
The Journal of Systems and Software 117 (2016) 130–152

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

DISARM: A social distributed agent reputation model based

on defeasible logic

Kalliopi Kravari , Nick Bassiliades ∗

Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 15 August 2015

Revised 12 February 2016

Accepted 13 February 2016

Available online 2 March 2016

Keywords:

Multi-agent systems

Distributed trust management

Defeasible reasoning

a b s t r a c t

Agents act in open and thus risky environments with limited or no human intervention. Making the

appropriate decision about who to trust in order to interact with is not only necessary but it is also

a challenging process. To this end, trust and reputation models, based on interaction trust or witness

reputation, have been proposed. Yet, they are often faced with skepticism since they usually presup-

pose the use of a centralized authority, the trustworthiness and robustness of which may be questioned.

Distributed models, on the other hand, are more complex but they are more suitable for personalized

estimations based on each agent’s interests and preferences. Furthermore, distributed approaches allow

the study of a really challenging aspect of multi-agent systems, that of social relations among agents. To

this end, this article proposes DISARM, a novel distributed reputation model. DISARM treats Multi-agent

Systems as social networks, enabling agents to establish and maintain relationships, limiting the disad-

vantages of the common distributed approaches. Additionally, it is based on defeasible logic, modeling

the way intelligent agents, like humans, draw reasonable conclusions from incomplete and possibly con-

flicting (thus inconclusive) information. Finally, we provide an evaluation that illustrates the usability of

the proposed model.

© 2016 Elsevier Inc. All rights reserved.

i

s

s

d

m

i

a

T

r

r

t

v

a

a

e

m

a

a
1. Introduction

Intelligent Agents (IAs) act in open and thus risky environ-

ments, hence making the appropriate decision about the degree

of trust that can be invested in a certain partner is vital yet re-

ally challenging (Ramchurn et al., 2004). Over the last few years,

scientific research in this field has significantly increased. Most re-

searchers tend to consider trust and reputation as key elements

in the design and implementation of modern multi-agent systems

(MASs). However, there is still no single, accepted definition of

trust within the research community, although it is generally de-

fined as the expectation of competence and willingness to perform

a given task. Broadly speaking, trust has been defined in a number

of ways in the literature, depending on the domain of use. Among

these definitions, there is one that can be used as a reference point

for understanding trust, provided by Dasgupta (Dasgupta, 20 0 0).

According to Dasgupta, trust is a belief an agent has that the other

party will do what it says it will (being honest and reliable) or re-

ciprocate (being reciprocative for the common good of both), given

an opportunity to defect to get higher payoffs.
∗ Corresponding author. Tel: +30 2310997913; fax: +30 2310998419.

E-mail addresses: kkravari@csd.auth.gr (K. Kravari), nbassili@csd.auth.gr

(N. Bassiliades).

a

y

a

m

http://dx.doi.org/10.1016/j.jss.2016.02.016

0164-1212/© 2016 Elsevier Inc. All rights reserved.
Trust, however, is much more than that; the uncertainties found

n the modern MASs present a number of new challenges. More

pecifically, MASs are open used to model distributed systems,

ometimes large-scaled, which means that the agents represent

ifferent stakeholders that are likely to be self-interested and

ight not always complete tasks requested from them. Moreover,

n an open system, usually no central authority can control all the

gents, which means that agents can join and leave at any time.

he problem is that this allows agents to change their identity and

e-enter, avoiding punishment for any past mistakes. One, more,

isky feature of open systems is that when an agent first enters

he system has no information about the other agents in that en-

ironment. Given this, the agent is likely to be faced with a large

mount of possible partners with a different degree of efficiency

nd/or effectiveness.

Systems that present these challenges can be found in a vari-

ty of domains. For example, as ambient intelligence is becoming

ore widespread, sensors and smart devices are included more

nd more often in new buildings and vehicles. Technologies and

pplications for green growth, such as smart buildings and grids,

ttracted the attention of researchers and industry over the last

ears. In this context, applications in a number of fields have been

lready developed and used. Transportation and logistics, environ-

ental monitoring and energy control systems are just some of

http://dx.doi.org/10.1016/j.jss.2016.02.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.02.016&domain=pdf
mailto:kkravari@csd.auth.gr
mailto:nbassili@csd.auth.gr
http://dx.doi.org/10.1016/j.jss.2016.02.016

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 131

t

n

o

h

r

a

i

s

s

m

b

a

s

f

c

2

a

a

d

t

r

a

g

w

t

f

o

t

a

b

w

h

t

e

w

B

l

t

m

t

R

m

M

t

m

t

t

l

i

T

t

t

e

b

c

m

o

w

w

r

s

r

f

e

w

t

t

o

i

s

o

r

b

t

H

b

i

t

t

n

w

t

m

d

m

w

o

c

2

S

n

a

a

m

a

c

m

d

A

l

a

a

m

k

a

t

v

w

i

t

i

P

c

t

t

l

A

s

t

d

m

s

i

m

o

e
hese fields. Actually, intelligent agents are increasingly used in

etworking and mobile technologies in order to achieve, among

thers, automatic and dynamic behavior, high scalability and self-

ealing networking. Multi-agent systems are also applied in the

eal world in many other cases; films and computer games use

gent technology. Other applications include health care and med-

cal diagnostics, crisis management and coordination of defense

ystems. Especially nowadays that terrorism has become a con-

iderable issue, networks of sensors, smart devices or UAVs (un-

anned aerial vehicles) equipped with intelligent agents would

e able to communicate exchanging data and perform inferences

bout terrorist attacks or other emergencies. In other words, such

ensors and devices, being able to communicate with each other,

orm a multi-agent system, which is subject to the principles and

hallenges of agent technology (Carrera et al., 2014; Máhr et al.,

010; Xie et al., 2012; Zulkuf et al., 2013).

Ubiquity, decentralization, openness, dynamism and uncertainty

re the main challenges encountered in most of the above systems

nd applications. These challenges lead to two important but yet

ifficult to handle issues; decision making in uncertain and par-

ially observable environment and agent cooperation in such envi-

onments. The underlying reason for this is the fact that intelligent

gents are “created” by self-interested individuals, companies, or-

anizations or governments. To this end, a number of researchers

ere motivated by the understanding that some individuals, and

hus their agents, may be dishonest, focusing eventually their ef-

orts on agents’ reputation. In general, reputation is the opinion

f the public towards an agent. Reputation allows agents to build

rust, or the degree to which one agent has confidence in another

gent, helping them to establish relationships that achieve mutual

enefits. Hence, reputation (trust) models help agents to decide

ho to trust, encouraging trustworthy behavior and deterring dis-

onest participation by providing the means through which repu-

ation and ultimately trust can be quantified (Medi ́c, 2012; Resnick

t al., 20 0 0). Hence, as intelligent agents are gradually enriched

ith Semantic Web technology (Vrba et al., 2011; Hendler, 2001;

erners-Lee et al., 2001, 2006), acting on behalf of their users with

imited or no human intervention, their ability to perform assigned

asks is scrutinized. To this end, plenty of trust and reputation

odels have been proposed in different perspectives, yet they of-

en presuppose the use of a centralized authority (Medi ́c, 2012;

amchurn et al., 2004). Although such reputation mechanisms are

ore popular, they are usually faced with skepticism, since in open

ASs agents represent different owners, who may question the

rustworthiness and the robustness of a central authority.

On the other hand, distributed reputation models are typically

ore complex and require a lot of communication in order agents

o exchange their ratings. These models have no centralized sys-

em manager; hence each agent has to overcome the difficulty of

ocating ratings and develop somehow a subjective estimation by

tself using its own resources. No global or public reputation exists.

he reputation built in this way is thus personalized and some-

imes difficult to determine. However, a distributed reputation sys-

em is more flexible in building agents’ reputation, since it is quite

asy for an agent to develop differentiated trust in other agents

ased on its interests and purposes. Yet, beyond the traditional

hoice of centralized or distributed approach, there is an even

ore challenging decision; what should be taken into account in

rder to estimate the reputation of an agent, interaction trust or

itness reputation (Artz and Gil, 2007; Medi ́c, 2012). In other

ords, an agent’s direct experience or reports provided by others,

espectively.

Broadly speaking, both approaches have limitations. For in-

tance, if the reputation estimation is based only on direct expe-

ience, it would require a long time for an agent to reach a satis-

ying estimation level. This is because, when an agent enters an
nvironment for the first time, it has no history of interactions

ith the other agents in the environment. Thus, it needs a long

ime to reach a sufficient amount of interactions that could lead

o sufficient information. On the other hand, models based only

n witness reports could not guarantee reliable estimation as self-

nterested agents could be unwilling or unable to sacrifice their re-

ources in order to provide reports. Hence, models based only on

ne or the other approach typically cannot guarantee stable and

eliable estimations. To this end, in order to overcome these draw-

acks, a number of hybrid models that combine both interaction

rust and witness reputation were proposed (Artz and Gil, 2007;

uynh et al., 2006a , 2006b ; Medi ́c, 2012). However, most of hy-

rid models either have a fixed proportion of their participation

n the final estimation or leave the choice to the final user. Al-

hough these approaches have significant advantages, sometimes

hey may lead to misleading estimations. Users may have little or

o experience and thus take wrong decisions that could lead to

rong assessments, whereas fixed values provide just generic es-

imations. Our goal is not to estrange the users from the decision

aking process, but to help them, and their agents, to make better

ecisions.

To this end, this article proposes a novel distributed reputation

odel, called DISARM, that combines both interaction trust and

itness reputation. DISARM is a knowledge-based approach, based

n well-established estimation parameters (Castelfranchi and Fal-

one, 2010; Castelfranchi and Tan, 2001; Gutowska and Buckley,

008; Hendrikx et al., 2015; Josang et al., 2007; Su et al., 2011;

herchan et al., 2006), that provides a more intuitive method for

on-technical users. More specifically, its aim is to reduce the dis-

dvantages of the common distributed hybrid approaches, such

s the difficulty in locating ratings, and provide a mechanism for

odeling the way intelligent agents, like humans, draw reason-

ble conclusions from incomplete and possibly conflicting (thus in-

onclusive) information. This is achieved by designing and imple-

enting a reputation mechanism based on social principles and

efeasible logic. Concerning the social aspect of the model, DIS-

RM proposes an approach where agents are enabled to estab-

ish, through their interactions, and maintain relationships, much

s individuals do in real life. More specifically, DISARM considers

gents acting in the environment as a social network which deter-

ines the proximity relationships among them. In this context, all

nown agents create a network, which is expanded whenever new

gent interactions take place in the environment. The advantage of

his approach is that it allows agents to communicate with pre-

iously known and well-rated agents, locating, quite fast, ratings

ith small bandwidth cost.

Concerning the modeling mechanism, although it is logic-

ndependent, DISARM proposes the use of defeasible logic, a logic

hat has the notion of rules that can be defeated, allowing an ex-

sting belief to turn false, making it nonmonotonic (Nute, 1987;

ollock, 1992). In a fundamental sense, nonmonotonic logics oc-

upy undoubtedly prominent position among the disciplines inves-

igating intelligent reasoning about complex and dynamic situa-

ions. Thus, permitting agents to arrive at defeasible conclusions,

eads to more realistic assessments similar to human reasoning.

dditionally, defeasible logic is part of a more general area of re-

earch, defeasible reasoning, which is notable for its low computa-

ional complexity (Maher, 2001).

As a result, DISARM, combining a set of features, is able to ad-

ress many of the challenges of trust management. It has three

ain features: it is distributed, nonmonotonic and social. It avoids

ingle point of failure since it is a distributed approach and, thus,

t does not rely on an individual entity. Furthermore, being non-

onotonic, it allows invalidating previous conclusions in the light

f new information while by using features from social networks, it

nables more efficient computation compared to other distributed

132 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

Table 1

Rules in defeasible logic.

Rule type Rule form d-POSL syntax

Strict rules A1, … , An → B B:-A1, … , An

Defeasible rules A1, … , An = > B B: = A1, … , An

Defeaters A1, … , An ∼> B B: ∼A1, … , An

a

t

c

e

t

c

w

P

P

s

2

i

a

i

p

d

s

i

q

c

t

i

e

fl

c

T

n

f

t

D

i

j

w

t

a

t

w

s

r

c

t

a

o

f

d

o

d

c

o

b

i

(

a

approaches. DISARM combines in a new promising way existing

formal methods and reasoning machineries, such as defeasible

logic, in order to model reputation and trust aspects while it pro-

poses novel metrics that are able to support accurate reputation

assessment.

Moreover, we provide an evaluation that illustrates the usability

of the proposed model. The rest of the article is organized as fol-

lows. In Section 2 , we present a brief overview of defeasible logic.

Section 3 presents DISARM and its contribution. In Section 4 , DIS-

ARM’s evaluation is presented, demonstrating the added value of

the approach. Section 5 discusses related work, and Section 6 con-

cludes with final remarks and directions for future work.

2. Defeasible logic

Defeasible logic (DL), introduced by (Nute, 1994, 2003) with

a particular concern about efficiency and implementation, is part

of a more general area of research, namely defeasible reasoning

(Pollock, 1992, 1998). Over the years the logic has been developed

and extended while several variants have been proposed. Yet, DL

remains a simple and efficient rule based nonmonotonic formal-

ism that deals with incomplete and conflicting information. More

specifically, DL has the notion of rules that can be defeated; hence

it derives plausible conclusions from partial and sometimes con-

flicting information. These conclusions, despite being supported by

the currently available information, could nonetheless be rejected

in the light of new, or more refined, information.

Compared to other more mainstream nonmonotonic ap-

proaches, e.g. Reiter (1980) and Gottlob (1992), this approach offers

among others enhanced representational capabilities and low com-

putational complexity. Moreover, DL in contrast with traditional

deductive logic, allows the addition of further propositions to make

an existing belief false, making it nonmonotonic (Koons, 2009).

In a fundamental sense, nonmonotonic logics occupy undoubtedly

prominent position among the disciplines investigating intelligent

reasoning about complex and dynamic situations/environments.

Hence, one of the main interests in DL is in the area of agents

(Governatori and Rotolo, 2008). DL, being a nonmonotonic logic, is

capable of modeling the way intelligent agents, like humans, draw

reasonable conclusions from inconclusive information, leading to

more realistic conclusions and assessments similar to humanbrk

reasoning.

Hence, DL can be and it is adapted in a variety of applications

involving decision making or negotiation. For instance, DL was suc-

cessfully applied in a robotic domain for knowledge representation

and reasoning about which task to perform next (Ferretti et al.,

2007). Negotiation is another domain that benefits from DL, since

it is flexible, has efficient implementations and provides a formal

basis for analysis. As a result, DL has been adapted in many e-

Commerce cases that include negotiation, such as brokering and

bargaining (Governatori et al., 2001; Skylogiannis et al., 2007). DL

can be used even in order to provide a formalism for specifying

authorization policies of a dynamic system, such as in Sabri and

Obeid (2015).

Knowledge in DL is represented in terms of facts, rules and su-

periority relations. Facts are indisputable statements, represented

either in form of states of affairs (literal and modal literal) or ac-

tions that have been performed. A rule describes the relationship

between a set of literals (premises) and a literal (conclusion). Rules

are divided into strict rules, defeasible rules and defeaters. Strict

rules are rules in the classical sense, i.e. whenever the premises are

indisputable, e.g. facts, then so is the conclusion. Thus, they can be

used for definitional clauses. Defeasible rules, on the other hand,

are rules that can be defeated by contrary evidence. Defeaters are

rules that cannot be used to draw any conclusions. Their only use

is to prevent some conclusions. Finally, the superiority relation is
 binary relation defined over the set of rules, which determines

he relative strength of two (conflicting) rules, i.e. rules that infer

onflicting literals.

The form of rules, in symbolic and d-POSL syntax (Kontopoulos

t al., 2011), are presented in Table 1 . d-POSL syntax, which is used

hroughout this article, is a grammar that maintains all the critical

omponents of the Positional-Slotted Language (POSL), extended

ith components necessary for defeasible logic. More specifically,

OSL and, as a result, d-POSL are ASCII languages that integrate

rolog’s positional and Frame-logic’s slotted syntaxes for repre-

enting knowledge (facts and rules) in the Semantic Web (Boley,

010). d-POSL syntax allows us to represent defeasible rule bases

n a compact and human-readable way, since it is faster to write

nd easier to read. Variables in d-POSL are denoted with a preced-

ng “?” while rule types (“strict”, “defeasible”, “defeater”) are ex-

ressed via binary infix functors (“:-”, “: = ”, “: ∼”). The correspon-

ence between d-POSL syntax and the traditional defeasible rule

yntax is presented in Table 1.

Non-monotonic reasoning systems represent and reason with

ncomplete information where the degree of incompleteness is not

uantified. A very simple and natural way to represent such in-

omplete information is with a defeasible rule of the form “an-

ecedent ⇒ consequent”; with the meaning that provided there

s no evidence against the consequent, the antecedent is sufficient

vidence for concluding the consequent (Billington, 2008).

Being nonmonotonic, defeasible logics deal with potential con-

icts (inconsistencies) among knowledge items. Thus they contain

lassical negation, contrary to usual logic programming systems.

hey can also deal with negation as failure (NAF), the other type of

egation typical of nonmonotonic logic programming systems; in

act, Wagner (2003) argues that the Semantic Web requires both

ypes of negation. NAF is not included in the object language of

L. However, as Antoniou et al. (2001, , 2000) show, it can be eas-

ly simulated when necessary. Thus, we may use NAF in the ob-

ect language and transform the original knowledge to logical rules

ithout NAF exhibiting the same behavior (Wagner, 2003). Fur-

hermore, note that negated literals can appear both in the head

nd in the body of a rule.

The main concept in DL is that it does not support contradic-

ory conclusions, but it tries to resolve conflicts. Hence, in cases

here there is some support for concluding A, but there is also

upport for concluding ¬A (the negation of A), no conclusion is de-

ived unless one of the two rules that support these conflicting

onclusions has priority over the other. This priority is expressed

hrough a superiority relation among rules which defines priorities

mong them, namely where one rule may override the conclusion

f another rule. Yet, conclusions can be classified as definite or de-

easible. A definite conclusion is a conclusion that cannot be with-

rawn when new information is available. A defeasible conclusion,

n the other hand, is a tentative conclusion that might be with-

rawn in the future. In addition, the logic is able to tell whether a

onclusion is or is not provable, hence there are four possible types

f conclusions; positive definite, negative definite, positive defeasi-

le and negative defeasible.

