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This study explores the possibility of using adaptive filters to predict sea-water quality indicators such as
water temperature, pH and dissolved oxygen based on measurements produced by an under-water mea-
surement set-up. Two alternative adaptive approaches are tested, namely a projection algorithm and a
least squares algorithm. These algorithms were chosen for comparison because they are widely used pre-
diction algorithms. The results indicate that if the measurements remain reasonably stationary, it is pos-
sible to make one-day ahead predictions, which perform better than the prediction that the value of a
certain quality variable tomorrow is going to be equal to the value today.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last decade an area of considerable importance is that
of monitoring water quality and other environmental variables, in
an effort to predict their future behaviour and prevent undesirable
environmental situations, as well as, to enforce longer term actions
for regional growth and development. The ability to predict one or
more days ahead the quality of water in an ecosystem is a very
important task, giving the possibility to the authorities for the nec-
essary precaution actions on time. More specifically, water quality
prediction is of great importance for several commercial applica-
tions, such as watering or swimming and piscicultures activities.

The work related to water quality prediction includes a variety
of linear and nonlinear modelling techniques. Among the various
models used are the early Bayesian probability network models
focusing both on their accuracy and the correct characterization
of the processes (Reckhow, 1999), the predictive clustering ap-
proach using a single decision tree for simultaneous prediction of
multiple physico-chemical properties of river water from its cur-
rent biological properties (Blockeed, Dzeroski, & Crbovic, 1999),
the work of regression trees for predicting chemical parameters
of river water quality from bioindicator data (Dzeroski, Demsar,
& Grbovic, 2000), and the unvaried time series models for deter-
mining the long-term and seasonal behaviour of important water
quality parameters (Lehmann & Rode, 2001). Nevertheless, similar
studies have been done and new models developed, among which
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are the autonomous case-based reasoning (CBSR) hybrid system
that embeds various artificial intelligence tools, such as case-based
reasoning, neural networks and fuzzy logic in order to achieve real
time forecasting (Fdez-Riverola & Corchado, 2003, 2004), the work
of Romero and Shan with a neural network based software tool
developed for prediction of the water discharged temperature for
industrial purposes in power plant generation units (Romero &
Shan, 2005), and the split-step particle swarm optimisation (PSO)
model for training perceptrons applied in algal bloom prediction
(Chau, 2005).

In this work, we investigate the possibility to predict a number
of water quality variables that are obtained by an under-water
measurement set-up. Our interest is focused on one-day ahead
predictions of certain water quality variables recorded by an un-
der-water set of sensors, such as water temperature, pH, conduc-
tivity, salinity, amount of dissolved oxygen and turbidity. The
measured data, forming time series, are stored in a database and
a number of modelling methods could then be used to reveal any
hidden information. However, in this study we deal only with
the development of prediction models for the water temperature,
pH, amount of dissolved oxygen and turbidity, due to their higher
importance in terms of commercial exploitation.

In a previous study (Hatzikos, Anastasakis, Bassiliades, &
Vlahavas, 2005), we have used neural networks with active neu-
rons as it was believed to be an appropriate prediction algorithm
for noisy and short time series (Ivanhnenko & Moller, 1995; Moller
& Lemke, 2003). In the present study, we further investigate the
prediction possibility using two alternative adaptive approaches,
namely a projection algorithm and a least squares algorithm. Their
prediction ability is shown by comparing their performance
against the delayed prediction algorithm (y(t + 1) = y(t), random
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Fig. 2. Andromeda’s local monitoring station.
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walk model), which serves as a benchmark model in prediction
tasks. The delayed prediction model states simply that the future
value (tomorrow) of a variable will be equal to its current value
(today), supporting in that way the unpredictability of the model-
ling object. However, due to the correlation and interaction be-
tween the water quality variables, it is interesting to investigate
if there is an underlying mechanism that governs the data and thus
will prove the predictability of these variables. The algorithms em-
ployed were chosen for comparison because they are widely used
prediction algorithms. The identification of such models is particu-
larly useful for ecologists and environmentalists since they will be
able to predict in advance the pollution levels in the sea water and
thus to instruct all the necessary precaution actions.

2. Description of the water monitoring network

The data used in this study have been produced by the Androm-
eda network (Hatzikos, 2002), a network of sensors (Fig. 1) plunged
into the Thermaikos Gulf that collects aquatic numeric data con-
cerning sea water. After sensor readings are collected, they are
transmitted to a main station for processing and storage. An out-
line of the system’s functions is provided within the next sections.
A more thorough description can be found in Hatzikos (2002).

