Expert Systems with Applications 39 (2012) 9571-9587

]

Expert
Systems
with
Applications 8
An Informational
Joumal

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier.com/locate/eswa

Cross-community interoperation between knowledge-based multi-agent
systems: A study on EMERALD and Rule Responder

Kalliopi Kravari®*, Nick Bassiliades?, Harold Boley "

2 Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
b [nstitute for Information Technology, NRC Canada, Fredericton, NB, Canada E3B 9W4

ARTICLE INFO ABSTRACT

The ultimate vision of the Semantic Web (SW) is to provide users with the capability of delegating com-
plex tasks to intelligent agents. The latter, acting in an interoperable and information-rich Web environ-
ment, will efficiently satisfy their users’ requests in a variety of real-life applications. Much work has been
done on SW information agents for Web-based query answering; a variety of multi-agent platforms and
Web language standards has been proposed. However, the platform- and language-bridging interopera-
tion across multi-agent systems has been neglected so far, although it will be vital for large-scale agent
deployment and wide-spread adoption of agent technology by human users. This article defines the space
of possible interoperation methods for heterogeneous multi-agent systems based on the communication
type, namely symmetric or asymmetric, and the MASs status, namely open or closed systems. It presents
how heterogeneous multi-agent systems can use one of these methods to interoperate and, eventually,
automate collaboration across communities. The method is exemplified with two SW-enabled multi-
agent systems, EMERALD and Rule Responder, which assist communities of users based on declarative
SW and multi-agent standards such as RDF, OWL, RuleML, and FIPA. This interoperation employs a
declarative, knowledge-based approach, which enables information agents to make smart and consistent
decisions, relying on high-quality facts and rules. Multi-step interaction use cases between agents from

Keywords:

Semantic Web

Intelligent multi-agent systems
EMERALD

Rule Responder
Cross-Community Collaboration

both communities are presented, demonstrating the added value of interoperation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Although humans are capable of using the Web to carry out al-
most any task, machines cannot accomplish similar tasks fully auto-
matically, without human intervention. Thus, the need for a
universal medium of data, information and knowledge exchange
led to the foundation of the Semantic Web. Broadly, the Semantic
Web (SW) (Berners-Lee, Hendler, & Lassila, 2001) is an evolving
extension of the current Web that lets both people and machines
fully comprehend relevant information and better satisfy task re-
quests. The ultimate vision of the SW is to provide users with the
capability of delegating complex tasks to intelligent agents (Anto-
niou & van Harmelen, 2004; Hendler, 2001; Shadbolt, Hall, & Bern-
ers-Lee, 2006). The Ilatter, acting in the interoperable and
information-rich Web environment, will efficiently satisfy their
users’ requests in a variety of real-life applications. Thus, via the
use of intelligent agents, programs become organized to perform
tasks more efficiently and with less human intervention. The grad-
ual integration of multi-agent systems (MASs) with SW technology

* Corresponding author. Tel.: +30 2310998231; fax: +30 2310998433.
E-mail addresses: kkravari@csd.auth.gr (K. Kravari), nbassili@csd.auth.gr
(N. Bassiliades), harold.boley@nrc.gc.ca (H. Boley).

0957-4174/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2012.02.160

will affect the use of the Web in the future. Going beyond Web crawl-
ers of search engines and other stand-alone information agents, the
next generation of Web tools will comprise groups of intercommu-
nicating SW agents traversing the Web.

Various MASs are already available (Park & Sugumaran, 2005;
Wang, Wong & Wang, 2012); however, these systems are usually
isolated from one another, as their organizational principles and
architectures are typically different, and their agents usually do
not share the same logic or rule representation formalism. This
heterogeneity in representation and reasoning technologies and
ensuing MAS disconnectedness comprises a critical drawback in
agent interoperation, as agents should share a certain cross-community
understanding of each others’ perspectives in a dialogue or an
argumentation framework. Hence, this work (performed as part
of a collaboration between RuleML Inc. and Aristotle University')
defines the space of possible interoperation methods based on
the communication type and the MASs status, each with their pre-
conditions for applicability. It then chooses and develops one of
these methods for cross-community interoperation that enables
communication between closed MASs. Specifically, two SW-enabled

! Press release: http://ruleml.org/press/EmeraldRuleMLResponderPressRelease-
2010-04-23.pdf.

http://dx.doi.org/10.1016/j.eswa.2012.02.160
mailto:kkravari@csd.auth.gr
mailto:nbassili@csd.auth.gr
mailto:harold.boley@nrc.gc.ca
http://ruleml.org/press/EmeraldRuleMLResponderPressRelease-2010-04-23.pdf
http://ruleml.org/press/EmeraldRuleMLResponderPressRelease-2010-04-23.pdf
http://dx.doi.org/10.1016/j.eswa.2012.02.160
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

9572 K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

MASs, EMERALD (Kravari, Kontopoulos, & Bassiliades, 2010a) and
Rule Responder (Paschke & Boley, 2011), are analyzed in order to dis-
cover similarities and differences, and are extended with appropriate
bidirectional bridges to make interoperation possible. As a result, a
variety of interoperation use cases, such as for bargaining, negotiation
and auction, can be implemented. Note that each agent, whether it be-
longs to EMERALD or Rule Responder, has its own policy, a set of private
rules representing its requirements, obligations and constraints, as
well as its idiosyncratic knowledge about the world, which makes inter-
operation a difficult task. Furthermore, since the two MASs have been
developed separately, each one uses its own agent/service platforms,
communication protocols and languages, as well as knowledge represen-
tation formalisms, making interoperation even more difficult.

The aim of this article is to demonstrate how heterogeneous
MASs can interoperate in order to automate collaboration across
communities using a declarative, knowledge-based method and
exemplifying the usefulness of the general method to Cross-Com-
munity Collaboration by implementing it for two concrete systems.
Such an approach was chosen since knowledge engineering is cen-
tral to artificial intelligence (Al), and many of the problems that
intelligent information agents are expected to solve will require
extensive knowledge (Russell & Norvig, 2009). The knowledge-
based approach is actually a way of managing and automating
knowledge, which enables agents to make smart and consistent
decisions, relying on high-quality facts and rules. The focus is on
what an agent needs to know in order to behave intelligently,
how this knowledge can be represented, and how automated rea-
soning procedures can make this knowledge available as needed.
In this framework, two multi-step interaction use cases among
agents are presented, demonstrating the usefulness of interoperat-
ing between the above systems.

The rest of this article consists of the following: Section 2 dis-
cusses methods for cross-community interoperation. Section 3 pre-
sents EMERALD, a multi-agent knowledge-based framework.
Section 4 presents Rule Responder, an open source framework for
creating virtual organizations as multi-agent systems. Section 5
presents the bidirectional (EMERALD-Rule Responder) bridges
(interoperation gateways). Section 6 presents the multi-step inter-
action scenarios that illustrate the usefulness of the approach. Sec-
tion 7 discusses related work, and Section 8 concludes with final
remarks and directions for future work.

2. Cross-community interoperation methods

Cross-community interoperation between multi-agent systems
is vital for agents and human users. However, heterogeneity in rep-
resentation and reasoning technologies across MASs has not been
much researched. Here we present four potential interoperation
methods, namely how heterogeneous multi-agent systems can
interface each others’ agents to automate collaboration across
communities. We assume that there are two MASs, with a number
of agents acting in them, where the interoperation of three or more
MASs could be achieved by incrementally adding a MAS to an al-
ready interoperated family of MASs. We then identify four cases
defining the space of interoperation methods based on the commu-
nication type and the MASs status, as presented in Table 1.

Researchers distinguish two types of two-way communication;
symmetric and asymmetric. The term symmetric refers to any MASs
in which the communication quantity is the same in both directions,

Table 1
Cross-community interoperation methods.

(Both) Open (Both) Closed Open (k) - Closed (n)

Symmetric (A) any - any
Asymmetric X

(B) proxy - proxy X
(C) delegate - proxy (D) any - delegate

averaged over time. Whereas, the term asymmetric refers to any
MASs in which the communication quantity differs in one direction
as compared with the other direction, averaged over time. Regard-
ing MASs status, researchers also distinguish two types; open and
closed. A MAS is called open when its agents can communicate di-
rectly with any agent in any other MAS, whereas it is called closed
when its agents are isolated from other systems, communicating
with them only through the MAS’s proxy or delegate agent.

Both proxy and delegate agents can be found on closed systems.
They act as gateways, receiving requests from the rest of the (intra-
community) agents and forward them to the other (cross-commu-
nity) system’s appropriate agent. However, they have an important
difference; a proxy agent is able to communicate only with a spe-
cific agent, whether it is another proxy agent or a delegate agent,
whereas a delegate agent is able to communicate directly with
any agent in the other system.

Fig. 1 (in conjunction with Table 1) presents, in detail, the four
interoperation methods (four cases), that were identified above. In
the first case (A), we suppose that both systems are open and, thus,
each system’s agents understand each other’s perspectives, per-
forming a symmetric communication. Thus, each agent is able to
directly communicate with any (cross-community) agent in the
other MAS without need for a dedicated agent. If this is the case,
then either the systems are based on the same technological prin-
ciples (languages, platforms, etc.) or each intra-community agent
has hardwired in its code a variety of representation and reasoning
technologies, and thus it is able to understand the cross-commu-
nity agents’ perspectives.