A formal way of computing conclusions in DL can be found

n Antoniou et al. (2001). More specifically, a conclusion in a D

defeasible) theory is a tagged literal and may have, as described

bove, one of the following forms:

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 133

q

e

t

q

i

i

i

g

S

h

q

a

m

k

O

s

f

c

p

s

f

w

fi

s

c

a

c

o

p

a

G

H

e

3

h

i

t

v

n

a

a

v

p

w

3

p

t

s

e

p

w

s

n

t

v

a

i

t

o

e

c

o

y

u

i

r

a

i

i

s

t

o

e

c

c

i

s

e

b

l

c

m

c

o

w

o

l

d

a

i

i

A

E

w

c

i

d

n

w

t

a

a

s

a

a

w

n

t

t

r

h

fi

+ �q , meaning that q is definitely provable in D .

+ ∂q , meaning that q is defeasibly provable in D .

−�q , meaning that q has proved to be not definitely provable

in D .

−∂q , meaning that q has proved to be not defeasibly provable

in D .

In order to prove + �q (positive definite conclusion), a proof for

 consisting of facts and strict rules needs to be established. When-

ver a literal is definitely provable, it is also defeasibly provable. In

hat case, the defeasible proof coincides with the definite proof for

 . Otherwise, in order to prove + ∂q (positive defeasible conclusion)

n D , an applicable strict or defeasible rule supporting q must ex-

st. In addition, it should also be ensured that the specified proof

s not overridden by contradicting evidence. Therefore, it has to be

uaranteed that the negation of q is not definitely provable in D .

uccessively, every rule that is not known to be inapplicable and

as head ∼q has to be considered. For each such rule s , it is re-

uired that there is a counterattacking rule t with head q that is

pplicable at this point and s is inferior to t .

In order to prove −�q (negative definite conclusion) in D, q

ust not be a fact and every strict rule supporting q must be

nown to be inapplicable. If −�q is proved, then −∂q also holds.

therwise, in order to prove that −∂q (negative defeasible conclu-

ion), it must firstly be ensured that −�q . Additionally, one of the

ollowing conditions must hold: (i) none of the rules with head q

an be applied, (ii) it is proved that −�∼q , and (iii) there is an ap-

licable rule r with head ∼q , such that no possibly applicable rule

 with head q is superior to r .

In this context, a special case of conflict is between dif-

erent positive literals, all derived by different defeasible rules,

hereas only one should be derived. “Conflicting literals” are de-

ned through a conflict set and the conflict is resolved through

uperiorities. Conflicting literals are actually an important type of

onflicting evidence in defeasible reasoning. This type of conflict

rises when two or more opposite conclusions (positive literals)

an be derived. Yet, just one of them can be considered true since

nly a piece of information or state can be valid at a specific time

oint. For instance, consider the case of academic grading. Gener-

lly, there are four discrete types of grades, {Excellent, Very Good,

ood, Withdrawal}, and each student receives only one of them.

ence, these grades form a set of conflicting literals (Antoniou

t al., 2001; Billington et al., 2010; Billington, 1997).

. DISARM

The proposed model is called DISARM and it is a distributed,

ybrid, rule-based reputation model. DISARM uses defeasible logic

n order to combine in a practical way all available ratings, both

hose based on the agent’s personal experience and those pro-

ided by known and/or unknown third parties. This model aims

ot only at reducing the disadvantages of the common distributed

pproaches, such as the difficulty in locating ratings, but mainly it

ims at improving the performance of the hybrid approach by pro-

iding an intuitive decision making mechanism. DISARM aims at

roviding a distributed mechanism based on defeasible logic that

ould be able to model the way humans think, infer and decide.

.1. Main principles of the DISARM model

For purposes of better understanding, we present here the main

rinciples of our model. First of all, DISARM has no centralized au-

hority since it is a distributed model. Hence, it is each agent’s re-

ponsibility to locate ratings and use the model. In this context,

ven if more than one agent possesses the same ratings, they will

robably come out with different estimations and as a result they

ill take different decisions.
Time, evolution over time in particular, is an important issue

ince it reflects the behavior of an agent. More specifically, in dy-

amic environments such as MASs, agents may change their objec-

ives at any time. For instance, a typical dishonest agent could pro-

ide quality services over a period to gain a high reputation score,

nd then, profiting from that high score could provide low qual-

ty services. Hence, time should be and it is taken into account in

he proposed model. Yet, DISARM allows agents to decide on their

wn about what they consider important. To this end, it is up to

ach agent’s strategy to determine the impact of time in their de-

isions. Agents could take into account all the available ratings or

nly the latest; e.g. those referred to last week, last month or last

ear.

Taking into account the latest ratings leads undoubtedly to an

p-to-date overview, however it could be misleading. For instance,

n this limited time period, a typical dishonest agent could tempo-

ary improve its behavior or, on the other hand, a typical reliable

gent, facing a problem, could temporary act faulty, transformed

nto a mercenary and malicious agent. Hence, it is a risk to take

nto account only part of the available ratings, although there is

ometimes significant gain in time and computational cost. In con-

rary, taking into account all available ratings leads to an overview

f an agent’s behavior history but it costs in terms of storage space,

xecution time and computational power.

DISARM, however, is a distributed model which means that lo-

ating ratings is a quite challenging process. The rating records

ould always be there but usually they are unreachable since var-

ous agents may join or leave the system at any time. For in-

tance, sometimes only a few ratings are available; e.g. personal

xperience could be missing and/or appropriate witnesses could

e difficult to locate. On the other hand, sometimes there is a

arge amount of available ratings but taking all of them into ac-

ount has significant computational cost. Moreover, these ratings

ay significantly differ. In this context, DISARM integrates an indi-

ation of how likely is the assessment to be proved correct based

n the variability of ratings that were taken into account. In other

ords, DISARM allows agents to be informed about the possibility

f wrong estimation and loss.

Another important issue that DISARM deals with is the trust re-

ationships that agents build and maintain over time, much as in-

ividuals do in real world. For instance, if an agent is satisfied with

 partner, probably it will prefer to interact again with that partner

n the future. On the other hand, if it is disappointed by a partner,

t will avoid interacting again with that partner. To this end, DIS-

RM proposes the use of two lists, called whitelist and blacklist.

ach agent stores in its whitelist the names of its favored partners

hile in its blacklist it stores those that should be avoided. The de-

ision about who will be added in each list is taken by the agent

tself. More specifically, each agent is equipped with a rule-based

ecision-making logic which enables it to decide upon its part-

ers, adding them, if necessary, to the appropriate list. Hence, it

ill be quite easy for the agent to locate a well-known old partner

hat will do the job and at the same time avoid a fraud. Moreover,

 user is much more likely to believe statements from a trusted

cquaintance than from a previously known dishonest agent or a

tranger.

Finally, in addition to the difficulty to locate ratings there is also

 difficulty to locate really useful ratings. For instance, sometimes

gents are involved in important and crucial for them interactions

hereas sometimes they are involved in simple interactions of mi-

or importance. Hence, the question is which of them should be

aken into account in order to get a representative estimation. To

his end, DISARM adopts the use of two more parameters for each

ating; namely importance and confidence. Importance indicates

ow critical the transaction was for the rating agent while con-

dence gives an estimation of the agent’s certainty for that rating.

134 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

s

n

s

e

Y

s

d

a

e

n

v

i

c

t

r

r

v

3

r

m

a

m

p

r

t

p

i

3

u

n

i

a

r

c

w

p

(

t

a

p

f

t

r

d

s

i

s
3.2. Rating parameters

Taking into account the proper parameters for an assessment is

a really challenging task. They should be carefully chosen in order

to reflect the agents’ abilities. Besides, an efficient decision making

mechanism has to rely on carefully selected data and a straightfor-

ward and efficient rating procedure. Although, a thorough overview

of related literature is out of the scope of this article, we tried to

catch out parameters, or factors for others, that are usually referred

either explicitly or implicitly in reputation models and metrics,

(e.g. Castelfranchi and Falcone, 2010; Castelfranchi and Tan, 2001;

Gutowska and Buckley, 2008; Hendrikx et al., 2015; Josang et al.,

2007; Su et al., 2011; Sherchan et al., 2006). To this end, DISARM

uses for its needs six properties; namely response time, validity,

completeness, correctness, cooperation and outcome feeling.

Response time refers to the time that an agent needs in order to

complete the tasks that it is responsible for. Time is the only pa-

rameter that is always taken into account in the literature. Valid-

ity describes the degree that an agent is sincere and credible. An

agent is sincere when it believes what it says, whereas it is cred-

ible when what it believes is true in the world. Hence, an agent

is valid if it is both. Validity is not always such called, yet in most

cases there are parameters that attempt to indicate how sincere

and/or credible an agent is. Completeness , on the other hand, de-

scribes the degree that an agent says what it believes while what

it believes is true in the world. In other words, completeness is the

inverse of validity, indicating how honest and realistic an agent is.

Completeness is usually implicitly referred, as an attempt to rate

dishonest and fraud behavior.

Moreover, correctness refers to an agent’s providing services or

tasks. An agent is correct if its provided service or task is correct

with respect to a specification. Correctness, no matter how it is

called, is, actually, the second most used parameter after time. Co-

operation is the willingness of an agent who is being helpful by

doing what is wanted or asked for. Cooperation is not, usually, han-

dled as separate parameter; however, it is an important feature in

distributed social environments, such as MASs. Finally, the outcome

feeling is a general feeling of satisfaction or dissatisfaction related

to the transaction outcome; namely it indicates if the transaction

was easy and pleasant with a satisfying result or not. Usually, it is

referred as the degree of request fulfillment.

However, although these six parameters are, usually, taken into

account in one way or another, they are not necessarily binding.

Some of them could be replaced by other more domain-specific

parameters depending on the domain of use, e.g. agents acting

in E-Commerce transactions may include parameters about trans-

action security, payment variety (accepted ways of payment) and

existence of digital certificates for electronic authentication. Yet,

our intention, here, in the context of DISARM, is to provide gen-

eral purpose parameters that will be able to reflect the common

critical characteristics of each agent in the community. In other

words, DISARM takes into account parameters that can provide an

overview of each agent’s behavior. Hence, consider an agent A es-

tablishing an interaction with an agent X ; agent A can evaluate the

other agent’s performance and thus affect its reputation. The eval-

uating agent (A) is called truster whereas the evaluated agent (X)

is called trustee . Of course, for some interactions an agent can be

both truster and trustee, since it can evaluate its partner while it

is evaluated by that partner at the same time. After each interac-

tion in the environment, the truster has to evaluate the abilities of

the trustee in terms of response time, validity, completeness, cor-

rectness, cooperation and outcome feeling. DISARM, however, is a

distributed model hence truster does not have to report its ratings

but just to save them for future use.

Yet, in order to remember how important was the transaction

for it and how confident it was for its rating, the agent has to as-
ociate two more values to the rating, as was already discussed,

amely confidence and importance. Additionally, since time is con-

idered an important aspect in DISARM’s decision making process,

ach rating is associated with a time stamp (t), e.g. in the form

YMMDDHHMMSS or YYMMDD or HHMMSS or it can be repre-

ented even as an integer in case of experimental simulations, in-

icating the transaction’s time point. Hence, taking the above into

ccount the truster’s rating value (r) in DISARM is a tuple with

leven elements: (truster, trustee, t, response time, validity, complete-

ess, correctness, cooperation, outcome feeling, confidence, transaction

alue). Notice, that although each truster agent stores its own rat-

ngs, we include the variable truster in the rating value. This is be-

ause the truster may forward its ratings to other agents; hence,

hese agents should be able to identify the rating agent for each

ating they receive. In DISARM, the rating values vary from 0.1 (ter-

ible) to 10 (perfect); r ∈ [0.1, 10], except confidence and transaction

alues that vary from 0 (0%) to 1 (100%).

.3. Rule-based decision mechanism

Defining the rating values is the first step towards an efficient

eputation model, the core of the approach, however, is its decision

aking mechanism. The distributed reputation models have invari-

bly to deal with a range of complex issues related to the decision

aking process, such as locating ratings. Hence, DISARM aims at

roviding a trust estimation procedure much as individuals do in

eal world, where they build and maintain trust relationships over

ime. To this end, DISARM simulates their decision making process,

roposing a set of strict and defeasible rules, in a practical, intu-

tive approach.

.3.1. Rating procedure

First of all, shortly after an interaction ends each agent eval-

ates its partner in terms of response time, validity, complete-

ess, correctness, cooperation and outcome feeling. Then it adds

ts confidence and a value indicating the importance of the trans-

ction (transaction value). When all values are got together, the

ating agent (truster) adds its name, the trustee’s name and the

urrent time point (t), forming the final rating value (r) as a tuple

ith eleven elements. This tuple is presented below in the com-

act d-POSL syntax (Kontopoulos et al., 2011) of defeasible RuleML

 Bassiliades et al., 2006). A syntax that will be used throughout

his article in order to express in a compact way the data (ratings)

nd rules (strict and defeasible rules used in the decision making

rocess) of our approach. To this end, the truster’s rating (r) is the

act:

rating(id → id x, truster → ?a, trustee → ?x, t → ?t,

response_time → ?resp x , validity → ?val x , completeness → ?com x ,

correctness → ?cor x , cooperation → ?coop x , outcome_feeling →
?outf x ,

confidence → ?conf x , transaction_value → ?trans x).

Additionally, an example rating provided by agent (A) truster for

he agent (X) trustee could be:

rating(id → 1, truster → A, trustee → X, t → 140630105632,

response_time → 9, validity → 7,

completeness → 6, correctness → 6, cooperation → 8,

outcome_feeling → 7, confidence → 0.9, transaction_value → 0.8).

Next, truster stores this rating to its repository. However, as al-

eady mentioned, agents compliant with DISARM use two lists, ad-

itionally to their rating repository; whitelist and blacklist. More

pecifically, these lists are two separate repositories, one for stor-

ng promising partners (whitelist) and one for those partners that

hould be avoided (blacklist). Hence, truster has also to decide

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 135

w

n

a

n

i

t

t

w

e

c

c

r

t

c

h

b

s

s

t

t

p

t

s

v

w

a

r

t

c

e

r

o

c

v

c

t

t

t

i

t

p

f

m

r

o

o

b

o

N

s

s

t

r

p

d

h

t

c

i

hether it should add the trustee to its white (or black) list or

ot. Obviously, the decision is based on what it is considered

s a promising (or terrible on the other hand) partner. A part-

er is promising if it acts responsibly and it provides high qual-

ty services or products. A partner is responsible if it is coopera-

ive, responds fast and leaves a positive feeling at the end of the

ransaction.

Of course, each agent has a different degree of tolerance, thus,

hat may be fast for an agent could be slow for another. Hence,

ach agent has some thresholds that determine the lowest ac-

epted value for each parameter; namely response time, validity,

ompleteness, correctness, cooperation and outcome feeling. As a

esult, the behavior of an agent is characterized as good if parame-

er values are higher than thresholds or bad if they are not. In this

ontext, rule r 1 , presented below, indicates that if all values are

igher than the truster’s associated thresholds then the trustee’s

ehavior is considered good. Yet, this rule is strict and quite rare,

ince humans, and thus their agents, usually are not so rigorous.

r 1 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →
all):-

response_time_threshold(?resp), validity_threshold(?val),

completeness_threshold(?com), correctness_threshold(?cor),

cooperation_threshold(?coop), outcome_feeling_threshold

(?outf),

rating(id → ?id x , time → ?t, truster → ?a, trustee → ?x,

response_time → ?resp x , validity → ?val x , completeness

→ ?com x ,

correctness → ?cor x , cooperation → ?coop x ,

outcome_feeling → ?outf x),

?resp x > ?resp, ?val x > ?val, ?com x > ?com, ?cor x > ?cor,

?coop x > ?coop, ?outf x > ?outf.

The above rule (r 1) consists of a number of clauses, namely

ix user-defined thresholds (one per parameter, e.g. threshold for

he response time: response_time_threshold (?resp)) and a rating

hat includes information about time (when that rating was re-

orted), the involved agents (truster and trustee) and the parame-

er values (truster’s opinion about trustee’s performance related to

ix parameters). Given these clauses, r 1 compares each parameter

alue with the associated user-defined threshold (e.g. ?resp x > ?resp ,

here ?resp x is the rating value for the response time parameter

nd ?resp is the threshold). If these (six) comparisons, one per pa-

ameter, reveal that the rating values are greater than thresholds

hen r 1 concludes that at a specific time point (?t), truster A (?a)

onsiders trustee’s (?x) behavior good for all parameters (reasons).

Yet, usually, truster classifies its partner in relation to a reason,

.g. response time. In this context, rules r 2 –r 7 present the group of

ules that characterize the behavior of an agent as good depending

n a specific reason.

r 2 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

response_time):-rating(id → ?id x , time → ?t, truster → ?a,

trustee → ?x, response_time → ?resp x), response_time_threshold

(?resp), ?resp x > ?resp.

r 3 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

validity):-rating(id → ?id x , time → ?t, truster → ?a, trustee → ?x,

validity → ?val x), validity_threshold(?val), ?val x > ?val.

r 4 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

completeness) :-rating(id → ?id x , time → ?t, truster → ?a,

trustee → ?x,completeness → ?com x), completeness_threshold

(?com), ?com x > ?com.

r 5 : good_behavior(time → ?t, truster → ?a, trustee → ?x,

reason → correctness):- rating(id → ?id x , time → ?t, truster → ?a,

trustee → ?x, correctness → ? cor x), correctness_threshold(?cor),

?cor x > ?cor.
r 6 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

cooperation) :-rating(id → ?id x , time → ?t, truster → ?a,

trustee → ?x,cooperation → ?coop x), cooperation_threshold

(?coop), ?coop x > ?coop.

r 7 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

outcome_feeling):- rating(id → ?id x , time → ?t, truster → ?a,

trustee → ?x, outcome_feeling → ?outf x), outcome_feeling_

threshold(?outf), ?outf x > ?outf.

For instance, r 7 consists of two main clauses: a rating that in-

ludes the time that the rating was reported the rating, the in-

olved agents (truster and trustee) and a value related to the out-

ome feeling parameter (since this is the only parameter that is

aken into consideration), as well as a user-defined threshold for

he outcome feeling. Given these clauses, r 7 compares the parame-

er value with the threshold (?outf x > ?outf , where ?outf x is the rat-

ng value and ?outf is the threshold). If the rating value is greater

han the threshold then r 7 rule concludes that at a specific time

oint (?t), truster A (?a) considers trustee’s (?x) behavior good as

ar as it concerns the outcome feeling of a transaction.