The network consists of:

� Local monitoring stations (LMSs), which record and transmit
aquatic data to the main station. The LMS (Fig. 2) consists of:

1. A buoy that floats on sea surface;
2. A programmable logic circuit (PLC) by Siemens;
3. Powerful Radio modems;
4. A six meter high pillar for the support of the antenna;
5. Four solar cells;
6. High-capacity rechargeable batteries.
� Main station (MS), which initiates the communication process
with all LMSs and stores the data in the database for future
processing.

The LMS incorporates sensors, batteries, solar cells, electronics
and the PLC. The necessary power is provided by the batteries
and solar cells to the sensors and the electronics. The PLC is respon-
sible for the LMS operation and storage of the measurements to the
local memory. In predetermined time intervals, it transmits this
data to the Main Station (MS), over a wireless network.

The sensors measure the following hydrological parameters:
water temperature, pH, amount of dissolved oxygen (DO), percent-
age of dissolved oxygen (DO %), conductance, turbidity, sea cur-
rents, and salinity. However, in this study we deal only with the
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Fig. 1. Architecture of the Andromeda network.
development of prediction models for the water temperature, pH,
amount of dissolved oxygen and turbidity, due to their higher
importance in terms of commercial exploitation.

More specifically, the temperature of water plays an important
role in both environmental and industrial processes. Firstly, it af-
fects the ability of living organisms to resist certain pollutants.
Some organisms cannot survive when the water temperature takes
a value beyond a specific range. The ability of water to hold oxygen
is also affected by water temperature. Finally, low-temperature
water is used for cooling purposes in power plants.

pH is a measure of the relative amount of free hydrogen and hy-
droxyl ions in the water. Water that has more free hydrogen ions is
acidic, whereas water that has more free hydroxyl ions is basic. The
values of pH range from 0 to 14 (this is a logarithmic scale), with 7
indicating neutral. Values less than 7 indicate acidity, whereas val-
ues greater than 7 indicate a base. The presence of chemicals in the
water, affects its pH, which in turn can harm the animals and
plants that live there. For example, an even mildly acidulous sea
water environment can harm shell cultivation. This renders pH
an important water quality indicator.

Each molecule of water contains an atom of oxygen. Yet, only a
small amount of these oxygen atoms, up to about ten oxygen mol-
ecules per million of water molecules, is actually dissolved in the
water. This dissolved oxygen is breathed by fish and zooplankton
and is necessary for their survival. Rapidly moving water, such as
in a mountain streams or large rivers, tends to contain a lot of dis-
solved oxygen, while stagnant water contains little. Bacteria in
water can consume oxygen as organic matter decays. Thus, excess
organic material in lakes and rivers can cause an oxygen-deficient
situation to occur. Aquatic life can have a hard time in stagnant
water that has a lot of rotting, organic material in it, especially in
the summer, when dissolved oxygen levels are at a seasonal low.

Turbidity is the amount of particulate matter that is suspended
in water. Turbidity measures the scattering effect that suspended
solids have on light: the higher the intensity of scattered light,
the higher the turbidity. Materials that cause water to be turbid in-
clude clay, silt, finely divided organic and inorganic matter, soluble
colored organic compounds, plankton, microscopic organisms and
others.

Due to its design, the LMS can be easily updated and expanded.
It responds well to extreme weather conditions, increased energy
requirements, and meets the processing and storage needs for
effectively monitoring the sea waters for the purpose of this
research.

The main station (MS) of the Andromeda network is a worksta-
tion that collects sensor measurements from all the LMSs and visu-
alizes the results in a SCADA environment. The MS is the ‘‘master”
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of the communication process, i.e. it initiates the communication
with each of the LMSs in predetermined time intervals using a
hand-shake technique. The MS also adjusts the frequency of mea-
surements depending on the situation at hand, i.e. an emergency in
the case of pollution. The LMS operates only during the rendez-
vous. In this way, less energy is consumed. Furthermore, the on-de-
mand measurement policy achieves a higher level of flexibility. The
SCADA software exports the measurements in various formats for
further processing and long-term storage in databases.

The data collection from the sensors and their transmission to
the MS is performed via the SCADA software. LabView is responsi-
ble for the data reception, visualization and storage at the MS.
Additionally, the administrator of the MS can set alarms in Lab-
View (to be received by the user) when certain sensor measure-
ments exceed some predefined limits. However, the check is
performed in a rigid fashion, not allowing flexibility.

