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ABSTRACT

Explainable AI is an emerging field providing solutions for acquiring insights into automated systems’
rationale. It has been put on the AI map by suggesting ways to tackle key ethical and societal issues.
Existing explanation techniques are often not comprehensible to the end user. Lack of evaluation and
selection criteria also makes it difficult for the end user to choose the most suitable technique. In this
study, we combine logic-based argumentation with Interpretable Machine Learning, introducing a
preliminary meta-explanation methodology that identifies the truthful parts of feature importance
oriented interpretations. This approach, in addition to being used as a meta-explanation technique, can
be used as an evaluation or selection tool for multiple feature importance techniques. Experimentation
strongly indicates that an ensemble of multiple interpretation techniques yields considerably more
truthful explanations.

Keywords Interpretable Machine Learning · Explainable Artificial Intelligence · Local Interpretations ·Argumentation ·
Model-Agnostic · Evaluation · Feature Importance

1 Introduction

While we witness a revolutionary adoption of Artificial Intelligence (AI) systems in our everyday activities, it is
noticeable that many of them advance through Machine Learning (ML). As a result of the development of AI and ML,
several ethical problems affecting our society have arisen, and thus the fields of Explainable AI (XAI) and Interpretable
ML (IML) have emerged. Specifically, IML promises approaches for identifying discrimination phenomena in ML
models [1, 2], as well as compliance of industry to legal frameworks [3]. Eventually, ML practitioners and researchers,
developing stronger and more accurate models through IML, will be able to understand and explain their tasks and even
identify issues, for example biases in a model, that would otherwise remain undetected.

Techniques for IML can be classified as global, exposing the entire logic of a model, and local, aiming to explain a single
prediction of a model [4]. Moreover, when an interpretation technique can be applied indifferently to any ML model,
we speak of a model-agnostic technique, while when it is only applicable to a specific model, we call it model-specific.
Feature Importance (FI) interpretation techniques calculate the influence of each feature to the prediction, either at
a global or local level. Methods such as LIME [5] (model-agnostic) and GradCam [6] (model-specific for neural
networks) are two FI local techniques.

Argumentation concerns the study of how conclusions can be reached through a logical chain of reasoning, that is,
claims based, soundly or not, on premises [7]. Based on this concept, different kinds of Argumentation Frameworks
(AF ) have been designed. IML and argumentation share the same goal of persuading someone to accept the validity
of a decision. Many approaches that combine explanation and argumentation towards interactive dialogues, do so
in a theoretical way. Whether explanations are arguments or not is a matter of debate in the philosophy of science.
An interesting view discriminates between arguments and explanations, provided that arguments are used to justify
something in doubt, while explanations are used to express an interpretation of something that is incomprehensible [8].
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Several techniques used to acquire interpretations from ML models are approximations of the real interpretation,
which is unknown. Therefore, their validity is questionable. This paper introduces Altruist; a preliminary method
for transforming FI interpretations of ML models into insightful and valid explanations using argumentation based
on classical logic. Altruist extracts the local maximum truthful part of an interpretation, providing reasons for the
truthfulness justification. Given multiple interpretations, Altruist can work as a meta-explanation technique, as well
as a tool to easily choose between X number of different interpretation techniques. Argumentation works as an
explanation to this whole process. Altruist’s power in recognising untruthful parts of interpretations and usefulness as a
meta-explanation technique is demonstrated through experimentation on ML models trained on tabular data. Altruist
has innate virtues such as truthfulness, transparency and user-friendliness that characterise it as an apt tool for the XAI
community.

2 Background

In this section, basic notions of argumentation and IML are introduced. A lot of frameworks have been developed in the
area of argumentation, with a similar well-defined mathematical foundation [7, 9, 10]. Abstract [11], Bipolar [12] and
Classic Logic-based [13] argumentation are some of the most well-known AF s.

Argumentation based on Classical Logic (CL) concerns a framework defined exclusively with logic rules and terms.
A sequence of inference to a claim is an argument in this framework. Specifically, an argument is a pair 〈Φ, α〉 such
that Φ is consistent (Φ 0⊥), Φ ` α, and Φ is a minimal subset of ∆ (a knowledge base), which means that there is
no Φ′ ⊂ Φ such that Φ′ ` α. ` represents the classical consequence relation. In this framework counterarguments,
the defeaters, are also defined. 〈Ψ, β〉 is a counterargument for 〈Φ, α〉 when the claim β contradicts the support Φ.
Furthermore, two more specific notions of a counterargument are defined as undercut and rebuttal. Some arguments
specifically contradict other arguments’ support, which leads to the undercut notion. An undercut for an argument
〈Φ, α〉 is an argument 〈Ψ,¬(φ1 ∧ · · · ∧ φn)〉 where {φ1, . . . , φn} ⊆ Φ. If there are two arguments in objection, we
have the most direct form of dispute. This case is represented by the concept of a rebuttal. An argument 〈Ψ, β〉 is a
rebuttal for an argument 〈Φ, α〉 if β ↔ ¬α.