However, from each agent’s perspective a parameter could be

ore important than others. For instance, an agent could consider

esponse time the most important aspect, perhaps not the only

ne, in deciding whether its partner could be characterized good

r bad. In this context, rules r 2 –r 7 could be “replaced” by defeasi-

le rules (r ′
2
–r ′

7
), while a priority relationship among all or some

f them will define which reason is eventually more important.

ext, such an example is presented, where a truster considers re-

ponse time and validity important reasons while validity is con-

idered more important than response time. Of course, any poten-

ial theory could be formed, namely rule combination and priority

elationship regarding the reasons, in order to represent truster’s

ersonal preferences (private strategy).

r ′ 2 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

response_time) : = rating(id → ?id x , time → ?t, truster → ?a,

trustee → ?x, response_

time → ?resp x), response_time_threshold(?resp), ?resp x > ?resp.

r ′
3
: good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

validity): = rating(id → ?id x , time → ?t, truster → ?a, trustee → ?x,

validity → ?val x),

validity_threshold(?val), ?val x > ?val.

r ′
2

> r ′
3
>

The conflict set for the above theory (rules r ′ 2 , r ′ 3) is formally

etermined as follows, meaning that only one reason for good be-

avior, the most important one, is kept at any time:

C[good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

?reason)] = { ¬good_behavior(time → ?t, truster → ?a,

trustee → ?x, reason → ?reason)} ∪ {good_behavior(time → ?t,

truster → ?a, trustee → ?x, reason → ?reason1)

| ?reason1 	 = ?reason}

Of course, truster could classify its partner in relation to more

han one reasons. For instance, rule r 8 describes such a case. Ac-

ording to that “an agent has a good behavior if it has good rating

n at least three parameters”.

r 8 : good_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

at_least_3):-

good_for(time → ?t, truster → ?a, trustee → ?x, reason → ?r1),

good_for(time → ?t, truster → ?a, trustee → ?x, reason → ?r2),

good_for(time → ?t, truster → ?a, trustee → ?x, reason → ?r3),

?r1 	 = ?r2, ?r2 	 = ?r3, ?r3 	 = ?r1.

136 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

o

t

t

s

t

a

t

a

c

m

N

t

r

t

a

t

i

f
On the other hand, trustee’s behavior is considered disappoint-

ing and, thus, bad in relation to a reason/parameter, if trustee’s rate

for this parameter is lower than the truster’s thresholds. A lenient

agent would expect all values to be lower than its thresholds in or-

der to characterize the behavior of an agent as bad. In this context,

r 9 presents such a case.

r 9 : bad_behavior(time → ?t, truster → ?a, trustee → ?x, reason → all)

:-

response_time_threshold(?resp), validity_threshold(?val),

completeness_threshold(?com), correctness_threshold(?cor),

cooperation_threshold(?coop), outcome_feeling_threshold

(?outf),

rating(id → ?id x , time → ?t, truster → ?a, trustee → ?x,

response_time → ?resp x , validity → ?val x , completeness

→ ?com x ,

correctness → ?cor x , cooperation → ?coop x , outcome_

feeling → ?outf x),

?resp x < = ?resp, ?val x < = ?val, ?com x < = ?com, ?cor x < = ?cor,

?coop x < = ?coop, ?outf x < = ?outf.

On the other hand, it may be the case that a truster consid-

ers the behavior of an agent as bad based on one specific reason

alone. For instance, r 10 presents such a case, based on response

time alone. Of course, response_time (reason) could be replaced by

anyone of the rest of the parameters, namely validity, completeness,

correctness, cooperation and outcome_feeling . Furthermore, an agent

could consider important more than one reasons (e.g. validity and

correctness, combined). Then, similarly as rules related to good be-

havior, a theory, namely a set of rules (one per reason) and a prior-

ity relationship among these rules, will represent the preferences

of the agent.

r 10 : bad_behavior(time → ?t, truster → ?a, trustee → ?x, reason →

response_time) :- rating(id → ?id x , time → ?t, truster → ?a, trustee

→ ?x, response_time → ?resp x), response_time_threshold(?resp),

?resp x < = ?resp.

However, characterizing a trustee’s behavior good or bad does

not necessarily mean that this trustee will be added to the truster’s

white or black list, respectively. This decision is left to the truster’s

private strategy and it could vary greatly from agent to agent. For

instance, a truster could be lenient and, thus, it might add quite

easily trustees to its whitelist. Another truster might expect to see

good behavior several times either for the same reason (r 11 , where

?self represents the truster itself) or for a number of reasons (r 12),

at least four different, before adding a trustee to its whitelist. Sim-

ilarly, a truster might expect to face a trustee’s bad behavior more

than one times either for the same reason (r 13) or for a number

of reasons (r 14), before adding the trustee to its blacklist. Hence,

a strict truster would easily add trustees to its blacklist but not

to its whitelist whereas a lenient would give more chances before

adding a trustee to its own blacklist. Notice that, since old good/

bad behaviors are not deleted from the system, we define

a time_window variable in order to avoid praising/penalizing

an agent for ever (where now() returns the current time

point).

r 11 : add_whitelist(trustee → ?x, time → ?t3) : = time_window

(?wtime), good_behavior(time → ?t1, truster → ?self, trustee

→ ?x, reason → ?r), good_behavior(time → ?t2, truster → ?self,

trustee → ?x, reason → ?r), good_behavior(time → ?t3, truster →

?self, trustee → ?x, reason → ?r), ?t3 > ?t2 > ?t1 > = now() -

?wtime.
r 12 : add_whitelist(trustee → ?x, time → ?t3) : = time_window

(?wtime), good_behavior(time → ?t1, truster → ?self, trustee → ?x,

reason → ?r1), good_behavior(time → ?t2, truster → ?self, trustee

→ ?x, reason → ?r2), good_behavior(time → ?t3, truster → ?self,

trustee → ?x, reason → ?r3), good_behavior(time → ?t3,

truster → ?self, trustee → ?x, reason → ?r4), ?t3 > ?t2 > ?t1 > =
now() - ?wtime. ?r1 	 = ?r2, ?r1 	 = ?r3, ?r2 	 = ?r3, ?r4 	 = ?r3, ?r4 	 = ?r2,

?r4 	 = ?r1.

r 13 : add_blacklist(trustee → ?x, time → ?t2) : = time_window

(?wtime), bad_behavior(time → ?t1, truster → ?self, trustee → ?x,

reason → ?r), bad_behavior(time → ?t2, truster → ?self, trustee

→ ?x, reason → ?r), ?t2 > ?t1 > = now()-?wtime.

r 14 : add_blacklist(trustee → ?x, time → ?t3) : = time_window

(?wtime), bad_behavior(time → ?t1, truster → ?self, trustee → ?x,

reason → ?r1), bad_behavior(time → ?t2, truster → ?self,

trustee → ?x, reason → ?r2), bad_behavior(time → ?t3, truster →

?self, trustee → ?x, reason → ?r3), ?t3 > ?t2 > ?t1 > = now()-

?wtime, ?r2 	 = ?r1, ?r3 	 = ?r2, ?r3 	 = ?r1.

Mention that the above rules are defeasible since they are part

f the truster’s preferences (private strategy). The priority rela-

ionship among them could vary from case to case and it is left

o the truster. Given that an agent can show good behavior in

ome dimensions and bad behavior in some other dimensions, at

he same time (e.g. being correct but slow in response), both an

dd_whitelist and an add_blacklist conclusion can be inferred at

he same time. In order to avoid conflicting list inclusions, we

ct skeptically by having the following defeaters which block such

onflicting conclusions.

¬add_whitelist(trustee → ?x, time → ?t) : ∼
add_blackist(trustee → ?x, time → ?t)

¬add_blackist(trustee → ?x, time → ?t) : ∼
add_blackist_whitelist (trustee → ?x, time → ?t)

Other theories could also be used, depending on the require-

ents and preferences a truster has, in particular its human user.

ext, as soon as the truster decides upon who should be added to

he whitelist and/or the blacklist, it proceeds to the next part of

ules (r 15 –r 18) where the addition is actually carried out.

r 15 : blacklist(trustee → ?x, time → ?t) : =

¬whitelist(trustee → ?x, time → ?t1),

add_blacklist(trustee → ?x, time → ?t2),

?t2 > ?t1.

r 16 : ¬blacklist(trustee → ?x, time → ?t2) : =

blacklist(trustee → ?x, time → ?t1),

add_whitelist(trustee → ?x, time → ?t2),

?t2 > ?t1.

r 17 : whitelist(trustee → ?x, time → ?t) : =

¬blacklist(trustee → ?x, time → ?t1),

add_whitelist(trustee → ?x, time → ?t2),

?t2 > ?t1.

r 18 : ¬whitelist(trustee → ?x, time → ?t2) : =

whitelist(trustee → ?x, time → ?t1),

add_blacklist(trustee → ?x, time → ?t2),

?t2 > ?t1 .

Notice that according to the above theory, when an agent is in

he blacklist and it is decided to be added to the whitelist, then the

gent is simply deleted from the blacklist, but it is not included in

he whitelist (r 16). This can be done in a later moment if a sim-

lar add_whitelist decision is made again (r 17). A similar behavior

or agents moving from the whitelist to the blacklist is followed

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 137

b

t

e

r

t

m

o

a

i

w

w

s

3

s

r

i

(

w

g

g

a

s

e

(

p

n

s

n

n

fi

i

a

l

q

p

(

h

s

p

e

D

a

p

b

d

i

s

r

a

a

t

d

r

r

X

s

f

a

a

p

h

a

h

n

z

n

n

H

d

w

l

o

(

p

f

	 =

a

n

m

a

t

p

n

a

p

w

p

s

t

t

s

m

R

a

e
y the two complementary rules r 18 and r 15 . Thus, apart from the

wo lists, there is a third “neutral zone” list, which needs not be

xplicitly realized. Only agents in the neutral zone can move di-

ectly to the lists. Notice that agents in the neutral zone can be

here due to three reasons: (1) moved out from the whitelist, (2)

oved out from the blacklist, (3) never been either in the whitelist

r the blacklist. In order to handle all the above cases, we need to

ugment rules r 15 –r 18 with the following 4 rules:

r ′
15

: blacklist(trustee → ?x, time → ?t2) : =

¬blacklist(trustee → ?x, time → ?t1),

add_blacklist(trustee → ?x, time → ?t2),

?t2 > ?t1.

r ′′
15

: blacklist(trustee → ?x, time → ?t) : =

add_blacklist(trustee → ?x, time → ?t),

not(whitelist(trustee → ?x)).

r ′
17

: whitelist(trustee → ?x, time → ?t2) : =

¬whitelist(trustee → ?x, time → ?t1),

add_whitelist(trustee → ?x, time → ?t2),

?t2 > ?t1.

r ′′ 17 : whitelist(trustee → ?x, time → ?t) : =

add_whitelist(trustee → ?x, time → ?t),

not(blacklist(trustee → ?x)).

As a result, the truster’s whitelist, WL A ≡ { X i , …, X n }, finally,

ncludes the names (?x → X i) of all its favored agents (r 19 –r 20)

hereas its blacklist, BL A ≡ { X j , …, X m

}, includes the agents that it

ould prefer to avoid (r 21 –r 22). Notice, also, that the WL and BL

ets are disjoint.

r 19 : WL(trustee → ?x) : =

whitelist(trustee → ?x, time → ?t1),

not(¬whitelist(trustee → ?x, time → ?t2), ?t2 > ?t1)).

r 20 : ¬WL(trustee → ?x) : ∼
¬whitelist(trustee → ?x, time → ?t1),

not(whitelist(trustee → ?x, time → ?t2), ?t2 > ?t1)).

r 21 : BL(trustee → ?x) : =

blacklist(trustee → ?x, time → ?t1),

not(¬blacklist(trustee → ?x, time → ?t2), ?t2 > ?t1)).

r 22 : ¬BL(trustee → ?x) : ∼
¬blacklist(trustee → ?x, time → ?t1),

not(blacklist(trustee → ?x, time → ?t2), ?t2 > ?t1)).

.3.2. Locating ratings

A major challenge for open distributed and sometimes large-

cale (multi-agent) systems is how to locate ratings among the

est of the community. The simplest and most common approach

n such a distributed environment is to send a request message

 Yang and Fei, 2009; Jung, 2009). Yet, the question is how and to

hom this message should be sent directly and probably propa-

ated by the direct and indirect receivers. To this end, using as a

uide research on peer-to-peer networks (Androutsellis-Theotokis

nd Spinellis, 2004), there are two core ways to propagate mes-

ages in order to locate peers (or ratings in our case) (Meshkova

t al., 2008). The first approach assigns a maximum time-to-live

TTL) parameter to each request message hence the requesting

eer sends the message to its neighbors, who relay it to their own

eighbors and so on until the time-to-live value is reached. The

econd approach allows peers to relay the message only to one

eighbor at time, since they have to wait the response from a

eighbor before forwarding the message to another neighbor. The

rst approach increases the communication cost, leading to signif-

cant higher bandwidth consumption but partners (and so ratings)

re located fast. On the other hand, the second approach requires

ow bandwidth but it leads to time delays since more time is re-

uired to get feedback for the requests.
Over the last years, a number of researchers have proposed ap-

roaches that try to reduce bandwidth or improve response time

e.g. Liao et al., 2014; Ramanathan et al., 2002), mainly focusing on

ow to reach good and far away peers. Although, it is out of the

cope of this article to research or improve peer-to-peer message

ropagate protocols, we were inspired by these approaches (Liao

t al., 2014; Ramanathan et al., 2002; Bosu et al., 2014). To this end,

ISARM, proposes a more intuitive approach where agents take

dvantage of their previously established relationships in order to

ropagate their new requests, finding, quite fast, ratings with small

andwidth cost. More specifically, although the notion of neighbors

oes not exist in MASs, agents can use previously known partners

n a similar way. To this end, in DISARM MASs are considered as

ocial networks of agents. Such a social network can actually be

epresented as a social graph; a graph based on previously known

gents either good (whitelist) or bad (blacklist). Hence, the known

gents of an agent are, in our point of view, its neighbors. Using

he knowledge represented by the social graph, DISARM is able to

etermine the proximity relationships among agents in the envi-

onment. In this context, it is easier for an agent to propagate its

equests and eventually locate appropriate ratings.

Hence, an agent A that wants to collect ratings referred to agent

 , does not send a request message to all agents but only to those

tored in its whitelist. The motivation behind this action is the

act that a user is much more likely to believe statements from

 trusted acquaintance than from a previously known dishonest

gent or a stranger. Of course, agents are not always honest but

reviously known and well behaved agents are more likely to be

onest. In this context, DISARM tries to use as many rating sources

s possible while, through its mechanism, it tries to eliminate dis-

onest and misleading ratings (Sections 3.3.3 and 3.3.6).

Yet, these previously known and well behaved agents may have

o interaction history with agent X . This could lead to limited or

ero feedback for the requesting agent A . To this end, adopting the

otion of TTL , in DISARM each ratings request message is accompa-

ied with a TTL value, where TTL represents the hops in the graph.

ence, each request is characterized by its horizon (TTL value) that

etermines how far the message will be propagated in the net-

ork. In other words, the requesting agent determines if it is al-

owed (TTL 	 = 0) for its known (whitelisted agents) to ask their

wn known agents, namely agents included in their white lists

 WL ≡ { X k , …, X l }) and so on. Hence, the request message will be

ropagated in steps; each time an agent receives such a request

orwards it to its well-behaved known agents, if it is allowed (TTL

 0), reducing the TTL value by one. However, if the requesting

gent is included in the blacklist then its request message is ig-

ored.

Moreover, the TTL value acts as a termination condition so that

essages are not propagated indefinitely in the MAS; whenever an

gent receives a request message with zero TTL does not forward

he message. Finally, each agent will return, following the reverse

ath of the request, both its ratings and those provided by its part-

ers, which eventually will be received by the initial requesting

gent A . The above rule-based framework is, actually, logic inde-

endent since it can be implement in any logic. Yet, in DISARM,

e use defeasible logic, as already mentioned, for purposes of sim-

licity and efficiency.

Rules r 23 –r 27 , below model the above mentioned behavior. More

pecifically, rule r 23 initiates the ratings requests by sending it

o all agents ?r in the whitelist, along with the TTL parame-

er. Notice that the locate_ratings fact always has a single in-

tance at a certain time point, i.e. the system retracts this infor-

ation after the transaction with a certain agent is performed.

ule r 24 is responsible for answering back to the requesting agent

bout the requested agent’s rating if such a previous experience

xists in the local knowledge base. Rule r 25 is responsible for

138 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

KR

PR, WR, KR, SR

PR, WR PR, SR KR, SR

PR SR

PR, KR

WR

WR, SRWR, KR

PR, WR, SR WR, KR, SRPR, KR, SRPR, WR, KR

Fig. 1. Superiority relationships among rating categories.

3

c

S

A

e

u

r

g

p

p

d

a

k

c

l

u

o

e

s

a

c

t

s

t

(

t

v

r

t

w

(

a

a
forwarding a received request to agents in the whitelist if the TTL

is still positive, by decreasing it at the same time. Rule r 26 is a

defeater rule that defeats rules r 25 , namely it will block answer-

ing back to bad agents. Finally, rule r 27 will store in the local

knowledge base received ratings, if the sender is not in the black-

list. Notice that in this rule we use negation as failure, meaning

that if BL (?s) fails during execution then not(BL (?s)) will succeed

in order to determine if a sender agent does not belong to the

blacklist.

r 23 : send_message(sender → ?self, receiver → ?r, msg → request_

reputation(about → ?x, ttl → ?t)) : =

ttl_limit(?t),

WL(?r),

locate_ratings(about → ?x).

r 24 : send_message(sender → ?self, receiver → ?s, msg → rating

(id → id x , truster → ?self, trustee → ?x, t → ?t, response_time

→ ?resp x , validity → ?val x , completeness → ?com x ,

correctness → ?cor x , cooperation → ?coop x , outcome_

feeling → ?outf x , confidence → ?conf x , transaction_value

→ ?trans x)) : =

receive_message(sender → ?s, receiver → ?self, msg → request_

rating(about → ?x,ttl → ?tl)), rating(id → ?id x , truster → ?self,

trustee → ?x, t → ?t,

response_time → ?resp x , validity → ?val x ,completeness →

?com x , correctness → ?cor x , cooperation → ?coop x ,

outcome_feeling → ?outf x , confidence → ?conf x ,

transaction_value → ?trans x).

r 25 : send_message(sender → ?s, receiver → ?r, msg → request_

reputation(about → ?x,ttl → ?t1)): =

receive_message(sender → ?s, receiver → ?self, msg → request_

rating(about → ?x,ttl → ?t)),

?t > 0,

WL(?r),

?t1 is ?t - 1.

r 26 : ¬send_message(sender → ?self, receiver → ?s, msg → ?m) : ∼
send_message(sender → ?self, receiver → ?s, msg → ?m),

BL(?s).

r 27 : rating(id → ?id x , truster → ?x, trustee → ?y, t → ?t,

response_time → ?resp x , validity → ?val x , completeness

→ ?com x , correctness → ?cor x , cooperation → ?coop x ,

outcome_feeling → ?outf x , confidence → ?conf x ,

transaction_value → ?trans x) : =

receive_message(sender → ?s, receiver → ?self,

msg → rating(id → ?id x , truster → ?x, trustee → ?y,
t → ?t, response_time → ?resp x , validity → ?val x ,

completeness → ?com x , correctness → ?cor x ,

cooperation → ?coop x , outcome_feeling → ?outf x ,

confidence → ?conf x , transaction_value → ?trans x)),

not(BL(?s)) .