Furthermore, the central station hosts an intelligent alerting
system (Hatzikos, Bassiliades, Asmanis, & Vlahavas, 2007) that
monitors sensor data and reasons about the current level of water
suitability for various aquatic uses, such as swimming and piscicul-
tures. The aim of this intelligent alerting system is to help the
authorities in the ‘‘decision-making” process in the battle against
the pollution of the aquatic environment, which is very vital for
the public health and the economy of Northern Greece. The expert
system determines, using fuzzy logic, when certain environmental
parameters exceed certain ‘‘pollution” limits, which are specified
either by the authorities or by environmental scientists, and flags
out appropriate alerts.

3. Description of the model

As a starting point it is assumed that a given quality variable y(t)
follows a linear multiple-input single-output ARMA (auto-regres-
sive moving-average) model

yðtÞ þ
Xn

i¼1

aiyðt � iÞ ¼
Xs

j¼1

Xm�1

i¼1

bjiujðt � iÞ ð1Þ

where ai; bi 2 R are unknown coefficients and these parameters
could be also time-varying and uj(t) are other quality variables that
affect the time evolution of quality variable y(t). Thus, the predictive
value one-step ahead y(t + 1), of the quality variable y(t), based on
(1) is given by

yðt þ 1Þ ¼ �
Xn�1

i¼0

aiyðt � iÞ þ
Xs

j¼1

Xm�2

i¼0

bjiujðt � iÞ ð2Þ

However, the parameters ai, bji are generally unknown, and they
have to be estimated somehow from the on-line measurements.
In order to do this, Eq. (1) is typically written in the form

yðtÞ ¼ /ðtÞT#ðtÞ ð3Þ

where

uðtÞ ¼ ½�yðtÞ . . . � yðt � nÞ u1ðt � 1Þ . . . usðt �mÞ�T

#ðtÞ ¼ ½�a1ðtÞ . . . � anðtÞ b11ðtÞ . . . bsmðtÞ�T
ð4Þ

After that, the parameter vector #ðtÞ is updated using the following
update law

#ðt þ 1Þ ¼ #ðtÞ þ kðtÞðyðtÞ �uðtÞT#ðtÞÞ ð5Þ

where #ðt þ 1Þ is equal to #ðtÞ plus a corrective term that is propor-
tional to the prediction error eðtÞ ¼ yðtÞ �uðtÞT#ðtÞ and k(t) deter-
mines the magnitude of the corrective action. In the following
two sections two alternative ways of calculating an ‘optimal’ k(t)
will be shown.
When applying the recursive identification in the one-step
ahead prediction context, the prediction process consists of the fol-
lowing steps at time t:

(a) Calculate the prediction error eðtÞ ¼ yðtÞ �uðt � 1ÞT#ðtÞ.
(b) Update #ðtÞ to #ðt þ 1Þ using #ðt þ 1Þ ¼ #ðtÞ þ kðtÞðyðtÞ�

uðtÞT#ðtÞÞ.
(c) Build the vector uðtÞ .
(d) Predict y(t + 1) using yðt þ 1Þ ¼ uðtÞT#ðt þ 1Þ .
(e) Set t ! ðt þ 1Þ and go to step a.

Furthermore, an initial condition #ð0Þ has to be specified in or-
der to initialize the algorithm at t = 0.

3.1. Projection algorithm

This section is based on Goodwin and Sin (1984). Projection
algorithm is one of several ways of recursively identifying the
parameter vector #. As a starting point the following cost function
(or performance index)

J ¼ 1
2
k#ðtÞ � #ðt � 1Þk2 ð6Þ

is proposed, which is minimised subject to

yðtÞ ¼ uðt � 1ÞT# ð7Þ

The performance index reflects the design criterion of finding an
estimate #ðtÞ which is close to the previous estimate #ðt � 1Þ but
at the same time models the current data vector exactly, i.e.
yðtÞ ¼ uðt � 1ÞT#ðtÞ. This optimisation problem can be solved in
the following way: We introduce the modified cost function

Je ¼
1
2
k#ðtÞ � #ðt � 1Þk2 þ k½yðtÞ �uðt � 1ÞT#ðtÞ� ð8Þ

where the constrained equation has been adjoined into the original
cost function. Then, applying the necessary and sufficient condi-
tions for minimum,

oJe

o#ðtÞ ¼ 0;
oJe

ok
¼ 0 ð9Þ

we obtain, after some mathematical manipulation,

k ¼ yðtÞ �uðt � 1ÞT#ðt � 1Þ
uðt � 1ÞTuðt � 1Þ

ð10Þ

and the algorithm

#ðtÞ ¼ #ðt � 1Þ þ uðt � 1Þ
uðt � 1ÞTuðt � 1Þ

½yðt � 1Þ � #ðt � 1ÞTuðt � 1Þ�

ð11Þ

Because in (11) there is the possibility of division by zero, in prac-
tice we use the algorithm

