

VLEPpO: A Visual Language for Problem Representation

Ourania Hatzi1, Dimitris Vrakas2, Nick Bassiliades2, Dimosthenis Anagnostopoulos1 and
Ioannis Vlahavas2

1Department of Geography, Harokopio University of Athens, Athens, Greece
{raniah, dimosthe}@hua.gr

2Dept. Of Informatics, Aristotle University Of Thessaloniki, Thessaloniki, 54124, Greece
{dvrakas, nbassili, vlahavas}@csd.auth.gr

Abstract

AI planning constitutes a field of interest as its

techniques can be applied to many areas. Contemporary
systems that are being developed deal with certain
aspects of planning and mainly focused on dealing with
advanced features such as resources, time and numerical
expressions. This paper presents VLEPpO, a Visual
Language for Enhanced Planning problem Orchestration.
VLEPpO is a visual programming environment that allow
the user to easily define domains and problems and
acquire solutions, utilizing web services infrastructure.

1. Introduction

AI planning has been an active research field for a
long time, and its applications are manifold. A great
number of techniques and systems have been proposed
during this period in order to accommodate designing and
solving of planning domains and problems. In addition,
various formalisms and languages have been developed
for the definition of these domains, with Planning
Domain Definition Language (PDDL) [4][5][6] being
dominant among them.

Research among contemporary planning systems has
revealed a lack of appropriate integrated visual
environments for representing accurately PDDL elements
and structures, and consequently using these structures to
produce quality plans. This provided the motivation for
the work presented in this paper.

The proposed visual tool is intended to cover the need
for such an environment by providing an easy to use,
efficient graphical user interface, as well as
interoperability with planning systems implemented as
web services. The elements offered in the interface
correspond to PDDL elements and structures, making the
representation of most contemporary planning domains
possible. Furthermore, importing and exporting to PDDL
features are provided as well. Drag and drop operations

along with validity checks make the use of the
environment easy even for users not particularly familiar
with the language.

The rest of the paper is organized as follows: Section
2 reviews related work in the field by presenting several
planning systems, while Section 3 discusses the eminent
formalisms for representing planning domains and
problems. Section 4 presents our visual tool and
demonstrates its use through examples, and finally,
Section 5 concludes and discusses future goals.

2. Related Work

There have been a few experimental efforts to
construct general-purpose tools which offer user
interfaces for defining planning domains and problems, as
well as executing planners which provide solutions to the
problems.

The GIPO system [1] is based on an object-centric
view of the world. The main idea behind it is the notion
of change in the state of objects throughout plan
execution. Therefore, the domains are modeled by
describing the possible changes to the objects existing in
the domain. The GIPO system is designed to work with
both classical and HTN domains. In both cases, it offers
graphical editors for domain creation, planners, animators
for the derived plans and validation tools. The domain
models are represented mainly in an internal
representation language called OCL, which is object
oriented, in accordance with the GIPO system.
Translators from and to PDDL have been developed,
which cover only a few parts of the language (typed /
conditional PDDL).

SIPE-2 [2] is another system for interactive planning
and execution of the derived plans. As it is designed to be
performance-oriented, it embodies many heuristics for
increased efficiency. Another useful feature is the plan
execution monitoring, which enables the user to feed new
information to the system in case there is some change in
the world. In addition, the system offers graphical

interfaces for knowledge acquisition and representation,
as well as plan visualization. SIPE-2 is an elaborate
system with a wide range of capabilities. However, it uses
the ACT formalism, which is quite complicated and does
not correspond directly to PDDL, although PDDL
descended partially from this formalism, but also from
other formalisms such as ADL. Therefore, there is no way
to easily use a PDDL file to construct a domain in SIPE-
2, or export the domain or problem to PDDL.

ASPEN is an environment for automated planning and
scheduling. It is an object-oriented system targeted to
space mission operations. Its features include an
expressive constraint modeling language which is used
for defining the application domain, systems for defining
activity requirements and resource constraints, as well as
temporal constraints. In addition, a graphical user
interface is included, but its use in confined to visualizing
plans and schedules, in systems where the problem
solving process is interactive.