However, usually MASs are based on different technological
principles and agents do not have a plethora of representation
and reasoning technologies hardwired in their code, because it is
impractical. Thus, case (B) presents how two heterogeneous closed
MASs can interoperate by interfacing through proxies. Each system
provides a proxy agent that is acting as a gateway and is responsi-
ble to receive requests from the rest of the intra-community agents
and forward them to the cross-community system’s corresponding
proxy agent. The latter is responsible for forwarding them to its
own system’s agents and vice versa. This approach does not burden
agents with extra representation and reasoning technologies, as
proxies are the only ones responsible for the communication be-
tween the systems, performing a symmetric communication.

Yet, communication between two closed MASs is not always
symmetric. Systems usually differ in terms of representation and
reasoning technologies. It would be possible for a closed system
to provide a delegate agent; a more flexible and enriched with rep-
resentation and reasoning technologies agent. Thus, case (C) pre-
sents two heterogeneous closed MASs, where the first one
provides a delegate agent and the other provides a proxy agent.
The delegate agent is able to communicate directly with any
cross-community agent, whereas the proxy agent communicates
only with the cross-community delegate agent, performing, thus,
an asymmetric communication.

Systems are not always based on the same organizational prin-
ciples. Thus, in case (D), we suppose that one of the systems is open
and the other closed. If this is the case, the closed MAS has to pro-
vide a delegate agent, as proxy agent is not an option. Proxy agents
are not suitable in this case, as they are able to communicate only
with other gateways, namely delegate or proxy agents, which actu-
ally do not exist in an open MAS. Hence, an open and a closed sys-
tem are able to communicate only in an asymmetric way.

3. EMERALD: a multi-agent knowledge-based framework

EMERALD (Kravari et al.,, 2010a) is a multi-agent knowledge-
based framework (Fig. 2), built on JADE (Bellifemine, Caire, Poggi,

K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587 9573

Agent-x Proxy-n

o

Agent-x Delegate

Agent -n
o o 0 @/

[

1
i
i
i
i i
L— 1 . .
i] MAS-n’s proxy agent communicates with
! MAS-k’s proxy agent and vice versa
1
i
i
1
|

A
Open — Symmetric
Any agent in MAS-n communicates directly

with any agent in MAS-k and vice versa

B
Closed — Symmetric

C
Closed — Asymmetric
MAS-n’s delegate agent communicates
directly with any agent in MAS-k and MAS-
k’s proxy agent communicates only with

MAS-n’s delegate agent .

1

|

1

' D

1 2

i Closed (n) — Open (k)

: Asymmetric

i MAS-n’s delegate agent communicates directly
1

} With any agent in MAS-k. Inversely, agents in MAS-
1

|

k communicate directly with any agent in MAS-n.

Fig. 1. Methods for cross-community interoperation.

& Rimassa, 2003), which offers flexibility, reusability and interop-
erability of behavior between agents, based on Semantic Web
and FIPA language standards (The Foundation for Intelligent Phys-
ical Agents (FIPA): Specifications, 2002). The main advantage of
this approach is that it provides a safe, generic, and reusable frame-
work for modeling and monitoring agent communication and
agreements. EMERALD supported, so far, the implementation of
various applications, like brokering (Antoniou, Skylogiannis, Bika-
kis, Doerr, & Bassiliades, 2007; Benjamins, Wielinga, Wielemaker,
& Fensel, 1999), agent negotiations (Fang & Wong, 2010; Governa-
tori, Dumas, Hofstedeter, & Oaks, 2001; Lin, Chen, & Chu, 2011) and
bargaining (Kebriaei & Majd, 2009; Muthoo, 1999; Petit & Magaud,
2006), a single issue negotiation between two parties.

3.1. KC-Agents prototype

In order to model and monitor the parties involved in an agent
dialogue, a generic, reusable agent prototype for knowledge-cus-
tomizable agents (KC-Agents), consisted of an agent model (KC
Model), a yellow pages service (Advanced Yellow Pages Service)
and several external Java methods (Basic Java Library), is deployed
(Fig. 3). Agents that comply with this prototype are equipped
with a Jess rule engine (JESS, 2008) and a knowledge base (KB)
that contains environment knowledge (in the form of facts),
behavior patterns and strategies (in the form of Jess production
rules). A short description is presented below for better
comprehension.

9574

! EMERALD

K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

-y

il i
Reasoning Engine - 1 i’ Reasoner-1 Pérsonal agent - 1!
[)i User-1
. l: . A Al .
. ?\ . ' \ } .
. / .] : .
. . v /i .
i Joi
Hh < 3
i)
— N = i]
@ < : > . < ‘
i \ Vi [
i \ .) [
Reasoning Engine - N i Reaso“'r'per‘- N ' Persou}gl,dgent - N!
! ’ / ! User - N
1 L] / i
i A v e i
_____________________ e

———REQUEST—
«——INFORM——

Personal Agent Reasoner

——Rule Base————p
4——Inference Results——

Reasoning Engine

Fig. 2. EMERALD generic overview.

AYPS

Fig. 3. The KC-Agents prototype.

The generic rule format for describing the agent’s behavior is:
result — rule (preconditions). The agent’s internal knowledge is a
set of facts F = F* U F°, where F* = { fu’,fu?,...,fu*} are user-defined
facts and Fe = {fe' fe,...,fe™} are environment-asserted facts. The
agent’s behavior is represented as a set of potential actions rules
P=AuUS, where A={alfe — a(ful,fu,... fu)A{ful i, fu"}
C F' A f° € F°} are the rules that derive new facts by inserting them
into the KB and S = C U] are the rules that lead to the execution of a
special action, such as agent communication C = {c|ACLMessage
cfL. PINFL.. LY CF or Java calls J= {jlJava-
—j(f{jllavaMethod — j(f'.f, .. .f) A {f'.f,.. .f} C F}.

The use of the KC-Agents prototype offers certain advantages,
such as modularity, reusability, maintainability and interoperabil-
ity of behavior between agents, as opposed to having behavior
hard-wired into the agent’s code.

The advanced yellow pages service (AYPS) provided by the KC-
Agents prototype is a fully automated service for both registered
services (services provided and advertised by an agent) and re-
quired services (specific services required by an agent). AYPS uses
a repository to store both services, providing data privacy. Further-
more, AYPS provides a service recovery ability, which groups and
sorts the registered (advertised) services according among others

their domain and their synonyms, allowing (requesting) agents
to make complex queries and receive the best available service.
Additionally, it hosts a centralized reputation mechanism which
keeps and provides the reputation value of any provider. Concern-
ing the KC Model, AYPS returns the providers as Jess facts with a
designated format: (service_type (provider provider_name)).

Additionally, as trust has been recognized as a key issue in SW
MAS, EMERALD adopts a variety of reputation mechanisms, both
decentralized and centralized. Among others, two centralized ap-
proaches are provided; a reference system provided by AYPS that
keeps the references given from agents interacting with Reasoners
or other agents in EMERALD (Kravari et al., 2010a) and a hybrid
model based on witness reputation and personal experience (Krav-
ari et al., 2010c). Additionally, a decentralized mechanism, a com-
bination of SPORAS (Zacharia & Maes, 2000) and Certified
Reputation (CR) (Huynh, Jennings, & Shadbolt, 2006), is also
provided.

3.2. Reasoners

Finally, as agents do not necessarily share a common rule or lo-
gic formalism, it is vital for them to find a way to exchange their
position arguments seamlessly. To this end, EMERALD proposes
the use of Reasoners (Kravari, Kontopoulos, & Bassiliades, 2010b),
which are actually agents that offer reasoning services to the rest
of the agent community. This approach does not rely on translation
between rule formalisms, but on exchanging the results of the rea-
soning process of the rule base over the input data. The receiving
agent uses an external reasoning service to grasp the semantics
of the rule base, namely the set of entailments of the knowledge
base (Fig. 4). The procedure is straightforward: each Reasoner

K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587 9575

——REQUEST—» ~—Rule Base———p
+——INFORM——— 4+——Inference Results

Personal Agent

Reasoner

Reasoning Engine

Fig. 4. Input-Output of a Reasoner Agent.

stands by for new requests and as soon as it receives a valid re-
quest, it launches the associated reasoning engine and returns
the results. Thus, although Reasoners are built as agents, actually
they act more like Web services.

EMERALD currently implements a number of Reasoners that of-
fer reasoning services in two major reasoning formalisms: deduc-
tive rules and defeasible logic. Deductive reasoning is based on
classical logic arguments, where conclusions are proved to be valid,
when the premises of the argument (i.e. rule conditions) are true.
Defeasible reasoning (Nute, 1987), on the other hand, constitutes
a non-monotonic rule-based approach for efficient reasoning with
incomplete and inconsistent information. When compared to more
mainstream non-monotonic reasoning approaches, the main
advantages of defeasible reasoning are enhanced representational
capabilities and low computational complexity (Antoniou, Dimare-
sis, & Governatori, 2009; Maher, 2001). Table 2 displays the main
features of the reasoning engines described below.

The two deductive rule reasoners that EMERALD provides are
the R-Reasoner and the Prova-Reasoner. More specifically, the R-
Reasoner is based on R-DEVICE (Bassiliades & Vlahavas, 2006), a
deductive object-oriented knowledge base system for querying
and reasoning (using entailments) about RDF metadata (in a Datal-
og-like fashion). On the other hand, the Prova-Reasoner is based on
Prova (Kozlenkov et al., 2006), a Prolog-like rule engine for rule-
based Java scripting, integrating Java with derivation rules (for rea-
soning over ontologies) and reaction rules (for specifying reactive
behaviors of distributed agents).