Argumentation begins when an initial argument is put forward, and some claim is made. This leads to an argumentation
tree Tr with root node the initial argument. Objections can be posed in the form of a counterargument. In Tr, these are
represented as children of the initial argument. The latter is addressed in turn, ultimately giving rise to a counterargument.
Finally, a judge function decides if a Tr is rather Warranted or Unwarranted, based on marks assigned to each node as
either undefeated U or defeated D. A Tr is judged as Warranted, Judge(Tr) = Warranted, if Mark(Ar) = U, where Ar is
the root node of Tr, is undefeated. For all nodes Ai ∈ Tr, if there is a child Aj of Ai such that Mark(Aj) = U, then
Mark(Ai) = D, otherwise Mark(Ai) = U.

The ability of ML models to give users insights into their structure and decisions is known as interpretability feature [4].
Decision trees, rule-based models and linear models are inherently (intrinsically) interpretable, and they can provide
both local and global information. Model-agnostic interpretation techniques such as Anchors [14] choose to lay down
rules for local explanation, as well as several model-specific approaches, providing global (e.g. [15]) or local (e.g. [16])
explanations. Model-specific techniques, such as GradCam, locally interpret neural networks, for image recognition
or object detection tasks, and present their findings using saliency maps (heatmaps) or bounding boxes. LIME, a
model-agnostic local-based interpretation technique, introduces a variation of its main algorithm focusing on such
image-oriented models, providing saliency maps as explanations as well.

The aforementioned techniques are also able to provide their explanations in the form of FI, when the input data
are tabular or textual. In this family of model-agnostic interpretation techniques for any ML model there are the
global-based variants of feature Permutation Importance (PI) methods [17], as well as SHAP [18], another method for
calculating the importance of a feature for both global and local aspects.

3 Related Work

In this work, we are attempting to a) evaluate IML techniques, b) select or ensemble the best among them, and c)
explain the entire process of evaluating and selecting IML techniques using argumentation. Therefore, in this section
we present the related work.

There are a few works trying to connect IML and argumentation. AA-CBR is a hybrid method that combines case-
based reasoning with abstract argumentation. In AA-CBR there are cases, where each one is a set of features and an
outcome, and the objective is to predict the outcome of new cases [19]. ANNA attempts to solve classification problems
by using neural auto-encoders for feature selection, AAF for arguments’ generation, and AA-CBR for prediction
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tasks, offering argument sub-graphs as explanations [20]. ABML [21] is a technique inspired by the CN2 algorithm,
incorporating arguments into the learning process, aiming to reduce the space of the hypotheses. This, along with the
interpretable essence of CN2, explanations can be given in the form of arguments. Another technique, CleAr [22],
is a classification technique that incorporates knowledge in the form of arguments, using a variation of the bipolar
argumentation framework, with supervised learning applied in computational linguistics. There are, as of yet, no works
that use argumentation to explain the process of evaluating and selecting FI approaches.

Regarding IML, a critical domain within this research area is related to the evaluation metrics, which are available for
benchmarking and selection processes. There are a few metrics, such as fidelity or the number of non-zero weights,
also known as complexity [4], that are the most common options for assessing FI-based interpretation techniques.
Nonetheless, these metrics cannot reflect the effectiveness of the evaluated approaches, as they cannot capture the quality
of explanation. At the same time, when there are available ground truth explanations, also known as rationales [23],
we can measure the performance of FI interpretation techniques using the Area Under the Precision-Recall Curve
(AUPRC), Intersection-Over-Union (IOU), and F1 score. However, we can only assume that humans can provide
meaningful rationales if we consider the possible inner bias of each annotator [24]. Based on the concept of rationales,
the ERASER benchmark, exclusively for NLP tasks, defines two metrics: comprehensiveness and sufficiency [25]. The
former evaluates the interpretation observing the prediction by removing the rationales from the input, while the latter
by retaining only the rationales in the input.

Figure 1: Altruist’s flow chart. *TI: Truthfulness Investigator

Faithfulness [26], a similar metric to comprehensiveness and sufficiency, does not require annotated rationales to measure
the quality of the provided interpretations. Faithfulness is applicable to FI-based techniques tested on models handling
textual data, evaluating if the positive importances of a document’s sentences are true. Dealing with the drawbacks
of faithfulness, infidelity defines different ways to create perturbations to test the faithfulness of an interpretation [27].
However, infidelity is examined in the context of image data, and its output ranges in [0,+∞), making comparisons
between various algorithms and datasets more challenging.