ASPEN was developed for the specific purposes of
space mission operations and therefore, it has only a few
vague correspondences to PDDL. Furthermore, it does
not offer a graphical interface for creating the planning
domains.

In conclusion, although the above systems are useful,
none of them offers direct visual representation of PDDL
elements, a feature which would make the design very
efficient for the users already familiar with the language.
Moreover, even the systems which offer translation to
PDDL do not cover important features of the language. It
should be mentioned that a couple of other systems exist
which provide user interfaces but are not mentioned here
because they are developed for specific purposes.

The VLEPpO tool is based on ViTAPlan [3] a
visualization environment for planning based on the
HAPRC planning system. VLEPpO extends ViTAPlan in
numerous ways providing the user with visualization
capabilities for most of the advanced features of PDDL
[6] and a more accurate and expressive visual language.

3. Problem Representation

A crucial step in the process of solving a search
problem is its representation in a formal language. The
choice of the language can significantly affect not only
the comprehensiveness of the representation but also the
efficiency of the solver. The PDDL language is nowadays
the standard for representing planning problems. PDDL is
based on the STRIPS [7] formalism.

3.1. The PDDL Definition Language

PDDL [4] stands for Planning Domain Definition

Language. Although it was initially designed for planning

competitions such as AIPS and IPC, it has become a
standard in the planning community for modeling
planning domains. PDDL focuses on expressing the
physical properties of the domain that we consider in each
planning problem, such as the available predicates and
actions. At the same time, there are no structures to
provide the planner with advice, that is, guidelines about
how to search the solution space, although extended
notation may be used, depending on the planner.

Each domain definition in PDDL consists of several
declarations, which include types of entities, variables,
constants, literals that are true at all times called timeless,
and predicates. In addition, there are declarations of
actions, axioms and safety constraints. These elements are
explained in the following paragraphs.

Variables have the same semantics as in any other
definition language, and are used in conjunction with
built-in functions for expression evaluation. In more
recent versions of PDDL, fluents seem to gain momentum
instead of variables when there is a need for values that
can change over time, as a result of an action.

Constants represent objects that do not change values
and can be used in the domain operators or the problems
associated with a domain.

Relations between objects in the domain are
represented by predicates. A predicate may have an
arbitrary number of arguments. Ordering of these
arguments is important in PDDL. Predicates are used to
describe the state of the world at a specific moment.
Moreover, they are used as preconditions and results of
an action.

Timeless predicates are predicates that are true at all
times. Therefore, they cannot appear as a result of an
action unless they also appear among its preconditions. In
other words, timeless predicates are not affected by any
actions available to the planner.

Actions enable transitions between successive
situations. An action declaration mentions the parameters
and variables involved, as well as the preconditions that
must hold for the action to be applied. PDDL offers two
choices when it comes to defining the results of the
action: The results can either be a list of predicates called
effects, or an expansion, but not both at the same time.
The effects, which can be both conditional and
universally quantified, express how the world situation
changes after the action is applied. More specifically,
inspired by the STRIPS formalism, the effects include the
predicates that will be added to the world state and the
predicates that will be removed from the world state.

Axioms, in contrast to actions, state relationships
among propositions that hold within the same situation.
The necessity of axioms arises from the fact that the
action definitions do not mention all the changes in all
predicates that might be affected by an action. Therefore,
additional predicates are concluded by axioms after the

application of each action. These are called derived
predicates, as opposed to primitive ones. In more recent
versions of the language the notion of derived predicates
has replaced axioms, but the general idea described
remains the same.

Safety constraints in PDDL are background goals
which may be broken during the planning process, but
ultimately they must be restored. Constraint violations
present in the initial situation do not require to be fulfilled
by the planner.

Finally, in PDDL, we can add axioms and action
expansions modularly using the construct addendum.

