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Abstract 

 
AI planning constitutes a field of interest as its 

techniques can be applied to many areas. Contemporary 
systems that are being developed deal with certain 
aspects of planning and mainly focused on dealing with 
advanced features such as resources, time and numerical 
expressions. This paper presents VLEPpO, a Visual 
Language for Enhanced Planning problem Orchestration. 
VLEPpO is a visual programming environment that allow 
the user to easily define domains and problems and 
acquire solutions, utilizing web services infrastructure.  
 
 
1. Introduction 
 

AI planning has been an active research field for a 
long time, and its applications are manifold. A great 
number of techniques and systems have been proposed 
during this period in order to accommodate designing and 
solving of planning domains and problems. In addition, 
various formalisms and languages have been developed 
for the definition of these domains, with Planning 
Domain Definition Language (PDDL) [4][5][6] being 
dominant among them.  

Research among contemporary planning systems has 
revealed a lack of appropriate integrated visual 
environments for representing accurately PDDL elements 
and structures, and consequently using these structures to 
produce quality plans. This provided the motivation for 
the work presented in this paper.  

The proposed visual tool is intended to cover the need 
for such an environment by providing an easy to use, 
efficient graphical user interface, as well as 
interoperability with planning systems implemented as 
web services. The elements offered in the interface 
correspond to PDDL elements and structures, making the 
representation of most contemporary planning domains 
possible. Furthermore, importing and exporting to PDDL 
features are provided as well. Drag and drop operations 

along with validity checks make the use of the 
environment easy even for users not particularly familiar 
with the language. 

The rest of the paper is organized as follows: Section 
2 reviews related work in the field by presenting several 
planning systems, while Section 3 discusses the eminent 
formalisms for representing planning domains and 
problems. Section 4 presents our visual tool and 
demonstrates its use through examples, and finally, 
Section 5 concludes and discusses future goals.  
 
2. Related Work 
 

There have been a few experimental efforts to 
construct general-purpose tools which offer user 
interfaces for defining planning domains and problems, as 
well as executing planners which provide solutions to the 
problems.  

The GIPO system [1] is based on an object-centric 
view of the world. The main idea behind it is the notion 
of change in the state of objects throughout plan 
execution. Therefore, the domains are modeled by 
describing the possible changes to the objects existing in 
the domain. The GIPO system is designed to work with 
both classical and HTN domains. In both cases, it offers 
graphical editors for domain creation, planners, animators 
for the derived plans and validation tools. The domain 
models are represented mainly in an internal 
representation language called OCL, which is object 
oriented, in accordance with the GIPO system. 
Translators from and to PDDL have been developed, 
which cover only a few parts of the language (typed / 
conditional PDDL).  

SIPE-2 [2] is another system for interactive planning 
and execution of the derived plans. As it is designed to be 
performance-oriented, it embodies many heuristics for 
increased efficiency. Another useful feature is the plan 
execution monitoring, which enables the user to feed new 
information to the system in case there is some change in 
the world. In addition, the system offers graphical 



interfaces for knowledge acquisition and representation, 
as well as plan visualization. SIPE-2 is an elaborate 
system with a wide range of capabilities. However, it uses 
the ACT formalism, which is quite complicated and does 
not correspond directly to PDDL, although PDDL 
descended partially from this formalism, but also from 
other formalisms such as ADL. Therefore, there is no way 
to easily use a PDDL file to construct a domain in SIPE-
2, or export the domain or problem to PDDL.  

ASPEN is an environment for automated planning and 
scheduling. It is an object-oriented system targeted to 
space mission operations. Its features include an 
expressive constraint modeling language which is used 
for defining the application domain, systems for defining 
activity requirements and resource constraints, as well as 
temporal constraints. In addition, a graphical user 
interface is included, but its use in confined to visualizing 
plans and schedules, in systems where the problem 
solving process is interactive.  

ASPEN was developed for the specific purposes of 
space mission operations and therefore, it has only a few 
vague correspondences to PDDL. Furthermore, it does 
not offer a graphical interface for creating the planning 
domains.  

