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Abstract. This paper presents a prototype system that exploits planning and an 
ontology concept ranking algorithm for composing semantic Web services 
(PORSCE). The system exploits the inferencing capabilities of a Description 
Logics Reasoner in order to compute the subsumption hierarchy of the ontolo-
gies whose concepts are used in the OWL-S Profile descriptions as input and 
output concepts. The concept ranking algorithm is applied over this hierarchy in 
order to determine similar concepts based on different degrees of semantic 
matching relaxation, such as subclass or sibling hierarchical relationships. The 
domain independent planning system’s role is to semantically search the space 
of possible compositions of Web services, generating plans according to the de-
sirable level of relaxation.  
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1   Introduction 

The advent of web services (WS) is a proof that nowadays the need for communica-
tion among loosely coupled distributed systems is bigger than ever. Web services 
offer a well-defined interface through which the major problem of interoperability on 
the Web can be dealt with. In order to exploit the web service technology to its full 
extent, Semantic Web languages, such as OWL-S [11], WSDL-S [12] SAWSDL [14], 
and tools, such as ontology reasoners [7], are used for the semantic annotation and 
processing of WS, leading to a new notion of web services, referred to as Semantic 
Web Services (SWS). The SWS paradigm is motivated by the fact that while the 
XML representation of services’ characteristics (WSDL [15]) guarantees syntactic 
interoperability, it is unable to capture the semantics of information, which is essential 
for the automation of WS-related procedures. 

The procedure of combining simple WS in order to create a complex service of en-
hanced functionality is fundamental. Composition can be either manual, where the 
user participates by selecting appropriate Web services from a set of available ones, 
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or automated, where the composition plan is generated automatically, based on initial 
requirements about functional and non-functional properties.  

In this paper the automated web service composition paradigm is approached as a 
planning problem over the OWL-S profile descriptions of web services. More specifi-
cally, PORSCE is proposed; a combination of a domain-independent planning system 
and a concept ranking module for computing similarities among OWL ontology con-
cepts. The planning module searches for composition plans by matching OWL-S 
Profile input and output (I/O) parameters, while the concept ranking module semanti-
cally alters the I/O requirements of the Web services, selecting semantically related 
ontology concepts based on different notions of concept similarity.  

The rest of the paper is organized as follows: Section 2 outlines the system archi-
tecture and points out the way the various modules cooperate. Sections 3 and 4 elabo-
rate on the core of the system, namely the OWL Ontology Manager and the Planning 
System respectively. Section 5 presents some experimental results, while Section 6 
concludes the paper and poses future directions. 

2   System Architecture 

PORSCE is a synergy of an OWL-S parser utilizing the OWL API [16], the OWL 
Ontology Manager, the PDDL Converter and an external planning system. The OWL-
S Parser parses OWL-S profiles that correspond to a set of SWS. The output of the 
OWL-S Parser is a description of the WS which is provided to the PDDL converter 
and the domain ontologies which are forwarded to the OWL Ontology Manager 
(OOM). The OOM, utilizing the DL reasoner, applies the algorithm of Section 3.2 for 
determining similar concepts to a query concept q. The PDDL converter is responsi-
ble for expressing the problem of SW composition as a planning problem, interacting 
with the user in order to set the required threshold of conceptual similarities, enhanc-
ing the planning problem with semantic information retrieved from OOM and cooper-
ating with the external planning system in order to acquire a solution to the problem. 
More details on both the OOM and the Planning System are provided in Sections 3 
and 4 respectively.  

 

Fig. 1. The architecture of PORSCE 
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3   OWL Ontology Manager 

The OWL Ontology Manager (OOM) is responsible for retrieving “similar” ontology 
concepts to a specific query concept, according to a degree of relaxation that is de-
fined based on the hierarchical relationship H and the distance D between the con-
cepts. OOM utilizes the inferencing capabilities of the Pellet DL Reasoner [7] in order 
to compute the subsumption relationships among the concepts. The general idea is to 
relax the concept matching criterion in order to obtain plans that might be useful, 
especially in cases where an exact input/output matching plan is not available. 