After having defined a planning domain, problems can
be defined with respect to it. A problem definition in
PDDL must specify an initial situation and a final
situation, referred to as goal. The initial situation can be
specified either by name, or as a list of literals assumed to
be true, or a combination of both. In the last case, literals
are treated as effects; therefore they are added to the
initial situation stated by name. Again, the closed-world
assumption holds, unless stated otherwise. Therefore, all
predicates which are not explicitly defined to be true in
the initial state are assumed to be false. The goal can be
either a goal description, using function-free first order
predicate logic, including nested quantifiers, or an
expansion of actions, or both. The solution given to a
problem is a sequence of actions which can be applied to
the initial situation, eventually producing the situation
stated by the goal description, and satisfying the
expansion, if there is one.

PDDL 2.1 [5] was designed to be backward
compatible with PDDL 1.2, and to preserve its basic
principles. It was developed by the necessity for a
language capable of expressing temporal and numeric
properties of planning domains.

The first of the extensions introduced were numeric
expressions. Primitive numeric expressions are values of
functions which associate tuples of domain objects.
Further numeric expressions can be constructed using
primitive ones and arithmetic operators. In order to
support numeric expressions, new elements were added to
the language. Functions are now part of domain
definition. As mentioned above, they associate a number
of objects with an arithmetic value. Moreover, conditions
were introduced, which are actually comparisons between
pairs of numeric expressions. Finally, assignment
operations are possible, with the use of built-in
assignment operators such as assign, increase and
decrease. The actual value for each combination of
objects given by the functions is not stated in the domain
definition but must be provided to the planner in the
problem definition.

A further extension to PDDL facilitated by numeric
expressions is plan metrics. Plan metrics specify the way
a plan should be evaluated, when a planner is searching

not for any plan, but for the optimal plan according to
some metric.

 Other extensions in this version include durative
actions, both discretised and continuous. Up to now,
actions were considered instantaneous. Durative actions,
as the term implies, have a duration which is declared
along with their definition. Furthermore, as far as
discretised durative actions are concerned, temporal
annotations are introduced to their conditions and effects.
A condition can be annotated to hold at the start of the
interval, at the end of the interval, or all over the interval
during which the action lasts. An effect can be annotated
as immediate, that is, takes place at the start of the
interval, or delayed, that is, takes place at the end of the
interval.

In PDDL 3.0 [6] the language was enhanced with
constructs that increase its expressive power regarding the
plan quality specification. The constraints and goals are
divided into strong, which must be satisfied by the
solution, and soft, which may not be satisfied, but are
desired.

4. The Visual Language

VLEPpO (Visual Language for Enhanced Planning
Problem Orchestration) is an integrated system for
visually designing and solving planning problems,
implemented in Java. It offers an efficient and easy-to-use
graphical interface, as well as compatibility and
interoperability with PDDL. The main goal during the
implementation of the graphical component of the tool
was to keep the interface as simple and efficient as
possible, but, at the same time, represent accurately the
features of PDDL. The range of PDDL elements that can
be represented in the tool is quite wide, and covers the
elements that are used more frequently in contemporary
planning domains and problems. In the following, the
features of the tool will be discussed in more detail.

4.1. The Entity – Relation Model

The entity – relation model is used to design the
structure of data in a system. Our visual tool employs this
well-known formalism, adapting it to PDDL. Therefore,
the entities in a planning domain described in PDDL are
the objects of the domain, while the relations are the
predicates. These elements are represented visually in the
tool by various shapes and connections between them.

A class of objects in the tool is represented visually by
a colored circle. A class in PDDL represents a type of
domain objects or action parameters. From a class the
user can create parameters of this type in operators, and
objects of this type in problems, by dragging and
dropping a class on an operator or problem, respectively.

The type of a parameter or object is denoted by their
color, which is the same as the corresponding class.

Consider the gripper domain for example, where there
is a robot with N grippers that moves in a space,
composed of K rooms that are all connected with each
other. All the rooms are modeled as points and there are
connections between each pair of points and therefore the
robot is able to reach all rooms starting from any one of
them with a simple movement. In the gripper domain
there are L numbered balls which the robot must carry
from their initial position to their destination.