In conclusion, although the above systems are useful, 
none of them offers direct visual representation of PDDL 
elements, a feature which would make the design very 
efficient for the users already familiar with the language. 
Moreover, even the systems which offer translation to 
PDDL do not cover important features of the language. It 
should be mentioned that a couple of other systems exist 
which provide user interfaces but are not mentioned here 
because they are developed for specific purposes. 

The VLEPpO tool is based on ViTAPlan [3] a 
visualization environment for planning based on the 
HAPRC planning system. VLEPpO extends ViTAPlan in 
numerous ways providing the user with visualization 
capabilities for most of the advanced features of PDDL 
[6] and a more accurate and expressive visual language. 

 
3. Problem Representation 
 

A crucial step in the process of solving a search 
problem is its representation in a formal language. The 
choice of the language can significantly affect not only 
the comprehensiveness of the representation but also the 
efficiency of the solver. The PDDL language is nowadays 
the standard for representing planning problems. PDDL is 
based on the STRIPS [7] formalism.  

 
3.1. The PDDL Definition Language 
 
PDDL [4] stands for Planning Domain Definition 

Language. Although it was initially designed for planning 

competitions such as AIPS and IPC, it has become a 
standard in the planning community for modeling 
planning domains. PDDL focuses on expressing the 
physical properties of the domain that we consider in each 
planning problem, such as the available predicates and 
actions. At the same time, there are no structures to 
provide the planner with advice, that is, guidelines about 
how to search the solution space, although extended 
notation may be used, depending on the planner.  

Each domain definition in PDDL consists of several 
declarations, which include types of entities, variables, 
constants, literals that are true at all times called timeless, 
and predicates. In addition, there are declarations of 
actions, axioms and safety constraints. These elements are 
explained in the following paragraphs.  

Variables have the same semantics as in any other 
definition language, and are used in conjunction with 
built-in functions for expression evaluation. In more 
recent versions of PDDL, fluents seem to gain momentum 
instead of variables when there is a need for values that 
can change over time, as a result of an action.  

Constants represent objects that do not change values 
and can be used in the domain operators or the problems 
associated with a domain.  

Relations between objects in the domain are 
represented by predicates. A predicate may have an 
arbitrary number of arguments. Ordering of these 
arguments is important in PDDL. Predicates are used to 
describe the state of the world at a specific moment. 
Moreover, they are used as preconditions and results of 
an action.  

Timeless predicates are predicates that are true at all 
times. Therefore, they cannot appear as a result of an 
action unless they also appear among its preconditions. In 
other words, timeless predicates are not affected by any 
actions available to the planner.  

Actions enable transitions between successive 
situations. An action declaration mentions the parameters 
and variables involved, as well as the preconditions that 
must hold for the action to be applied. PDDL offers two 
choices when it comes to defining the results of the 
action: The results can either be a list of predicates called 
effects, or an expansion, but not both at the same time. 
The effects, which can be both conditional and 
universally quantified, express how the world situation 
changes after the action is applied. More specifically, 
inspired by the STRIPS formalism, the effects include the 
predicates that will be added to the world state and the 
predicates that will be removed from the world state.  

Axioms, in contrast to actions, state relationships 
among propositions that hold within the same situation. 
The necessity of axioms arises from the fact that the 
action definitions do not mention all the changes in all 
predicates that might be affected by an action. Therefore, 
additional predicates are concluded by axioms after the 



application of each action. These are called derived 
predicates, as opposed to primitive ones. In more recent 
versions of the language the notion of derived predicates 
has replaced axioms, but the general idea described 
remains the same.  

Safety constraints in PDDL are background goals 
which may be broken during the planning process, but 
ultimately they must be restored. Constraint violations 
present in the initial situation do not require to be fulfilled 
by the planner.  

Finally, in PDDL, we can add axioms and action 
expansions modularly using the construct addendum. 