#ðtÞ ¼ #ðt � 1Þ þ auðt � 1Þ
c þuðt � 1ÞTuðt � 1Þ

½yðt � 1Þ � #ðt � 1ÞTuðt � 1Þ�

ð12Þ

where c > 0 and 0 < a < 1. In the research literature the modified
algorithm (12) is known as the normalized least-mean squares
algorithm.

3.2. Least squares algorithm

This section is based on Goodwin and Sin (1984) and Bjorck
(1997). The least squares algorithm is one of the most commonly
used method to iteratively identify the parameter vector #. The
staring point is the following cost function



Table 1
Cross-correlated matrix for temperature, pH, oxygen and turbidity

Temperature pH Oxygen Turbidity

Temperature 1
pH 0.50 1
Oxygen 0.68 0.76 1
Turbidity 0.37 0.78 0.74 1
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JNð#Þ ¼
XN

t¼1

ðyðtÞ �uðt � 1ÞT#þ 1
2
ð#� #ð0ÞÞP�1

0 ð#� #ð0ÞÞ ð13Þ

Consequently, the objective is to find # which minimises the sum of
the squares of the estimation error eðtÞ ¼ yðtÞ �uðt � 1ÞT# but is
not too far from the initial guess #ð0Þ. Thus, coming up with a rea-
sonable initial guess for # can speed up considerably the conver-
gence rate of the least squares algorithm. In order to solve this
optimisation problem recursively, the following data vectors are
defined:

YT
N ¼ ½yð1Þ yð2Þ . . . yðNÞ�

UT
N�1 ¼ ½uð0Þ uð1Þ . . . uðN � 1Þ�

ð14Þ

This allows one to write the cost function (13) in the form

JNð#Þ ¼
1
2
½YN �UN�1#�T½YN �UN�1#� þ

1
2
ð#� #ð0ÞÞP�1

0 ð#� #ð0ÞÞ

ð15Þ

Differentiating with respect to # and setting the result equal to zero
we obtain

½UT
N�1UN�1 þ P�1

0 �# ¼ P�1
0 #ð0Þ þUT

N�1YN ð16Þ

Let #ðNÞ denotes the vector # that satisfies Eq. (16). Then

#ðNÞ ¼ ½UT
N�1UN�1 þ P�1

0 �
�1½P�1

0 #ð0Þ þUT
N�1YN �

¼ PðN � 1Þ½P�1
0 #ð0Þ þUT

N�1YN�
ð17Þ

where PðN � 1Þ�1 ¼ UT
N�1UN�1 þ P�1

0 . Eq. (14) shows that

PðN � 1Þ�1 ¼ PðN � 2Þ�1 þuðN � 1ÞuðN � 1ÞT ð18Þ

Using (17) gives

#ðNÞ ¼ PðN � 1Þ½P�1
0 #ð0Þ þUT

N�2YN�1 þuðN � 1ÞyðNÞ�
¼ PðN � 1Þ½PðN � 2Þ�1

#ðN � 1Þ þuðN � 1ÞyðNÞ�
¼ PðN � 1Þ½PðN � 1Þ�1 �uðN � 1ÞuðN � 1ÞT�#ðN � 1Þ
þ PðN � 1ÞuðN � 1ÞyðNÞ
¼ #ðN � 1Þ þ PðN � 1ÞuðN � 1Þ½yðNÞ �uðN � 1ÞT#ðN � 1Þ�

ð19Þ

Continuing recursively, and using the matrix inversion lemma, it
can be shown that P(t � 1) satisfies

Pðt � 1Þ ¼ Pðt � 2Þ � Pðt � 2Þuðt � 1Þuðt � 1ÞTPðt � 2Þ
1þuðt � 1ÞTPðt � 2Þuðt � 1Þ

ð20Þ

and that this implies the following equality

Pðt � 1Þuðt � 1Þ ¼ Pðt � 2Þuðt � 1Þ
1þuðt � 1ÞTPðt � 2Þuðt � 1Þ

ð21Þ

Applying (21) to the last row of (19) we obtain finally the least
squares algorithm