There are few works focusing on aggregating and ensembling multiple interpretation techniques. A recent work focused
on aggregating FI interpretations to eventually produce interpretations with low sensitivity, high faithfulness, and low
complexity [28]. Specifically, for a given instance, they identify a set of neighbours. They extract interpretations for
all of them, and then they aggregate them. Another study, focusing on image classification tasks and based mainly on
the stability metric (also known as robustness), aggregates both FI techniques and rule-based approaches by averaging
explanation vectors [29].

Finally, recent work presented a method for providing a human-centric method of justifying a task-related prediction [30].
They examine the feature importance (weights) of features using an ML model and an interpretability technique. They
provide each feature with a narrative role descriptor depending on its importance and impact on the prediction.
Furthermore, they create core messages based on those narratives, using Natural Language Generation (NLG) to
generate simple, brief, qualitative, and intuitive justifications for the predictions. One of the work’s limitations is
that it is applied to linear ML models, which are always correct. The problem stems from the assumption that the
linear model’s coefficients, or, in the case of a black-box model, the weights generated via techniques such as LIME,
are correct. In the second scenario, the weights could be incorrect. In this work, we use Altruist to determine the
truthfulness of the weights. Because Altruist acts on a lower level, this work can be used after Altruist.
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4 Altruist

Altruist aims to tackle mainly the untruthfulness of FI-based approaches, using logic-based argumentation. Altruist’s
ultimate objective is to supply the largest truthful subset of an instance’s interpretation, acting as a curious user who tests
various inputs to evaluate the given interpretation. Additionally, Altruist can provide reasons (i.e., arguments) to justify
why this maximum subset is truthful, as well as why the features excluded from the set are untruthful. Truthfulness
is introduced in Section 4.3. Finally, it can be used as a unified selection or evaluation tool between multiple FI
techniques using local perturbations of instances, influenced by faithfulness and infidelity, while it can also be used as a
meta-explanation ensemble of FI techniques, similar to aggregation of FIs.

In the present work, Altruist is applied to ML models trained with tabular data. Altruist can indeed be applied to textual,
time-series, and even image data in future research. The methodology consists of 5 components (Figure 1). The first
component includes the ML model, the second component is the interpretation technique(s), the third component is the
truthfulness investigator (TI), the fourth component is the argumentation system, while the fifth component offers the
final interpretation.

4.1 Machine Learning Model

The first component of the technique is the ML model to be interpreted. The ML model could be any model trained on
tabular data, that is able to provide continuous values as output, e.g. a classification model which can output probabilities
or regression model. This component is referred to as M, which is trained on the input dataset D = [xi, . . . , xN ], which
contains N instances with |F | features, where F = [f1, . . . , f|F |]. Each xi ∈ D instance has a set of values for the
|F | features xi = [v1,i, . . . , v|F |,i]. The output of this component is the prediction for an instance xi, for example
PM (xi) = yi in a supervised learning model.

4.2 Feature Importance Technique(s)

This next component concerns the interpretation technique(s) and is highly correlated with the M component. The
interpretation technique(s) must fall within the category of feature importance, and must therefore provide explanations
in the form of sets of features accompanied by an indicator of importance.

At this point, we assume that various FI approaches produce weights with a monotonic notion. This intuitive assumption
is used by the majority of global and local FI techniques. This means that an end-user can expect monotonic behaviour
from the prediction model when altering a feature based on the weight provided by the global or local FI technique.
However, there are FI techniques, like as SHAP, that do not presuppose monotonicity but are perceived as such by the
end user.

Such techniques may be global or local, as well as model-agnostic or model-specific. The output of this component,
given a specific xi, and the M component, is denoted as Z= [z1, ..., z|F |], where zj ∈ R. It is possible to have multiple
interpretation techniques to let Altruist choose the best (most truthful) interpretation. Then, for T different techniques,
one would have Zt, where t ∈ [1, T ].

4.3 Truthfulness Investigator

The third component of this methodology is the Truthfulness Investigator (TI). For a specific xi, this component takes
as input the FI interpretation(s) of xi from the previous component. Based on the faithfulness and infidelity metrics
introduced in Section 3, TI investigates locally (e.g., around an instance) if the FIs are truthful or not. Altruist mimics
human behaviour with this component. When an end-user receives an explanation, either local or global, they can alter
values to see if the prediction changes. TI exhibits the same behaviour, but only locally, i.e., the alterations it performs
are relatively small.