After having defined a planning domain, problems can 
be defined with respect to it. A problem definition in 
PDDL must specify an initial situation and a final 
situation, referred to as goal. The initial situation can be 
specified either by name, or as a list of literals assumed to 
be true, or a combination of both. In the last case, literals 
are treated as effects; therefore they are added to the 
initial situation stated by name. Again, the closed-world 
assumption holds, unless stated otherwise. Therefore, all 
predicates which are not explicitly defined to be true in 
the initial state are assumed to be false. The goal can be 
either a goal description, using function-free first order 
predicate logic, including nested quantifiers, or an 
expansion of actions, or both. The solution given to a 
problem is a sequence of actions which can be applied to 
the initial situation, eventually producing the situation 
stated by the goal description, and satisfying the 
expansion, if there is one.  

PDDL 2.1 [5] was designed to be backward 
compatible with PDDL 1.2, and to preserve its basic 
principles. It was developed by the necessity for a 
language capable of expressing temporal and numeric 
properties of planning domains.  

The first of the extensions introduced were numeric 
expressions. Primitive numeric expressions are values of 
functions which associate tuples of domain objects. 
Further numeric expressions can be constructed using 
primitive ones and arithmetic operators. In order to 
support numeric expressions, new elements were added to 
the language. Functions are now part of domain 
definition. As mentioned above, they associate a number 
of objects with an arithmetic value. Moreover, conditions 
were introduced, which are actually comparisons between 
pairs of numeric expressions. Finally, assignment 
operations are possible, with the use of built-in 
assignment operators such as assign, increase and 
decrease. The actual value for each combination of 
objects given by the functions is not stated in the domain 
definition but must be provided to the planner in the 
problem definition.  

A further extension to PDDL facilitated by numeric 
expressions is plan metrics. Plan metrics specify the way 
a plan should be evaluated, when a planner is searching 

not for any plan, but for the optimal plan according to 
some metric.  

 Other extensions in this version include durative 
actions, both discretised and continuous. Up to now, 
actions were considered instantaneous. Durative actions, 
as the term implies, have a duration which is declared 
along with their definition. Furthermore, as far as 
discretised durative actions are concerned, temporal 
annotations are introduced to their conditions and effects. 
A condition can be annotated to hold at the start of the 
interval, at the end of the interval, or all over the interval 
during which the action lasts. An effect can be annotated 
as immediate, that is, takes place at the start of the 
interval, or delayed, that is, takes place at the end of the 
interval.  

In PDDL 3.0 [6] the language was enhanced with 
constructs that increase its expressive power regarding the 
plan quality specification. The constraints and goals are 
divided into strong, which must be satisfied by the 
solution, and soft, which may not be satisfied, but are 
desired.  
 
4. The Visual Language 
 

VLEPpO (Visual Language for Enhanced Planning 
Problem Orchestration) is an integrated system for 
visually designing and solving planning problems, 
implemented in Java. It offers an efficient and easy-to-use 
graphical interface, as well as compatibility and 
interoperability with PDDL. The main goal during the 
implementation of the graphical component of the tool 
was to keep the interface as simple and efficient as 
possible, but, at the same time, represent accurately the 
features of PDDL. The range of PDDL elements that can 
be represented in the tool is quite wide, and covers the 
elements that are used more frequently in contemporary 
planning domains and problems. In the following, the 
features of the tool will be discussed in more detail.  

 
4.1. The Entity – Relation Model 
 

The entity – relation model is used to design the 
structure of data in a system. Our visual tool employs this 
well-known formalism, adapting it to PDDL. Therefore, 
the entities in a planning domain described in PDDL are 
the objects of the domain, while the relations are the 
predicates. These elements are represented visually in the 
tool by various shapes and connections between them.  

A class of objects in the tool is represented visually by 
a colored circle. A class in PDDL represents a type of 
domain objects or action parameters. From a class the 
user can create parameters of this type in operators, and 
objects of this type in problems, by dragging and 
dropping a class on an operator or problem, respectively. 



The type of a parameter or object is denoted by their 
color, which is the same as the corresponding class.  