Following a simple analysis the domain described
above can be encoded using four classes: robot, gripper,
room and ball. However, since the domain does not
support the existence of multiple robots, the one robot can
be implicitly defined and therefore there is no need for a
robot class. The three remaining classes are represented in
VLEPpO using three colored circles as outlined in Figure
1.

Figure 1. The classes in Gripper domain.

A relation is represented by a colored rectangle with

black outline. A relation corresponds to a domain
predicate in PDDL and it is used for defining connections
among classes. The relations in PDDL and therefore in
VLEPpO are of various arities. Unary relations are
usually used to define properties of classes that can be
modeled as binary expressions that are either true or false
(e.g. closed(Door1)).

If at least one pair of class and relation is present in the
domain, the user can add connections between them. Each
connection represents an argument of a relation, and the
class shows the type of this argument. A relation may
have as many arguments as the user wishes, of any type
the user wishes. The arguments are ordered according to
the numbers on each connection, because this ordering is
important to PDDL.

The Gripper domain has four relations, as depicted in
Figure 2: a) at-robbot, which specifies the position of the
robot and it is connected only with one instance of room,
b) at which specifies the room in which each ball resides
+and therefore is connected with an instance of ball and
an instance of room, c) holding which defines the
alternative position of a ball, i.e it is held by the robot and
therefore it is connected with an instance of ball and an
instance of gripper and d) empty which is connected only
with an instance of gripper and states that the current
gripper does not hold any ball.

Figure 2. The relations in the Gripper domain.

Note here that although PDDL requires only the arity

for each predicate and not the type of objects for the
arguments, the interface obliges the user to connect each
predicate with specific object classes and this is used for
the consistency check of the domain design. According to
the design of Figure 2, the arity of predicate holding, for
example, is two and the specific predicate can only be
connected with one object of class ball and one object of
class gripper.

The aforementioned elements, classes, relations and
connections combined together form the entity – relation
model of the data for the planning domain the user is
dealing with.

4.2. Representing Operators

Operators have direct correspondence to PDDL

actions, which enable transitions between successive
situations. The main parts of the operator definition are its
preconditions and results, as well as the parameters.
Preconditions include the predicates that must hold for the
action to be applied. Results are the predicates that will be
added or removed from the world state after the
application of the action. Operators in the visual tool are
represented by light blue resizable rectangles in the
Operator Editor, comprised by three columns. The left
column holds the preconditions, the right column holds
the effects, and the middle one the parameters.

Dragging and dropping a relation on an operator will
add the predicate to the preconditions or effects,
depending on which half of the operator the shape was
dropped on. Parameters can be created in operators by
dropping classes on them. Adding a connection in the
ontology enables the user to add corresponding
connections in the operators. Other elements that can be
imported in operators will be discussed in more detail in
the section about advanced features.

For example, in the gripper domain there are three
operators: a) move which allows the robot to move
between rooms, b) pick which is used in order to lift a ball
using a gripper and c) drop which is the direct opposite of
pick and is used to leave a ball on the ground

Figure 3. The operators in the Gripper domain.

The default view for an operator is in preconditions /

results view which follows a declarative schema that is
different from the classical STRIPS/PDDL approach.
However, there is a direct way to transform definitions
from one approach to the other.

Although the preconditions/results view is more
appropriate for visualizing operators, the system gives the
user the option to use the classical add/delete view. If
selected, the column on the left, as before, shows the
preconditions that must hold for the action to be executed,
but the column on the right shows the facts that will be
added and deleted from the current state of the world
upon the execution of the action.

Figure 4. Pick operator in add/delete lists view.

Consider for example the Pick operator of the Gripper

domain. According to the STRIPS formation, the operator
is defined by the following three lists as depicted in
Figure 4:

prec={empty(GripperObj1),at-robot(RoomObj1),
at(BallObj1,RoomObj1)}

add={holding(GripperObj1,BallObj1)}
del={empty(GripperObj1),at(BallObj1,RoomObj1)}
The equivalent operator in Preconditions/Results view

is presented in Figure 5.