Furthermore, the two defeasible reasoners are the DR-Reasoner
and the SPINdle-Reasoner. The SPINdle-Reasoner is based on SPIN-
dle (Lam & Governatori, 2009), an open-source, Java-based defeasi-
ble (propositional) logic Reasoner that supports reasoning on both
standard and modal defeasible logic. The DR-Reasoner, used in this
project, is based on DR-DEVICE (Bassiliades, Antoniou, & Vlahavas,
2006) a forward-chaining, first-order logic defeasible rule engine.
DR-DEVICE accepts as input the address of a defeasible logic rule
base, written in the OORuleML-like syntax. The rule base contains
only rules; the facts for the rule program are contained in RDF doc-
uments, whose addresses are declared in the rule base. Finally,
entailments generated as results of the forward chaining inference
process are exported as an RDF document.

Following the above specifications EMERALD commits to SW
and FIPA standards, namely, it uses among others the RuleML lan-
guage (Boley, Paschke, & Shafiq, 2010) since it has become a de fac-
to standard. In addition, it also uses the RDF model (Resource
Description Framework (RDF) Model, 2004) for data representation
both for the private data included in agents’ internal knowledge
and the reasoning results generated during the process, as used
in contract agreement interactions presented in Kravari et al.
(2010d).

4. Rule Responder

Rule Responder (Osmun, Smith, Boley, Paschke, & Zhao, 2011;
Paschke & Boley, 2011) is an open source framework for creating
virtual organizations as multi-agent systems that support collabo-
rative teams on the Semantic Web. It comes with a number of offi-

Table 2
Reasoning engine features.

Type of logic Implementation
R-DEVICE Deductive RDF/CLIPS/RuleML
Prova Deductive Prolog/Java
DR-DEVICE Defeasible RDF/CLIPS/RuleML
SPINdle Defeasible XML/Java
DR-Prolog Defeasible RDF/RuleML/DR-Prolog
Proofing Validator Defeasible XML/ DR-Prolog

Order of logic Reasoning

R-DEVICE 2nd order Forward chaining
Prova 1st order Backward chaining
DR-DEVICE 2nd order Forward chaining
SPINdle 1st order Forward chaining

cial instantiations implementing virtual organizations such as
SymposiumPlanner for supporting the chairs of the RuleML Sym-
posia?, presented below.

4.1. Rule Responder MAS

Rule Responder provides the infrastructure for rule-based col-
laboration between the distributed members of such a virtual
organization. Human members are assisted by semi-autonomous
rule-based agents, which use SW rules that describe aspects of
their owners’ derivation and reaction logic. Fig. 5, adapted from Os-
mun et al. (2011), indicates the general architecture of a typical
Rule Responder MAS.

Each Rule Responder instantiation employs four classes of
agents, an Organizational Agent (OA), Personal Agents (PAs), Exter-
nal Agents (EAs) and Computing Agents (CAs). The OA represents
goals and strategies shared by its virtual organization as a whole,
using a global rule base that describes its policies, regulations,
opportunities, etc. Each PA assists a person of the organization,
(semi-autonomously) acting on his/her behalf by using a local
knowledge base of derivation rules defined by the person. Each
EA uses a Web (HTTP) interface, accepting queries from users
and passing them to the OA. Each CA can be seen as an (often
low level) agent that performs an automated (computational) task.

CAs are comparable to PAs, except that they are not paired with
a person. Their output is meant to assist the OA in answering the
query from the EA. They are designed to perform specific tasks that
may involve invoking services independently from the rest of the
virtual organization (see Fig. 5).

The OA employs an OWL ontology as a “responsibility assign-
ment matrix” to find the PA that can best handle an incoming
query. The OA uses reaction rules to: send the query to this PA, re-
ceive its answer(s), do validation(s), and send answer(s) back to the
EA.

Rule Responder uses the Enterprise Service Bus (ESB) Mule to
transfer data (Fig. 6). Mule performs this data transfer via “data
endpoints”. In the case of Rule Responder, each agent (EAs/OA/
PAs) has their own endpoint through which data will travel. For

2 SymposiumPlanner: http://ruleml.org/SymposiumPlanner/.

9576

VO:

(Another RR instantiation)

K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

VO /- ° \ "

0 &—Te] &
PU, PU; PU,
\\

e

Rule Responder Legend:

RR: Rule Responder
VO: Virtual Organization

EA: External Agent

OA: Organizational Agent
PA: Personal Agent

CA: Computing Agent

EU: Enquiry User
PU: Profile User

KB: Knowledge Base

HTTP Request

— — Creates

KB,

Foreign Service

(Google. Amazon. etc. black box)

p——

Note that the PAs shown could themselves be internally
structured as VOs and so on, to any depth of recursion, since the
entire RR architecture can be considered holonic system

(cf = http://cs.unb.ca/~baley/papers/RuleResponderAgents. pdf)

Fig. 5. Rule Responder system architecture considered as holonic system.

|Mule Manager

I Mule Services I
[Mule Model
RBSLM Service RBSLM Service
Prova/ E}esmer Bl Prova/
ContractLog |2 2] ContractlLog
= 2 |S jsasync—{E42 =
Engine 3 o Ei Engine

ranslator
npoint

Transiator

async, Syn

i N
 ———T
i Synchronous Bridge
——————asyn async.
L/’ Sync, 1

ale
External
Service /

Application

Another Mule or
Prova/ContractLog
Service

Fig. 6. Mule enterprise service bus.

our cross-community interoperation, Rule Responder only uses
HTTP as the transfer protocol, although Mule allows to easily
switch over to other ones (e.g, SOAP).

Mule ESB Enterprise (Mule Enterprise Service Bus (ESB), 2007)
is the enterprise-class version of the Mule ESB, the most popular
open source enterprise service bus. The Mule ESB is a lightweight
Java-based enterprise service bus that simplifies the integration
of applications and technologies, both on-site and in the cloud. It
is lightweight and flexible, adapting to existing infrastructure, yet
powerful enough to underpin even large and demanding enterprise
SOA implementations.

The supported reasoning engines, with their languages, in Rule
Responder are Prova with the Prova language, OO jDREW with
POSL and Euler with N3. The present work uses OO jDREW (Ball,
Boley, Hirtle, Mei, & Spencer, 2005), a deductive reasoning engine
for the RuleML and POSL Web rule languages, written in Java. It
is an Object Oriented extension to jDREW that implements Object
Oriented features of RuleML, including Order-Sorted Types, Slots
and Object Identifiers.

4.2. SymposiumPlanner

SymposiumPlanner (Fig. 7) is a series of multi-agent applica-
tions supporting the RuleML Symposium series (e.g. http://
2010.ruleml.org) developed with Rule Responder. Based on profiles
augmenting facts similar to those in Friend of a Friend® with rules,
each human (co-)chair position of the RuleML Symposium (general
chair, panel chair, etc.) has a Personal Agent acting as a proxy in this
virtual organization. Each PA has its own private knowledge base
formalizing responsibilities of the position in order to answer que-
ries and solve problems relevant to the chair’s role. Queries can
range from asking simple chair contact details (e.g. name, email,
phone, etc.) to complex problem solving tasks that require deep
knowledge acquired by the SymposiumPlanner’s knowledge engi-
neers from the human Symposium Chairs.

5. EMERALD-Rule Responder interoperation

In order to develop an interface between EMERALD and Rule Re-
sponder (RR) so that they can interoperate, the two systems were

3 The Friend of a Friend (FOAF) project, http://www.foaf-project.org/original-intro.

http://www.2010.ruleml.org
http://www.2010.ruleml.org

K. Kravari et al./Expert Systems with Applications 39 (2012) 9571-9587 9577

Enguiry User

OA: Organizational Agent
PA: Personal Agent

General Chair

\@

General Chair
Profile User

Publicity Chair
PA A
P
\%ﬁ — ‘
Publicity Chair
Profile User

Virtual
Organization

1. OA APA

{F}\ 53

~ Liaison

P Chair {} :

\@&

EA: External Agent

Challenge Chair

\% [,

Challenge Chair
Profile User

Program Chair

v/I_Fal

Program Chair
~ Profile User

P
@, L

Liaison Chair
Profile User

Fig. 7. Rule Responder architecture for the SymposiumPlanner application.

Table 3
Conceptual comparison between EMERALD and Rule Responder.

Rule Responder

EMERALD

Agent Java servlets/Mule
technology

Interchange Mule middleware
principles

RuleML Reaction RuleML

Agent Internal rule base Internal & External data-knowledge
knowledge base

Reasoning Multiple reasoning engines and instances of reasoning

engines

Directory NO (instead employs “responsibility assignment AYPS

service matrix”)

Role of Prova OAs always written in Prova, PAs and CAs optionally

Java (JADE) agents
JADE (ACL)

(D)R-DEVICE RuleML
External rule base External data-knowledge base

Multiple reasoning engines (independent external services)

A Prova Reasoner has been developed (one of the reasoning agents); Prova 3 not yet

supported, since it does not support JADE yet
Use Use cases can be obtained as instantiations of the Rule Use cases can be obtained by using different reasoners and different agent behavior KBs

Responder framework

compared to each other according various issues. Firstly in this
subsection, we will present this comparison and its results. Next
we will present the two (RuleML) gateways between EMERALD
and Rule Responder that were designed and implemented based
on this analysis and the previously presented (Section 2) discus-
sion on cross-community interoperation methods.