.3.3. Discarding ratings

As soon as all available ratings are collected, an important de-

ision has to be made; which ratings will be taken into account.

ince agents may be dishonest, providing misleading ratings, DIS-

RM attempts to minimize the effect of that dishonesty. To this

nd, one of the main goals of DISARM is to let agents (trusters) to

se as many rating categories as possible. More specifically, ratings

epresent the experience of the involved parties, which is distin-

uished to direct (agent’s direct experience PR X) and indirect ex-

erience. Indirect experience is divided in two categories, ratings

rovided by strangers (SR X) and reports provided by known agents

ue to previous interactions. In this context, r 28 determines which

gents are considered as known . Additionally to that, in DISARM

nown agents are divided to three more categories; agents in-

luded in the WL whitelist (WR X), agents included in the BL black-

ist (BR X) and the rest known agents (KR X). It is well known that

sing different opinions of a large group maximizes the possibility

f crossing out unfair ratings. Hence, using both direct and indirect

xperience could lead to more truthful estimations.

r 28 : known(agent → ?x) :-

rating(id → ?id x , truster → ?self, trustee → ?x).

Sometimes one or more rating categories are missing, for in-

tance, a newcomer has no personal experience and, thus, there

re no available ratings (PR X). To this end, we wish to ground our

onclusions in trust relationships that have been built and main-

ained over time, much as individuals do in real world. For in-

tance, a user is much more likely to believe statements from a

rusted acquaintance than from a stranger. Thus, personal opinion

 PR) is more valuable than acquaintances opinion (KR), which in

urn is more valuable than strangers’ opinion (SR). Moreover, pre-

iously known and blacklisted agents are generally considered un-

eliable compared to trusted agents (known agents or agents in

he whitelist) and, thus, they are ignored. Finally, agents in the

hitelist (WR) are usually more trusted than mere acquaintances

 KR). In this context, the relationships among the rating categories

re presented graphically in Fig. 1 . The root level includes the four

vailable categories; each next level presents the combinations that

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 139

c

e

t

s

w

fi

o

d

W

n

b

o

t

r

i

e

t

a

K

a

c

i

m

i

l

i

t

d

v

d

t

c

a

i

t

b

t

l

s

p

i

T

C

n

c

a

o

r

F

r

r

o

p

c

s

g

o

t

r

k

a

?
an be derived from the (category) sets of its lower level. The

dges present this relation for each case.

In order to understand Fig. 1 , the first level (top) suggests

hat all ratings count equally, whereas the fourth line (bottom),

uggests an absolute preference to personal experience (PR), over

hitelisted acquaintances (WR), over mere acquaintances (KR), and

nally over strangers (SR). Thus, nodes on the left have precedence

ver nodes on the right. Furthermore, combinations of nodes from

ifferent levels can be made, provided that each rating source (PR,

R, KR, SR) is included only once. For example, one can combine

ode { PR, WR } from the third level with nodes { KR }, { SR } from the

ottom level. This means that personal experience and experience

f absolutely trusted acquaintances is treated equally, and both of

hem are preferred over ratings from mere acquaintances and over

atings from strangers.

As soon as the requesting agent A collects all the available rat-

ngs, it has to decide upon which of them will participate in the

stimation. In order to do this, it has first to indicate which of

hem are eligible for participating in the final reputation value of

gent X; namely a combination of four coefficients: R X = { PR X , WR X ,

R X , SR X }. Hence, as already discussed, DISARM uses confidence

nd transaction values in order to help agents discard some of the

ollected ratings. Besides, it is important to take into account rat-

ngs that were made by confident trusters, since their ratings are

ore likely to be right. Additionally, confident trusters, that were

nteracting in an important for them transaction, are even more

ikely to report truthful ratings. This assumption led to the follow-

ng defeasible rules that define which ratings will be eligible for

he reputation estimation and which not, according to the confi-

ence and the transaction values, yet confidence and importance

alues are not involved in the estimation itself.

r 29 : eligible_rating(rating → ?id x , cat → 1, truster → ?a, trustee → ?x)

: =

confidence_threshold(?conf),

transaction_value_threshold(?tran),

rating(id → ?id x , truster → ?a, trustee → ?x,

confidence → ?conf x , transaction_value → ?tran x),

?conf x > = ?conf, ?tran x > = ?tran.

r 30 : eligible_rating(rating → ?id x , cat → 2, truster → ?a, trustee → ?x)

: =

confidence_threshold(?conf),

transaction_value_threshold(?tran),

rating(id → ?id x , truster → ?a, trustee → ?x,

confidence → ?conf x , transaction_value → ?tran x),

?conf x > = ?conf.

r 31 : eligible_rating(rating → ?id x , cat → 3, truster → ?a, trustee → ?x)

: =

confidence_threshold(?conf),

transaction_value_threshold(?tran),

rating(id → ?id x , truster → ?a, trustee → ?x,

confidence → ?conf x , transaction_value → ?tran x),

?tran x > = ?tran.

r 29 > r 30 > r 31

To this end, rule r 29 indicates that if both the truster’s confi-

ence and transaction importance are high, according to the user’s

hreshold, then that rating will be eligible for the estimation pro-

ess. Rule r 30 , on the other hand, indicates that even if the trans-

ction value is lower than the threshold, it doesn’t matter so much

f the truster’s confidence is high. Rule r 31 , finally, indicates that if

here are only ratings with high transaction value then they should

e eligible. In any other case, the rating should be omitted. Notice

hat the above rules are defeasible and they all conclude positive

iterals. However, these literals are conflicting each other, for the

ame pair of agents (truster and trustee), since we want in the

resence e.g. of personal experience to omit strangers’ ratings. That
s why there is also a superiority relationship between the rules.

he conflict set is formally determined as follows:

[eligible_rating(rating → ?idx, cat → ?c, truster → ?a, trustee → ?x)] =

{ ¬eligible_rating(rating → ?idx, cat → ?c, truster → ?a, trustee → ?x)}

∪

{eligible_rating(rating → ?idx, cat → ?c1, truster → ?a, trustee → ?x) |

?c1 	 = ?c}

Moreover, even if it is defined which ratings are eligible, the fi-

al choice is up to the requesting agent A’s personal strategy. The

riterion for this final choice, as already mentioned, is time. Other

gents will prefer to take into account all eligible ratings whereas

thers will move one step further indicating which of the eligible

atings, e.g. the newest, will finally participate in the estimation.

or instance, rules r 32 , r
′
32 and r ′′ 32 are examples of such a decision;

 32 indicates that only ratings in a given time interval will count,

′
32

indicates that only the latest ratings (from a specific time point

nwards) will count, whereas r ′′ 32 indicates that only ratings re-

orted back to a time window will count (where now() returns the

urrent time point).

r 32 : count_rating(rating → ?id x , truster → ?a, trustee → ?x) : =

time_from_threshold(?ftime),

time_to_threshold(?ttime),

rating(id → ?id x , t → ?t x , truster → ?a, trustee → ?x),

?ftime < = ?t x < = ?ttime.

r ′
32

: count_rating(rating → ?id x , truster → ?a, trustee → ?x) : =

time_from_threshold(?ftime),

rating(id → ?id x , t → ?t x , truster → ?a, trustee → ?x),

?ftime < = ?t x .

r ′′
32

: count_rating(rating → ?id x , truster → ?a, trustee → ?x) : =

time_window(?wtime),

rating(id → ?id x , t → ?t x , truster → ?a, trustee → ?x),

now() - ?wtime < = ?t x .

DISARM takes all the above into account and eventually clas-

ifies the ratings (rules r 33 –r 36) into the previously defined cate-

ories (PR , WR, KR , SR) and takes the final decision about which

f the ratings can actually participate in the estimation process for

he final reputation value R X (rules r 37 –r 39).

r 33 : count_pr (rating → ?id x , trustee → ?x) :-

eligible_rating(rating → ?id x , cat → ?c, truster → ?self,

trustee → ?x),

count_rating(rating → ?id x , truster → ?self, trustee → ?x).

r 34 : count_wr (rating → ?id x , trustee → ?x) :-

known(agent → ?k),

WL (trustee → ?k),

eligible_rating(rating → ?id x , cat → ?c, truster → ?k, trustee → ?x),

count_rating(rating → ?id x , truster → ?k, trustee → ?x).

r 35 : count_kr (rating → ?id x , trustee → ?x) :-

known(agent → ?k),

not(BL (trustee → ?k)),

not(WL (trustee → ?k)),

eligible_rating(rating → ?id x , cat → ?c, truster → ?k, trustee → ?x),

count_rating(rating → ?id x , truster → ?k, trustee → ?x).

r 36 : count_sr (rating → ? id x , trustee → ?x) :-

eligible_rating(rating → ?id x , cat → ?c, truster → ?s,

trustee → ?x),

count_rating(rating → ?id x , truster → ?s, trustee → ?x),

not(known(agent → ?s)) .

Rules r 33 –r 36 , classify the counted ratings in PR X (direct expe-

ience), WR X (known and trusted/whitelisted witness), KR X (just

nown witness) and SR X (strangers’ witness), respectively. In r 35

nd r 36 , we use negation as failure. Specifically, in r 35 if an agent

k cannot be found both in the whitelist and the blacklist, it is

140 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

i

t

i

s

l

w

o

1

u

l

m

t

b

R

a

i

l

t

f

c

a

w

fi

t

R

c

l

m

p

n

i

w

s

r

c

e

R

c

considered as a known witness. Furthermore, in r 36 if known () fails

during execution then not(known ()) will succeed, in order to de-

termine which agents are considered totally strangers. Notice that

the above rules are strict ones, i.e. their conclusions cannot be dis-

puted.

The final decision making process for the R X is based on a re-

lationship theory among the rating categories. In Fig. 1 , we pre-

sented the complete relationship lattice among all rating cate-

gories, whereas, below, we present three potential theories based

on that relationship lattice. In the first theory, all categories (at-

tribute rt) count, hence, if ratings from all of them are available

(rules r 37 –r 40), then they will all participate in the final reputation

estimation. To this end, if one of them is missing, then the other

two are combined, whereas if just one category is available, then

just this one will only be taken into account. This theory is equiv-

alent to the first row in Fig. 1 , namely the combination { PR, WR,

KR, SR }.

r 37 : participate(rating → ?id AX, rt → p, trustee → ?x) : =

count_pr(rating → ?id AX , trustee → ?x).

r 38 : participate(rating → ?id WX , rt → w, trustee → ?x) : =

count_wr(rating → ?id WX , trustee → ?x).

r 39 : participate(rating → ?id KX , rt → k, trustee → ?x) : =

count_kr(rating → ?id KX , trustee → ?x).

r 40 : participate(rating → ?id SX , rt → s, trustee → ?x) : =

count_sr(rating → ?id SX , trustee → ?x).

In the rest two theories, opinions from different categories con-

flict each other (conflicting literals), therefore the conflict is being

resolved via adding superiority relationships. Specifically, personal

opinion is the most important, and then comes whitelisted agents’

opinion, then simply known agents’ and then strangers’. We will

present only the superiority relationships and we will not dupli-

cate the rules. The conflict set (for both theories) is:

C[participate(rating → ?id, rt → ?type, trustee → ?x)] =

{ ¬ participate(rating → ?id, rt → ?type, trustee → ?x)} ∪

{participate(rating → ?id, rt → ?type1, trustee → ?x) |

?type 	 = ?type1}

In the second theory, the priority relationship among the rules

is based on the fact that an agent relies on its own experience if

it believes it is sufficient, if not it acquires the opinions of others,

much as do humans in real life. This theory is equivalent to the

last row in Fig. 1 , namely the combination { PR }, { WR }, { KR }, { SR },

r 37 > r 38 >> r 39 >> r 40 .

In the third theory, on the other hand, if direct experience is

available (PR), then it is preferred to be combined with ratings

from well trusted agents (WR). On the other hand, if personal ex-

perience is not available, then ratings from well trusted agents is

preferred over just known agents, which is preferred over ratings

coming from strangers. In the end, if nothing of the above is avail-

able, DISARM acts as a pure witness system. This theory is equiva-

lent to the combination of the first node of the third row in Fig. 1 ,

with the two last nodes of the last row, namely the combination

{ PR, WR }, { KR }, { SR }, r 37 >> r 40 , r 37 >> r 39 , r 38 >> r 39 , r 38 >> r 40 , r 39 >> r 40 .

3.3.4. Estimating reputation

Agent A eventually reaches on a decision upon which rating is

going to participate in the estimation (R X = { PR X , WR X , KR X , SR X }),

according to the chosen relationship theory, as discussed above.

In this context, in order to cross out outliers, extremely positive

or extremely negative values, the rating values are logarithmically

transformed. Outliers are rating values that differ significantly from

the mean (a central tendency) and, thus, they can have a large im-

pact on the estimation process that could mislead agents. To this

end, the most important feature of the logarithm is that, relatively,
t moves big values closer together while it moves small values far-

her apart and, thus, rating data are better analyzed. More specif-

cally, many statistical techniques work better with data that are

ingle-peaked and symmetric while it is easier to describe the re-

ationship between variables when it is approximately linear. Thus,

hen these conditions are not true in the original data, they can

ften be achieved by applying a logarithmic transformation.

To this end, each rating is normalized (r ∈ [−1,1] | −1 ≡ terrible,

≡ perfect), by using 10 as the logarithm base. Thus, the final rep-

tation value ranges from −1 to +1, where −1, +1, 0 stand for abso-

utely negative, absolutely positive and neutral, respectively, which

eans that an agent’s reputation could be either negative or posi-

ive. Hence, the final reputation value R X is a function � that com-

ines the transformed ratings for each available category:

 X = � (P R X , W R X , K R X , S R X) (1)

Moreover, since DISARM aims at simulating human behavior, it

llows agents to determine what and how important is each rat-

ng parameter for them. In other words, an agent may consider va-

idity more important than all, while it may not care at all about

he outcome feeling of the interaction. An example could be the

ollowing: { response time → 20%, validity → 50%, completeness → 10%,

orrectness → 10%, cooperation → 10%, outcome feeling → 0% }. Hence,

gents are allowed to provide specific weights (w i , i ∈ [1, 6]) that

ill indicate their personal preferences according the ratings’ coef-

cients. Formula (2), which is the modified formula (1), calculates

he weighted normalized values:

 X = �

[

AV G

(
w i × log

(
pr coefficient

X

))
∑ 6

i =1 w i

,
AV G

(
w i × log

(
wr coefficient

X

))
∑ 6

i =1 w i

,

×
AV G

(
w i × log

(
kr coefficient

X

))
∑ 6

i =1 w i

,
AV G

(
w i × log

(
sr coefficient

X

))
∑ 6

i =1 w i

]

,

oefficient = { response _ t ime, v alidit y, completeness,

correctness, cooperat ion, out come _ f eeling } (2)

Moving one step further, we try to understand deeper the re-

ationship among the rating categories that participate in the esti-

ation. It is up to the chosen relationship theory, presented in the

revious subsection, which categories will participate, yet there is

o clue about their percentage use in the estimation. To this end,

n DISARM the user, through his/her agent A , is able to set what

e call the “social trust weights” (πp , πw

, π k , π s). These weights

pecify the balance between personal experience (πp) and witness

eputation (πw

, π k , π s). Hence, the final reputation value R X is cal-

ulated according to which experience is more important for the

nd user (formula (3)).

 X = �

⎡

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

πp

πp + πw

+ πk + πs
×

AV G

(
w i × log

(
pr coefficient

X

))
∑ 6

i =1 w i

,

πw

πp + πw + πk + πs
×

AVG

(
w i ×log

(
wr

coefficient
X

))
∑ 6

i =1 w i

,

πk

πp + πw

+ πk + πs
×

AV G

(
w i × log

(
kr coefficient

X

))
∑ 6

i =1 w i

,

πs

πp + πw + πk + πs
×

AVG

(
w i ×log

(
sr

coefficient
X

))
∑ 6

i =1 w i

⎤

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

,

oefficient = { response _ t ime, v alidit y, completeness, correctness,

cooperation, outcome _ f eeling }
(3)

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 141

a

a

t

l

t

i

a

w

R

cient (t

t

cient (

t

cient (t

ient (t

c oper

n

f

e

i

m

t

a

t

f

l

r

a

r

d

w

p

a

i

t

i

c

c

o

3

w

fi

Finally, since time is an important aspect in reputation, DISARM

llows time not only to be used for discarding available ratings but

lso to be used in the estimation itself. It is generally accepted

hat more recent ratings “weigh” more since they represent the

atest activity of a specific agent. In order to include this aspect in

he final reputation value, each rating at time t (t start < t < t current)

s multiplied with t itself, as shown below. So, time becomes

 sort of weight; the larger (i.e. the most recent), the more it

eighs.

 X = �

⎡

⎢ ⎣

πp

πp + πw

+ πk + πs
×

AV G

(

w i ×
∑

∀ t start <t< t current
[log

(
pr coeffi

X ∑

∀ t start <t< t current ∑ 6
i =1 w i

πw

πp + πw

+ πk + πs
×

AV G

(

w i ×
∑

∀ t start <t< t current
[log

(
wr coeffi

X ∑

∀ t start <t< t current ∑ 6
i =1 w i

πk

πp + πw

+ πk + πs
×

AV G

(

w i ×
∑

∀ t start <t< t current
[log

(
kr coeffi

X ∑

∀ t start <t< t current
t∑ 6

i =1 w i

πs

πp + πw

+ πk + πs
×

AV G

(

w i ×
∑

∀ t start <t< t current
[log

(
sr coeffic

X ∑

∀ t start <t< t current
t∑ 6

i =1 w i

oefficient = { response _ t ime, v alidit y, completeness, correctness, co

Hence, formula (4) represents DISARM’s final metric. Moreover,

ote that a potential example of this formula, the simplest one

or function � , could be the summation; in the sense that all cat-

gories participate additively in the final value, each one with

ts own weight. Notice that any multi-criteria decision making

ethod/function could be used instead. However, we believe that

he weighted sum model is the most intuitive one.