Figure 5. Pick operator in preconditions / results view.

4.3. Representing Problems

For every domain defined in PDDL a large number of

problems that correspond to this domain can also be
defined. Problem definitions state an initial and a goal
situation, and the task of a planner is to find a sequence of
operators that, if applied to the initial situation, will
provide the goal situation. The problem shape in the
visual tool is much like an operator in form, but different
semantically. It is represented by a three-column resizable
rectangle in the Problem Editor. Left column holds the
predicates in the initial state, right column holds the
predicates in the goal state, and middle column holds the
objects that take part in the problem definition.

Figure 6 presents a problem instance of the gripper
domain, which contains two rooms (Bedroom and
Kitchen), one ball (Ball1) and the robot has two grippers
(rightGripper and leftGripper). The initial state of the
problem defines the starting locations of the robot and the
ball (Kitchen and Bedroom respectively) and that both
grippers are free. The goals specify that the destination of
both the ball and the robot is the kitchen.

4.4. Advanced Features

The basic PDDL features described above are

adequate for simple planning domains and problems.
However, the language has many more features divided
into subsets referred to as requirements. An effort has
been made in order for the visual tool to embody the most
important of them.

An advanced design element offered by the system,
which has direct representation in PDDL, is a constant.
The constant is visually represented similarly to a class,
but it is enhanced with a red circle around it to
discriminate it from a class. The constant must be of a
type, and the tool enables the user to drag and drop it on a
class to denote that. Constants can be used either in an
operator or in a problem, where it behaves similar to a
parameter or an object, respectively.

Figure 6. A Problem instance of the Gripper domain.

A derived predicate is another advanced PDDL feature

that is represented by a group of design elements in the
visual tool. The term refers to predicates that are not

affected by operators, but they are derived using a set of
rules by other relations. Derived predicates existed in the
first version of the PDDL language under the name
“axioms”. Visually, they are represented by a rounded
rectangle with a specific color, but they are not complete
unless they are enhanced with an and/or tree that indicates
the way they are derived by other relations. Consequently,
AND, OR and NOT nodes for the construction of the tree
are also offered as design elements. In the current
implementation, AND and OR nodes are binary, that is,
they accept only two possible arguments, while NOT
node is by default unary. Each of the node arguments can
be either another node of any type, or a relation.

Figure 7. A derived predicate with AND/OR tree.

Among the advanced features is the option to indicate
that a predicate is timeless, that is, the predicate is true at
all times. This operation involves a lot of validity checks,
which will be explained in the corresponding paragraph.

Another PDDL feature incorporated in the tool are
numerical expressions. In order for numerical expressions
to function properly, the definition of a number of other
elements is involved. Consequently, a combination of
design elements in each frame is used. First of all, in the
ontology frame the user can import functions. They are
represented by rectangles with double outline. These
functions may or may not have arguments. As with
simple relations, functions can be dragged on operators.
However, in order to appear in the PDDL description of
an operator, they must be involved in a condition or in an
assignment. The next step is to actually import conditions
and assignments which involve these functions in the
operator. In that case, a dialog box appears facilitating the
import of a condition or an assignment, by showing all
the available options that the user can select among.
Furthermore, for each function imported in the tool, a
new rectangle appears in the problem frame, which
corresponds to this function. This rectangle is used to
declare the initial values of the function for the problem at
hand.

Moreover, the system supports discretised durative
actions. The definition of such a durative action includes
setting the duration of an operator, in combination with
temporal annotations. In this case, the action is considered
to last a specific period of time, which can be specified by
right click on the operator. The preconditions can be
specified to hold at the beginning of this period, at the
end of this period, or all over the period (combination of

these choices is also possible). Effects can be immediate,
that is, happen at the beginning of the action, or delayed,
that is happen at the end of the action.

Figure 8. An example of a durative action.