5.1. EMERALD-Rule Responder comparison

EMERALD and Rule Responder were compared to each other,
according to issues regarding their agent-connection topologies,
their interchange principles, their used subsets of the RuleML lan-
guage, the role of the Prova language, and their use. This compar-
ison (Table 3) resulted in several important differences. First, the
systems use different technologies; Rule Responder uses the Mule
ESB for data transfer and Java servlets for its agents. On the other
hand, EMERALD uses JADE and Java agents. Second, they use differ-
ent RuleML sublanguages; Rule Responder uses Reaction RuleML
(Paschke, Kozlenkov, & Boley, 2007) whereas EMERALD uses an-

other RuleML subset, the DR-RuleML sublanguage (Bassiliades
et al., 2006).

A third very important difference is that Rule Responder has
centralized management through an Organizational Agent (OA)
written in Prova (Kozlenkov et al., 2006), while in the de-central-
ized EMERALD architecture, a Prova reasoner is just one of the sup-
ported reasoning services. These reasoning services are, actually,
reasoning engines wrapped as independent external services op-
posed to Rule Responder where reasoning services are instances
of reasoning engines.

Another difference is that agents in Rule Responder have inter-
nal rule bases but internal and external knowledge bases, whereas
agents in EMERALD have both external rule bases and external
data-knowledge bases. Furthermore, Rule Responder uses an
assignment matrix (a OWL-lite ontology with role assignments),
managed by its OA, in order to delegate tasks to agents, opposed
to EMERALD where each agent searches via the centralized repos-
itory of AYPS to locate appropriate agents to delegate its own tasks.

Finally, Rule Responder’s domain specific applications can be
obtained as instantiations of the Rule Responder framework; on

9578

the other hand, EMERALD’s applications can be obtained by using
different reasoners, different agent behavior KBs and different ex-
changed rule bases.

5.2. EMERALD-Rule Responder gateway architecture

Based both on the above analysis and the previously presented
(Section 2) discussion on cross-community interoperation meth-
ods, two (RuleML) gateways between EMERALD and Rule Respon-
der were designed and implemented. These two systems are closed
and differ in terms of organizational principles and architecture.
Thus, we adopted the third method (case C) that enables asymmet-
ric communication between closed systems. EMERALD was ex-
tended with a Rule Responder bridge (namely a proxy agent)
and, conversely, Rule Responder was extended with an EMERALD
bridge (namely a delegate agent) to additional/external agents.
The interoperation gateways’ architecture is displayed in Fig. 8.

The EMERALD Rule Responder (EMERALD — RR) Gateway was
implemented as a new proxy agent in EMERALD, communicating
directly with Rule Responder’s Organizational Agent (RR OA). The
RR Proxy Agent (RRP) is an EMERALD agent, acting as the Rule Re-
sponder gateway. This RR Proxy agent is flexible and reusable, thus
not hardwired, meaning that it can receive any (RuleML) query,
connect to Rule Responder by invoking the OA, which will forward
the query to the proper Rule Responder agent, and finally receive
the result (through the OA). RR Proxy was developed as a Java
(EMERALD) agent class that integrates API methods for interacting
both with EMERALD agents and with Rule Responder’s OA.

On the other hand, the Rule Responder EMERALD (RR — EMER-
ALD) Gateway was implemented as a new Computing Agent (CA),
namely a delegate agent, which handles an appropriate communi-
cation channel. In Rule Responder, CAs are implemented as Java
servlets, which, in essence, act as wrappers for the corresponding
reasoning engines. This CA (the gateway) is called EMERALD Chair
and has been developed as a Java servlet class that integrates a) API
methods for interacting with EMERALD as well as b) core RR meth-
ods for exchanging messages with the Organizational Agent (OA).

The above implementation has enabled collaboration between
EMERALD and Rule Responder across their agent communities.
The key feature of this approach is the interchange of information
between the two systems based on RuleML. RuleML was selected
as the data interchange language standard since, as a de facto stan-
dard, it is supported by both systems. Additionally, as both systems
support knowledge-based technologies it is more straightforward
to exchange and transform messages expressed in a rule-based

language.
PA -
(here: PublicityChair)

-
~
LN

RULE RESPONDER \

CA (Delegate agent)

(here: EMERALDChair)

(RR->EMERALD):

K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

6. Cross-community interoperation use cases

In order to verify and demonstrate the interoperation gateways
of Section 4, two use cases involving multi-step dialogues between
agents of the two systems were implemented; two Symposium-
Planner-2010 queries were selected for illustrating both EMER-
ALD — RR and RR — EMERALD, as presented below.

6.1. EMERALD — RR interoperation use case

An interoperation scenario was selected to demonstrate the
EMERALD - Rule Responder Gateway. It concerns an external-to-
SymposiumPlanner partner (represented by an EMERALD agent)
who would like to sponsor the RuleML-20XY Symposium. Fig. 9
shows all the message exchanges occurring between all the agents
involved in this scenario.

In this scenario, the EMERALD agent has to decide whether and
to what extent to sponsor the RuleML-20XY Symposium. The deci-
sion on the sponsoring level is based on the represented partner’s
preferences regarding the benefits that each sponsoring level pro-
vides. More specifically, the EMERALD agent has a maximum
amount of partner money to spend but it does not want just to
get whatever benefit is available for this amount (“What do I get
for this amount of money?”). Rather, the partner represented by
the agent wants to get specific benefits (“If [want these benefits,
what amount of money do I have to spend?”), thus the agent must
have access to information regarding all the sponsoring levels and
their benefits. Such information can be obtained from the corre-
sponding Rule Responder agent, namely the SymposiumPlanner’s
Publicity Chair PA.

Thus, the EMERALD agent (on behalf of the partner) has to com-
municate with the PublicityChair in the SymposiumPlanner appli-
cation. First of all, it sends its query to the Rule Responder Proxy
agent which is an EMERALD agent too, acting as a gateway be-
tween the two multi-agent systems. This query, presented in
Fig. 10, requests the sponsoring levels and their benefits. It is writ-
ten in Reaction RuleML and corresponds to the “?getBene-
fits(Level, Amount, Benefits)” prolog query.

The RR Proxy agent, on his behalf, forwards this query to the PA
of the Publicity Chair (through the RR OA) and waits for the reply.
The PA processes the query and returns the available sponsoring
levels and their benefits; the corresponding part of the Publicity-
Chair PA’s knowledge base is presented in compact d-POSL syntax
in Fig. 11. As soon as, it receives the response, the RR Proxy agent
returns it back to the partner.

(EMERALD=>RR)

AnRR CA communicates withan EMERALD Reasoner An EMERALD Agent communicates with an RR PA through

directly by initializing a new communication channel

RRP (Proxy Agent) and OA

Fig. 8. The interoperation gateways’ architecture.

K. Kravari et al./Expert Systems with Applications 39 (2012) 9571-9587

PA (PublicityChair) \
[}

Forwald query
Forward query (RuleML)
(RulemL)

Response (RuleML)_

Response| (RuleML)

9579

DR-Reasoner

Query (RuleML)

o B T .

I Requegﬁn!g.%ao SOring |
levels’ benli

its

Forward response
(RuleML)

RuleMLresgonse) + XSLT

- RDF(sporforing levels) Squesting The
New RulepL query |

Request (RuleML) _

_ Response (RDF)

Extract levdl (here: Gold)
New RulepML query
Query (RuleML)

Forward response /

o
L
(=)
;
U'l
LLi
(4
-
Forward query
2 Forward query (RbileML)
(RuleML)
Response (RuleM
p (L‘),- RESpOﬂSe"‘mUIeML)
\\ ,f \.\

s ~
- Sa

4
’
—

Sfmmm ks ———— = -

p T, -

(RuleML) o

Fig. 9. The EMERALD — RR scenario overview.

<RuleML
¥mlns="http://wvw.ruleml.org/0.91/xsd"
®mlns:xsi="hoop://wuw.w3d.org/ 2001/ XNLSchema—inactance'™
xsi:schemalocation="http:// /www.ruleml.org/0.91/x=sd
http://ibis.in.tum.de/research/
RescrtionBuleML/0.2/rr. xed"
xmlns:ruleml2007="http://ibis. in.tum.de/projecrts/pawi">

<Message wode="outbound®™ directive="guery-sync'>
<oid:>
<Ind>RuleML-2010</ Ind>
</oid»
<protocol>
<Indresh</ Ind>
</protocol>
<sender>
<IndrUser</Ind>
</sender>
<content>
<Atom>
<RelrgetBenefits</Rel>
<Var>Level</Var:
<Var>imount</Var>
<VarrBenefits</Var>
</ Atom>
</content>
</ Message>

</RuleML>

Fig. 10. The query (in Reaction RuleML) for requesting the sponsoring levels and
their benefits.

The decision making of the EMERALD agent is based on rules,
and more specifically on defeasible logic rules. This decision mak-
ing rule base, containing the partner’s personal preferences, is pre-
sented in compact d-POSL syntax in Fig. 12. These rules indicate
that the partner is looking for a sponsoring level that provides at
least a free registration and a demo opportunity for the company’s
products during the Symposium program, without spending more
than $ 5000. If there are more than one appropriate sponsoring lev-
els, the cheapest one will be preferred. Part of this rule base is, also,
presented in Fig. 13, where the rule about gold sponsoring level is
presented in DR-RuleML syntax.