For demonstration purposes regarding formula (4), a small ex-

mple case is presented below. Consider an agent (A) that wants

o estimate the reputation value of another agent (X). It possesses

our (4) ratings, one (1) from its own experience, one (1) col-

ected from a white-listed agent W (a believed-to-be honest and

eliable agent), one (1) collected from another known agent K

nd, finally, one (1) collected from a total stranger S . Hence, each

ating category includes just one rating since our intention is to

emonstration how formula (4) is used. More ratings can be added

ithout differentiating the estimation procedure. These ratings are

resented below. Note that in order to eliminate complexity we

ssume that time represents the simulation round, hence it takes

nteger values (t ∈ [1,10]).
)
)

× t]
)

,

t)
)

× t]
)

,

)
)

× t]
)

,

)
)

× t]
)

⎤

⎥ ⎦

,

ation, outcome _ f eeling }

(4)

PR X = {rating(id → 1, truster → A, trustee → X, t → 2, response_

time → 9, validity → 7,

completeness → 6, correctness → 6, cooperation → 8,

outcome_feeling → 7, confidence → 0.9, transaction_value → 0.8)}

WR X ={rating(id → 3, truster → W, trustee → X, t → 5, response_

time → 7, validity → 8,

completeness → 7, correctness → 8, cooperation → 9,

outcome_feeling → 8, confidence → 0.7, transaction_value → 0.6)}

KR X ={rating(id → 4, truster → K, trustee → X, t → 3, response_

time → 7, validity → 6,

completeness → 7, correctness → 6, cooperation → 7,

outcome_feeling → 6, confidence → 0.7, transaction_value → 0.7)}

SR X ={rating(id → 8, truster → S, trustee → X, t → 8, response_

time → 9, validity → 9,

completeness → 9, correctness → 9, cooperation → 8,

outcome_feeling → 8, confidence → 0.7, transaction_value → 0.9)}

Furthermore, the agent A determines its preferences about both

he so-called social trust weights (πp , πw

, π k , π s) and the weights

t associates to the rating parameters. More specifically, for this

ase response time counts 40%, validity counts 20%, completeness

ounts 10%, correctness counts 10%, cooperation counts 10% and

utcome feeling counts also 10% while πp counts 40%, πw

counts

0%, π k counts 20%, π s counts 10%. Using the above ratings, the

eights and a normalized summation function for formula (4), the

nal reputation value is estimated as:

142 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

πw

w + πk +

k + πs
×

oper

og (pr co
X

completen
X

10

mpletene

10

pletenes

10

 × log (7
10

×5
)

×3
)

×8
))

 . 5) +

 + 0 .

u

m

m

u

σ

c

t

r

m

m

d

s

t

w

r
R X = log (
πp

πp + πw + πk + πs
×

AVG

(
w i ×

∑
∀ t start <t< t current

[log (pr
coefficient
X

(t)) ×t] ∑
∀ t start <t< t current

t

)
∑ 6

i =1 w i

+ πp + π

+

πk

πp + πw + πk + πs
×

AVG

(
w i ×

∑
∀ t start <t< t current

[log (kr
coefficient
X

(t)) ×t] ∑
∀ t start <t< t current

t

)
∑ 6

i =1 w i

+

πs

πp + πw + π
coefficient = { response _ t ime, v alidit y, completeness, correctness, co

R X = log

(
40

40+ 30 + 20+10

×
AVG

(
40 × log (pr

response _ time
X

(2)) ×2

10 , 20 × log (pr
v alidity
X

(2)) ×2

10 , 10 × log (pr
completeness
X

(2)) ×2

10 , 10 × l

100

+

30
40+ 30 + 20+10

×
AVG

(
40 × log (wr

response _ time
X

(5)) ×5

10 , 20 × log (wr
v alidity
X

(5)) ×5

10 , 10 × log (wr

+

20
40+ 30 + 20+10

×
AVG

(
40 × log (kr

response _ time
X

(3)) ×3

10 , 20 × log (kr
v alidity
X

(3)) ×3

10 , 10 × log (kr
co
X

+

10
40+ 30 + 20+10

×
AVG

(
40 × log (sr

response _ time
X

(8)) ×8

10 , 20 × log (sr
v alidity
X

(8)) ×8

10 , 10 × log (sr
com
X

= log

(
40

100
×

AVG

(
40 × log (9) ×2

10 , 20 × log (7) ×2
10 , 10 × log (6) ×2

10 , 10 × log (6) ×2
10 , 10 × log (8) ×2

10 , 10

100

+

30
100

×
AVG

(
40 × log (7) ×5

10 , 20 × log (8) ×5
10 , 10 × log (7) ×5

10 , 10 × log (8) ×5
10 , 10 × log (9) ×5

10 , 10 × log (8)
10

100

+

20
100

×
AVG

(
40 × log (7) ×3

10 , 20 × log (6) ×3
10 , 10 × log (7) ×3

10 , 10 × log (6) ×3
10 , 10 × log (7) ×3

10 , 10 × log (6)
10

100

+

10
100

×
AVG

(
40 × log (9) ×8

10 , 20 × log (9) ×8
10 , 10 × log (9) ×8

10 , 10 × log (9) ×8
10 , 10 × log (8) ×8

10 , 10 × log (8)
10

100

= log (40
100

× AVG (40 × 0 . 95 ×2
10 , 20 × 0 . 84 ×2

10 , 10 × 0 . 77 ×2
10 , 10 × 0 . 77 ×2

10 , 10 × 0 . 9 ×2
10 , 10 × 0 . 84 ×2

10)
100

+

30
100

× AVG (40 × 0 . 84 ×5
10 , 20 × 0 . 9 ×5

10 , 10 × 0 . 84 ×5
10 , 10 × 0 . 9 ×5

10 , 10 × 0 . 95 ×5
10 , 10 × 0 . 9 ×5

10)
100

+

20
100

× AVG (40 × 0 . 84 ×3
10 , 20 × 0 . 77 ×3

10 , 10 × 0 . 84 ×3
10 , 10 × 0 . 77 ×3

10 , 10 × 0 . 84 ×3
10 , 10 × 0 . 77 ×3

10)
100

+

10
100

× AVG (40 × 0 . 95 ×8
10 , 20 × 0 . 95 ×8

10 , 10 × 0 . 95 ×8
10 , 10 × 0 . 95 ×8

10 , 10 × 0 . 9 ×8
10 , 10 × 0 . 9 ×8

10)
100

)

= log (40
100

× AVG (7 . 6 , 3 . 36 , 1 . 54 , 1 . 54 , 1 . 8 , 1 . 68)
100

+

30
100

× AVG (16 . 8 , 9 , 4 . 2 , 4 . 5 , 7 . 75 , 4
100

= log (40 ×2 . 92
100

+

30 ×7 . 79
100

+

20 ×4 . 06
100

+

10 ×12 . 53
100

) = log (1 . 168 + 2 . 337

The final reputation is a positive value (R x = 0.74) which means

that the agent X is expected to behave well in a potential future

transaction.

3.3.5. Measuring estimation confidence

As already mentioned, DISARM also studies the variability of

the ratings that were finally taken into account as a measure about

the confidence of the estimation itself. Generally speaking, DIS-

ARM attempts to encourage honest behavior by propagating re-

quest messages to whitelisted agents, yet agents are not always

honest, hence some rating will be misleading. For this purpose,

we use standard deviation. It measures the amount of variation or

dispersion from the average. Yet, in addition to expressing the vari-

ability of a population, the standard deviation is commonly used to

measure confidence in statistical conclusions. In other words, the

standard deviation is a measure of how spread out numbers are.

A low standard deviation indicates that the data points (here rat-

ings) tend to be very close to the mean, the expected value, hence

it is more likely the estimation to be closer to the agent’s actual

behavior whereas it is more possible to have mainly honest rat-

ings. On the other hand, a high standard deviation indicates that

the data points (ratings) are spread out over a large range of val-
 πs
×

AVG

(
w i ×

∑
∀ t start <t< t current

[log (wr
coefficient
X

(t)) ×t] ∑
∀ t start <t< t current

t

)
∑ 6

i =1 w i

AVG

(
w i ×

∑
∀ t start <t< t current

[log (sr
coefficient
X

(t)) ×t] ∑
∀ t start <t< t current

t

)
∑ 6

i =1 w i

,

ation, outcome _ f eeling }

(5)

rrectness (2)) ×2

10 , 10 × log (pr
cooperation
X

(2)) ×2

10 , 10 × log (pr
outcome _ f eeling
X

(2)) ×2

10

)
ess

(5)) ×5
, 10 × log (wr correctness

X
(5)) ×5

10 , 10 × log (wr
cooperation
X

(5)) ×5

10 , 10 × log (wr
outcome _ f eeling
X

(5)) ×5

10

)
100

ss
(3)) ×3

, 10 × log (kr correctness
X

(3)) ×3

10 , 10 × log (kr
cooperation
X

(3)) ×3

10 , 10 × log (kr
outcome _ f eeling
X

(3)) ×3

10

)
100

s
(8)) ×8

, 10 × log (sr correctness
X

(8)) ×8

10 , 10 × log (sr
cooperation
X

(8)) ×8

10 , 10 × log (sr
outcome _ f eeling
X

(8)) ×8

10

)
100

)

) ×2

)

20
100

× AVG (10 . 08 , 4 . 62 , 2 . 52 , 2 . 31 , 2 . 52 , 2 . 31)
100

+

10
100

× AVG (30 . 4 , 15 . 2 , 7 . 6 , 7 . 6 , 7 . 2 , 7 . 2)
100

)

 812 + 1 . 253) = log (5 . 57) = 0 . 74

es and, thus, it is difficult to predict the agent’s behavior, which

eans that possibly a great amount of ratings is misleading.

In this context, formula (6) presents the standard deviation

etric used in DISARM, where N represents the total amount of

sed (in formula (4)) ratings (r).

=

√ √ √ √

1

N

N ∑

j=1

(r coefficient
X

− μ(r coefficient
X

))
2
, r coefficient

X
∈ pr coefficient

X
∪

× wr coefficient
X

∪ kr coefficient
X

∪ sr coefficient
X

,

oefficient = { response _ t ime, v alidit y, completeness, correctness ,

cooperation, outcome _ f eeling } (6)

More specifically, in DISARM the above formula does not par-

icipate in the estimation process itself nor affect, in any way, the

eputation value. Its role is to act complement to DISARM’s final

etric (formula (4)), in order to indicate the probability the esti-

ated value (formula (4)) to be close to reality. Furthermore, it in-

icates how honest (or not) were the requested for ratings agents,

ince a high probability implies quite honest ratings. The motiva-

ion behind the use of the standard deviation formula (formula (6))

as the fact that although reputation models provide an estimated

eputation value they do not provide any clue about how likely

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 143

i

D

a

3

t

i

c

h

a

c

X

t

t

t

c

t

a

i

t

r

o

(

i

r

a

a

b

s

(

?

a

(

p

m

w

i

r

o

w

i

c

t

i

a

b

d

i

t

b

S

n

i

a

a

“

s

3

p

n

p

b

b

o

i

A

e

a

a

T

t

i

c

a

h

r

a

t

O

b

w

c

b

K

p

t

a

i

r

a

t

t

l

t

R

c

e

d

s

t
s this estimation to reflect the agent’s true behavior. To this end,

ISARM provides an additional tool (formula (6)) in order to assist

gents, and thus their users, to make the best for them choices.

.3.6. Facing dishonesty

Finally, let’s assume that the truster (A) estimates the reputa-

ion value of the trustee (X), using a set of ratings, and makes

ts choice. The question is if that decision has eventually proven

orrect or wrong. In other words, the question is if the truster

as made a satisfying choice or not. In this context, each time

 transaction between A and X is not satisfying, agent A has to

onsider why that happened. A first answer could be that agent

 acted unexpectedly, although it was highly rated (high reputa-

ion value), due to a temporal fault. Actually, this is the case some-

imes. Yet, in competitive environments like multi-agent systems,

he cause is usually dishonesty. As already discussed, DISARM in-

ludes a request message propagation to whitelisted agents, since

hese agents are believed to be more honest. Yet, sometimes they

re not. As a result, agent A receives misleading ratings that leads

t to wrong assessments.

The standard deviation metric, presented in the previous sec-

ion, is an early warning. Its goal is to estimate the confidence in

eputation estimations. A low standard deviation peals the alarm;

n the other hand, a high deviation does not. Hence, the truster

agent A) has, at least, to protect itself from any similar wrong do-

ng in the future by judging its rating providers. To this end, rule

 41 , presented below, indicates that if the standard deviation value,

t a specific time point (?t) for the trustee X (?x) is lower than the

gent A’s associated threshold then the estimation is considered

ad (bad_assessment). Of course, this holds as far as it concerns a

pecific agent that provided the rating(s), namely it acted as truster

 ?y). Note that in the following example, r 41 , we assume that agent

y acted as truster providing just a rating (?id x) to agent A.

r 41: bad_assessment (time → ?t, truster → ?y, trustee → ?x) :-

rating(id → ?id x , time → ?t x , truster → ?y, trustee → ?x),

standard_deviation(value → ?stdev x , time → ?t, trustee → ?x),

standard_deviation_threshold(?stdev),

?stdev x < ?stdev, ?t x < = ?t.

In this context, DISARM provides a set of rules that rearranges

gents with possible dishonest behavior in agent A’s repositories

including white and black list). Of course, it depends on agent’s

ersonal strategy how tolerant it is. For instance, an agent that was

isled may add all involved rating providers (?y) to its blacklist

hereas another may expect an agent to be involved many times

n such a bad assessment. Sometimes, an agent may just remove a

ating provider from its whitelist either instantly or after a number

f cases.

Below, we present one such possible theory; any other theory

ould be possible based on the agent’s personal preferences. Sim-

larly to Section 3.3.1 (rules r 11 –r 14) we use a time window for

onsidering only recent bad assessments. Rule r 42 , below, indicates

hat if there is an agent ?y that interacted with the current agent

n the past and agent ?y provided two ratings to the current agent

bout a third agent ?x , a potential partner for the current agent,

ut these two assessments were not good, then the current agent

ecides to add agent ?y in its blacklist. In the same spirit, rule r 43

ndicates that if a rating provider is involved in a bad assessment

hree times for three different agents, it should be added to the

lacklist.

r 42 : add_blacklist(trustee → ?y, time → ?t2) : =

time_window(?wtime),

bad_assessment(time → ?t1, truster → ?y, trustee → ?x),

bad_assessment(time → ?t2, truster → ?y, trustee → ?x),

?t2 > ?t1 > = now() - ?wtime.
r 43 : add_blacklist(trustee → ?y, time → ?t2) : =

time_window(?wtime),

bad_assessment(time → ?t1, truster → ?y, trustee → ?x1),

bad_assessment(time → ?t2, truster → ?y, trustee → ?x2),

bad_assessment(time → ?t3, truster → ?y, trustee → ?x3),

?t3 > ?t2 > ?t1 > = now() - ?wtime, ?x2 	 = ?x1, ?x3 	 = ?x2,

?x3 	 = ?x1.

Notice that these rules are combined with rules r 11 –r 14 in

ection 3.3.1 , to form the total update strategy of the two lists. Also

otice that even if the above rules seems quite harsh (because they

mmediately add the rating agent in the blacklist), in practice they

re not. Recall that when an agent is already in the whitelist, an

dd_blacklist conclusion just moves it out of the whitelist to the

neutral zone”. It takes a second consecutive add_blacklist conclu-

ion to put the agent in the blacklist (rules r 15 –r 18 in Section 3.3.1).

.4. Complexity analysis

In order to have a rough estimation of the complexity of the

roposed methodology, with respect to the size of the problem,

amely the number of agents N and the total number of time

oints T , we will follow two different approaches. The first one is

ased on the assumption that we can use a propositional defeasi-

le rule engine, such as SPINdle (Lam and Governatori, 2009), in

rder to implement the defeasible theory for calculating the rat-

ngs that should be used for estimating the reputation of an agent.

ccording to Maher (2001), propositional defeasible logic has lin-

ar complexity to the number of literals. Our theory, however, is

 first-order theory. Rules with free variables can be interpreted

s rule schemas, that is, as the set of all variable-free instances.

herefore, in order to estimate the complexity of our defeasible

heory we can estimate how many variable-free literal instances,

.e. facts, are generated (in the worst case) from our theory, in-

luding of course, the initial facts.

The most important set of facts is the ratings provided by each

gent to another agent, i.e. predicate ratings/12. This predicate can

ave at most N

∗(N −1) ∗T instances, i.e. all agents have provided

atings for any other agent in the system, at all time points. There

re no other facts in the defeasible theory that are influenced by

he size of the problem, therefore the number of initial facts is

 (N

2 T).

Now, let us examine the rules. Rules about establishing good/

ad behavior (r 1 –r 10) can introduce at most 2 ∗K

∗N

∗N

∗T literals,

here K is the number of different reasons that an agent can be

haracterized as good or bad and each agent can be characterized

y any other agent at any time point (in the worst case). Parameter

 does not depend on the size of the problem, but includes every

ossible combination of the D rating dimensions, namely K = 2 D . In

he case of our theory, D = 8; therefore K = 256. Since K is not scal-

ble, we conclude that rules about establishing good/bad behavior

ntroduce O (N

2 T) literals.

Rules about adding an agent to the white or blacklist (r 11 –

 14) introduce (worst case) for each truster N

∗T literals, since

dd_blacklist and add_whitelist mutually exclude each other, due

o the mutual defeaters. Thus, in total, again O (N

2 T) literals are in-

roduced. Rules about moving agents in/out of the white and black

ists (r 15 –r 18) also introduce (in the worst case) O (N

2 T) literals, in

otal, since they have the same parameters like the previous ones.

ules that compile the two lists (r 19 –r 22) introduce (in the worst

ase) for each truster N literals, since the two lists are mutually

xcluded. Thus, in total, these rule introduce O (N

2) literals.

Rules about locating ratings from other agents (r 23 –r 26) intro-

uce for each truster (2 + T) ∗N

∗N literals, since every agent can

end to any other agent (in the worst case, when TTL equals

he total number of nodes in the network) a message asking for

144 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

s

B

f

o

4

o

n

m

c

H

m

o

t

i

s

q

d

i

t

t

A

p

s

E

n

e

e

E

(

p

s

v

p

f

s

t

f

i

t

f

p

p

m

m

m

c

e

2

t

s

a

a

w

t

t

t

e

s

t

e

ratings about a third agent, which in the worst case can be any

other agent in the system. Factor 2 + T is due to the fact that a mes-

sage can be an initial request, a request propagation or an answer

to a request, which can include at worst ratings about an agent

for all time points. Thus totally (for all agents) these rules intro-

duce O (N

3 T) literals. Rule r 26 does not introduce new literals; it

just copies ratings from one agent to another.