Consider the gripper domain for example, where there 
is a robot with N grippers that moves in a space, 
composed of K rooms that are all connected with each 
other. All the rooms are modeled as points and there are 
connections between each pair of points and therefore the 
robot is able to reach all rooms starting from any one of 
them with a simple movement. In the gripper domain 
there are L numbered balls which the robot must carry 
from their initial position to their destination. 

Following a simple analysis the domain described 
above can be encoded using four classes: robot, gripper, 
room and ball. However, since the domain does not 
support the existence of multiple robots, the one robot can 
be implicitly defined and therefore there is no need for a 
robot class. The three remaining classes are represented in 
VLEPpO using three colored circles as outlined in Figure 
1. 

 

 
Figure 1. The classes in Gripper domain. 

 
A relation is represented by a colored rectangle with 

black outline. A relation corresponds to a domain 
predicate in PDDL and it is used for defining connections 
among classes. The relations in PDDL and therefore in 
VLEPpO are of various arities. Unary relations are 
usually used to define properties of classes that can be 
modeled as binary expressions that are either true or false 
(e.g. closed(Door1)).  

If at least one pair of class and relation is present in the 
domain, the user can add connections between them. Each 
connection represents an argument of a relation, and the 
class shows the type of this argument. A relation may 
have as many arguments as the user wishes, of any type 
the user wishes. The arguments are ordered according to 
the numbers on each connection, because this ordering is 
important to PDDL.  

The Gripper domain has four relations, as depicted in 
Figure 2: a) at-robbot, which specifies the position of the 
robot and it is connected only with one instance of room, 
b) at which specifies the room in which each ball resides 
+and therefore is connected with an instance of ball and 
an instance of room, c) holding which defines the 
alternative position of a ball, i.e it is held by the robot and 
therefore it is connected with an instance of ball and an 
instance of gripper and d) empty which is connected only 
with an instance of gripper and states that the current 
gripper does not hold any ball. 

 

 
Figure 2. The relations in the Gripper domain. 

 
Note here that although PDDL requires only the arity 

for each predicate and not the type of objects for the 
arguments, the interface obliges the user to connect each 
predicate with specific object classes and this is used for 
the consistency check of the domain design. According to 
the design of Figure 2, the arity of predicate holding, for 
example, is two and the specific predicate can only be 
connected with one object of class ball and one object of 
class gripper. 

The aforementioned elements, classes, relations and 
connections combined together form the entity – relation 
model of the data for the planning domain the user is 
dealing with.  

 
4.2. Representing Operators 
 
Operators have direct correspondence to PDDL 

actions, which enable transitions between successive 
situations. The main parts of the operator definition are its 
preconditions and results, as well as the parameters. 
Preconditions include the predicates that must hold for the 
action to be applied. Results are the predicates that will be 
added or removed from the world state after the 
application of the action. Operators in the visual tool are 
represented by light blue resizable rectangles in the 
Operator Editor, comprised by three columns. The left 
column holds the preconditions, the right column holds 
the effects, and the middle one the parameters. 

Dragging and dropping a relation on an operator will 
add the predicate to the preconditions or effects, 
depending on which half of the operator the shape was 
dropped on. Parameters can be created in operators by 
dropping classes on them. Adding a connection in the 
ontology enables the user to add corresponding 
connections in the operators. Other elements that can be 
imported in operators will be discussed in more detail in 
the section about advanced features.  

For example, in the gripper domain there are three 
operators: a) move which allows the robot to move 
between rooms, b) pick which is used in order to lift a ball 
using a gripper and c) drop which is the direct opposite of 
pick and is used to leave a ball on the ground 

 



 
Figure 3. The operators in the Gripper domain. 

 
The default view for an operator is in preconditions / 

results view which follows a declarative schema that is 
different from the classical STRIPS/PDDL approach. 
However, there is a direct way to transform definitions 
from one approach to the other.  