#ðtÞ ¼ #ðt � 1Þ þ Pðt � 2Þuðt � 1Þ
1þuðt � 1ÞTPðt � 2Þuðt � 1Þ

½yðtÞ �uðt � 1ÞT

� #ðt � 1Þ� ð22Þ

where the update for P(t � 1) is given by (20).
In practical applications of least squares it is common to use a

slightly modified algorithm

#ðtÞ ¼ #ðt � 1Þ þ Pðt � 2Þuðt � 1Þ
cðt � 1Þ þuðt � 1ÞTPðt � 2Þuðt � 1Þ

½yðtÞ

�uðt � 1ÞT#ðt � 1Þ� ð23Þ

where the update for P(t � 1) is given by
Pðt � 1Þ ¼ Pðt � 2Þ � Pðt � 2Þuðt � 1Þuðt � 1ÞTPðt � 2Þ
cðt � 1Þ þuðt � 1ÞTPðt � 2Þuðt � 1Þ

ð24Þ

where c(t) = aoc(t � 1) + (1 � ao), with ao having a value between 0
and 1. It can be shown that this exponential weighting puts more
emphasis on the more recent data, and therefore allows the algo-
rithm to perform better when the underlying process is either
time-varying or nonlinear.

4. Experimental results

4.1. Preliminary data processing and analysis

The data used in this study are produced by the Andromeda-
analyser, which measures water temperature, pH, conductivity,
salinity, amount of oxygen (%) and turbidity (FNU) of sea water.
For details see Hatzikos (1998) and Hatzikos (2002). The original
data had a sampling time of 9 s. However, due to the fact that there
was a large number of outliers in the data, and that the data did not
vary too much on hourly basis, it was decided that the data should
be averaged over one day. Furthermore, in this study it was
decided that the prediction models for temperature, pH, oxygen
and turbidity would be the important ones, mainly because they
are the most interesting in terms of commercial exploitation. Con-
sequently, for the time being, the rest of the variables are omitted
from the analysis.

Table 1 shows the cross-correlations between the four vari-
ables. The correlations are calculated from one-month data sets
collected during July 2004.

This table demonstrates that pH, oxygen and turbidity are cor-
related with each other to a moderate degree. Fig. 3 shows the
autocorrelation sequences for temperature, pH, oxygen and
turbidity.

This figure demonstrates that temperature, oxygen and turbid-
ity are correlated with past values, and therefore it is possible to
use them in prediction. The autocorrelation sequence for pH, on
the other hand, is very sharply peaked around time lag t = 0, which
implies that it could be very difficult to construct one-day ahead
predictions for this variable.

4.2. Water temperature

In the water temperature prediction only its previous values
were used. This was due to the fact that the water temperature
is mainly influenced by external variables such as the amount of
radiation from the sun, wind direction etc. Based on the autocorre-
lation analysis, it was decided that the current and two previous
values of water temperature should be used to predict the water
temperature next day. The initial estimate for the parameter vector
was taken to be #ð0Þ ¼ ½1; 0 0�T – this reflects the reasoning that in
most cases the temperature tomorrow should be more or less
equal to the temperature today. Before building the prediction
model, the data were scaled to zero mean and unity variance.
Fig. 4 shows the measured and the predicted temperature by use
of the Projection algorithm and of the Least squares algorithm,
with a data set taken during July of 2004.



Fig. 3. Autocorrelation sequences for temperature, pH, oxygen and turbidity.

Fig. 4. Temperature prediction by use of the projection algorithm and least square
algorithm one-day ahead with July 2004 data set.

Table 2
Prediction accuracy of temperature

Prediction method l2 l1

Projection algorithm 2.0 1.47
Least square algorithm 2.0 1.5
Delayed prediction algorithm 2.2 5.5

Fig. 5. pH prediction by use of the projection algorithm and least square algorithm
one-day ahead with July 2004 data set.
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4.2.1. Projection algorithm
The parameters c and a in the projection algorithm were taken

to be c = 6 and a = 0.5. These parameter values were chosen using
the ‘trial and error method’. The prediction is surprisingly accurate,
in particular after day twelve. The algorithm converges to the
parameter vector # ¼ ½0:911 � 0:1011 � 0:1634�T (for scaled
data), which shows that the algorithm bases its prediction mostly
on the current temperature, but corrects the value using previous
temperatures as well.