Hence, the EMERALD agent in order to find out which is the
cheapest sponsoring level has to apply its rules (the above rule
base) to the received message that contains the answers to the
query; namely the sponsoring levels and their benefits. The mes-
sage, however, is formed in a RuleML dialect but according to the
functionality of the DR-Device rule engine, which has been pre-
sented in Section 2, the (input) data have to be in an RDF format.
Hence, the received RuleML message must be transformed to
RDF (by the EMERALD agent), in order to be used as facts for the
rule base. For this purpose, we developed some domain-dependent
XSL transformation rules (Fig. 14) which were used by the EMER-
ALD agent.

At this point, the EMERALD agent possesses both its rule base
and the necessary facts; namely the transformed data. Next, it
sends its rule base and a link to the data that will be used (the
transformed data in RDF format, Fig. 15) to the defeasible logic rea-
soner (DR-Reasoner), hosted by EMERALD, in order to find the most
appropriate sponsoring level.

Then, DR-Reasoner calls the associated reasoning engine (DR-
DEVICE) in order to perform inference and provide results. As soon
as the inference results are available, DR-Reasoner forwards them
to the EMERALD agent. In this case the choice was between the
gold and platinum sponsoring level, among the five available levels
presented in Table 4, as the other levels were rejected. Both bronze
and silver levels were rejected since they did not meet the require-
ments and the emerald sponsoring level was also rejected since it
was too expensive. Thus, the decision was the gold sponsoring le-
vel since it was the cheapest available choice.

Afterwards, the EMERALD agent receives back DR-Reasoner’s
response and sends a new query (Fig. 16) to the PublicityChair
(through the RR Proxy agent) requesting the appropriate submis-
sion information for that level; e.g. to contact the appropriate chair
by e-mail/phone or to wait for his/her call. This query is also writ-
ten in Reaction RuleML and corresponds to the “?ask-
Info(Level, Action, Info)” prolog query.

In this case, the Publicity Chair is responsible for the sponsor-
ship (Fig. 17). Its action list determines what action it should do
depending on the level of the donation. The decision making part

9580 K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

requestSponsoringLevel (?Level, ?Amount, ?Benefits):-
benefits (?Level, ?Benefits),
sponsoringLevel (?Rank, ?Level, us$[?Amount:integer]) .

sponsor_action(?Level, ?Action, ?Info) :-
actionPerformed (?Action, ?Level, ?),
get_info(?Action, ?Info).

Fig. 11. Part of PublicityChair PA’s knowledge base on sponsoring levels (d-POSL syntax).

rl: possibleOffer (level->?x) :=

sponsorLevel (level->?x) .
r2: possibleOffer (level->?x) :=

sponsorLevel (level->?x, demo->false).
r3: possibleOffer (level->?x) :=

sponsorLevel (level->?x, amount->?y), ?2y>5000.
rd4d: possibleOffer (level->?x) :=

sponsorLevel (level->?x, free-registration->?y), ?y<l.
r5: makeOffer (level->?x) :=

possibleOffer (level->7x),

sponsorLevel (level->?x, amount->?z),

\+ (possibleOffer (level->?y), ?y \=?x,

sponsorLevel (level->?y, amount->?w), ?w<?z).

r2>rl.
r3>rl.
rd>rl.

Fig. 12. The decision making rule base in defeasible logic (d-POSL syntax).

<Implies ruletype="defeasiblerule">
<0i1d><Ind uri="r4">r4</Ind></oid>
<head>
<Neg><Atom>
<op><Rel>possibleOffer</Rel></op>
<slot><Ind>level</Ind><Var>x</Var></slot>
</Atom></Neg>
</head>
<body>
<Atom>
<op><Rel uri="sp:SponsorLevel"/></op>
<slot><Ind uri="sp:level"/><Var>x</Var></slot>
<slot><Ind uri="sp:free-registration"/>
<ComplexArg> <and ComplexArg>
<Var>y</Var>
<Expr><Funin="yes"></Fun>
<Var>y</Var>
<Ind>1</Ind></Expr>
</and_ComplexArg></ComplexArg>
</slot>
</Atom>
</body>
<superior><Ind uri="rl"/></superior>
</Implies>

Fig. 13. Rule about gold sponsoring level in DR-RuleML.

of its knowledge base is presented in compact d-POSL syntax in As soon as, the partner (EMERALD agent) receives the response,
Fig. 18. According to this, the Publicity Chair should phone the po- it is informed that the proper procedure is to wait for a call. Thus,
tential partner. the partner is able to submit a sponsoring request and wait for the

K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587 9581

<2uml version="1.0" encoding="UTF-g§"2>

¢xsl:stylesheet version="1.0" mlns:xsl="http://www.v3.0rg/1999/X5L/ Transforn” xmlns:sp="file:///c:/WP3/sponsor-levels.rdfsg"” xmlns

<x3l:output method="xwl" version="1.0" encoding="UTF-8" indent="yes"/>

<x3l:itemplate match="/">

<rdf:RDF xmlnsicdf="hvip://www.wd.org/1989/02/22-rdf-gyntax-nsf" xmlns:sp="file:///ci/UP3/sponsor-levels, rafsf" xolns: o o+ »

<x3liapply-templates select="//n:ktom"/>
</rdf:RDF>
</xsl:templater
<xsl:template match="n:itom">

<gp:Iponsorlevel rdizabout="{concat('fils:///c:/UP]/sponsor-levels.rdisdap ', n:Ind[1)])"

<3p:levely
<xslivalue-of select="n:Ind[1]"/>
<faptlevel>

<gprawount rof:datatype="hecy://wew.vi.org/ 2001/ IELSchenafintager >

<xslivalue-of select="n:Ind[2]"/>
</sp: amount>
<xsl:choosesr

<xslivhen test=".//n:Expr[niFun='logo' and n:Expr/n:Fun='on' and n:Expr/n:Ind='site']"
<sp: logo-on-site rdf:datatype="http://vww.v3.org/2001/ XHLSchenadboo Lean” »true</ap: logo-on-siter

</xalivhen>
<xsliotherviser

<zp: logo-on-site rdfidatatype="http://vwe.v3.0rg/ 2001/ ¥HLSchenafboo lean”>false</ sp: logo-on-sites

</xsl:othervise>
</xzl:chooses

<xsl:othervize>

<gpifree-registration rdf:dacatype="htty://wuw. vi.org/ 2001/ IMLGchemafinceyer ">04/epi free-registration>

</xsliothervise>
</¥sl:choose>
</sp:Sponsorlevelr
</xsl:templates
</xslistylesheet>

Fig. 14. Part of the domain-dependent XSL transformation rules.

<sp:SponsorLevel rdf:about="#sp gold">

<sp:level>gold</sp:level>

<sp:amount rdf:datatype="&xsd;integer">3000</sp:amount>

<sp:logo-on-site rdf:datatype="&xsd;boolean">true</sp:logo-on-site>
<sp:ackn-in-proc rdf:datatype="&xsd;boolean">true</sp:ackn-in-proc>
<sp:sponsor-student rdf:datatype="&xsd;boolean">true</sp:sponsor-student>
<sp:logo-in-proc rdf:datatype="&xsd;boolean">true</sp:logo-in-proc>
<sp:demo rdf:datatype="&xsd;boolean">true</sp:demo>

<sp:advance-publ rdf:datatype="&xsd;boolean">false</sp:advance-publ>
<sp:brochures-dist rdf:datatype="&xsd;boolean">false</sp:brochures-dist>
<sp:free-registration rdf:datatype="&xsd;integer">1</sp:free-registration>

</sp:SponsorLevel>

Fig. 15. Information about the gold sponsoring level in RDF.

Table 4
The sponsoring levels.
Sponsoring level Amount Benefits
Bronze $500 Logo on website Acknowledgement in proceedings
Silver $1000 Bronze level benefits + Sponsor student participants
Gold $3000 Silver level benefits + Logo in proceedings Show demo 1 free registration
Platinum $5000 Gold level benefits + Name included in all advance publicity Distribution of material to all participants 1 additional free registration
Emerald $7,500 Platinum level benefits + 1 additional free registration

Publicity Chair’s phone call or to continue this conversation in or-
der to get any additional information.

6.2. RR — EMERALD interoperation use case
In order to demonstrate the RR — EMERALD interoperation

gateway (Fig. 19), we have developed the RuleML-2010
Symposium Planner query called Suggest Sponsoring Level [EMER-

ALD/DR-DEVICE/Publicity Chair Agent]|, which is available at the Ru-
1eML-2010 Conference website.*

In this scenario, a potential partner would like to sponsor the
RuleML-2010 Conference, thus he/she has to communicate with
the appropriate Personal Agent in the SymposiumPlanner applica-

4 RuleML 2010: Rule Responder, http://ruleml.org/RuleML-2010/RuleResponder/
RuleResponder.htm.

9582 K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

<RuleML
xmlna="htep://www.ruleml.org/0.91/ xsd"™
xmlns:xsi="http://www. w3, org/2001/ZMLSchema-instance'
xgi:schemalocation="http://uvw.ruleml.org/0.91/xsd
hoop://ibis.in.tum.de/research/
ReactionRuleML/0.2/rr . xsd"”
xmlns:ruleml200?7="http://ibis.in.cum.de/projects/pavi’ >

<Message mode="outhound®™ directive="query-sync'":>
<oid:>
<Ind>RuleML-2010</ Ind>
</oid>
<protocol>
<Ind>esh</Ind>
</protocols
<sender:>
<Ind>User</Ind>
</szender>
<content>
<Ator>
<RelraskInfo</Rel>
<Ind>Level</ Ind>
<WVarrAction</Var:
<Var:»Info</Vars>
</ Atom>
</content>
</Message>

</RuleML>

Fig. 16. The query for requesting the appropriate sponsor offer submission
procedure.

get info(email, person[?Name,?Email]) :-
person (symposiumChair[ruleML 2010,publicity],
?Name, ?Title, ?Email, ?Phones) .

get_info (phone, person|[?Name, ?Phones]) :-
person (symposiumChair [ruleML 2010,publicity],
?Name, ?Title, ?Email, ?Phones) .

