals.

Initially each dc is set to 0. Then thedcs are computed by repeatedly
applying for each cargo the following rules:

1. If c is not in its destination city, increasedc by 4.

2. If c is not in its destination city and it is not in an airport, increasedc by 4.

3. If c is not in its destination city and its destination place is not an airport,
increasedc by 4.

4. If c is in its destination city but it is not in the correct place, increasedc by 4.

Consider, for example, the following case:

Goals ≡ [at(c1,dc-ctr), at(c2,la-air),

at(c3,la-ctr)]

StateA ≡ [at(c1,dc-air), at(c2,dc-air),

at(c3,dc-ctr)]

The distance betweenStateA and theGoals is estimated as follows:
Estimated distance betweenStateA andGoals

cargo1: 4 (4 th rule)

cargo2: 4 (1 st rule)

cargo3: 12 (1 st , 2 nd and 3 rd rule)

Total = 20

6 Experimental Results

The two planners previously presented (GRT and CL) were implemented in
C++ and were enhanced with ODMP and its extensions (Semi-Grounded Operator
Set, Operator Reordering and Distributed Agenda Architecture) as described in
section 4.4. For simplicity we will refer to GRT Planner with ODMP asParallel
GRT and to CL Planner with ODMP asParallel CL. The two parallel planners
were thoroughly tested on a variety of hard logistics problems, adopted by the
AIPS-98 planning competition. The platform used for testing was a SGI Power
Challenge XL parallel machine with 14 R8000 CPUs and 16 GB of shared
memory. The underlying Operating System was IRIX 6.2.
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Parallel GRT Planner Parallel CL Planner
Problem

N=1 N=2 N=3 N=5 N=8 N=12 N=1 N=2 N=3 N=5 N=8 N=12

Prob09 140 84 61.1 40.2 30 29.7 254 144 110 70 52 55

Prob10 76 45 33 24.5 19.4 18.4 512 275 207 150 120.5 108

Prob12 123 66.5 48.6 32 23.6 20 2100 1200 900 600 450 370

Prob13 248 153 99 72 55 48.6 2660 1385 946 630 420 320

Prob14 212 133 96 67.5 51.7 42.4 265 152 120 80 57 49

Prob16 107 58 39.5 25.6 20.4 17.8 224 128 101 67 49 44.2

Prob17 51 32 22.7 15.3 12.1 11.3 118 72 50 33 28.1 33.7

Prob18 960 521.7 362.3 218.2 165.5 129.2 3900 2046 1415 855 570 450

Prob19 768 410.7 284.4 175 125.5 105 1350 800 523 366 270 220

Table 3: Time (in sec) needed by Parallel GRT and CL planners to solve the problems

Table 3 presents the time (in seconds) needed by Parallel GRT and Parallel
CL to solve each one of the logistics problems. The columns correspond to
different numbers (N) of utilized processors. In order to illustrate the efficiency of
ODMP in more clarity, the speedup (Tseq/Tpar) of the parallel planners was
calculated and is presented in table 4. Figures 6 and 7 present graphs for
illustrative examples of the speedup of Parallel GRT and Parallel CL planners
respectively.

Table 4: Speedup of Parallel GRT and CL planners

Parallel GRT Planner Parallel CL Planner
Problem

N=1 N=2 N=3 N=5 N=8 N=12 N=1 N=2 N=3 N=5 N=8 N=12

Prob09 1 1.66 2.29 3.48 4.7 4.7 1 1.76 2.31 3.63 4.88 4.62

Prob10 1 1.69 2.3 3.1 3.92 4.13 1 1.86 2.47 3.41 4.25 4.74

Prob12 1 1.85 2.53 3.84 5.21 6.15 1 1.75 2.33 3.5 4.67 5.68

Prob13 1 1.62 2.5 3.44 4.5 5.1 1 1.92 2.81 4.22 6.33 8.31

Prob14 1 1.59 2.21 3.14 4.1 5 1 1.74 2.21 3.31 4.65 5.41

Prob16 1 1.84 2.7 4.18 5.25 6.01 1 1.75 2.22 3.34 4.57 5.07

Prob17 1 1.59 2.25 3.33 4.2 4.5 1 1.64 2.36 3.58 4.2 3.5

Prob18 1 1.84 2.65 4.4 5.8 7.43 1 1.91 2.76 4.56 6.84 8.67

Prob19 1 1.87 2.7 4.39 6.12 7.31 1 1.69 2.58 3.69 5 6.14
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Figure 6: Speedup graph of Parallel GRT
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Figure 7 Speedup graph of Parallel CL