3.1   Hierarchical Relationships 

OOM utilizes three logic-based types of concept match [13] between a query q and an 
ontology concept C, and extends them by also introducing the sibling match: 

• exact. The two concepts are inferred to be equivalent or have the same URI. 
• plugin. This type of match holds when q is superclass of C. 
• subsume. This type of match holds when the q is subclass of C. 
• sibling. The two concepts have a common superclass T. 
• fail. Nothing of the above holds, for example in the case of disjoint concepts. 

These matching types represent the hierarchical relationships that two concepts 
could have in a hierarchy.  

3.2   Concept Distance 

Apart from the hierarchical relationships, the degree of relaxation is defined based on 
the distance D of two concepts, following the logical assumption that the more con-
cepts exist between two concepts, the less “similar” they are. In simple subclass rela-
tionships, the distance between two concepts is defined as the sum of the concepts 
that exist between them, also including in the sum the two concepts themselves. For 
example, the distance between two concepts with a direct subclass relationship is 2. In 
the case of a sibling relationship between two concepts q and C with a common su-
perclass T, the distance is defined as D = dq,T + dT,C - 1. For example, the distance of 
two concepts B and C with a direct common superclass A is 3, as Fig 2 depicts. 

 

Fig. 2. An example of a sibling relationship between two concepts 

The algorithm for determining all the concepts of an ontology that are similar to a 
query concept q is presented below. The listSubclasses(C) and listSuperclasses(C) 
notations are used to denote the set of subclasses and superclasses of an ontology 
concept C, and dist(C, C′) to denote the distance between the concepts C and C′. In 
case of exact matches, the algorithm returns only the equivalent to q concepts, while 
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in the case of plugin matches, the algorithm finds the subclasses of the concept q and 
returns as a result each concept in the subclass list that satisfies the distance threshold. 
A similar approach is followed in the case of subsume matches where the superclasses 
of q are retrieved. Finally, in the case of sibling matches, the superclasses of q are 
retrieved, and for each of them, its subclasses are retrieved. The goal is to determine 
concepts in the subclass lists which satisfy the distance threshold. 
 
Algorithm: Finds the similar concepts to the query concept q according to the hierar-
chical relationship H and the distance threshold D. 
Input: Query concept q, Hierarchical relationship H, Distance threshold D.  
Output: A list with the similar concepts to q. 
 
function similarConcepts(q, H, D) { 

   var result = ∅ 

1    if H = exact then  

2       for each concept C | C ≡ q do 
3          result ← add(C) 

4    else if H = plugin then  

5       subclasses ← listSubclasses(q) 

6       for each C ∈ subclasses | dist(q, C) ≤ D do  
7          result ← add(C) 

8     else if H = subsume then  

9       superclasses ← listSuperclasses(q) 

10      for each C ∈ superclasses | dist(q, C) ≤ D do  
11         result ← add(C) 

12   else if H = sibling then  

13      superclasses ← listSuperclasses (q) 

14      for each T ∈ superclasses do 
15         subclasses ← listSubclasses (T) - listSubclasses(q) 

16         for each C′ ∈ subclasses do 
17            if dist(q, T) + dist(T, C′ ) -1 ≤ D then 
18            result ← add(C′ ) 
19   return result  } 

4   Problem Representation and Solving 

The problem of composing simple web services in order to come up with a complex 
one that fulfills the user’s needs can be easily transformed into a planning problem 
and solved using a domain independent planning system. A planning problem is usu-
ally modelled according to STRIPS (Stanford Research Institute Planning System) 
notation [9]. A planning problem in STRIPS is a tuple <I,A,G> where I is the Initial 
state, A is a set of available actions and G is a set of goals. States in STRIPS are rep-
resented as sets of atomic facts.  

Set A contains all the actions that can be used to modify states. Each action Ai has 
three lists of facts containing the preconditions of Ai (noted as prec(Ai)), the facts that 
are added to the state (noted as add(Ai)) and the facts that are deleted from the state 
(noted as del(Ai)). 
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The following formulae hold for the states in the STRIPS notation: 

• An action Ai is applicable to a state S if prec(Ai) ⊆ S.  
• If Ai is applied to S, the successor state S’ is calculated as S’ = S \ 

del(Ai)∪add(Ai) 
• The solution to a planning problem is a sequence of actions, which, if applied 

to I, lead to a state S’ such that S’⊇G. 