Initially, TI measures the distribution – the domain – of each feature in the training set. Based on the distribution of
each feature, 2 alterations are selected, resulting in 2× |F | alterations of xi, which then evaluate the truthfulness of
each feature f . These two alterations v′f,i, for each feature, are performed by adding and removing a small Gaussian
noise (noise) on the instance’s value v′f,i = vf,i ± noise. Therefore, TI creates 2× |F | neighbours very close to the
instance whose interpretation we are investigating, to evaluate locally the truthfulness of the interpretation. More details
are presented in Algorithm 1. For example, two alterations to the value of the ‘age’ feature (vage,i = 24) for a particular
instance i will be (v′age,i = 24± noise). In this way, we simulate a curious user who, given a FI explanation, makes
small modifications to the values originally provided to the system locally to verify the validity of the explanation. To
formulate this process, we introduce the definitions of importance, alteration, and expectation, as well as truthfulness.
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Algorithm 1: Process of determining the alternative values for a feature
Input: value, distribution_of_feature
Output: value−, value+

1 min,max,mean, std← extract(distribution_of_feature)
2 noise← |mean− gaussian_noise(mean, std)|
3 value− ← value− noise
4 value+ ← value+ noise
5 if value− < min then value− ← min ;
6 if value+ > max then value+ ← max ;
7 return value−, value+

Definition 1. The importance assigned to a feature can be IMP ∈ {1 = Positive (zi > 0), −1 = Negative (zi < 0),
0 = Neutral (zi = 0)}.

Definition 2. The alteration of the value of a feature can be ALT ∈ {1 = Increasing (v′j,i > vj,i), −1 = Decreasing
(v′j,i < vj,i)}, where v′j,i the altered value.

Definition 3. The expected behaviour of an M component can be EXP ∈ {1 = Increasing (PM (x′i) > PM (xi)), −1 =
Decreasing (PM (x′i) < PM (xi)), 0 = Remaining Stable (|PM (x′i)− PM (xi)| ≤ δ)}, where x′i the instance with the
altered value, while tolerance δ is defined either manually by the user or is set to a default value (0.01).

1 -1 ALT
1 0 -1 1 0 -1 EXP

1 t u u u u t
IMP 0 u t u u t u

-1 u u t t u u
Table 1: Truthfulness matrix [(t)ruthful and (u)ntruthful states]

Definition 4 (Truthfulness). The importance assigned to a feature can be defined as truthful when the expected changes
to the output of the M model PM (x′i) are correctly observed with respect to the alterations that occur in the value of this
feature. Thus, for both values of ALT and a given IMP, the IMP×ALT=EXP must be in accordance with the truthfulness
matrix (Table 1).

Therefore, for a positive IMP, these alterations should increase the prediction, for the increased value modification, and
decrease the prediction, for the decreased value. For features with negative IMP, the inverse behaviour is expected. If
the IMP was neutral, zi = 0, we would expect the prediction to remain stable for both the increased and decreased
values, vincj,i and vdecj,i , respectively, or to be altered within a very tight range δ, e.g., 0.749 to 0.750. Tolerance δ is
defined either manually by the user or is set to a default value. 0.01 was selected after experimentation as default value
because it represents an insignificant alteration of a prediction.

It is worth demonstrating this with an example. For a random instance xi assigned to class Y with probability
PM (xi) = 0.7, the feature f1, with a value of v1,i = 1, has acquired an IMP z1 = 0.5 (Positive). Altruist seeks to
increase and decrease the value of the feature by using Gaussian noise based on its distribution, vinc1,i = 1.21 and
vdec1,i = 0.85. By querying the M ML model, it observes the alteration of the model’s output. In this example, for the
vinc1,i the output was raised to 0.85, and for the vdec1,i remained stable.

This component does not judge the truthfulness of a feature, but it generates predicates in the output. The following is
a specific predicate example that could be generated by this component: “The model’s behaviour by Increasing f2’s
value is not according to its Positive importance”. Such predicates are generated and used as input to the argumentation
system and are fully described in the following section.

The reason why we need the following component is that it is simpler to turn this problem into an argumentation
problem and solve it by using logic instead of manually coding it. In fact, using this approach, the results for the
selection of features are also justifiable, so we have an all-inclusive transparent method. Finally, using logic and
argumentation, the output of this component is a set of natural language arguments that can be easily used by the user,
or can be even utilised in a user-chatbot dialogue.

5



A PREPRINT - MAY 2, 2022

4.4 Argumentation System

The fourth component, having as input the predicates generated by the TI, is responsible for testing the truthfulness of
each feature, determining the set of features that are truthful, and providing explanations on this basis. An AF based on
logic is employed to accomplish this. We chose argumentation based on logic because it is more intuitive for the end
user than an abstract argumentation framework.