4.2.2. Least squares algorithm
The weighted version of the least squares algorithm were used

with parameter values P(0) = 0.1I, c(0) = 0.1 and c(t) = 0.95c(t � 1) +
(1 � 0.95). The prediction accuracy here is reasonable. The algo-
rithm converges to # ¼ ½1:1062 � 0:07 0:1634�T, which shows
that the resulting prediction model uses more heavily the current
temperature than the prediction model from the projection
algorithm.

4.2.3. Comparison of the results
Table 2 shows the l2-norm ð

PN
i¼1eðiÞ2Þ and l1-normðmaxi¼1;...;Nj

eðiÞjÞ of the prediction error for the projection algorithm, the least
squares algorithm and the ‘delayed prediction algorithm’
y(t + 1) = y(t) (i.e. temperature tomorrow is equal to the tempera-
ture today). Prediction models from both the projection algorithm
and least squares algorithm give better prediction accuracy, which
is a remarkable result. Furthermore, the prediction model from the
projection algorithm is the most accurate one.
4.3. pH

In the pH prediction previous values of both pH and turbidity
were used. This was due to the fact that turbidity and pH seem
to be correlated with each other, at least to certain extent. Based
on the autocorrelation analysis, it was decided that the current
and two previous values of pH and turbidity measurements should
be used to predict the pH value for the next day. The initial
estimate for the parameter vector was taken to be #ð0Þ ¼
½1 0 0 0 0 0�T; this reflects again the reasoning that in most cases
pH tomorrow is should be more or less equal to pH today. Before
building the prediction model, the data were scaled to zero mean
and unity variance. Fig. 5 shows the measured and the predicted
pH by use of the Projection algorithm and of the Least squares
algorithm, with a data set taken during July of 2004.

4.3.1. Projection algorithm
The parameters c and a in the projection algorithm were taken to

be c=6 and a=0.5. The algorithm converges to the parameter vector
# ¼ ½0:99 � 0:0092 � 0:0127 0:0028 � 0:0146 � 0:0178�T

(for scaled data), which shows that the algorithm bases its predic-
tion almost only on the current pH. Consequently, the best one
can do is to predict that pH tomorrow is equal to the pH today.

4.3.2. Least squares algorithm
The weighted version of the least squares algorithm were used

with parameter values P(0) = 0.1I, c(0) = 0.1 and c(t) = 0.95c(t � 1) +
(1 � 0.95). The algorithm converges to # ¼ ½0:987 � 0:0019
�0:0076 0:0013 � 0:0258 � 0:0096�T, which shows that the
resulting prediction model uses heavily the current pH value.

4.3.3. Comparison of the results
Table 3 shows the l2-norm ð

PN
i¼1eðiÞ2Þ and l1-normðmaxi¼1;...;Nj

eðiÞjÞ of the prediction error for the projection algorithm, the least
squares algorithm and the ‘delayed prediction algorithm’ y(t + 1) =
y(t). Prediction models from both the projection algorithm and
least squares algorithm give more or less the same accuracy as



Table 3
Prediction accuracy of pH

Prediction method l2 l1

Projection algorithm 0.60 0.39
Least square algorithm 0.64 0.41
Delayed prediction algorithm 0.60 0.39

Table 4
Prediction accuracy of oxygen

Prediction method l2 l1

Projection algorithm 3.17 1.92
Least square algorithm 3.23 1.88
Delayed prediction algorithm 3.18 1.96
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the delayed prediction algorithm, which shows that best one can
do is to predict that pH tomorrow is equal to the pH today. This
could be due to the fact that the chemical reactions determining
pH are typically nonlinear, and therefore linear models used in this
study are not adequate to predict pH.

4.4. Oxygen

In the oxygen prediction both previous values of oxygen and pH
were used. This was due to the fact oxygen and pH seem to be cor-
related with each other to a moderate degree. Based on the auto-
correlation analysis, it was decided that the current and two
previous values of oxygen and pH measurements should be used
to predict the oxygen value for the next day. The initial estimate
for the parameter vector was taken to be #ð0Þ ¼ ½1 0 0 0 0 0�T;
this reflects again the reasoning that in most cases the amount of
oxygen tomorrow should be more or less equal to the amount of
oxygen today. Before building the prediction model, the data were
scaled to zero mean and unity variance. Fig. 6 shows the measured
and the predicted oxygen by use of the Projection algorithm and of
the Least squares algorithm, with a data set taken during July of
2004.

4.4.1. Projection algorithm
The parameters c and a in the projection algorithm were taken

to be c = 5 and a = 0.1. The algorithm in this case converges to the
parameter vector # ¼ ½0:95 � 0:0322 � 0:0229 0:0032 � 0:0010
�0:0055�T (for scaled data), which shows that the algorithm bases
its prediction mostly on the current oxygen content.