Although the preconditions/results view is more 
appropriate for visualizing operators, the system gives the 
user the option to use the classical add/delete view. If 
selected, the column on the left, as before, shows the 
preconditions that must hold for the action to be executed, 
but the column on the right shows the facts that will be 
added and deleted from the current state of the world 
upon the execution of the action.  

 

 
Figure 4. Pick operator in add/delete lists view. 

 
Consider for example the Pick operator of the Gripper 

domain. According to the STRIPS formation, the operator 
is defined by the following three lists as depicted in 
Figure 4:  

prec={empty(GripperObj1),at-robot(RoomObj1), 
at(BallObj1,RoomObj1)} 

add={holding(GripperObj1,BallObj1)} 
del={empty(GripperObj1),at(BallObj1,RoomObj1)} 
The equivalent operator in Preconditions/Results view 

is presented in Figure 5. 
 

 
Figure 5. Pick operator in preconditions / results view. 

 
4.3. Representing Problems 
 
For every domain defined in PDDL a large number of 

problems that correspond to this domain can also be 
defined. Problem definitions state an initial and a goal 
situation, and the task of a planner is to find a sequence of 
operators that, if applied to the initial situation, will 
provide the goal situation. The problem shape in the 
visual tool is much like an operator in form, but different 
semantically. It is represented by a three-column resizable 
rectangle in the Problem Editor. Left column holds the 
predicates in the initial state, right column holds the 
predicates in the goal state, and middle column holds the 
objects that take part in the problem definition.  

Figure 6 presents a problem instance of the gripper 
domain, which contains two rooms (Bedroom and 
Kitchen), one ball (Ball1) and the robot has two grippers 
(rightGripper and leftGripper). The initial state of the 
problem defines the starting locations of the robot and the 
ball (Kitchen and Bedroom respectively) and that both 
grippers are free. The goals specify that the destination of 
both the ball and the robot is the kitchen. 

4.4. Advanced Features 
 
The basic PDDL features described above are 

adequate for simple planning domains and problems. 
However, the language has many more features divided 
into subsets referred to as requirements. An effort has 
been made in order for the visual tool to embody the most 
important of them.  

An advanced design element offered by the system, 
which has direct representation in PDDL, is a constant. 
The constant is visually represented similarly to a class, 
but it is enhanced with a red circle around it to 
discriminate it from a class. The constant must be of a 
type, and the tool enables the user to drag and drop it on a 
class to denote that. Constants can be used either in an 
operator or in a problem, where it behaves similar to a 
parameter or an object, respectively.  

 

 
Figure 6. A Problem instance of the Gripper domain. 
 
A derived predicate is another advanced PDDL feature 

that is represented by a group of design elements in the 
visual tool. The term refers to predicates that are not 



affected by operators, but they are derived using a set of 
rules by other relations. Derived predicates existed in the 
first version of the PDDL language under the name 
“axioms”. Visually, they are represented by a rounded 
rectangle with a specific color, but they are not complete 
unless they are enhanced with an and/or tree that indicates 
the way they are derived by other relations. Consequently, 
AND, OR and NOT nodes for the construction of the tree 
are also offered as design elements. In the current 
implementation, AND and OR nodes are binary, that is, 
they accept only two possible arguments, while NOT 
node is by default unary. Each of the node arguments can 
be either another node of any type, or a relation.  

 

 
Figure 7. A derived predicate with AND/OR tree. 

Among the advanced features is the option to indicate 
that a predicate is timeless, that is, the predicate is true at 
all times. This operation involves a lot of validity checks, 
which will be explained in the corresponding paragraph.  

Another PDDL feature incorporated in the tool are 
numerical expressions. In order for numerical expressions 
to function properly, the definition of a number of other 
elements is involved. Consequently, a combination of 
design elements in each frame is used. First of all, in the 
ontology frame the user can import functions. They are 
represented by rectangles with double outline. These 
functions may or may not have arguments. As with 
simple relations, functions can be dragged on operators. 
However, in order to appear in the PDDL description of 
an operator, they must be involved in a condition or in an 
assignment. The next step is to actually import conditions 
and assignments which involve these functions in the 
operator. In that case, a dialog box appears facilitating the 
import of a condition or an assignment, by showing all 
the available options that the user can select among. 
Furthermore, for each function imported in the tool, a 
new rectangle appears in the problem frame, which 
corresponds to this function. This rectangle is used to 
declare the initial values of the function for the problem at 
hand. 