Finally, a very useful element for problem designing is

maps. Maps represent a special kind of relations that have
exactly two arguments of the same type, and are expected
to have many instances in the initial state of a problem.
For each relation that fulfills these conditions a map can
be created. Objects which take part in the instances of the
relation can then be dragged on the map, and connections
can be created between them. Each of these connections
represents an instance of the relation that the map
corresponds to. In conclusion, maps express a part of the
initial state of the world, thus making the problem shape
more readable. The use of maps is not mandatory, as the
same relations can be simply represented in the problem
shape.

Figure 9. An map for the relation connected(C1, C2).

4.5. Syntax and Validity Checking

A very important aspect in every tool for designing

and editing planning domains is syntax and validity
checking. Planning domains have to be checked for
consistency within their own structures, and planning
problems have to be checked for consistency and
correspondence to the related domains. This visual tool
attempts to detect inconsistencies at the moment they are
created and notify the user about them, before they
propagate in the domain. In the remainder of this
paragraph several examples will be given, in order to
illustrate the validity checking processes of the system.

Whenever the user attempts to insert a new connection
in an operator or in a problem, necessary checks are
performed and if a corresponding connection cannot be
found in the ontology an appropriate error message is
shown. Special care must be taken to verify that the types

of parameters and objects match to the types of arguments
of the predicates.

As already mentioned, the system supports timeless
predicates, which are, by definition, true at all times.
Therefore, they are allowed to appear in the preconditions
of an operator, but not in the add or delete lists. As a
consequence, if the user tries to add a timeless predicate
in the preconditions part of an operator, it will
automatically appear in the effects part, so the add and
delete lists will not be affected. Furthermore, if the user
tries to set a predicate timeless, checks will be performed
to determine if this operation is allowed. Finally, timeless
predicates are not allowed to appear in a problem. In all
above cases, error messages occur in order to warn the
user and help them correct the domain inconsistencies.

Another example is that of constants. Checks are
performed to confirm that the class of a constant has
already been defined before the user attempts to use the
constant in an operator or a problem. Furthermore,
additional checks are performed about the types of
arguments, similar to those performed for simple objects.

4.6. Translation to and from PDDL

The capability to export the domains and problems

designed in the tool to PDDL constitutes another
important feature. All of the design elements that the user
has imported in the domain, such as predicates and
operators, along with comments, are exported to a PDDL
file, which is enhanced with the appropriate requirements
tag. The user is offered the option to use typing, therefore,
the same domain can produce two different PDDL files,
one with the :typing requirement and one without it.
Details about exporting are presented in the remainder of
the paragraph.

Despite the fact that a class in the visual tool always
represents the same notion, that is, the type of domain
objects or parameters, it takes different forms when it
comes to exporting the domain. In case the requirement
typing is declared, the class name is included in the
(:types) construct of the domain definition, and for each
object, parameter and constant a type must be declared. In
case typing is not used, classes are treated as timeless
unary predicates, that is, predicates that are always true
and appear in the corresponding part of the domain
definition. In addition, for each parameter in an operator,
a precondition that denotes the type of the parameter must
be added in the PDDL definition, although it does not
apper visually in the tool. Likewise, for each object, a
new initial literal denoting the type of this object must be
included in the problem definition.

The elements in the Ontology Editor are combined
together in order to formulate the domain constructs in
the syntax that the language imposes. For example,
relations, connections and, if typing is used, classes are

combined to formulate the predicates construct. Likewise,
functions and derived predicates constructs are formed.
As far as constants are concerned, they may appear in the
place of parameters in operators and objects in problems,
and they also appear in the special construct (:constants)
in the domain definition.

Exporting the operators is quite more complicated,
because a combination of several elements of the
Operator Editor and the Ontology Editor is needed. Slight
changes occur to an operator definition depending on
whether the :typing requirement is declared.

Finally, exporting the problems is quite similar to
exporting the operators, but the problems are stored in a
different PDDL file. Therefore, numerous problems can
be defined for the same domain. If maps are used, care
must be taken to include the information they embody in
the list of predicates included in the initial state.
Furthermore, if functions are used, their initial values
provided by the user in the Problem Editor will be part of
the declaration of the initial state of the problem, in the
corresponding construct.