Except for the type of arguments that exist in the framework, we should define the rebuttal and undercut attacks, as
well as the Tr and a judge function that checks the trust of the whole explanation. The predicates produced by the TI
component can formulate atoms of the following types:

a: The explanation is untrusted
b: The explanation is trusted
cj : The importance zj is untruthful
dj : The importance zj is truthful
ej,ALT : The model’s behaviour by altering fj’s value is not according to its importance
fj,ALT : The evaluation of the alteration of fj’s value was performed and the model’s behaviour was as expected,
according to its importance.

Based on the aforementioned atoms, we can present the arguments of our AF in the form of 〈Φ, α〉, where α is the
claim of the argument and Φ is the support:

α1: 〈{a}, a〉
α2: 〈{b, b→ ¬a},¬a〉
α3: 〈{(c1 ∨ · · · ∨ cj), (c1 ∨ · · · ∨ cj)→ ¬b},¬b〉
α4,j : 〈{dj , dj → ¬cj},¬cj〉
α5,j : 〈{(ej,inc ∨ ej,dec), (ej,inc ∨ ej,dec)→ ¬dj},¬dj〉
α6,j,ALT : 〈{fj,ALT , fj,ALT → ¬ej,ALT },¬ej,ALT 〉

Most arguments are self-explanatory. We only briefly explain α3, which states that if the importance of one feature is
untruthful, then the explanation is not trusted, and α5,j , which states that if one of the applicable alterations of fj’s
value is not according to its importance, then the importance zj is not truthful. These arguments are explained in
Section 4.6. It is important to notice that the first argument, α1, is trivial, provided only to ease conversion of arguments
into discussions.

Types of Arguments
a1 a2 a3 a4,j a5,j a6,j,ALT

Rebuttals a2 a1 - - - -
Undercuts - - a2 a3 a4,j a5,j
Table 2: Attack relations between arguments

We also define the attack relations between such arguments. We use the special cases of attacks, undercut and rebuttal
as discussed in Section 2, presenting them in Table 2.

We can proceed to the definition of the argumentation tree Tr. A Tr begins when an initial argument is presented as
a claim and is called root argument. In the form of a counterargument, an objection (or objections) is raised. This is
articulated in turn, eventually leading to a counterargument if it is feasible. In Altruist, the root argument is always α1.
Thus, the Tr is similar to the structure of the tree in Figure 2. The goal is to decide whether the root argument of this
tree is defeated. We use the following judge function:

J(Tr) =

{
Unwarranted if Mark(α1) = (D)efeated
Warranted if Mark(α1) = (U)ndefeated

The root argument (α1) is U if the attacking argument (α2) is D. Thus, every argument is marked:

mark(αi) =

{
U if Mark(αj) = D,∀αj ∈ opp(αi)

D otherwise

6



A PREPRINT - MAY 2, 2022

Figure 2: Types of arguments and Tr

where the acceptable arguments (arguments without opponents/ conflicts) are marked as U, while opp(αi) are the
attacking arguments of αi.

To judge the Tr, we utilise a Prolog script, which outputs the arguments in a natural language form. In case the Prolog
program judges the root argument α1 as U , and therefore the Tr as Warranted, this means that one or more features are
untruthful. Then, these features are discarded, and by re-examining the Tr, we expect to be Unwarranted. The output to
the following component is the new reduced interpretation, or interpretations in case of many techniques, which will be
Z′ = [zt1, z

t
2, z

u
3 ..., z

u
|F |], where zti the truthful feature importances, and zui the untruthful. An explanatory example is

presented in Section 4.6.

Figure 3: Argumentation tree for the simple example

4.5 Maximum Truthful Calculator

The previous component provides information about which features’ importances are truthful and untruthful in the
interpretation, for each FI technique if more than one is used. Then, it reforms the interpretation excluding all the
untruthful features zui ∈Z′. If there are multiple FI techniques, it chooses as the final interpretation the one with the
minimum number of untruthful features, argmint |[zui |zui ∈ Z′t, i ∈ [0, |Z′t|]]|, hence the maximum number of truthful
features. This interpretation provides richer details, as more features appear, and more accurate results, that can be
tested by the end user. Moreover, due to the transparent nature of argumentation, Altruist can explain why a feature
is excluded or included. A detailed qualitative experiment takes place in the following Section 5. The results of this
component could be used by a system designer in a textual format, by converting the arguments into phrases in natural
language. The output of Altruist is not intended to be presented directly to end users. A higher-level application, such
as a chatbot, is expected to use Altruist.