Moreover, the system supports discretised durative 
actions. The definition of such a durative action includes 
setting the duration of an operator, in combination with 
temporal annotations. In this case, the action is considered 
to last a specific period of time, which can be specified by 
right click on the operator. The preconditions can be 
specified to hold at the beginning of this period, at the 
end of this period, or all over the period (combination of 

these choices is also possible). Effects can be immediate, 
that is, happen at the beginning of the action, or delayed, 
that is happen at the end of the action.  

 

 
Figure 8. An example of a durative action. 

 
Finally, a very useful element for problem designing is 

maps. Maps represent a special kind of relations that have 
exactly two arguments of the same type, and are expected 
to have many instances in the initial state of a problem. 
For each relation that fulfills these conditions a map can 
be created. Objects which take part in the instances of the 
relation can then be dragged on the map, and connections 
can be created between them. Each of these connections 
represents an instance of the relation that the map 
corresponds to. In conclusion, maps express a part of the 
initial state of the world, thus making the problem shape 
more readable. The use of maps is not mandatory, as the 
same relations can be simply represented in the problem 
shape. 

 

 
Figure 9. An map for the relation connected(C1, C2). 
 
4.5. Syntax and Validity Checking 
 
A very important aspect in every tool for designing 

and editing planning domains is syntax and validity 
checking. Planning domains have to be checked for 
consistency within their own structures, and planning 
problems have to be checked for consistency and 
correspondence to the related domains. This visual tool 
attempts to detect inconsistencies at the moment they are 
created and notify the user about them, before they 
propagate in the domain. In the remainder of this 
paragraph several examples will be given, in order to 
illustrate the validity checking processes of the system.  

Whenever the user attempts to insert a new connection 
in an operator or in a problem, necessary checks are 
performed and if a corresponding connection cannot be 
found in the ontology an appropriate error message is 
shown. Special care must be taken to verify that the types 



of parameters and objects match to the types of arguments 
of the predicates.  

As already mentioned, the system supports timeless 
predicates, which are, by definition, true at all times. 
Therefore, they are allowed to appear in the preconditions 
of an operator, but not in the add or delete lists. As a 
consequence, if the user tries to add a timeless predicate 
in the preconditions part of an operator, it will 
automatically appear in the effects part, so the add and 
delete lists will not be affected. Furthermore, if the user 
tries to set a predicate timeless, checks will be performed 
to determine if this operation is allowed. Finally, timeless 
predicates are not allowed to appear in a problem. In all 
above cases, error messages occur in order to warn the 
user and help them correct the domain inconsistencies.  

Another example is that of constants. Checks are 
performed to confirm that the class of a constant has 
already been defined before the user attempts to use the 
constant in an operator or a problem. Furthermore, 
additional checks are performed about the types of 
arguments, similar to those performed for simple objects.  

 
4.6. Translation to and from PDDL 
 
The capability to export the domains and problems 

designed in the tool to PDDL constitutes another 
important feature. All of the design elements that the user 
has imported in the domain, such as predicates and 
operators, along with comments, are exported to a PDDL 
file, which is enhanced with the appropriate requirements 
tag. The user is offered the option to use typing, therefore, 
the same domain can produce two different PDDL files, 
one with the :typing requirement and one without it. 
Details about exporting are presented in the remainder of 
the paragraph.  

Despite the fact that a class in the visual tool always 
represents the same notion, that is, the type of domain 
objects or parameters, it takes different forms when it 
comes to exporting the domain. In case the requirement 
typing is declared, the class name is included in the 
(:types ) construct of the domain definition, and for each 
object, parameter and constant a type must be declared. In 
case typing is not used, classes are treated as timeless 
unary predicates, that is, predicates that are always true 
and appear in the corresponding part of the domain 
definition. In addition, for each parameter in an operator, 
a precondition that denotes the type of the parameter must 
be added in the PDDL definition, although it does not 
apper visually in the tool. Likewise, for each object, a 
new initial literal denoting the type of this object must be 
included in the problem definition. 