The representation of a WS composition problem in planning terms requires simple 
WS to be viewed as actions, and complex WS to be viewed as plans. More details of 
the representation in the proposed system will be discussed in the following sections. 

4.1   Problem Representation 

Consider the case were a user wishes to use a complex web service which, when pro-
vided with some input data, will return some required information. There may be a 
number of alternatives when formalizing the problem of web service composition as a 
planning problem. A straightforward solution adopted by PORSCE is the following: 
The inputs provided by the user form the initial state of the problem, while the desired 
outputs form the goals of the problem. The available OWL-S profiles are used to 
obtain the actions available in the planning domain. For each action the following 
statements hold: a) its name is the same as the  name of the corresponding web ser-
vice, b) its preconditions list is formed by the inputs of the service, c) the add effects 
of the actions are the outputs of the service and d) the delete list is left empty. 

The formalization presented above requires the planning system to be aware of 
possible semantic similarities among syntactically different concepts. This situation 
can be dealt with in two ways. The first solution is to alter the planning system in 
order to constantly advise the OWL Ontology Manager (OOM), whenever it is re-
quired, such as to determine the applicability of an action in a given state. The second 
solution is to enhance the problem description given above with all the required se-
mantic information in a pre-processing phase.  

In order to maintain the independency of the planner from the rest of the PORSCE 
system, the second solution was adopted. Therefore, the planning module can be re-
placed by any planning system compliant with PDDL [10] input files. In the pre-
processing phase, the system uses the OOM in order to return all the semantically 
similar concepts for both the facts of the initial state and the preconditions of the 
available actions. The original concepts of the initial state together with the semantic 
equivalent and similar concepts form a new set of facts noted as the Expanded Initial 
State (EIS) (note that the term state is used improperly). Moreover, for each action the 
pre-processor creates all the possible combinations of the original preconditions and 
their semantically equivalents in order to form the Extended Action Set (EAS). Sup-
pose, for example, that the initial state I of the problem is the following 

I = {Sightseeing, Dates} 

There are two available actions: 
CityHotelMapService: prec={City, LuxuryHotel} 
SightSeeingAreaService: prec={Sightseeing} 
The OOM for a given threshold discovers the following similarities:  
Dates≡Duration, Hotel≡Motel, Hotel≡LuxuryHotel 
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The pre-processor alters the problem definition to the following: 
EIS = {Sightseeing, Dates, Duration} 
EAS:  CityHotelMapService: prec={City, LuxuryHotel} 

CityHotelMapService1: prec={City, Hotel} 
CityHotelMapService2: prec={City, Motel} 
SightSeeingAreaService: prec={Sightseeing} 

The new problem, namely <EIS,EAS,G> is then encoded into PDDL and is forwarded 
to the planning system in order to acquire a solution. 

4.2   The Planning System 

The planner module incorporated in the system is JPlan [1], an open-source imple-
mentation of Graphplan in Java. Graphplan [2] is a general-purpose planner for 
STRIPS-like domains, which exploits the benefits of graph algorithms in order to 
reduce search space and provide better solutions.  

JPlan proved to be remarkably fast and can handle a respectable number of opera-
tors, unlike other implementations of Graphplan. Currently, it has been tested for 
more than 2000 operators in a single planning domain. This is very important as the 
number of operators increases significantly when equivalent or similar concepts are 
taken into account. After the planning process is completed, JPlan provides not only 
the plan, if found, but also the mutual exclusion description of the leveled graph.  

JPlan supports predicates with an arbitrary number of arguments, but not predicates 
without arguments, a disadvantage which had to be overcome in order to be adopted 
for the web service case by adding a “dummy” argument, as web service inputs and 
outputs are usually represented as predicates without arguments. Another technical 
issue that had to be dealt with is the fact that JPlan does not support PDDL, but text 
files with a similar structure. Finally, JPlan does not seem to offer a way to supply 
alternative plans, if there are any, as it expands the graph to a predefined level and 
does only one search through it. Despite its disadvantages, JPlan proved to be effi-
cient and serve the purposes of testing the system. 