The visual tool also offers the feature of importing
planning domains and problems expressed in PDDL,
visualizing them, and thus enabling the user to manipulate
them. However, importing PDDL is subject to some
restrictions. The most important is that the domains and
problems must declare the :typing requirement. If no
typing is used, syntax is not enough, and semantic
information is necessary in order to discriminate types of
objects from unary predicates.

4.7. Interface with Planning Systems

As the tool is intended to be an integrated system not

only for designing but for solving planning problems as
well, an interface with planning systems is necessary.
This is achieved by providing the ability to discover and
communicate with web services which offer
implementations of various planning algorithms.
Therefore, a dynamic web service client has been
developed as a subsystem. The requirement for flexibility
in selecting and invoking a web service justifies the
decision to implement a dynamic client instead of a static
one. Therefore, the system can exploit alternative
planning web services according to the problem at hand,
as well as cope with changes in the definitions of these
web services.

The communication with the web services is
performed by means of exchanging SOAP messages, as
the web service paradigm dictates. However, in a higher
level, the communication is facilitated by the use of the
PDDL language, which constitutes the common ground
between the visual tool and the planners. An additional

advantage of using PDDL is that the visual tool is
released by the obligation to determine the PDDL features
that a planner can handle, thus leaving each planning
system to decide for itself.

The employment of web services technology for
implementing the interface results in the independency of
the visual tool from the planning or problem solving
module. Such a decoupling is essential since new
planning systems which outperform the current ones are
being developed. Each of them can be exposed as a web
service and then invoked for solving a planning problem
without any further changes to the visual tool or the
domains and problems already designed and exported as
PDDL files.

5. Conclusions and Future Work

In this paper a visual tool for defining planning
domains and problems was proposed. The tool offers an
efficient user interface, as well as interoperability with
PDDL, the standard language for planning domain
definition. The elements represented in the tool cover a
wide range of the language, while the user is significantly
facilitated by the validity checks performed during the
design process. The use of the tool is not confined to
designing planning problems, but the ability to solve them
by invoking planners implemented as web services is
offered as well. Therefore, the tool is considered an
integrated system for designing and solving planning
problems.

Out future goals include the extension of the tool in
order to represent even more complex PDDL language
elements, as well as other planning approaches, such as
HTN (Hierarchical Task Network) planning. Such an
extension is believed to broaden the range of real world
problems that can be represented and solved by the tool.
Visual representation of produced plans, along with plan
metrics are also among our imminent goals.

Acknowledgements

This work was partially supported by a PENED
program (EPAN M.8.3.1, No. 03ΕΔ73), jointly funded by
the European Union and the Greek government (General
Secretariat of Research and Technology).

References

[1] T. L. McCluskey, D. Liu, Ron M. Simpson, “GIPO II: HTN
Planning in a Tool-supported Knowledge Engineering
Environment”, International Conference on Automated Planning
and Scheduling (ICAPS), 2003

[2] Wilkins, D. E., Lee, T. J. and Berry, P., Interactive
Execution Monitoring of Agent Teams, Journal of Artificial
Intelligence Research, 18 (2003), pp. 217-261.

[3] D. Vrakas, I. Vlahavas, “A Visualization Environment for
Planning”, International Journal on Artificial Intelligence
Tools”, Vol. 14 (6), 2005, pp. 975-998, World Scientific.

[4] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram,
A., Veloso, M., Weld, D. and Wilkins, D., "PDDL -- the
planning domain definition language". Technical report, Yale
University, New Haven, CT (1998).

[5] Fox, M. and Long, D., "PDDL2.1: An extension to PDDL
for expressing temporal planning domains". Journal of Artificial
Intelligence Research, 20 (2003), 61-124.

[6] Gerevini, A. and Long, D., "Plan Constraints and
Preferences in PDDL3", Technical Report R.T. 2005-08-47,
Department of Electronics for Automation, University of
Brescia, Italy.

[7] Fikes, R. and Nilsson, N. J., STRIPS: A new approach to the
application of theorem proving to problem solving, Artificial
Intelligence, Vol 2 (1971), 189-208.