7
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4.6 Illustrative Example

To demonstrate the functionality of our methodology, we present a simple but complete example. The example depicts a
user interacting with a system via dialogue (e.g., a chatbot) to understand why a prediction is made and to investigate the
truthfulness of the provided explanation. We will demonstrate how employing Altruist on top of another interpretation
technique, in this case, LIME, can help to prevent presenting misleading information to the end-user by detecting
truthful and untruthful feature importance scores. Figure 3 illustrates this example.

Suppose there is a system solving a classification problem with only three features; Age (‘A’), Weight (‘W’) and Height
(‘H’), which predicts the probability of ‘Author’s Paper Approval’. A probability of [0, 0.5) means that the paper will
be rejected, while a probability of [0.5, 1] means that the paper will be accepted. John is a PhD student who is 25 years
old, his weight is 62 kg, and his height is 170 cm and asks the system for a prediction. The M component of the system
predicted a probability of 0.75 of his paper to be accepted. John is also given an explanation through LIME, corrected
by Altruist, suggesting that his A is positively influencing (z1 = 0.5) the probability of his paper to be accepted, while
his H has neutral influence (z3 = 0). The actual LIME explanation also included an importance value for W (z2 = 0.1),
but Altruist considered it untruthful and chose not to present it.

John is presented with arguments generated by Altruist. The first argument α1 claimed: a =“The explanation is not
truthful”. John can generally raise this argument to derogate the truthfulness of the explanation. Subsequently, the
second argument claims that b =“The explanation is truthful”. This argument, α2, is provided by the system, and it is a
rebuttal to α1. At this point, we can observe that, as indicated in Section 4.4, the argument α1 is trivial, but appears
crucial for the discussion’s flow.

For each one of the |F | features appearing in the explanation a claim cj , j ∈ [0, |F |] can be raised by John, stating
that “The zj is untruthful”. Specifically, two claims are raised c1, c3, composing argument α3 which is an undercut
attack to the argument α2. These claims are c1 =“The importance of A is untruthful” and c3 =“The importance of H is
untruthful”. Note here that c2 =“The importance of W is untruthful” is not stated by John, as Altruist opted for this
feature importance, and never reached John. In the end of this example, the omission of this feature is explained as well.
Altruist creates another 2 claims to answer, d1 =“The importance of A is truthful”, and d3 =“The importance of H is
truthful”. Two arguments α4,1 and α4,3 are composed undercutting α3.

To prove these claims, John raises four new claims e1,Inc, e1,Dec, e3,Inc, e3,Dec. For example, we present two of them:
e1,Inc =“The model’s behaviour by Increasing A’s value is not according to its Positive importance” and e1,Dec =“The
model’s behaviour by Decreasing A’s value is not according to its Positive importance”. Each pair of these claims
(e.g., e1,Inc, e1,Dec) form an argument α5,1, which is an undercut attack to α4,1. Finally, the last four claims are
generated f1,Inc, f1,Dec, f3,Inc, f3,Dec; each pair is forming an argument α6,j,ALT which undercuts the argument α5,j .
These claims are for example: f1,Inc =“The evaluation of the alteration (Increased) of A’s value is performed and
the model’s behaviour is as expected (Increased), according to its importance” and f1,Dec =“The evaluation of the
alteration (Decreased) of A’s value is performed and the model’s behaviour is as expected (Decreased), according to its
importance”.

Figure 4: Argumentation tree for an untruthful scenario

8
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However, if any of these last arguments are missing, this means that the root of the Tr, which is the argument α1 is
judged as Warranted, and therefore the explanation is untrusted. Otherwise, if all the final four arguments are generated,
the Tr will be Unwarranted, and the argument α1 will be defeated.

Let’s get back to the point where Altruist chose to hide W. If the user was given the whole interpretation of LIME,
including W, neither argument α6,2,inc nor α6,2,dec would be available to support that the importance of W was truthful.
This happens because Altruist evaluated this positive importance and found it untruthful for both alterations. Then, if W
was given to the end user, the claim (c2) could have been raised, and the α5,2 argument would have no opponent and
would attack α4,2, allowing the claim c2 to support α1 via α3, resulting in an untruthful interpretation. Figure 4 depicts
this alternative scenario, considering the elements inside the red boxes as apparent, regarding the third untruthful feature
importance score.

5 Experiments

In this section, we qualitatively showcase the ability of Altruist to identify untruthful interpretations, followed by an
explanation. Moreover, we quantitatively test Altruist on a range of FI techniques. Altruist is evaluated in 3 separate
datasets, 3 uninterpretable ML models and 1 interpretable (Table 3), as well as 4 FI techniques. Nevertheless, the
following experiments are not intended to identify the best model or the best FI technique, but to highlight the fact
that untruthful features can be identified using Altruist. The experiments’ source code will be available in GitHub and
DockerHub (https://github.com/iamollas/Altruist).