Rules for selecting ratings that will participate in the trust rep-

utation (r 28 –r 40) introduce, in the worst case, the same number of

literals with the initial set of ratings, namely O (N

2 T) literals. Rules

about measuring agent dishonesty and deciding about including

agents in the white or back lists, have the same complexity with

the rules about good / bad behavior and list management, i.e. they

also can introduce at worse O (N

2 T) literals.

If we sum up all the previous, we end up that the size of

the factbase is O (N

2 T + N

2 + N

3 T) ≈ O (N

3 T). Therefore, the time com-

plexity of our theory, if we assume a propositional implementa-

tion, is O (N

3 T). However, notice that this complexity is due to the

fact that we have assumed a shared memory for all agents. In the

case that each agent implements its own local knowledge base, the

defeasible theory will run independently at each agent locally and

therefore the complexity will fall to O (N

2 T) for each agent.

Given that our current implementation does not use a propo-

sitional defeasible logic rule engine, but DR-Device (Bassiliades

et al., 2006) which is a first-order defeasible logic rule engine

that is implemented on top of the CLIPS production rule engine

(CLIPS, 2015), we can estimate our methodology complexity as fol-

lows. CLIPS uses the RETE algorithm (Forgy, 1991) for incrementally

matching facts in the factbase to rule conditions. Its computational

complexity is O (RFP), where R is the number of rules in the rule-

base, F is the number of facts in the factbase, and P is the average

number of patterns/conditions in the condition of the rules.

In our theory, the size of the defeasible rulebase is independent

of the size of the problem (43 rules). Each rule in the defeasible

theory is translated into a fixed set of production rules (for details

see Bassiliades and Vlahavas, 2006; Bassiliades et al., 2006); there-

fore the size of the production rulebase is also independent of the

size of the problem. The same is true for the average number of

patterns/conditions in the condition of the rules. Actually, in the

worst case (rule r 1) rules have < 10 condition patterns. Therefore,

the only quantity that depends on the problem size is the factbase,

which was shown previously to be O (N

3 T), in the case of a central-

ized rule engine, or O (N

2 T), in the case of decentralized rule en-

gines at each agent, which is a more likely case. Therefore, using

a different approach we can estimate again a similar complexity

for our methodology, namely linear to time and quadratic to the

number of agents.

4. Evaluation

For evaluation purposes, regarding DISARM, we combined two,

quite popular, testbed environments, adopted from Huynh et al.

(20 06 a, 20 06), previously used in Kravari and Bassiliades (2012)

and Khosravifar et al. (2012). These testbeds are quite similar, just

with slight differences in number of participants and simulation

rounds and they were used in a number of evaluation cases. The

initial testbed as well as its slight variation that is adopted in this

article were developed by a well-known research team for evalu-

ation purposes regarding reputation models. This testbed without

loss of generality reduces the complexity of the environment. Fur-

thermore, it allows quickly obtainable and easily reproducible re-

sults. The foremost advantage of the testbed is the fact that it pro-

vides a realistic view of a multi-agent system’s performance un-

der commonly appeared conditions, such as realistic network la-

tency, congestion, user behavior and so forth. In this context, we

preserved the testbed design but slightly changed the evaluation
ettings, taking into account the data provided in previous works.

elow, a description of the testbed and the experimental settings

or our experiments are given. Next, the implementation method-

logy of DISARM and the evaluation results are also presented.

.1. Testbed

The testbed environment is a multi-agent system consisting

f agents providing services and agents that use these services,

amely providers and consumers. We assume that the perfor-

ance of a provider, and effectively its trustworthiness, in a spe-

ific service is independent from other services that it might offer.

ence, in order to reduce the complexity of the testbed’s environ-

ent, without loss of generality, we assume that the performance

f a provider is independent from the service that is provided. In

his context, it is assumed that there is only one type of service

n the testbed and, as a result, all the providers offer the same

ervice.

Nevertheless, the performance of the providers, such as the

uality of the service in terms of satisfaction, response time, etc.,

iffers and determines the utility that a consumer gains from each

nteraction (called UG

≡ utility gain). The value of UG varies from 0

o 10 and it depends on the level of performance of the provider in

hat interaction. A provider agent can serve many users at a time.

fter an interaction, the consumer agent rates the service of the

rovider based on the level of performance and the quality of the

ervice it received. Each agent interaction is a simulation round.

vents that take place in the same round are considered simulta-

eous and, thus, the round number is used as the timestamp for

vents and ratings.

To this end, taking all the above into account, the testbed in

ach experiment is populated with provider and consumer agents.

ach consumer agent is equipped with a particular trust model

a centralized approach is also included), which helps it select a

rovider when it needs to use a service. We assume that con-

umers select always the provider with the highest reputation

alue. Note that whenever there are no available ratings for a

rovider, its reputation value is zero. In this context, the only dif-

erence among consumer agents is the trust models that they use,

o the utility gained by each agent through simulations will reflect

he performance of its trust model in selecting reliable providers

or interactions. As a result, the testbed records the UG of each

nteraction with each trust model used. Consumer agents without

he ability to choose a trust model will randomly select a provider

rom the list. Furthermore, in order to obtain an accurate result for

erformance comparisons between trust models, each one is em-

loyed by a large but equal number of consumer agents.

Hence, Table 2 displays the testbed environment; the six trust

odels used by consumer agents (along with the absence of

odel) and the four types of service providers. Regarding trust

odels, the testbed includes DISARM (the proposed model), So-

ial Regret (Sabater and Sierra, 2002), Certified Reputation (Huynh

t al., 2006), CRM (Khosravifar et al., 2012), FIRE (Huynh et al.,

006), HARM (Governatori et al., 2001) and NONE (absence of

rust mechanism). Social Regret takes into account a social dimen-

ion, attempting to heuristically reduce the number of queries that

re required in order to locate ratings. For this purpose, it groups

gents and asks the opinion of only an agent per group. Yet, this

ay Social Regret marginalizes most of the agents. Certified Repu-

ation, on the other hand, is a well-known model that asks agents

o give ratings of their performance after every transaction while

he agents that receive these ratings have to keep them. Hence,

ach agent that needs ratings is able to ask any other agent for its

tored references. However, Certified Reputation is designed to de-

ermine the access rights of agents, rather than to determine their

xpected performance.

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 145

Table 2

Testbed environment.

Service providers Population density Service consumers (trust model compliance) Population density

Good providers 15% DISARM 14%

Ordinary providers 30% Social Regret (Sabater and Sierra, 2002) 14%

Bad providers 40% Certified Reputation (Huynh et al., 2006) 14%

Intermittent providers 15% CRM (Khosravifar et al., 2012) 14%

FIRE (Huynh et al., 2006) 14%

HARM (Kravari and Bassiliades, 2012) 14%

NONE 16%

Table 3

Providers’ performance distribution.

Service providers

Mean performance

(UG value)

Performance distribution

(UG value)

Good providers 9 [8, 10]

Ordinary providers 7 [6, 8]

Bad providers 3 [0, 6]

Intermittent providers 5 [0, 10]

m

t

m

c

a

T

t

c

g

i

d

o

h

p

o

t

b

n

c

s

I

l

l

o

3

a

a

a

s

v

w

h

t

a

v

p

B

a

r

t

d

e

H

m

o

p

m

U

n

(

a

o

o

l

o

j

4

(

a

(

f

a

m

a

K

a

e

a

s

A

a

e

e

p

o

s

f

o

a

i

B

t

v

i

n

m

t
CRM (Comprehensive Reputation Model) is a probability-based

odel that asks agents to keep ratings, both from their direct

ransactions and witnesses, calling the procedure online trust esti-

ation. Later, the actual performance of an evaluated agent will be

ompared against the above related ratings, in order to judge the

ccuracy of the consulting agents in the previous on-line process.

his procedure is called off-line. FIRE is a popular model that in-

egrates interaction trust, role-based trust, witness reputation and

ertified reputation. All available values are combined into a sin-

le measure by using the weighted mean method. Finally, HARM,

s a previous work of us that uses temporal defeasible logic in or-

er to combine interaction trust and witness reputation. It is the

nly centralized approach that is taken into account since it is a

ybrid rule-based reputation model that uses defeasible (yet tem-

oral) logic from a similar viewpoint. Actually, DISARM is based

n the principles of HARM, forming an updated and extended, dis-

ributed this time, model. More details for the above models can

e found below in Section 5 .

Regarding service providers the testbed includes good, ordi-

ary, bad and intermittent providers, namely honest and mali-

ious agents. The first three provide services according to the as-

igned mean value of quality with a small range of deviation.

n other words, good, ordinary and bad providers have a mean

evel of performance; hence, their activity (actual performance) fol-

ows a normal distribution around this mean. Intermittent agents,

n the other hand, cover all possible outcomes randomly (Table

). More particularly, regarding their strategy, good providers act

lways honestly, providing immediately consumers with accurate

nd right services. Ordinary providers, on the other hand, are usu-

lly honest but they have sometimes a significant delay in re-

ponse. Hence, ordinary provider agents respond always to a ser-

ice call, providing usually the right service but most of the times

ith a delay. The above, good and ordinary providers, form the two

onest cases. The testbed includes also two malicious cases, in-

ermittent and bad providers. Intermittent providers respond usu-

lly without delay but most of the times the service they pro-

ide is not the expected but a wrong one. On the other hand, bad

roviders respond always with a delay, providing a wrong service.

ad providers are an obvious bad case, in the sense that they are

bsolutely malicious agents that provide dishonest services. As a

esult, they can be located quite easily with a well-formed reputa-

ion model. Yet, intermittent providers are a more complicated and
readed case of malicious agents. They act immediately, providing

ither good or bad services, without a specific behavior pattern.

ence, it is difficult for the rest agents to detect and reveal their

alicious behavior. In this context, there is usually a vast amount

f possibilities regarding the allocation of providers, yet, it is im-

ossible to explore them exhaustively. Hence, we use a quite com-

on case where just half of the providers lead to profit (satisfying

G value). Additionally, since good and intermittent providers are

ot so common in real life, these categories get a low percentage

15%) in the population.

Furthermore, since multi-agent systems are open systems,

gents may join or leave the system at any time. In this context, in

rder to simulate this dynamic behavior, we remove a percentage

f the testbed agents while we add new ones into it, at each simu-

ation round. Yet, our intention is to maintain the different groups

f categories and their relevant proportions. Hence, at each round

ust 10–20% is renewed, by actually replacing agents in the system.

.2. Complying with DISARM

For implementation purposes, we use EMERALD (Kravari et al.

2010), a framework for interoperating knowledge-based intelligent

gents in the Semantic Web. This framework is built on top of JADE

 Bellifemine et al. (2003), a reliable and widely used multi-agent

ramework. EMERALD was chosen since it provides a safe, generic,

nd reusable framework for modeling and monitoring agent com-

unication and agreements. Moreover, it proposes, among others,

 reusable prototype for knowledge-customizable agents (called

C-Agents) and the use of Reasoners (Kravari et al., 2010). The

gent prototype promotes customizable agents, providing the nec-

ssary infrastructure for equipping them with a rule engine and

 knowledge base (KB) that contains agent’s knowledge and per-

onal strategy. Complying with this prototype, agents that use DIS-

RM have their ratings expressed as facts in RDF format (Fig. 3)

nd their decision-making rules (defeasible logic) in RuleML (Boley

t al., 2010) (Fig. 2), a Semantic Web language. Hence, it is quite

asy for these agents to “run” the DISARM model and reach a

romising decision. Reasoners, on the other hand, are agents that

ffer reasoning services to the rest of the agent community. A Rea-

oner can launch an associated reasoning engine, in order to per-

orm inference and provide results. EMERALD supports a number

f Reasoners but most important for the purposes of this article

re the four Reasoners that use defeasible reasoning; among them

s the DR-Reasoner (based on DR-Device defeasible logic system;

assiliades et al., 2006), the defeasible Reasoner that was used for

he evaluation of DISARM.

Additionally, EMERALD provides an advanced yellow pages ser-

ice, called AYPS, that is responsible for recording and represent-

ng information related to registered in the environment agents,

amely their name, type, registration time and activity. This infor-

ation is dynamically stored in the AYPS agent’s database. Hence,

he service is able to retrieve up-to-date information at any time.

146 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

<Rule>

 <Implies ruletype="defeasiblerule">

 <oid><Ind uri="r36">r36</Ind></oid>

 <head><Atom>

 <op> <Rel> par�cipate </Rel></op>

 <slot>

 <Var> trustee </Var>

 <Var> rt </Var>

 <Var> ra�ng </Var>

 </slot>

 </Atom></head>

 <body><Atom>

 <op><Rel> count_pr </Rel></op>

 <slot>

 <Var> trustee </Var>

 <Var> ra�ng </Var>

 </slot>

 </Atom></body>

 </Implies>

</Rule>

Fig. 2. A defeasible rule (r 36) example in RuleML format.

<rdf:RDF>

<disarm:ra�ng rdf:about="&disarm_ex">

<disarm:id rdf:datatype="&xsd;integer">1</disarm:id>

<disarm:trustee>X</ disarm:trustee>

<disarm:t>140630105632</disarm:t>

<disarm:response_�me>9</disarm:response_�me>

<disarm:validity >7</disarm:validity >

<disarm:completeness>6</disarm:completeness>

<disarm:correctness>6</disarm:correctness>

<disarm:coopera�on>9</disarm:coopera�on>

<disarm:outcome_feeling>7</disarm:outcome_feeling>

<disarm:confidence>0.9</disarm:confidence>

<disarm:transac�on_value>0.9</ disarm:transac�on_value>

</ disarm:ra�ng>

</rdf:RDF>

Fig. 3. A rating example in RDF format.

e

v

t

i

s

R

+

c
c

f

a

i

t

t

r

D

i

e

A

(

u

u

c

s

h

(

w

s

s

a

7

b

w

i

n

e

t

b

i

t

p

A

f

e
Hence, even if DISARM (or any other distributed model) is a dis-

tributed reputation model, agents that use it are able to send re-

quests to AYPS in order to get first a list of potential partners,

which is the case for newcomers. Next, they will use the DIS-

ARM model in order to estimate reputation for one or more of

them in order to find the most appropriate partner (higher rep-

utation value). Of course, it is not necessary to use such services;

it is up to each agent’s personal strategy how it will locate po-

tential partners. The more an agent knows the environment, the

better it can choose providers and, thus, the more utility gains.

In this context, agents in the environment are free to ask oth-
rs for their opinion (ratings), hence each agent requests the ser-

ice from the most trustworthy and reliable provider according

o it.

Furthermore, concerning DISARM’s final metric (formula (4)),

n this section we adopt the summation aggregation function, as

hown below:

 X =

πp

πp + πw

+ πk + πs
×

AV G

(
w i ×

∑

∀ t< t current
[log

(
pr

coefficient
X

(t)
)
×t] ∑

∀ t< t now
t

)
∑ 6

i =1 w i

πw

πp + πw

+ πk + πs
×

AV G

(
w i ×

∑

∀ t< t current
[log

(
wr

coefficient
X

(t)
)
×t] ∑

∀ t< t now
t

)
∑ 6

i =1 w i

+

πk

πp + πw

+ πk + πs
×

AV G

(
w i ×

∑

∀ t< t current
[log

(
kr

coefficient
X

(t)
)
×t] ∑

∀ t< t now
t

)
∑ 6

i =1 w i

+

πs

πp + πw

+ πk + πs
×

AV G

(
w i ×

∑

∀ t< t current
[log

(
sr

coefficient
X

(t)
)
×t] ∑

∀ t< t now
t

)
∑ 6

i =1 w i

,

oefficient = { response _ t ime, v alidit y, completeness, correctness,
ooperation, outcome _ f eeling }

(7)

In this context, Fig. 4 displays the overall transaction steps that

ollow an agent that complies to DISARM methodology. First, an

gent A that wants to choose an appropriate provider requests rat-

ngs from its whitelisted agents (usually TTL 	 = 0). If TTL is greater

han zero, the request message is propagated to other agents in

he environment (as described in Section 3.3.2). Next, agent A will

eceive all available ratings. Then, it will ask for help from the

R-Reasoner in order to conduct inference on that data based on

ts personal preferences (its strategy). Having the results, it will

ventually choose an agent X with the highest reputation value.

s soon as, the transaction between agents A and X ends, agent A

truster) evaluates agent X (trustee), storing the rating for future

se.

Finally, taking into account all the above we evaluated DISARM

sing the discussed settings. Yet, the first set of simulations was

onducted just for DISARM. More specifically, we maintained all

ettings except the fact that we used only the DISARM model,

ence all agent population was using the DISARM methodology

100%). Fig. 5 displays the results. DISARM has an upward trend

hich indicates its ability to provide good estimations. Yet, it takes

ome time to reach good utility values which is not surprising

ince agents need time to interact and create relationships (known

nd whitelisted agents) in the network. Note that time (in Figs. 5 ,

 and 8) takes integer values since it is associated with the num-

er of simulations. More specifically, each time point is associated

ith the respective simulation round.

In order to further evaluate the proposed model, we checked

ts behavior regarding dishonesty. In other words, since agents are

ot always honest, we study how DISARM captures different lev-

ls of dishonesty in the environment. Hence, we ran more simula-

ion tests with different proportions of dishonest agents. Note that

y dishonest agents, we refer to agents that provide dishonest rat-

ng reports to others. The starting density of dishonest agents in

he population was 0% ending to 100% with a 10% step. Fig. 6 dis-

lays the findings, namely the mean UG value for each case. DIS-

RM achieves quite high UG values for most of the cases, even

or a density of 60%, while it maintains a satisfying UG value

ven for extreme cases (70–100%). Beyond the rule-based decision

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 147

…...

2. Propagating request

Agent A
DR-Reasoner

WL agents providing ra�ngs
1. Request ratings

4. Request inference
(DISARM rules+ratings)

3. Receive ratings

Agent X

6. Choose agent x
Service request

7. Receive service

5. Receive results
Higher Rep. Value (agent X)

0. (potential) communicate with AYPS
(receive list of providers)

Fig. 4. DISARM transaction steps.

Fig. 5. Mean utility gained by DISARM over time.

0

1

2

3

4

5

6

7

8

9

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
ea

n
U

G

Dishonest density

DISARM (without standard devia�on) DISARM (standard devia�on included)

Fig. 6. Mean utility gained by DISARM in cases of dishonesty (standard deviation included).

m

t

c

e

p

o

i

q

o

t

c

a

t

b

t

a

i

a

s

s

f

o

a

p

echanism of DISARM, significant proportion of this success is due

o the use of standard deviation, presented in Section 3.3.5 . Agents

omplying with DISARM are able to evaluate the probability of the

stimated reputation value to be close to reality, hence they can

rotect themselves from wrong choices. Besides, a typical behavior

f a “DISARM” agent is to check first the standard deviation value;

f this value is not satisfying the agent removes (if necessary) ac-

uaintances from its whitelist, using defeasible theories such the

nes presented in Section 3.3.6) and rechecks trustee’s (X) repu-

ation value. Hence, it is able to make quite safe choices and re-

eive, therefore, high UG values. Yet, if the density of dishonest

gents is high (e.g. 70–100%) standard deviation is not able to de-
ect it in a satisfactory manner. In other words, if almost every-

ody is lying it is difficult to detect the lie. It will be revealed af-

erwards. Yet, DISARM uses a variety of rating categories, hence, an

gent that realizes that most agents in the environment are lying

s able (based on its strategy) to use only its personal experience

nd/or reports from proved honest whitelisted agents. Hence, the

ystem (an environment where agents are using DISARM) behaves

moothly, showing graceful degradation. In other words, the per-

ormance of the DISARM model and, as a result, the performance

f the system falls smoothly related to the increase of dishonest

gents density whereas there is no limit level beyond which the

erformance falls abruptly.