4.4.2. Least squares algorithm
The weighted version of the least squares algorithm were used

with parameter values P(0) = 0.1I, c(0) = 0.95 and c(t) = 0.95c(t �
1) + (1 � 0.95). The algorithm converges to # ¼ ½0:7891 � 0:0633
�0:0755 0:0102 0:0231 � 0:0113�T, which shows again that the
resulting prediction model uses heavily the current oxygen
measurement.
Fig. 6. Oxygen (%) prediction by use of the Projection algorithm and least square
algorithm one-day ahead with July 2004 data set.
4.4.3. Comparison of the results
Table 4 shows the l2-norm ð

PN
i¼1eðiÞ2Þand l1-normðmaxi¼1;...;N j

eðiÞjÞ of the prediction error for the projection algorithm, the least
squares algorithm and the ‘delayed prediction algorithm’
y(t + 1) = y(t). Prediction models from both the projection algo-
rithm and least squares algorithm give slightly better results than
the delayed prediction algorithm, so the prediction of oxygen
works better than pH but worse than water temperature.

4.5. Turbidity

In the turbidity prediction both previous values of turbidity and
pH were used. This was due to the fact that turbidity and pH seem
to be correlated with each other to a moderate degree. Based on
the autocorrelation analysis, it was decided that the current and
two previous values of turbidity and pH measurements should be
used the predict turbidity value for the next day. The initial
estimate for the parameter vector was taken to be #ð0Þ ¼
½1 0 0 0 0 0�T (turbidity tomorrow is should be more or less equal
to turbidity today). Before building the prediction model, the data
were scaled to zero mean and unity variance. Fig. 7 shows the mea-
sured and the predicted turbidity by use of the projection algo-
rithm and of the least squares algorithm, with a data set taken
during July of 2004.

4.5.1. Projection algorithm
The parameters c and a in the projection algorithm were taken to

be c = 5 and a = 0.5. The algorithm converges to the parameter vec-
tor # ¼ ½0:95 � 0:0322 � 0:0229 0:0032 � 0:0010 � 0:0055�T

(for scaled data), which shows that the algorithm bases its predic-
tion mostly on the current turbidity.

4.5.2. Least squares algorithm
The weighted version of the least squares algorithm were used

with parameter values P(0) = 0.1I, c(0) = 0.95 and c(t) = 0.95c(t � 1) +
(1 � 0.95). The algorithm converges to # ¼ ½0:9345 � 0:0498
Fig. 7. Turbidity (FNU) prediction by use of the projection algorithm and least
square algorithm one-day ahead with July 2004 data set.



Table 5
Prediction accuracy of turbidity

Prediction method l2 l1

Projection algorithm 1.82 0.99
Least square algorithm 1.80 0.97
Delayed prediction algorithm 1.84 0.99
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0:0048 � 0:0055 0:0046 � 0:0174�T, which shows again that the
resulting prediction model uses heavily the current turbidity
measurement.

4.5.3. Comparison of the results
Table 5 shows the l2-norm ð

PN
i¼1eðiÞ2Þ and l1-norm ðmaxi¼1;...;Nj

eðiÞjÞ of the prediction error for the projection algorithm, the least
squares algorithm and the ‘delayed prediction algorithm’
y(t + 1) = y(t). Prediction models from both the projection algo-
rithm and least squares algorithm give slightly better results than
the delayed prediction algorithm, so the prediction of turbidity
works similarly to the case of oxygen.

5. Conclusions and future work

This study has concentrated on building one-day ahead predic-
tions for sea quality measurements. Two different algorithms were
used to build prediction models, namely the projection algorithm
and the least squares algorithm. The prediction accuracy from
the two algorithms were quite similar, but experimental work
pointed out that it is slightly easier to tune the projection algo-
rithm than the least squares algorithm.

The results show that for water temperature it is possible to
come up with predictors that are ‘substantially’ better than the de-
layed prediction algorithm. For oxygen and turbidity the difference
between adaptive and delayed prediction is far less substantial,
while for pH, both predictions give more or less the same accuracy.

Future study will concentrate on the exploration of the possibil-
ity to construct prediction models for the other variables on short-
er time-scales than the one-day ahead prediction. For example, the
autocorrelation series for pH shows that the dynamics of this var-
iable change at a quicker rate than 24 h. Therefore, it could be pos-
sible to use for example an 1-h ahead prediction for this variable.