The elements in the Ontology Editor are combined 
together in order to formulate the domain constructs in 
the syntax that the language imposes. For example, 
relations, connections and, if typing is used, classes are 

combined to formulate the predicates construct. Likewise, 
functions and derived predicates constructs are formed. 
As far as constants are concerned, they may appear in the 
place of parameters in operators and objects in problems, 
and they also appear in the special construct (:constants ) 
in the domain definition.  

Exporting the operators is quite more complicated, 
because a combination of several elements of the 
Operator Editor and the Ontology Editor is needed. Slight 
changes occur to an operator definition depending on 
whether the :typing requirement is declared.  

Finally, exporting the problems is quite similar to 
exporting the operators, but the problems are stored in a 
different PDDL file. Therefore, numerous problems can 
be defined for the same domain. If maps are used, care 
must be taken to include the information they embody in 
the list of predicates included in the initial state. 
Furthermore, if functions are used, their initial values 
provided by the user in the Problem Editor will be part of 
the declaration of the initial state of the problem, in the 
corresponding construct. 

The visual tool also offers the feature of importing 
planning domains and problems expressed in PDDL, 
visualizing them, and thus enabling the user to manipulate 
them. However, importing PDDL is subject to some 
restrictions. The most important is that the domains and 
problems must declare the :typing requirement. If no 
typing is used, syntax is not enough, and semantic 
information is necessary in order to discriminate types of 
objects from unary predicates.   

 
 
 
4.7. Interface with Planning Systems 
 
As the tool is intended to be an integrated system not 

only for designing but for solving planning problems as 
well, an interface with planning systems is necessary. 
This is achieved by providing the ability to discover and 
communicate with web services which offer 
implementations of various planning algorithms. 
Therefore, a dynamic web service client has been 
developed as a subsystem. The requirement for flexibility 
in selecting and invoking a web service justifies the 
decision to implement a dynamic client instead of a static 
one. Therefore, the system can exploit alternative 
planning web services according to the problem at hand, 
as well as cope with changes in the definitions of these 
web services.  

The communication with the web services is 
performed by means of exchanging SOAP messages, as 
the web service paradigm dictates. However, in a higher 
level, the communication is facilitated by the use of the 
PDDL language, which constitutes the common ground 
between the visual tool and the planners. An additional 



advantage of using PDDL is that the visual tool is 
released by the obligation to determine the PDDL features 
that a planner can handle, thus leaving each planning 
system to decide for itself.  

The employment of web services technology for 
implementing the interface results in the independency of 
the visual tool from the planning or problem solving 
module. Such a decoupling is essential since new 
planning systems which outperform the current ones are 
being developed. Each of them can be exposed as a web 
service and then invoked for solving a planning problem 
without any further changes to the visual tool or the 
domains and problems already designed and exported as 
PDDL files. 
 
5. Conclusions and Future Work 
 

In this paper a visual tool for defining planning 
domains and problems was proposed. The tool offers an 
efficient user interface, as well as interoperability with 
PDDL, the standard language for planning domain 
definition. The elements represented in the tool cover a 
wide range of the language, while the user is significantly 
facilitated by the validity checks performed during the 
design process. The use of the tool is not confined to 
designing planning problems, but the ability to solve them 
by invoking planners implemented as web services is 
offered as well. Therefore, the tool is considered an 
integrated system for designing and solving planning 
problems.  

Out future goals include the extension of the tool in 
order to represent even more complex PDDL language 
elements, as well as other planning approaches, such as 
HTN (Hierarchical Task Network) planning. Such an 
extension is believed to broaden the range of real world 
problems that can be represented and solved by the tool. 
Visual representation of produced plans, along with plan 
metrics are also among our imminent goals.  
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