148 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

0

1

2

3

4

5

6

7

M
ea

n
U

G

Time
DISARM Social Regret Cer�fied Reputa�on

CRM FIRE HARM

NONE

Fig. 7. Mean utility gained ranking.

0

5

10

15

20

25

30

M
em

or
y

Sp
ac

ec
 (%

)

Time

DISARM Social Regret Cer�fied Reputa�on

Fig. 8. Storage space growth.

l

t

t

h

c

a

t

a

a

a

a

o

t

F

f

p

p

s

r

a

a

o

c

m

o

l

e

w

s

a
For purposes of better evaluating and understanding, Fig. 6 dis-

plays also the results of another set of simulations. The test set-

tings are the same except the fact that standard deviation is not

used. Our aim is to compare these findings in order to discover

the usefulness of standard deviation. In this context, the compar-

ative study of these two graphs revealed that omitting standard

deviation leads to lower UG values, approximately about 10% less.

Hence, it is obvious that although the standard deviation metric is

not used in the estimation process, it is an important element of

the DISARM model.

4.3. Model comparison

Finally following the above settings that form an environment

with both honest and malicious agents, in this section, we compare

DISARM with related trust models (see Table 2), such as Social Re-

gret (Sabater and Sierra, 2002), Certified Reputation (Huynh et al.,

2006), CRM (Khosravifar et al., 2012), FIRE (Huynh et al., 2006),

HARM (Kravari and Bassiliades, 2012) and NONE (no trust mecha-

nism, randomly selected providers). We used HARM although it is

a centralized approach since it is a rule-based model using tem-

poral defeasible reasoning. In this context, taking into account all

the available data, Fig. 8 depicts the overall ranking regarding the

mean utility gained (UG value) for all models, even for absence of

model, namely NONE (random selection).

As shown in Fig. 7 NONE performance is poor and, as expected,

consistently the lowest. HARM, on the other hand, is consistently

the highest. This is not surprising since HARM is a rule-based, cen-

tralized model. Hence, it is able to gather ratings about all in-

teractions in the system as opposed to the rest distributed mod-

els, where locating rating is a challenging task by itself. This al-
ows agents using HARM to achieve higher performance right from

he first interactions. Concerning, the distributed models, it is clear

hat DISARM, Certified Reputation and Social Regret gain a quite

igh UG value, yet they are unable to reach the performance of

entralized models like HARM. Among distributed models, DISARM

chieves a slightly higher performance, probably mainly due to

he fact that it is using a defeasible reputation estimation mech-

nism that enables agents to take decisions non-monotonically

nd, thus, are a better fir to a dynamic environment, increase

gent’s decision-making performance. Furthermore, DISARM en-

bles agents to get familiarized with the environment faster as

pposed to CRM and FIRE which, as shown in Fig. 7 , need more

ime to know the environment and stabilize their performance. Yet,

ig. 7 compared to Fig. 5 reveals that DISARM reaches higher per-

ormance when it is the only model used in the environment. A

ossible explanation for this is that in the first case there is a large

ercentage of agents that use it (100%), hence more social relation-

hips are created. As a result, there is a larger amount of available

atings, leading to better rating quality and, thus, more accurate

ssessments.

Finally, although (as shown in Fig. 8), centralized models

chieve higher UG score, they have significant limitations in terms

f execution time and storage space. This is not surprising since

entralized models are usually managed by a single agent. This

anager has to store all ratings in the system, which increased

ver time, and to respond to an increasing number of requests,

eading to bottle-neck effect. On the other hand, distributed mod-

ls store just their own ratings and those obtained by witnesses

hich are far less than the total number of available ratings in the

ystem. Additionally, these extra witness ratings could be erased

fter use, releasing space. As shown in Fig. 8 , HARM, being a

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 149

c

e

A

l

l

s

s

M

5

m

s

r

l

e

2

t

d

t

e

p

t

c

t

s

r

g

l

p

(

c

m

c

t

o

a

h

a

t

R

l

b

a

d

a

o

Y

t

p

t

F

t

u

A

r

t

i

r

T

u

o

m

t

a

t

l

l

i

t

a

A

t

(

A

f

fi

t

A

c

p

e

m

e

w

p

t

f

s

m

a

2

a

s

w

b

a

t

t

m

b

v

e

o

s

T

o

p

b

2

r

e

f

o

t

n

p

t

d

e

m

p

p

a

s
entralized model, needs much more space than distributed mod-

ls, reaching even the double. On the other hand, models like DIS-

RM and Social Regret that take into account social aspects, need

ess space, even from other distributed approaches, since they col-

ect less ratings. Hence, the more ratings used by a model the more

pace (and usually time) is needed. Mention that, here, storage

pace stands for the percentage usage of the available space (e.g.

B) each agent has.

. Related work

Trust and reputation represent a significant aspect in modern

ulti-agent systems. An interesting and very challenging active re-

earch area is already focused on them; various models and met-

ics have already been proposed in order to deal with the chal-

enging decision making processes in the agent community (Han

t al., 2003; Grandison and Sloman, 20 0 0; Pinyol and Sabater-Mir,

013). Reputation is used to build trust among agents, minimizing

he risk involved in the transactions and increasing users’ confi-

ence and satisfaction. Hence, since the best decisions are those

hat taken under the minimum risk, trust and reputation mod-

ls support agents to take promising decisions regarding potential

artners.

To this end, one of the first, if not the first, model that used

he idea of witness reputation was a decentralized trust model,

alled Regret (Sabater and Sierra, 2001). Regret is, actually, one of

he most representative trust and reputation models in multi-agent

ystems. It combines witness reports and direct interaction expe-

ience in order to provide reputation values. Additionally, in Re-

ret ratings are dealt with respect to time; old ratings are given

ess importance compared to new ones. An evolution of Regret, a

rimary attempt to locate witnesses’ ratings, called Social Regret

 Sabater and Sierra, 2002), was also presented by the authors. So-

ial Regret is a reputation system oriented to e-commerce environ-

ents that incorporates the notion of social graph. More specifi-

ally, Social Regret groups agents with frequent interactions among

hem and considers each one of these groups as a single source

f reputation values. In this context, only the most representative

gent within each group is asked for information. To this end, a

euristic is used in order to find groups and to select the best

gent to ask.

Social Regret, similarly to DISARM, is one of these cases that

he social dimension of agents is taken into account. Yet, Social

egret does not reflect the actual social relations among agents,

ike DISARM, but rather attempts to heuristically reduce the num-

er of queries to be done in order to locate ratings. Taking into

ccount the opinion of only one agent of each group is a severe

isadvantage since the most agents are marginalized, distorting re-

lity. However, both Regret and DISARM recognize the importance

f time and take into account both personal and witness ratings.

et, only DISARM allows agents to decide on their own about what

hey consider important regarding time. Additionally, only DISARM

rovides a knowledge-based mechanism, promoting a nonmono-

onic, more flexible, human-like approach.

Another popular distributed model is FIRE (Huynh et al., 2006).

IRE integrates four types of trust and reputation, namely interac-

ion trust, role-based trust, witness reputation and certified rep-

tation. Interaction trust and witness reputation are, as in DIS-

RM, an agent’s past experience from direct interactions and

eports provided by witnesses about an agent’s behavior, respec-

ively. Role-based trust, on the other hand, is trust defined by var-

ous role-based relationships between the agents whereas certified

eputation is third-party references provided by the target agents.

he aforementioned values are combined into a single measure by

sing the weighted mean method. FIRE similar to DISARM rec-

gnizes the need for hybrid models that will take into account
ore than one source for the final reputation estimation. Yet, al-

hough FIRE takes into account more sources than DISARM, it uses

 weak computation model for the final combination and reputa-

ion estimation. DISARM, on the other hand, provides a human-

ike knowledge-based mechanism, based on defeasible logic that

et agents take into account the most promising available rating

n order to predict the future behavior of a potential partner. Fur-

hermore, opposed to DISARM, FIRE does not take into consider-

tion the problem of lying and inaccuracy. Additionally, only DIS-

RM takes into account the social dimension of multi-agent sys-

ems with respect to time.

Another remarkable reputation model is Certified Reputation

 Huynh et al., 2006), a decentralized reputation model, like DIS-

RM, involving each agent keeping a set of references given to it

rom other agents. In this model, each agent is asked to give certi-

ed ratings of its performance after every transaction. The agent

hen chooses the highest ratings and stores them as references.

ny other agent can then ask for the stored references and cal-

ulate the agent’s certified reputation. This model overcomes the

roblem of initial reliability in a similar way with DISARM. How-

ver, opposed to our approach, this model is designed to deter-

ine the access rights of agents, rather than to determine their

xpected performance. Furthermore, it is a witness-based model,

hereas DISARM combines both witnesses and direct experience,

roviding a rule-based methodology to deal with the discrimina-

ion issue. Furthermore, although in Certified Reputation agents are

reed from the various costs involved in locating witness reports,

uch as resource, time and communication costs, ratings might be

isquoted since it is each agent’s responsibility to provide ratings

bout itself and in the fact the best ones.

TRR (Trust–Reliability–Reputation) trust model (Rosaci et al.,

012) allows a software agent to represent both the reliability

nd the reputation of another agent, merging finally these mea-

ures into a global trust evaluation. It uses a dynamically computed

eight that represents how an agent considers important the relia-

ility with respect to the reputation when it computes the trust of

nother agent. Yet, the weight depends on the number of interac-

ions between the two agents, which is actually a problem when

hese agents have no interaction history. Hence, TRR provides a

echanism for estimating the global reputation value of an agent

ased on previous interactions. On the other hand, DISARM pro-

ides a knowledge-based mechanism that enables each agent to

stimate a personalized reputation based on its preferences. More-

ver, DISARM takes into account plenty of issues, such as time and

ocial relations, although it does not deal with reliability issues as

RR does. Additionally, DISARM is a nonmonotonic approach based

n defeasible logic that provides a more flexible, human-like ap-

roach that enables agents not only to estimate a reputation value

ut also to decide upon their relationships in the community.

CRM (Comprehensive Reputation Model) (Khosravifar et al.,

012) is another typical distributed reputation model. In CRM the

atings used to assess the trustworthiness of a particular agent can

ither be obtained from an agent’s interaction history or collected

rom other agents that can provide their suggestions in the form

f ratings; namely interaction trust and witness reputation, respec-

ively. CRM is a probabilistic-based model, taking into account the

umber of interactions between agents, the timely relevance of

rovided information and the confidence of reporting agents on

he provided data. More specifically, CRM, first, takes into account

irect interactions among agents, calling the procedure online trust

stimation. After a variable interval of time, the actual perfor-

ance of the evaluated agent is compared against the information

rovided by other agents in a procedure called off-line. Off-line

rocedure considers the communicated information to judge the

ccuracy of the consulting agents in the previous on-line trust as-

essment process. In other words, in CRM the trust assessment

150 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

h

T

u

t

p

m

W

p

a

w

t

a

l

p

r

c

d

c

(

f

l

p

c

m

r

F

t

r

t

e

g

a

a

D

t

w

t

h

m

i

a

b

m

b

v

a

o

r

i

X

l

i

e

r

f

s

i

f

c

i

t

i

w
procedure is composed of on-line and off-line evaluation processes.

Both CRM and DISARM acknowledge the need for hybrid reputa-

tion models taking into account time issues, yet they propose a

starkly opposite approach. Additionally, both models use a confi-

dence parameter in order to weight ratings more accurately. How-

ever, DISARM takes into account a variety of additional parameters,

allowing users to define weights about them. As a result, more

accurate and personalized estimations are provided. Furthermore,

only DISARM considers the social relations among agents provid-

ing a nonmonotonic approach that let them establish and maintain

trust relationships, locating quite easily reliable ratings.

Finally, HARM (Kravari and Bassiliades, 2012), a previous work

of us, is a hybrid rule-based reputation model that uses tempo-

ral defeasible logic in order to combine interaction trust and wit-

ness reputation. Yet, it is a centralized approach which actually

overcomes the difficulty to locate witness reports. DISARM, on the

other, hand is also a hybrid but distributed model that uses de-

feasible (yet not temporal) logic in a similar point of view. Ac-

tually, DISARM is an updated and extended model based slightly

partially on HARM’s basic principles though adapting a decentral-

ized and social approach. To this end, although both models con-

sider time important, they are dealing with it with a totally dif-

ferent approach. Ratings in HARM are characterized by a time off-

set property, which indicates the time instances that should pass

in order to consider each rating active while each of them counts

only for a limited time duration. DISARM uses the time itself in

the final estimation formula, letting agents to use a similar to hu-

man thinking philosophy that first decides upon which category

of rating should be taken into account and then discards ratings

included there. Comparing, these two models, we believe that DIS-

ARM and HARM, despite their similarities and differences, are two

nonmonotonic models that enable agents to improve their effec-

tiveness and intuitiveness in a way more related to the traditional

human reasoning for assessing trust in the physical word.

6. Conclusions and future work

This article presented DISARM, a social, distributed, hybrid,

rule-based reputation model, which uses defeasible logic. DISARM

though appropriate rules, combines interaction trust and witness

reputation. Moreover, it limits the common disadvantages of the

existing distributed trust approaches, such as locating ratings, by

considering the agents acting in the environment as a social net-

work. Hence, each agent is able to propagate its requests to the

rest of the agent community, locating quite fast ratings from previ-

ously known and well-rated agents. Additionally, DISARM’s mech-

anism is based on defeasible logic, modeling the way intelligent

agents, like humans, draw reasonable conclusions from inconclu-

sive information, which is one of the main advantages of our ap-

proach. Actually, it is one of the first models that use nonmono-

tonic reasoning, in the form of defeasible logic in order to predict

agents’ future behavior. It is based on well-established estimation

parameters (Castelfranchi and Falcone, 2010; Castelfranchi and Tan,

2001), such as information correctness, completeness, and validity,

agent’s response time and cooperation, as well as outcome feeling

of the interaction. Hence, DISARM can be adopted in any multi-

agent system in the Semantic Web, such as JADE and EMERALD.

Finally, we provided an evaluation that illustrates the usability of

the proposed model.

As for future directions, our intention is to study and address

the issue and challenges that we have identified. To this end, first

of all, we plan to study further DISARM’s performance by com-

paring it to more reputation models from the literature and use

it in real-world applications, combining it also with Semantic Web

metadata for trust (Ceravolo et al., 2006, 2007). More specifically,

the Semantic Web acts as a decentralized system on which any
uman or artificial entity is able to act, using or publishing data.

he trustworthiness of these data and entities most of the times is

nder question. Hence, trust models must adapt to these needs by

aking into account additional parameters or technologies. For this

urpose, the Semantic Web provides a useful tool, the so-called

etadata. Metadata are useful for trust assessments with Semantic

eb data, since they provide information about one or more as-

ects of the data they are associated, enable trust models to infer

bout the trustworthiness of Semantic Web data. In this context,

e plan to study metadata and their challenges as well as the po-

ential of DISARM to adopt this technology.

Another direction is towards further improving DISARM. There

re still some open issues and challenges regarding, for instance,

ocating ratings. More technologies could be adopted for this pur-

ose; ontologies, machine learning techniques and user identity

ecognition and management being some of them. Ontologies are

onsidered one of the pillars of the Semantic Web, although they

o not have a universally accepted definition. Usually, ontology is

onsidered as a formal specification of a shared conceptualization

 Gruber, 1993; Kashyap et al., 2008). In other words, ontology is a

ormal naming and definition of the types, properties, and interre-

ationships of the entities that really or fundamentally exist for a

articular domain of discourse. Over the years, ontologies have be-

ome common in the Web. This is not surprising since ontologies

ake domain assumptions explicit and clear, enabling information

euse and common understanding of the structure of information.

urthermore, ontologies have the ability to integrate existing on-

ologies describing portions of a large domain. Hence, formalizing

eputation and, as a result trust, into ontologies has several advan-

ages such as creating a common understanding for reputation and

nabling mapping between reputation concepts. Moreover, ontolo-

ies increase the possibility of trust and reputation interoperability

nd cross community sharing of reputation information (Alnemr

nd Meinel, 2011). Therefore, we plan in the future to study how

ISARM can benefit from ontologies. For this purpose, our inten-

ion is to develop or extend a reputation-oriented ontology that

ill let agents understand both each other and the model. Our ul-

imate goal is to strengthen the social dimension of our model,

elping agents to locate partners and ratings more easily.

Another research area that could benefit trust and reputation

odels is machine learning, which has long been recognized for

ts parallelization and distribution. Sophisticated machine learning

lgorithms and methodologies, such as supervised learning, can

e applied in order to analyze past transactions in an environ-

ent, modeling more precisely trust. Over the last years, a num-

er of researchers proposed trust and reputation models that in-

olve machine learning techniques, forming a new trend in the

rea. These attempts seem to reveal that machine learning meth-

ds, such as hierarchical and Bayesian learning, provide more accu-

ate approaches in environments in which third party information

s malicious, noisy, incomplete or inaccurate (Teacy et al., 2012;

in et al., 2014). Therefore, we plan to study a variety of machine

earning methodologies in order to find out which of them can be

ntegrated more efficiently in multi-agent systems. Our aim is to

nrich DISARM with a powerful mechanism that will extract the

elationships between potential partners as well as their past and

uture behavior.