Banknote Heart (Statlog) Adult Census

instances 1372 270 48842 (1000)
features 4 13 14 (80)

LR 98.86% 81.21% 94.67%
SVM 100.00% 81.95% 95.93%

RF 99.26% 81.89% 94.32%
NN 99.43 77.02% 94.42%

Table 3: For each of the 3 datasets: main statistics (top), F1 scores of the 4 different ML models (bottom)

LIME SHAP PI IN AL LIME SHAP PI IN AL LIME SHAP PI IN AL
LR 49.74% 37.30% 0.00% 0.00% 0.00% 61.71% 51.79% 38.46% 0.00% 36.87% 18.54% 23.96% 17.18% 0.00% 13.56%

SVM 41.09% 56.45% 29.19% - 25.91% 59.20% 48.60% 46.21% - 40.91% 25.23% 12.05% 10.79% - 10.06%
RF 91.56% 77.90% 87.54% 91.27% 74.00% 76.61% 75.98% 84.87% 73.87% 66.10% 70.01% 13.08% 24.83% 62.61% 13.08%
NN 39.89% 47.85% 17.26% - 14.43% 58.86% 47.58% 69.23% - 43.73% 21.51% 26.64% 17.89% - 14.66%

Banknote Heart (Statlog) Adult Census

Table 4: Percentage of untruthful feature importances per interpretation technique, for the 3 dataset, among the 4
different classifiers. The most truthful technique for each of the models per dataset is denoted with bold. Altruist is the
ensemble of the LIME, SHAP and PI techniques. (IN = Intrinsic, AL = Altruist)

We are utilising the datasets: Banknote (identify real/fake banknotes) and Heart Statlog (predict absence/presence
of a heart’s disease) [31], and Adult Census [32] (predict if income exceeds 50K/yr or not), and the ML models:
Logistic Regression (LR), Support Vector Machines (SVM), Random Forests (RF) and Neural Networks (NN). To
provide the unbiased performance of each algorithm, 10-fold cross-validation grid searches are performed1. The
results are presented in Table 3. The interpretation techniques selected for this set of experiments are PI, LIME, SHAP,
and when available the models’ intrinsic interpretation. Only LR and RF can provide intrinsic and pseudo-intrinsic2

interpretations.

5.1 Qualitative

For the qualitative experiments, we select the Banknote dataset, due to the small number of features, which makes
the example easier to follow. The ML model selected is the SVM, which achieves the perfect F1 score (100%). The

1The grid search parameters can be found in GitHub: https://github.com/iamollas/Altruist. In addition, the optimal set of
parameters for each model per dataset, the selection and engineering of features and the undersampling strategies (used in the Adult
Census, 1000 instances, 80 features) can also be found in the repo.

2A procedure similar to PI, as proposed in the original paper.
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Banknote dataset contains instances with 4 features F = [f1, f2, f3, f4], where f1 is the variance, f2 the skew, f3 the
curtosis and f4 the entropy. We did various experiments, two of which are presented here.

Figure 5: Interpretation of SVM’s classification

We select the following random instance: xi = [0.38, 0.78, 0.76, −0.45]. The SVM classified the ith banknote as fake
with a 81.45% probability. In Figure 5, original interpretations provided by LIME and PI for the SVM’s prediction are
shown. Altruist discovered untruthful importance given to variance and skew in LIME’s result, as well as entropy’s
importance provided by PI. To evaluate the judgement of Altruist, we conducted the following manual experiments.

LIME assigned a negative importance to the variance feature. However, Altruist found it untruthful. We have therefore
proceeded to two tests to ensure that Altruist was correct. With respect to the distribution of the variance feature, with
range [−7.04, 6.83], mean = 0.43, and std = 2.84, initially, we increased the value of variance from 0.38 to 0.74 and
the probability increased from 81.45% to 93.49% instead of decreasing. We also altered the variance’s value from
0.38 to 0.02, and the probability decreased from 81.45% to 56.46% instead of increasing. Therefore, Altruist correctly
concluded that the importance of this feature was untruthful.

With respect to the distribution of the entropy feature, with range [−8.55, 2.45], mean = −1.19, and std = 2.1, initially,
we increased the value of entropy from −0.45 to −0.08 and the probability decreased from 81.45% to 71.19% instead
of increasing. We also altered the entropy’s value from −0.45 to −2.23, and the probability increased from 81.45% to
97.57% instead of decreasing. Hence, Altruist correctly concluded that the importance of entropy given from the PI,
was untruthful.