5   Experimental Results 

In this section, the experiments performed and a specific example will be presented in 
order to illuminate the aspects of this approach. The test sets used to perform experi-
ments were obtained from the OWLS-TC version 2.2 revision 1 [8] and included 
SWS descriptions in OWL-S from various domains such as travel, food and economy, 
and the corresponding ontologies. Initially, attempts were made to obtain all possible 
plans that could be produced from each domain, using only one concept of the domain 
as input and another concept as output, in order to familiarize with the domains and 
detect the flow of information among the various services. The results included only 
plans of length 1, namely the simple web services that had these exact concepts as 
input and output, and some plans of length 2. Unfortunately, the nature of these do-
mains did not permit the creation of longer plans, and therefore more complex web 
services. Using more relaxed restrictions on the similarity of concepts did not alter the 
results. Using more than one concept in the inputs and outputs sets increased  
the length of the produced plans, however, this case was not examined further because 
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the produced plans represented more likely collections of independent web services, 
rather than in fact complex web services.   

In order to test the abilities of the system in managing simple web services that can 
be composed into longer plans, therefore more complex web services, some of the 
service descriptions were modified. The scenario that was chosen to implement re-
ferred to the travel domain, and included a user who wants to go sightseeing at some 
specific dates. The user requires to know the price of the hotel, place a reservation and 
be presented with a map of the area. As there is no simple web service that has such 
functionality, but there are web services that provide this functionality partially, the 
problem must be solved through composition. 

In order to demonstrate the dependence of the solution on the distance between 
concepts in the ontology we permit, we added to the domain the following service 
descriptions:  

1. SightseeingAreaService: A service that accepts as input the activity Sightseeing 
and returns areas of a city that offer this activity.  

2. DatesToDurationService: A service that accepts as input dates and supplies the 
duration of the time period specified by these dates.  

3. AreaCityService: A service that accepts as input areas of a city and returns the city 
they belong to. 

4. CityLuxuryHotelService: A service that accepts as input a city name and returns 
luxury hotels in this city. Luxury hotel is a subclass of Hotel.  

5. CityHotelMapService: A service that accepts as inputs a city and a hotel name, 
and presents a map of the area of the city the hotel resides.  

6. HotelPriceInfoService: A service that accepts as input a hotel name and provides 
information about its prices. 

7. HotelReserveService: A service that accepts as inputs a city and a hotel name, as 
well as a duration, and places a reservation at this hotel for the specified dates.  

For the sake of the example, we assume that there are no other web services in the 
domain that interfere with these in any way. However, the descriptions of the rest 
domain services are still parsed and turned into operators, in order to maintain the size 
of the domain in realistic levels, and therefore obtain plausible time measurements.  

When no equivalent concepts are allowed in the planning process, is it obvious that 
these web services will not be composed to form a complex web service with the 
desired results, because the CityLuxuryHotelService yields an object of the class 
LuxuryHotel, while all other services accept objects of the class Hotel. While Lux-
uryHotel is a subclass of Hotel, a planner without the help of a reasoner perceives 
them as two totally separate concepts.  

This restriction can be relaxed by taking into account concepts with distance 1 
from the concept at hand. In that case, planning can match concepts with other con-
cepts which are direct subclasses and superclasses in some specified ontology. Thus, 
the result set is expanded and a plan involving all 7 web services presented above is 
produced. (Fig. 3). 

If the restrictions are relaxed even more, by increasing the distance to 2 or  
more, concepts can be matched with other concepts that are even further, in ontology 
terms. This could potentially provide more plans, and in several cases shorter plans,  
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Fig. 3. A Plan of 7 steps for the Travel domain 

 

Fig. 4. A Plan of 5 steps for the Travel domain 

as Fig. 4 depicts. However, the more relaxed the restrictions are, the less accurate  
the results become, and the complex WS provided might not fulfill the prospects of 
the user. 