Fig. 17. Part of PublicityChair PA’s knowledge base on submission information
(d-POSL syntax).

tion. This is actually the PA of the Publicity Chair. The PA is imple-
mented “inside” the Rule Responder multi-agent system, but its
personal knowledge is evaluated remotely in the EMERALD system
by using the reasoning services of a Reasoner. Thus, in this case, the
Publicity Chair is rather a CA (Computing Agent), called EMERALD
Chair, because it is independent from the rest of the virtual organi-
zation. The potential partner, first of all, has to issue its query, pro-
viding the Sponsor name and the Amount of money ($1400 in this
case).This query is written in Reaction RuleML (Fig. 20) and corre-
sponds to the “?suggestSponsoringLevel (Sponsor, Amount,
Level)” prolog query. Then, he/she has to wait for the suggested
sponsoring level, namely the largest level that fits into the offered
amount (Fig. 21). According to the sponsoring list presented in Ta-
ble 4 (Section 5.1), this level is the silver sponsoring level.

The EMERALD Chair CA has no reasoning abilities, as explained,
so it has to communicate with an external reasoning engine, such
as the DR-DEVICE system (Bassiliades et al., 2006). This reasoning
engine resides in the EMERALD system as a Reasoner Agent (DR-
Reasoner), so the EMERALD Chair CA needs to communicate with
DR-Reasoner. The EMERALD Chair CA, firstly, initializes a new
agent called MyGateWayAgent (in the EMERALD environment)
that is used as a dispatcher. Then, the EMERALD Chair receives
the partner’s query (provided via the browser) and transforms it
(through an XSLT template - Fig. 22) into an appropriate new
RDF document which is required as input data for the DR-Reasoner
in EMERALD. Notice that this file is domain-dependent, so in a dif-
ferent use case it must be changed to reflect the classes and prop-
erties of the input RDF facts for the defeasible logic rule base.

Then, the EMERALD Chair CA has to initialize the Blackboard ob-
ject, which is actually a communication channel, in order to initial-
ize the bidirectional communication between Rule Responder and
EMERALD. Consequently, the EMERALD Chair sends a new RuleML
query and the RDF document to the DR-Reasoner, through the
MyGateWayAgent agent. The DR-Reasoner, on the other side, re-
ceives the query and conducts the appropriate inference. The con-
clusions, which are contained actually in an RDF document, consist
of the highest level that fits into the offered amount. However, be-
fore the results can be returned to the EMERALD Chair, they must
be transformed to RuleML, which is the format understood by the
EMERALD Chair. The DR-Reasoner transforms the output RDF doc-
ument via another domain-dependent XSLT document (Fig. 23)
and sends the RuleML document with the results (see Fig. 21) back
to the EMERALD Chair (again through MyGateWayAgent). The lat-
ter displays it to the browser, as an answer to the original query,
helping the partner to make the best decision.

7. Related work

In this section we review selected publications related to three
main topics; namely related MAS, MAS interoperation architec-
tures and interchange standards.

Regarding the first topic, an architecture for intelligent agents
similar to EMERALD is presented in Wang, Purvis, and Nowostaw-
ski (2005), where various reasoning engines are employed as plug-
in components, while agents intercommunicate via FIPA-based
communication protocols. The framework is built on top of the
OPAL agent platform (Purvis, Cranefield, Nowostawski, & Carter,
2002) and, similarly to EMERALD, features distinct types of reason-
ing services that are implemented as reasoner agents. The featured
reasoning engines are 3APL (Dastani, van Riemsdijk, & Meyer,
2005), JPRS (Java Procedural Reasoning System) and ROK (Rule-dri-
ven Object-oriented Knowledge-based System) (Nowostawski,
2001). 3APL agents incorporate BDI logic elements and first-order
logic features, providing constructs for implementing agent beliefs,
declarative goals, basic capabilities and reasoning rules, through
which an agent’s goals can be updated or revised. JPRS agents per-
form goal-driven procedural reasoning and each JPRS agent is com-
posed of a world model (agent beliefs), a plan library (plans that
the agent can use to achieve its goals), a plan executor (reasoning
module) and a set of goals. Finally, ROC agents are composed of a
working memory, a rule-base (consisting of first-order, forward-
chaining production rules) and a conflict set.

Thus, following an approach similar to EMERALD, the frame-
work integrates the three reasoning engines into OPAL in the form
of OPAL micro-agents. The primary difference between the two
frameworks lies in the variety of reasoning services offered by
EMERALD. While the three reasoners featured in Wang et al.
(2005) are all based on declarative rule languages, EMERALD pro-
poses a variety of reasoning services, including deductive, defeasi-
ble and modal defeasible reasoning, thus, comprising a less
integrated, and more open and flexible solution. Furthermore,
and most importantly, the approach of Wang et al. (2005) is not
based on Semantic Web standards, like EMERALD and Rule Re-
sponder, for rule and data interchange.

Regarding MAS interoperation there were several efforts, as the
architecture proposed in Georgousopoulos, Rana, and Karageorgos
(2003) is similar to our philosophy in terms of system interopera-
bility. However, the authors investigate only FIPA-compliant sys-
tems. Their approach proposes FIPA-compliant gateways that
could be connected to a legacy MAS to provide automated FIPA
interoperability. In their approach a special Java agent (Gateway-
Agent) was implemented to facilitate the realization of the generic
of the FIPA-compliant gateways. However, the proposed

K. Kravari et al./ Expert Systems with A

pplications 39 (2012) 9571-9587 9583

$Action list determine what action the Publicity Chair should do depending on the

level of the donation.

checkAction (?Action, ?Level, ?Amount:integer)

actionPerformed (?Action, ?Level, ?Amount:integer) .

$When a sponsor makes a donation under 500
donate more

the Publicity Chair encourage them to

actionPerformed (?Action:string, preSponsor, ?Amount:integer) : -
subtract (?Result:integer, 500:integer, ?Amount:integer),
stringConcat (?Action, ?Result:integer) .

presponsor (encourage [donate[300]1]) .

%When a sponsor makes a bronze donation the Publicity Chair should email the

organization

actionPerformed (email,bronze, ?Amount:integer) .

%When a sponsor makes a silver donation the Publicity Chair should email the

organization

actionPerformed(email, silver, ?Amount:integer) .

$When a sponsor makes a gold donation the Publicity Chair should phone the

organization

actionPerformed (phone, gold, ?Amount:integer) .

%When a sponsor makes a platinum donation the Publicity Chair should phone the

organization

actionPerformed (phone,platinum, ?Amount:integer) .

$When a sponsor makes a emerald donation the Publicity Chair should phone the

organization

actionPerformed (phone, emerald, ?Amount:integer) .

Fig. 18. Part of PublicityChair PA’s knowledge base on submission actions (d-POSL syntax).

o e e L, . e o o o

"

BlackBoard
CA [EMERALDChair)

Init MyGteWayAgent
Receive RfleML query
(by bjowser)
RuleMLifuery + XSLT

2> RDF(sp els)
New RuferaL query

Init BlackBoard object

————————— e

%uerv (RuleML)

£

-

DR-Reasoner

fForward query

o

(RuleML)

Conddct inference
Transorm RDFJto Rule ML document

Response (RuIeMI;!

FICISUETCR T I FC—

o e B

{RulepML)
()
Y
N £
\4- ——————————————— -"l \-“'- ————————

s

Fig. 19. The RR - EMERALD interoperation scenario overview.

architecture supports just a limited number of performatives (7
out of 22). Due to this limitation this approach is not applicable
to systems that require complex interoperable communication
i.e. e-commerce or e-market which involve negotiation, co-opera-
tion or co-ordination of heterogeneous.

In Armor, Fuentes, and Troya (2003) is presented a component-
based approach for interoperability across FIPA-compliant plat-
forms. The authors propose, similar to our philosophy to an extent,
the use of proxy agents that work as gateways to communicate
agents inside a running agent-based application. Contrary to our

9584 K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

<RulellL
xmlns="http://wrwv.ruleml.org/0.91/xad"
xmlns:xsi="http://wvw.w3.org/2001/XMLSchema-instance"
¥3i:schemalocation="http://wvv.ruleml.org/0.91/%=d
http://ibis.in.tum.de/research/
ReactionRuleML/0.2/rr. xsd"
¥xmlna:rulemlZ007="http://ibis.in.tum.de/projeccs/ paw >

<Message mode="outhound"” directive="guery-synct:>
<oid>
<Ind>RuleML-2010</Ind>
</oid>
<protocol>
<Indresh</Ind>
</protocol>
<gender>
<Ind>User</ Ind>
</sender>
<oontent>
<Atom>
<Rel>suggest_sponsuring_level<fRel>
<Ind>sponsor_1</ Ind>
<Ind>1400</ Ind>
<Var>Level</Var>
</ Ltom>
</contcent>
</Meszager

</RuleML>

Fig. 20. The partner’s query (in Reaction RuleML).