Finally, since DISARM is a distributed approach based on defea-

ible logic, another direction for future work is to study if it can be

mplemented using the interesting distributed algorithms for De-

easible Logic described in Bikakis and Antoniou (2010). This arti-

le argues about defeasible contextual reasoning with arguments

n Ambient Intelligence, proposing an approach which is based on

he MultiContext Systems (MCS) paradigm. In this approach, the

nvolved entities are modeled as autonomous logic-based agents

hile their knowledge is encoded in rule theories. Furthermore,

K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152 151

t

f

s

d

p

a

t

s

A

w

R

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

D

F

F

G

G

G

G

G

G

H

H
H

H

H

J

J

K

K

K

K

K

K

K

L

L

M

M

M

M

N

N

N

P

P

P

R

R

R
R

R

S

he associations between the context knowledge possessed by dif-

erent ambient agents are modeled as mappings between their re-

pective context theories. Missing or inaccurate knowledge is han-

led using defeasible logic. The above approach and DISARM, the

roposed reputation model, feature many common principles and

ssumptions. Therefore, an attempt to implement DISARM using

he above distributed algorithms would lead to valuable conclu-

ions and perhaps an enriched implementation of DISARM.

cknowledgments

We would like to thank the anonymous reviewers of the paper,

hose comments helped to improve it a lot.

eferences

lnemr, R. , Meinel, C. , 2011. From reputation models and systems to reputation on-

tologies. Trust management V. IFIP Adv. Inf. Commun. Technol., 358, 98–116 .
ndroutsellis-Theotokis, S. , Spinellis, D. , 2004. A survey of peer-to-peer content dis-

tribution technologies. ACM Comput. Surv. 36 (4), 335–371 .
ntoniou, G. , Billington, D. , Governatori, G. , Maher, M. , 2001. Representation results

for defeasible logic. ACM Trans. Comput. Log. 2 (2), 255–287 .
ntoniou, G. , Maher, M. , Billington, D. , 20 0 0. Defeasible logic versus logic program-

ming without negation as failure. J. Log. Program. 42 (1), 47–57 .

rtz, D. , Gil, Y. , 2007. A survey of trust in computer science and the Semantic Web.
J. Web Semant.: Sci. Serv. Agents World Wide Web 5 (2), 58–71 .

assiliades, N. , Vlahavas, I. , 2006. R-DEVICE: an object-oriented knowledge base sys-
tem for RDF metadata. Int. J. Semant. Web Inf. Syst. 2 (2), 24–90 .

assiliades, N. , Antoniou, G. , Vlahavas, I. , 2006. A defeasible logic reasoner for the
Semantic Web. Int. J. Semant. Web Inf. Syst. 2 (1), 1–41 .

ellifemine, F. , Caire, G. , Poggi, A. , Rimassa, G. , 2003. JADE: a white paper. EXP –
Search Innov. 3 (3), 6–19 .

erners-Lee, T. , Hall, W. , Hendler, J. , O’Hara, K. , Shadbolt, N. , Weitzner, D. , 2006. A

framework for web science. Found. Trends Web Sci. 1 (1), 1–130 .
erners-Lee, T. , Hendler, J. , Lassila, O. , 2001. The Semantic Web. Sci. Am. Mag. 284

(5), 34–43 (Revised 2008) .
ikakis, A . , Antoniou, A . , 2010. Defeasible contextual reasoning with arguments in

ambient intelligence. IEEE Trans. Knowl. Data Eng. 22 (11), 1492–1506 .
illington, D. , 1997. Conflicting literals and defeasible logic. In: Proceedings of the

2nd Australian Workshop on Commonsense Reasoning, pp. 1–15 .

illington, D. , 2008. Propositional clausal defeasible logic. In: Proceedings of the Eu-
ropean Conference on Logics in Artificial Intelligence, Volume 5293 of Lecture

Notes in Computer Science, pp. 34–47 .
illington, D. , Antoniou, G. , Governatori, G. , Maher, M.J. , 2010. An inclusion theorem

for defeasible logics. Trans. Comput. Log. 12 (1), 6 .
oley, H. , 2010. Integrating positional and slotted knowledge on the Semantic Web.

J. Emerg. Technol. Web Intell. 2 (4), 343–353 .

oley, H. , Paschke, A. , Shafiq, O. , 2010. RuleML 1.0: the overarching specifica-
tion of web rules. In: Proceedings of the 4th International Web Rule Sympo-

sium: Research Based and Industry Focused (RuleML’10), Vol. 6403. Springer,
pp. 162–178 .

osu, A. , Carver, J. , Guadagno, R. , Bassett, B. , McCallum, D. , Hochstein, L. , 2014. Peer
impressions in open source organizations: a survey. J. Syst. Softw. 94, 4–15 .

arrera, A. , Iglesias, C. , García-Algarra, J. , Kola ̌rík, D. , 2014. A real-life application of

multi-agent systems for fault diagnosis in the provision of an Internet business
service. J. Netw. Comput. Appl. 37, 146–154 .

astelfranchi, C. , Falcone, R. , 2010. Trust Theory: A Socio-Cognitive and Com-
putational Model, 1st edition, Wiley Series in Agent Technology. Wiley

ISBN:13:978-0470028759 .
astelfranchi, C. , Tan, Y.H. , 2001. Trust and Deception in Virtual Societies, vol. XXXI.

Springer, p. p. 257 .

eravolo, P. , Damiani, E. , Viviani, M. , 2006. Adding a trust layer to semantic web
metadata. In: Soft Computing for Information Retrieval on the Web, vol. 197,

pp. 87–104 .
eravolo, P. , Damiani, E. , Viviani, M. , 2007. Bottom-up extraction and trust-based

refinement of ontology metadata. IEEE Trans. Knowl. Data Eng. 19 (2), 149–163 .
LIPS, CLIPS: A Tool for Building Expert Systems, 2015 http://clipsrules.sourceforge.

net/ , retrieved 16/2/2016.

asgupta, P. , Gambetta, D. , 20 0 0. Trust as a commodity. Trust: Making and Breaking
Cooperative Relations. Blackwell, pp. 49–72 .

erretti, E. , Errecalde, M. , García, A. , Simari, G. , 2007. An application of defeasible
logic programming to decision making in a robotic environment. Logic Program-

ming and Nonmonotonic Reasoning. Springer, Berlin, Heidelberg, pp. 297–302 .
orgy, C.L. , Raeth, P.G. , 1991. Rete: a fast algorithm for the many pattern/many ob-

ject pattern match problem. Expert Systems. IEEE Computer Society Press, Los
Alamitos, CA, USA, pp. 324–341 .

ottlob, G. , 1992. Complexity results for nonmonotonic logics. J. Log. Comput. 2,

397–425 .
overnatori, G. , Rotolo, A. , 2008. Biological agents: norms, beliefs, intentions in de-

feasible logic. J. Auton. Agents Multi-Agent Syst. 17 (1), 36–69 .
overnatori, G. , Hofstede, A. , Oaks, P. , 2001. Is defeasible logic applicable? In: Pro-

ceedings of the 2nd Australasian Workshop on Computational Logic, pp. 47–62 .
randison, T. , Sloman, M. , 20 0 0. A survey of trust in internet applications. IEEE
Commun. Surv. Tutor. 3 (4), 2–16 .

ruber, T.R. , 1993. A translation approach to portable ontologies. Knowl. Acquis. 5
(2), 199–220 .

utowska, A. , Buckley, K. , 2008. Computing reputation metric in multi-agent e-com-
merce reputation system. In: Proceedings of the 28th International Conference

on Distributed Computing Systems, pp. 255–260 .
an, Y. , Zhiqi, S. , Leung, C. , Chunyan, M. , Lesser, V.R. , 2003. A survey of multi-agent

trust management systems. IEEE Access l (1)), 35–50 .

endler, J. , 2001. Agents and the Semantic Web. IEEE Intell. Syst. 16 (2), 30–37 .
endrikx, F. , Bubendorfer, K. , Chard, R. , 2015. Reputation systems: a survey and tax-

onomy. J. Parallel Distrib. Comput., Vol. 75. Elsevier, pp. 184–197 .
uynh, D. , Jennings, N.R. , Shadbolt, N.R. , 2006. Certified reputation: how an

agent can trust a stranger. In: Proceedings of the Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS ’06. Hokkaido,

Japan .

uynh, D. , Jennings, N.R. , Shadbolt, N.R. , 2006. An integrated trust and reputation
model for open multi-agent systems. J. Auton. Agents Multi-Agent Syst. 13 (2),

119–154 .
osang, A. , Ismail, R. , Boyd, C. , 2007. A survey of trust and reputation systems for

online service provision. Decis. Support Syst. 43 (2), 618–644 .
ung, J. , 2009. Trustworthy knowledge diffusion model based on risk discovery on

peer-to-peer networks. Expert Syst. Appl. 36 (3), 7123–7128 .

ashyap, V. , Bussler, C. , Moran, M. , 2008. The Semantic Web, Semantics for Data
and Services on the Web. Springer-Verlag .

hosravifar, B. , Bentahar, J. , Gomrokchi, M. , Alam, R. , 2012. CRM: an efficient trust
and reputation model for agent computing. Kowledge-Based Syst. 30, 1–16 .

ontopoulos, E. , Bassiliades, N. , Antoniou, G. , 2011. Visualizing Semantic Web proofs
of defeasible logic in the DR-DEVICE system. Knowledge-Based Syst. 24 (3),

406–419 .

oons, R., 2009. Defeasible Reasoning. Stanford Encylopedia of Philosophy. Stanford
University Available at: http://plato.stanford.edu/entries/reasoning-defeasible/ .

ravari, K. , Bassiliades, N. , 2012. HARM: a hybrid rule-based agent reputation
model based on temporal defeasible logic. In: Proceedings of the 6th Interna-

tional Symposium on Rules: Research Based and Industry Focused. Springer,
Berlin,Heidelberg, pp. 193–207. Volume 7438 of Lecture Notes in Computer Sci-

ence .

ravari, K. , Kontopoulos, E. , Bassiliades, N. , 2010. EMERALD: a multi-agent system
for knowledge-based reasoning interoperability in the Semantic Web. In: Pro-

ceedings of the 6th Hellenic Conference on Artificial Intelligence (SETN 2010),
Volume 6040 of Lecture Notes in Computer Science, pp. 173–182 .

ravari, K. , Kontopoulos, E. , Bassiliades, N. , 2010. Trusted reasoning services for Se-
mantic Web agents. Informatica 34 (4), 429–440 .

am, H.-P. , Governatori, G. , Paschke, A. , Governatori, G. , Hall, J. , 2009. The making of

SPINdle. In: Proceedings of the International RuleML Symposium on Rule Inter-
change and Applications (RuleML 2009). Springer, pp. 315–322 .

iao, Z., Liu, S., Xi, S., 2014. An improved multipoint relaying scheme for message
propagation in distributed peer-to-peer system. Int. J. Distrib. Sens. Netw. 2014,

1–10. doi: 10.1155/2014/792814 .
aher, M.J. , 2001. Propositional defeasible logic has linear complexity. Theory Pract.

Log. Progr. 1 (6), 691–711 .
áhr, T.S. , Srour, J. , De Weerdt, M. , Zuidwijk, R. , 2010. Can agents measure up? A

comparative study of an agent-based and on-line optimization approach for a

drayage problem with uncertainty. Transp. Res. Part C: Emerg. Technol. 18, 99 .
edi ́c, A. , 2012. Survey of computer trust and reputation models – the literature

overview. Int. J. Inf. Commun. Technol. Res. 2 (3), 254–275 .
eshkova, E. , Riihijärvi, J. , Petrova, M. , Mähönen, P. , 2008. A survey on resource

discovery mechanisms, peer-to-peer and service discovery frameworks. Comput.
Netw. 52 (11), 2097–2128 .

ute, D. , 1987. Defeasible reasoning. In: Proceedings of the 20th International Con-

ference on Systems Science. IEEE, pp. 470–477 .
ute, D. , 1994. Defeasible logic. Handbook of Logic in Artificial Intelligence and

Logic Programming: Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3.
Oxford University Press, pp. 353–395 .

ute, D. , Bartenstein, O. , Geske, U. , Hannebauer, M. , Yoshie, O. , 2003. Defeasible
Logic. Theory, Implementation and Applications. Web Knowledge Management

and Decision Support: Proceedings of INAP 2001, 14th International Conference

on Applications of Prolog (Revised Papers). Springer-Verlag, pp. 151–169 .
inyol, I. , Sabater-Mir, J. , 2013. Computational trust and reputation models for open

multi-agent systems: a review. J. Artif. Intell. Rev. 40 (1), 1–25 .
ollock, J.L. , 1998. Perceiving and reasoning about a changing world. Comput. Intell.

14, 498–562 .
ollock, J.L. , 1992. How to reason defeasibly. Artif. Intell. 57 (1), 1–42 .

amanathan, M. , Kalogeraki, V. , Pruyne, J. , 2002. Finding good peers in peer-to-peer

networks. In: Proceedings of International Parallel and Distributed Processing
Symposium (IPDPS), pp. 24–31 .

amchurn, S.D. , Huynh, D. , Jennings, N.R. , 2004. Trust in multi-agent systems.
Knowl. Eng. Rev. 19 (1), 1–25 .

eiter, R. , 1980. A logic for default reasoning. Artif. Intell. J. 13, 81–132 .
esnick, P. , Kuwabara, K. , Zeckhauser, R. , Friedman, E. , 20 0 0. Reputation systems.

Commun. ACM 43 (12), 45–48 .

osaci, D. , Sarne, G. , Garruzzo, S. , 2012. Integrating trust measures in multiagent
systems. Int. J. Intell. Syst. 27, 1–15 .

abater, J. , Sierra, C. , 2001. Regret: A reputation model for gregarious societies. In:
Proceedings of the Fourth Workshop on Deception, Fraud and Trust in Agent

Societies, pp. 61–69 .

http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0022
http://clipsrules.sourceforge.net/
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0041
http://plato.stanford.edu/entries/reasoning-defeasible/
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0046
http://dx.doi.org/10.1155/2014/792814
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0049
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0049
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0049
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0049
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0049
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0050
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0050
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0055
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0055
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0055
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0056
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0056
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0057
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0057
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0059
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0059
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0059
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0059
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0060
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0060
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0061
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0061
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0061
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0061
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0061
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0062
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0062
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0062
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0062
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0063
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0063
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0063

152 K. Kravari, N. Bassiliades / The Journal of Systems and Software 117 (2016) 130–152

K

A

P

h

r

c

i

j

h

a

N

I

1

o

a

s

m

w

R

l

t

Sabater, J. , Sierra, C. , 2002. Social ReGreT, a reputation model based on social rela-
tions. SIGecom Exch. 3 (1), 44–56 .

Sabri, K.E. , Obeid, N. , 2015. A temporal defeasible logic for handling access control
policies. J. Appl. Intell. 1–13 .

Sherchan, W. , Loke, S. , Krishnaswamy, S. , 2006. A fuzzy model for reasoning about
reputation in web services. In: Proceedings of the 2006 ACM Symposium on

Applied Computing (SAC’06), pp. 1886–1892 .
Skylogiannis, T. , Antoniou, G. , Bassiliades, N. , Governatori, G. , Bikakis, A. , 2007.

DR-NEGOTIATE – a system for automated agent negotiation with defeasible log-

ic-based strategies. Data Knowl. Eng. 63 (2), 362–380 .
Su, X. , Zhang, M. , Mu, Y. , Bai, Q. , 2011. Trust-based service provider selection in ser-

vice-oriented environments. Int. J. Comput. Sci. Netw. Secur. 11 (10), 1–9 .
Teacy, L. , Luck, M. , Rogers, A. , Jennings, N. , 2012. An efficient and versatile approach

to trust and reputation using hierarchical Bayesian modelling. Artif. Intell. 193,
149–185 .

Vrba, P. , Radakovi ̌c, M. , Obitko, M. , Ma ̌rík, V. , 2011. Semantic technologies: latest

advances in agent-based manufacturing control systems. Int. J. Prod. Res. 49 (5),
1483–1496 .

Wagner, G. , 2003. Web rules need two kinds of negation. In: Proceedings of the
First Workshop on Semantic Web Reasoning), Volume 2901 of Lecture Notes in

Computer Science. Springer, pp. 33–50 .
Xie, X.F. , Smith, S. , Barlow, G. , 2012. Schedule-driven coordination for real-time traf-

fic network control. In: Proceedings of the International Conference on Auto-

mated Planning and Scheduling (ICAPS), pp. 323–331 .
Xin, L. , Gilles, T. , Anwitaman, D. , 2014. A generic trust framework for large-scale

open systems using machine learning. Comput. Intell. 30 (4), 1467–8640 .
Yang, M. , Fei, Z. , 2009. A novel approach to improving search efficiency in unstruc-

tured peer-to-peer networks. J. Parallel Distrib. Comput. 69 (11), 877–884 .
Zulkuf, G. , Heidari, F. , Oey, M. , van Splunter, M. , Brazier, F. , 2013. Agent-based in-

formation infrastructure for disaster management. Intell. Syst. Crisis Manag.

349–355 .
alliopi Kravari holds a PhD in Informatics from the Department of Informatics of
ristotle University of Thessaloniki (AUTH), Greece, and she is a member of Logic

rogramming and Intelligent Systems (LPIS) Group at the same University. She also
olds a BSc in Informatics and an MSc in Information Systems from AUTH. Her

esearch interests are mainly focused on Semantic Web and Intelligent Agents, in-
luding among others Trust Management, Knowledge Representation and Reason-

ng, Logic and Rule-based Programming, Ontologies and Rules. She has published 5
ournal papers, 1 book chapter and 14 conference papers at the above topics. She

as received a best paper award at RuleML-2010 and one of her papers was selected

mong the best 2 papers of RuleML-2011@IJCAI to be presented at IJCAI-2011.

ick Bassiliades (http://tinyurl.com/nbassili) received his MSc in Applied Artificial
ntelligence from the Computing Science Department of Aberdeen University, in

992, and his PhD degree in parallel knowledge base systems from the Department
f Informatics at the Aristotle University of Thessaloniki, Greece, in 1998, where he

is currently an Associate Professor. His research interests include knowledge-based

and rule systems, multiagent systems, ontologies, linked data and the Semantic
Web. He has published more than 170 papers in journals, conferences, and books,

nd has coauthored three books and co-edited 7 edited volumes. His published re-
earch has received over 20 0 0 citations (h-index 23). He was on the Program Com-

ittee of more than 100 and on the Organizational Committee of 7 conferences /
orkshops. He has been the Program co-Chair of RuleML-2008, RuleML-2011@IJCAI,

uleML-2015, WIMS-2014 and SETN-2016. He has been involved in 32 R&D projects

eading 9 of them. He has been the general secretary of the Board of the Greek Ar-
tificial Intelligence Society; he is a director of RuleML, Inc., and also a member of

he Greek Computer Society, the IEEE, and the ACM.

http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0064
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0064
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0064
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0065
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0065
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0065
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0066
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0066
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0066
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0066
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0067
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0067
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0067
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0067
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0067
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0067
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0068
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0068
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0068
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0068
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0068
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0069
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0069
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0069
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0069
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0069
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0070
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0070
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0070
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0070
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0070
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0071
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0071
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0072
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0072
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0072
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0072
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0073
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0073
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0073
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0073
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0074
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0074
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0074
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0075
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0075
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0075
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0075
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0075
http://refhub.elsevier.com/S0164-1212(16)00049-2/sbref0075
http://tinyurl.com/nbassili

	DISARM: A social distributed agent reputation model based on defeasible logic
	1 Introduction
	2 Defeasible logic
	3 DISARM
	3.1 Main principles of the DISARM model
	3.2 Rating parameters
	3.3 Rule-based decision mechanism
	3.3.1 Rating procedure
	3.3.2 Locating ratings
	3.3.3 Discarding ratings
	3.3.4 Estimating reputation
	3.3.5 Measuring estimation confidence
	3.3.6 Facing dishonesty

	3.4 Complexity analysis

	4 Evaluation
	4.1 Testbed
	4.2 Complying with DISARM
	4.3 Model comparison

	5 Related work
	6 Conclusions and future work
	 Acknowledgments
	 References