Figure 6: Interpretation of LR’s classification

10
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We are presenting one more example using the LR model for the same dataset. We select one more random instance:
xj = [−3.38, −13.77, 17.92,−2.03]. The LR classified the jth banknote as fake with a 47% probability. In Figure 6,
original interpretations provided by LIME and the actual weights of the LR (intrinsic) are shown. Altruist discovered
untruthful importance given to curtosis and entropy in LIME’s result, and no untruthful importances to the intrinsic
interpretation, as it was expected considering the interpretable nature of LR. To evaluate the judgement of Altruist, we
conducted the following manual experiments.

We will test the importance given to curtosis by LIME. The distribution of the curtosis feature has a range of
[−5.29, 17.92], mean = 1.4, and std = 4.31. We cannot further increase the value of curtosis because it already has
the maximum value (17.92). Thus, we will only test it by decreasing slightly the value from 17.92 to 16.77. We see
that the probability dropped from 47% to 8.01% rather than increasing, as implied by the positive importance value.
Furthermore, we already know that curtosis is a significantly influential feature of LR based on its real weights. We
may indeed say that Altruist correctly detected LIME’s erroneous importance assigned to curtosis.

These experiments demonstrate how Altruist attempts to mimic human behaviour to evaluate an explanation. If given
such an explanation, a user would, naturally, attempt two alterations to see how the model behaves. It is worth noting
that the alterations made by Altruist are indeed small, in terms of the feature’s distribution. As seen in the preceding
examples, we are slightly altering the feature’s value each time.

5.2 Quantitative

To quantitatively evaluate Altruist’s ability to detect untruthful features, as well as to select the best interpretation
technique among many, we will test it in 3 datasets, 3 uninterpretable ML models and 1 interpretable (Table 3). The
results are visible in Table 4, describing the mean ratio of untruthful features’ importance per interpretation.

Banknote: In this case, the SVM achieves the higher F1 (100%). Among the 4 models, LR provides the most
truthful interpretations, second comes the NN, and third the SVM. All interpretation techniques struggle to
provide truthful explanations for the RF.
Heart (Statlog): Here, the SVM achieves the higher F1 (82%). Among the 4 models, LR provides the most
truthful interpretations, second comes the SVM with PI, and third the NN with SHAP. At the same time, every
interpretation technique struggles to provide truthful explanations for the RF.
Adult Census: For this dataset, the SVM achieves the higher F1 score (96%). Among the 4 models, LR
provides the most truthful interpretations, second comes the SVM with PI technique, and third the RF with
SHAP. In contrast to the other 2 test cases, SHAP provides reasonable interpretations for the RF.

The effect of Altruist is not mentioned in the aforementioned. Based on the experiments referred to above, we can infer
that Altruist is a critical tool for evaluating interpretations given by non-intrinsic techniques such as LIME, SHAP,
and PI, detecting on average 43.79% of untruthful features in 35 out of 36 tests. Altruist can be used effectively as a
selection tool (an ensemble), achieving the lowest percent in every case. Provided that no interpretation approach has
prevailed over the others, it appears to be an ideal tool for selecting the best technique automatically in a setup where
several techniques are used in parallel to interpret an instance’s prediction.

In terms of Altruist’s scalability, we can state that its performance is proportional to the model’s inference time and the
response time of the interpretation techniques. However, we measured Altruist’s response time, which, on average,
evaluates an FI in 0.05 seconds (measured across the 4 models in the 3 datasets).

6 Conclusion

IML has emerged as an important research area to interpret ML algorithms. A lot of IML approaches are presenting
their interpretations in a feature importance manner. Argumentation is the study of how conclusions can be reached
through logical reasoning; that is, claims based, soundly or not, on premises. This paper presents Altruist, a preliminary
technique which combines FI interpretation techniques and logic-based argumentation, to provide truthful interpretations
on the decision-making of ML models to the end users. It provides the local maximum truthful interpretation, as well as
the justification for the truthfulness. Altruist is also presented as an evaluation metric, strongly influenced by the metrics
of faithfulness and infidelity. Moreover, it can be used as a tool for automatic selection of the most truthful interpretation
among a variety of multiple different interpretations. In future work, the meta-explanation aspect of Altruist is going to
be explored. Altruist will also be evaluated in other ML tasks (e.g., regression, multi-label classification) and data types
(text, time-series and possibly image). Another aspect that could be investigated is the alteration of categorical feature
values, and the effect of the localness of features. Finally, a human-oriented evaluation will be conducted to validate the
usefulness of the meta-explanations and the available arguments.
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