By analyzing the results presented in tables 3 and 4, we draw certain
conclusions:

1. Under certain circumstances ODMP can speedup the underlying planner
very efficiently. The speedup of Parallel CL is almost linear for Prob13
and Prob18 while Parallel GRT shows a quite stable speedup for Prob12,
Prob16, Prob18 and Prob19.
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2. There are cases where the speedup of the parallel planners drops off quite
early (for example problems Prob10 and Prob17 for both parallel planners)
although it performs quite well for lowNs.

3. Although there are many differences in the heuristics of the two planning
paradigms (Parallel GRT and Parallel CL) and they examine different set
of states in order to solve the problems, yet in most cases the speedups of
them are quite similar for specific problems. For example both planners
speedup well in problems Prob12, Prob18 and Prob19 and they both fail to
speedup well in problems like Prob10 or Prob17.

In order to justify the behavior of our method, we performed an analysis on
the set of the logistics problems regarding their inner structure and its impact on
our method. For each problem we computed the size of thesemi-grounded
operator set(denoted as SGOS), the upper limit of the number of grounded
actions that can be applied to a given state (denoted asAmax) and the size of the
search space, which indicates the complexity of the problem. Table 5 presents the
results of our analysis.

Problem SGOS Amax Size of the
search space

Prob09 80 204 6.4 *106

Prob10 95 145 3.6 *106

Prob12 84 409 3.2 *107

Prob13 130 385 8.7 *107

Prob14 171 185 8.2 *106

Prob16 93 248 7.9 *106

Prob17 110 135 1.1 *106

Prob18 120 390 5.4 *107

Prob19 117 318 3.0 *107

Table 5. Number of semi-grounded operators and applicable actions

Comparing the values ofAmax (table 5) and thespeedups(table 4), we can
conclude that the efficiency of ODMP depends strongly onAmax. This sounds
quite reasonable, since the most resource-consuming part of the planning process,
and the one that is performed in parallel, is the detection of the applicable actions
and the formation of the successor states.

The scalability of ODMP and therefore its overall efficiency, is also affected
by the number of semi-grounded operators (SGOS), since a low value of SGOS,
means that there are not many work packages, the workload is not equally
distributed and the overall performance decreases. For example, although Amax for
Prob12 is the highest (409) among the adopted problems, the quite low value of
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SGOS (84) prevents ODMP from performing well (e.g. speedup of CL for Prob12
and for N=12 is only 5.68).

Finally, the scalability of ODMP depends also on the complexity of the
problem. Problems with large number of objects can be parallelized more
efficiently. This makes sense, since the work imposed by each operator depends
on the number of instantiations of its preconditions. Therefore, problems with
operators that are easy to process do not allow the parallelization method to
perform well, since a great portion of the time will be consumed in
synchronization and communication among the threads. On the other hand, the
parallelization method performs quite well on problems with operators that are
hard to process.

7 Conclusion and Future Work

This paper reported on work performed to find an adaptive parallelization
method for planning. We presented ODMP (Operator Distribution Method for
parallel Planning), an innovative parallelization method that distributes the
process of finding and applying the grounded applicable actions to a given state.
ODMP can be adopted by any state-space planner, but is especially suited for
heuristic planners, where the low number of examined states prevents classical
parallelization methods from performing well.

Furthermore, we presented three techniques that extend ODMP and
contribute to further improvement in the general performance. Namely these add-
ons are: theOperator Reordering Technique, the Semi-Grounded Operator Sets
Techniqueand theDistributed Agenda Architecture Technique. The extended
ODMP has been thoroughly tested on GRT, a domain independent heuristic
planner and CL, a domain dependent heuristic planner for Logistics problems.
The experimental results were quite encouraging, since the method achieved a
scale-up of over 8 on a parallel system with 12 processors for some problems.

This version of ODMP, although it performs well, is special crafted for
parallel machines with shared memory. In the future, we plan to study the
possibility of applying ODMP to parallel machines with distributed memory and,
afterwards, in a network of computers. In order to do this, the parallelization
method has to be altered, since the current version requires frequent
intercommunication and the communication cost in networks of computers
wouldn't allow this method to perform well.
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