Furthermore, we plan to integrate the water quality prediction
algorithms we presented in this paper within the fuzzy intelligent
alerting system of Hatzikos et al. (2007), so that the alerting system
will be able to issue early warnings based on predicted hydrologi-
cal parameters values. To this end, we have to extend our least
square algorithms using fuzzy regression techniques (Hong &
Hwang, 2004; Wang, Zhang, & Mei, 2007).

Acknowledgement

The project is co-funded by the European Social Fund & Na-
tional Resources - EPEAEK II - ARCHIMEDES.

References

Bjorck, E. (1997). Numerical methods for least squares problems. SIAM.
Blockeed, H., Dzeroski, S., & Crbovic, J. (1999). Simultaneous prediction of multiple

chemical parameters of river water quality with tilde. Proceedings of the 3rd
European conference on principles of data mining and knowledge discovery. LNAI
(Vol. 1704). Springer-Verlag.

Chau, K. (2005). A split-step PSO algorithm in prediction of water quality pollution.
In Proceedings of the 2nd international symposium of neural networks.

Dzeroski, S., Demsar, D., & Grbovic, J. (2000). Predicting chemical parameters of
river water quality from bioindicator data. Applied Intelligence, 13, 7–17.

Fdez-Riverola, F., & Corchado, J. M. (2003). BR based system for forecasting red tides.
Knowledge-Based Systems, 16, 321–328.

Fdez-Riverola, F., & Corchado, J. M. (2004). FSfRT: Forecasting system for red tides.
Applied Intelligence, 21, 251–264.

Goodwin, G. C., & Sin, K. S. (1984). Adaptive filtering prediction and control. Prentice
Hall.

Hatzikos, E. V. (1998). The Andromeda network for monitoring the quality of water
and air elements. In Proceedings of the 2nd conference on automation and
technology, Thessaloniki, Greece, October.

Hatzikos, E. V. (2002). A fully automated control network for monitoring polluted
water elements. In Proceedings of the 4th conference on automation and
technology, Thessaloniki, Greece, October (pp. 443–448).

Hatzikos, E. V., Anastasakis, L., Bassiliades, N., & Vlahavas, I. (2005). Applying neural
networks with active neurons to sea-water quality predictions. In Proceedings of
the 2nd international scientific conference on computer Science (pp. 114–119).
Bulgarian Section: IEEE Computer Society.

Hatzikos, E., Bassiliades, N., Asmanis, L., & Vlahavas, I. (2007). Monitoring water
quality through a telematic sensor network and a fuzzy expert system. Expert
Systems, 24(3), 143–161.

Hong, D. H., & Hwang, C. (2004). Extended fuzzy regression models using
regularization method. Information Sciences, 164(1–4), 31–46.

Ivanhnenko, A. G., & Moller, J. A. (1995). Self-organisation of nets of active neurons.
Systems Analysis Modelling Simulation, 20(1–2), 93–106.

Lehmann, A., & Rode, M. (2001). Long-term behaviour and cross-correlation water
quality analysis of the river Elbe, Germany. Water Research, 35(9), 2153–2160.

Moller, J. A., & Lemke, F. (2003). Self-organising data mining: An intelligent approach
to extract knowledge from data. Canada: Trafford Publishing.

National Instruments, LabView. <http://www.ni.com/labview/>.
Reckhow, K. (1999). Water quality prediction and probability network models.

Canadian Journal of Fisheries and Aquatic Sciences, 56, 1150–1158.
Romero, C., & Shan, J. (2005). Development of an artificial neural network-based

software for prediction of power plant canal water discharge temperature.
Expert Systems with Applications, 29, 831–838.

Wang, N., Zhang, W. X., & Mei, C. L. (2007). Fuzzy nonparametric regression
based on local linear smoothing technique. Information Sciences, 177(18),
3882–3900.

http://www.ni.com/labview/

	Applying adaptive prediction to sea-water quality measurements
	Introduction
	Description of the Water Monitoring Networkwater monitoring network
	Description of the Modelmodel
	Projection algorithm
	Least Squares squares algorithm

	Experimental results
	Preliminary data processing and analysis
	Water temperature
	Projection algorithm
	Least squares algorithm
	Comparison of the results

	pH
	Projection algorithm
	Least squares algorithm
	Comparison of the results

	Oxygen
	AlgorithmProjection algorithm
	Least squares algorithm
	Comparison of the results

	Turbidity
	Projection algorithm
	Least squares algorithm
	Comparison of the results


	Conclusions and Future Workfuture work
	Acknowledgement
	References