<?xml version="1.0" encoding="UTF-8"2>
<RuleML xwlns="http://vuw.ruleml.org/0.91/xsd" xmlns:xsi="hcop://wuv.w>
http://ibis.in.tum, de/research/ReactionRulelL/0.2/rr, xsd">

+* + a0

<Message mode="outhound” directive="answer">
<oid>
<Ind>RuleResponderfiitfrdextdevi2.iit-iti.priva7</Ind>
</oid-
<protocol>
<Indresh</Ind>
</protocol>
<sender>
<Ind>RuleResponder</Ind>
</sender>
<CONTEent>
<Atom>
<Rel»noPublicInterface</Rel>
<EXpr>
<Fun>interface</Fun>
<Expr>
<Fun>suggest sponsoring level</Fun>
<Ind}spnnsnr:1<llnd> B
<Ind>1400</ Ind>
</Expr>
</Expr>
<f Atom>
</content>
</ Nessage>

</RuleNL>

Fig. 21. The answer to the query in Fig. 20.

K. Kravari et al./Expert Systems with Applications 39 (2012) 9571-9587 9585

<Jyml version="1.0" encoding="UTF-8"7

<xglistylesheet version="1.0" xmlng:xsl="http://vuw.w3,org/1999/X5L/ Transforn"
wmlnsisp="http://155.207.113.24: 8080/ EMERALDE1 les/ rrdemo/ sponsors-achema, rdff"
smlns;cdf="http://www, v3.org/ 1999/02/22-rdf-syntax-nsk" xnlns:n="http://wev.ruleml.org/0.91/xsd">
<xslioucput wethod="yml" version="1.0" encoding="UTF-8" indent="yes"/>

<xslitemplate match="/">

<rdf:RDF xmlng:rdf="hctp:/ /wwv.v3.org/1999/02/22-rdf-syntax-nsg"
xmlng:sp="http://155.207,113,24:8080/ENERALDE1 les/ rrdemo/ sponsora-schewa, rdf§"
Knlns:spl="http://155.207,113,24: 8060/ ENERALDL1 les/ rrcemo/ sponsors_input.rdff"”
xmlngirdfs="hetp://vew. w3, org/ 2000/ 01/ rdf-schemaf"s
<sp:offered_sponsorship rdf:about="http:/{155.207.113.24:8080/EXERALDE11es/rrdzno/sponsors_input.rdffisp 1"

<3piaponsor>

<tslivalue-of select="//n:content//n:Ind[1]"/>

</3p:sponsor>

<ap:amount rdf:datatype="http://wuv,ud,org/2001/ {MLSchenadinteger"s
<xsl:value-of select="//nicontent//n:Ind[2]"/>

</spiamount>
</sp:nffered_spunsorsh1p>
<{rdf:RDF>
<fxslitemplate>
</xslistylesheet>

Fig. 22. The XSLT document that transforms the initial RuleML query to an RDF document.

<?xml version="1.0" encoding="UTF-8"2>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/ Transform”>
<x3l:output method="xml" wversion="1.0" encoding="UTF-8" indent="yes"/>

<xsl:template match="/">

<BulelML xmlns="http://www.ruleml.org/0.91/xsd"
<Message mode="outhound"” directive="answer":>

<Ind>RuleResponderfkalliopi-6b34b73</ Ind>

<Ind>rulem12DlD_EHERALDChair</Ind>

<Relrsuggested sponsoring level</Rel>

<xsl:value-of select="//export:sponsor"/>

<x3l:value-of select="//export:amount”/>

<x8l:value-of select="//export:level”/>

<oid>
</oid>
<protocol>
<Ind>esb</ Ind>
</protocol>
<sender>
</sender>
<CONCENT>
<Atom>
<Ind>
</ Ind>
<Ind>
</ Ind>
<Ind>
</ Ind>
</ Arom>
</content>
</ Message>

</RuleML>
</xsl:itemplate>

</xz3l:stylesheet>

Fig. 23. The XSLT document that transforms the output RDF document to a RuleML document.

approach, the basis of their approach is the use of component tech-
nology for the development of adaptive software agents. The com-
positional software agent separates the distribution of messages
according to different transport services, which reduces platform
dependency on the agent coordinated behavior. However, this ap-
proach is limited to FIPA-compliant platforms.

Another work dealing with agent interoperability was pre-
sented in Giampapa, Paolucci, and Sycara. (2000)). This work pre-
sents an implemented agent, called RETSINA-OAA InterOperator,
that allows interoperability across two MASs; RETSINA (Sycara,
Decker, Pannu, Williamson, & Zeng, 1996) and OAA (SRI's Open
Agent Architecture) (Martin, Cheyer, & Moran, 1999). The authors

9586 K. Kravari et al./ Expert Systems with Applications 39 (2012) 9571-9587

describe the issues and challenges regarding the design and imple-
mentation of this interoperator. They define the multi-agent sys-
tem interoperator as an entity that provides agents of one MAS
architecture access to the desired capabilities and services offered
by another MAS architecture. Our proposal on the other hand deals
with heterogeneous systems, FIPA and non-FIPA-compliant, pro-
viding guidelines for a general interoperability architecture by
using a variety of SW standards based on system gateways.

Regarding interchange, there are several efforts aiming at rule
interchange and building a general rule markup and modeling
standard for the (Semantic) Web. General standardization ap-
proaches, including RuleML (Boley et al., 2010), W3C RIF (Boley &
Kifer, 2010), and Common Logic (Common Logic. Common Logic.
ISO/IEC 24707:, 2007), have been proposed. However, before the
MAS interoperation introduced in this work, no methodological
and architectural design and comprehensive implementation has
existed that makes the idea of a practical distributed rule layer
on the Semantic Web a reality.

8. Conclusions and future work

This article argues that the gradual integration of multi-agent
systems (MASs) with SW technology will affect the use of the
Web in the future. It presents methods for cross-community inter-
operation; namely how heterogeneous multi-agent systems can
interface each others’ agents to automate collaboration across
communities. Additionally, this article presents EMERALD and Rule
Responder, two semantic multi-agent systems. EMERALD is a fully
FIPA-compliant MAS, developed on top of JADE, which uses
trusted, independently-developed reasoning services. It constitutes
a generic, reusable MAS prototype for knowledge-customizable
agents, comprising an agent model, a yellow pages service and sev-
eral external Java methods. Rule Responder is an open source
framework for creating virtual organizations as multi-agent sys-
tems that support collaborative teams on the Semantic Web. It
has pioneered the use of RuleML as a common MAS interoperation
language.

In this article, these two systems were compared and analyzed.
Based on the comparison and the potential cross-community inter-
operation methods, bidirectional gateways between Rule Respon-
der and EMERALD were implemented. This approach provided
automated interoperation and collaboration across their agent
communities using a declarative, knowledge-based approach,
which enables agents to augment their intelligence by making con-
sistent and smart choices. Finally, the article presents multi-step
interaction use cases between agents from both communities that
illustrate the usability of the framework and demonstrating the
added value of interoperation.

More information and related source code about the EMERALD-
Rule Responder interoperation project is available at the project’s
site, available at: http://Ipis.csd.auth.gr/systems/EMERALDRR.

In future work, we plan to develop a benchmark suite for bidi-
rectional RuleML-based gateways such as between Rule Responder
and EMERALD. We also plan to adapt the RuleML gateways to other
interoperation needs, such as interchanging proofs between agents
or sharing agent directories. Moreover, we envision the formaliza-
tion of the interaction scenarios among EMERALD and Rule Re-
sponder agents, similarly to Kravari et al. (2010d). Finally, we
would like to explore further cross-community agent interopera-
tion needs and provide generalized gateway principles and archi-
tectures based on SW standards.

References

Antoniou, G., & van Harmelen, F. (2004). A Semantic Web primer. Cambridge, USA:
The MIT Press. ISBN13:978-0-262-01210-2.

Antoniou, G., Skylogiannis, T., Bikakis, A., Doerr, M., & Bassiliades, N. (2007). DR-
BROKERING: A semantic brokering system. Knowledge-Based Systems, 20(1),
61-72.

Antoniou, G., Dimaresis, N.,, & Governatori, G. (2009). A modal and deontic
defeasible reasoning system for modelling policies and multi-agent systems.
Expert Systems with Applications, 36(2, Part 2), 4125-4134. ISSN 0957-4174.

Armor, M., Fuentes, L, & Troya,]J. (2003). A component-based approach for
interoperability across FIPA-compliant platforms. In Proceedings of CIA’2003 (pp.
266-280).

Ball, M., Boley, H., Hirtle, D., Mei,]., & Spencer, B. (2005). The OO jDREW reference
implementation of ruleML. In A. Adi, S. Stoutenburg, & S. Tabet (Eds.), RuleML
2005. LNCS (Vol. 3791, pp. 218-223). Heidelberg: Springer.

Bassiliades, N., & Vlahavas, 1. (2006). R-DEVICE: An object-oriented knowledge base
system for RDF metadata. International Journal on Semantic Web and Information
Systems, 2(2), 24-90.