Experiments were run on a machine with an Inter Core2 CPU at 1.66GHz, with 2 
GB or RAM memory. In all cases, the preprocessing step took approximately 14 sec-
onds to parse and process 23 ontologies. However, this is a step that has to be per-
formed only once, as long as the ontologies remain unchanged. In the first case, when 
the acceptable distance between concepts that can be considered equivalent is 1, the 
step where service descriptions are parsed and operators are generated for each ser-
vice lasted approximately 47 seconds. This time includes the invocation of the object 
ranker module to provide equivalent and similar concepts, and the generation of addi-
tional operators for each combination of these concepts. In the travel domain, 150 
web service descriptions were parsed, while the number of operators that were pro-
duced eventually was 690. In the case of distance 2, which is still considered a close 
relation, this time increased to approximately 97 seconds, while the number of opera-
tors was 2010. Finally, planning time was insignificant compared to parsing time, as 
in both cases the planner produced the desired result in less than a second. 
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6   Related Work 

Other efforts that attempt to exploit the benefits of planning techniques to tackle the 
problem of automatic web service composition will be presented in this section.  

One of the first systems that attempted automatic web service composition was 
SHOP-2 [3]. The system uses services descriptions in DAML-S, the predecessor of 
OWL-S, and performs HTN planning to solve the problem. The disadvantage of this 
approach lies in the fact that the planning process, due to its hierarchical nature, re-
quires given decomposition rules, or methods, as they are referred to, which have to 
be encoded in advance with the help of a DAML-S process ontology.  

OWLS-Xplan [4] uses semantic descriptions of web services in OWL-S to derive 
planning domains and problems, and then invokes a planning module called Xplan to 
generate the complex services. The system is PDDL compliant, as the authors have 
developed an XML dialect of PDDL called PDDXML. However, semantic informa-
tion provided from domain ontologies is not utilized, therefore the planning module 
requires exact matching for service inputs and outputs.  

Other approaches that use knowledge-based planning include the system described 
in [5] which composes web services with the PKS planning system. However, this 
effort does not deal with the important issue of translating semantic web service de-
scriptions into planning terms. The work in [6] also uses knowledge-level planning to 
approach the automated web service composition problem. The web service descrip-
tions in this case have to be expressed in some standard process modeling and execu-
tion language, such as BPEL4WS, therefore some prior, domain-specific knowledge 
of the composition issues is required.  

The advantages of the proposed framework lie in the fact that the OWL-S descrip-
tions of the web services and the corresponding ontologies are adequate information 
for the system to determine how to form valid complex services that satisfy given 
goals. Even in the case that no exact match can be found, the system is still able to 
find a complex service that approximates best the desired goal. No prior or additional 
knowledge is demanded since the ontologies capture the semantics of the concepts 
used, while the trade-off between the quantity and quality of the results, i.e. between 
the number of complex services produced and their accuracy in achieving the given 
goals, is up to the user to decide, by selecting desirable concept distances. 

7   Conclusions and Future Work 

The work presented in this paper concerns the development of a prototype system that 
combines planning with object ranking in order to approach the semantic web service 
composition problem. Each web service composition problem is mapped into a plan-
ning problem by representing simple web services as operators, inputs as the initial 
state of the planning problem and outputs as the goal state. Such representations are 
derived from the OWL-S descriptions of the web services. However, before the plan-
ning problem is fed into to planning module in order to obtain a plan, which will rep-
resent the description of the desired complex web service, the object ranker module is 
utilized. The object ranker exploits knowledge contributed by domain ontologies, and 
returns semantically equivalent or similar concepts, which are in turn used to form an 
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extended initial state and set of actions. As a result, the requirement for exact match-
ing of the service inputs and outputs is eliminated, and the planning procedure can be 
performed with the desired degree of semantic relaxation. The system was imple-
mented and tested with different web service domains, and experimental results were 
presented.  

Future goals include the extension of the system in order to cooperate with  
different planners which are capable of providing alternative plans. Moreover, the 
possibility of experimenting with different metrics for semantic similarity, other than 
distance, should be explored, and their effect on the planning procedure and the pro-
duced plans should be examined. 
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