Bassiliades, N., Antoniou, G., & Vlahavas, I. (2006). A defeasible logic reasoner for the
Semantic Web. [JSWIS, 2(1), 1-41.

Bellifemine, F., Caire, G., Poggi, A., & Rimassa, G. (2003). JADE: A white paper. EXP in
Search of Innovation, 3(3), 6-19.

Benjamins, R., Wielinga, B., Wielemaker, J., & Fensel, D. (1999). An intelligent agent
for brokering problem-solving knowledge. IWANN, 2, 693-705.

Berners-Lee, T., Hendler, ., & Lassila, O. (2001). The Semantic Web. Scientific
American Magazine, 284(5), 34-43 (Revised 2008).

Boley, H., & Kifer, M. (2010). A guide to the basic logic dialect for rule interchange on
the web. IEEE Transactions on Knowledge and Data Engineering, 1593-1608.
Boley, H., Paschke, A., & Shafiq, O. (2010). RuleML 1.0: The overarching specification
of web rules. 4th International web rule symposium: Research based and industry

focused (RuleML’10) (Vol. 6403). Springer, pp. 162-178.

Dastani, M., van Riemsdijk, M. B., & Meyer, J-]. C. (2005). Programming multi-agent
systems in 3APL. Multi-agent programming: Languages platforms and applications
(Vol. 15). Berlin: Springer, pp. 39-67.

Fang, F., & Wong, T. N. (2010). Applying hybrid case-based reasoning in agent-based
negotiations for supply chain management. Expert Systems with Applications,
37(12), 8322-8332. ISSN 0957-4174.

The Foundation for Intelligent Physical Agents (FIPA): Specifications (2002).
Available from: <http://www.fipa.org/specifications>.

Georgousopoulos, C., Rana, O. & Karageorgos, A. (2003). Supporting FIPA
interoperability for legacy multi-agent systems. LNS, 2935, 361-379.

Giampapa, J., Paolucci, M., & Sycara K. (2000). Agent interoperation across
multiagent system boundaries. In 4th International conference on autonomous
agents (pp 179-186).

Governatori, G., Dumas, M., Hofstedeter, A., & Oaks, P. (2001). A formal approach to
protocols and strategies for (legal) negotiation. ICAIL, 2001, 168-177.

Hendler, J. (2001). Agents and the Semantic Web. IEEE Intelligent Systems, 16(2),
30-37.

Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2006). Certified reputation: How an
agent can trust a stranger. In Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems (AAMAS ‘06). USA: ACM, pp. 1217-
1224.

Common Logic (2007). ISO/IEC 24707:2007-Information technology—Common
Logic (CL): A framework for a family of logic-based languages. Available from:
<http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=39175>.

JESS, the Rule Engine for the Java Platform (2008). Available from: <http://
www.jessrules.com/>.

Kebriaei, H., & Majd, V. J. (2009). A simultaneous multi-attribute soft-bargaining
design for bilateral contracts. Expert Systems with Applications, 36(3, Part 1),
4417-4422. ISSN 0957-4174.

Kozlenkov, A., Penaloza, R., Nigam, V., Royer, L., Dawelbait, G., & Schroeder, M.
(2006). Prova: Rule-based java scripting for distributed web applications: A case
study in bioinformatics. In Workshop on reactivity on the web at the international
conference on extending database technology (EDBT 2006). Springer, pp. 899-908.

Kravari, K., Kontopoulos, E., & Bassiliades, N. (2010a). EMERALD: A multi-agent
system for knowledge-based reasoning interoperability in the Semantic Web,
6th Hellenic conference on artificial intelligence (SETN 2010). LNCS, 6040(2010),
173-182.

Kravari, K., Kontopoulos, E., & Bassiliades, N. (2010b). Trusted reasoning services for
Semantic Web agents. Informatica: International Journal of Computing and
Informatics, 34(4), 429-440.

Kravari, K., Malliarakis, C., & Bassiliades, N. (2010c). T-REX: A hybrid agent trust
model based on witness reputation and personal experience. Proceeding of 11th
international conference on electronic commerce and web technologies (EC-Web
2010). Lecture notes in business information processing, LNBIP (Vol. 61, Part 3,
pp. 107-118). Springer.

Kravari, K., Kastori, G.-E., Bassiliades, N., & Governatori, G. (2010). Contract
agreement policy-based workflow methodology for agents interacting in the
Semantic Web. In Semantic Web rules, proceedings 4th international web rule
symposium (RuleML 2010), LNCS (Vol. 6403, pp. 225-239). Springer.

Lam, H., & Governatori, G. (2009). The making of SPINdle. RuleML-2009 international
symposium on rule interchange and applications (pp. 315-322). Springer.

Lin, C.-C,, Chen, S.-C., & Chu, Y.-M. (2011). Automatic price negotiation on the web:
An agent-based web application using fuzzy expert system. Expert Systems with
Applications, 38(5), 5090-5100. ISSN 0957-4174.

Mabher, M. J. (2001). Propositional defeasible logic has linear complexity. Theory and
Practice of Logic Programming, 1(6), 691-711.

http://www.lpis.csd.auth.gr/systems/EMERALDRR
http://www.fipa.org/specifications
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39175
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39175
http://www.jessrules.com/
http://www.jessrules.com/

K. Kravari et al./Expert Systems with Applications 39 (2012) 9571-9587 9587

Martin, D., Cheyer, A, & Moran, D. (1999). The open agent architecture: A
framework for building distributed software systems. Applied Artificial
Intelligence, 13(1-2), 92-128.

Mule Enterprise Service Bus (ESB)
www.mulesoft.org> (Update 2011).

Muthoo, A. (1999). Bargaining theory with applications. Cambridge: Cambridge
University Press.

Nowostawski, M. (2001). Kea enterprise agents documentation.

Nute, D., 1987. Defeasible reasoning. In 20th international conference on systems
science (pp. 470-477). IEEE Press.

Osmun, T., Smith, D., Boley, H., Paschke, A., Zhao Z. (2011). Rule Responder Guide.
<http://www.ruleml.org/RuleResponder/RuleResponderGuide/>, RuleML
Report.

Park, S., & Sugumaran, V. (2005). Designing multi-agent systems: A framework and
application. Expert Systems with Applications, 28(2), 259-271. ISSN 0957-4174.

Paschke, A., & Boley, H. (in press). Rule Responder - Rule-based semantic agents for
the pragmatic web. International Journal on Artificial Intelligence Tools (IJAIT).
Special Issue on Intelligent Distributed Systems.

Paschke, A., Kozlenkov, A., & Boley, H. (2007). a homogenous reaction rule language
for complex event processing. In 2nd International workshop on event drive
architecture and event processing systems (EDA-PS 2007).

Petit, C., & Magaud, F.-X. (2006). Multiagent meta-model for strategic decision
support. Knowledge-Based Systems, 19(3), 202-211.

(2007). Available from: <http://

Purvis, M., Cranefield, S., Nowostawski, M., & Carter, D. (2002). Opal: A multi-level
infrastructure for agent-oriented software development. Information Science
Discussion Paper Series, number 2002/01. New Zealand: University of Otago.
ISSN 1172-602.

Resource Description Framework (RDF) Model and Syntax Specification (2004).
Available from: <http://www.w3.org/TR/PR-rdf-syntax/>.

Russell, S. J., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.).
Upper Saddle River, New Jersey: Prentice Hall. ISBN-13: 978-0-13-604259-4.

Shadbolt, N., Hall, W., & Berners-Lee, T. (2006). The Semantic Web revisited.
Intelligent Systems. IEEE, 21(3), 96-101.

Sycara, K., Decker, K., Pannu, A., Williamson, M., & Zeng, D. (1996). Distributed
intelligent agents. I[EEE Expert Systems and their Applications, 11(6), 36-45.
Wang, M., Purvis, M., & Nowostawski, M. (2005). An internal agent architecture
incorporating standard reasoning components and standards-based agent
communication. In IEEE/WIC/ACM international conference on intelligent agent

technology (IAT'05), Washington, DC (pp. 58-64).

Wang, X., Wong, T. N, & Wang, G. (2012). An ontological intelligent agent platform
to establish an ecological virtual enterprise. Expert Systems with Applications,
39(8), 7050-7061.

Zacharia, G., & Maes, P. (2000). Trust management through reputation mechanisms.
Applied Artificial Intelligence, 14(9), 881-908.

http://www.mulesoft.org
http://www.mulesoft.org
http://www.ruleml.org/RuleResponder/RuleResponderGuide/
http://www.w3.org/TR/PR-rdf-syntax/

	Cross-community interoperation between knowledge-based multi-agent systems: A study on EMERALD and Rule Responder
	1 Introduction
	2 Cross-community interoperation methods
	3 EMERALD: a multi-agent knowledge-based framework
	3.1 KC-Agents prototype
	3.2 Reasoners

	4 Rule Responder
	4.1 Rule Responder MAS
	4.2 SymposiumPlanner

	5 EMERALD–Rule Responder interoperation
	5.1 EMERALD–Rule Responder comparison
	5.2 EMERALD–Rule Responder gateway architecture

	6 Cross-community interoperation use cases
	6.1 EMERALD→RR interoperation use case
	6.2 RR→EMERALD interoperation use case

	7 Related work
	8 Conclusions and future work
	References

