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ABSTRACT
Results returned by commercial image search engines should
include relevant and diversified depictions of queries in order
to ensure good coverage of users’ information needs. While
relevance has drastically improved in recent years, diver-
sity is still an open problem. In this paper we propose a
reranking method that could be implemented on top of such
engines in order to provide a better balance between rele-
vance and diversity. Our method formulates the reranking
problem as an optimization of a utility function that jointly
considers relevance and diversity. Our main contribution is
the replacement of the unsupervised definition of relevance
that is commonly used in this formulation with a super-
vised classification model that strives to capture a query
and application-specific notion of relevance. This model
provides more accurate relevance scores that lead to signif-
icantly improved diversification performance. Furthermore,
we propose a stacking-type ensemble learning approach that
allows combining multiple features in a principled way when
computing the relevance of an image. An empirical evalua-
tion carried out on the datasets of the MediaEval 2013 and
2014“Retrieving Diverse Social Images”(RDSI) benchmarks
confirms the superior performance of the proposed method
compared to other participating systems as well as a state-
of-the-art, unsupervised reranking method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—relevance feedback

Keywords
image retrieval, diversity, relevance feedback, image classifi-
cation, image reranking
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1. INTRODUCTION
The importance of presenting a set of results that are at

the same time relevant to the query but also exhibit di-
versity has been pointed out long ago in the Information
Retrieval (IR) community [3]. Diversity in top results pro-
vides a more comprehensive and concise answer to the query
which in turn enables faster access to the desired information
and ultimately results in increased user satisfaction. Despite
this fact, existing image search engines (either operating on
web scale, e.g., Google Images, or within media sharing plat-
forms, e.g., Flickr) still focus primarily on relevance. As a
consequence, top results usually contain many similar im-
ages and the user has to go deeper down the list of results in
order to discover diverse views of the query. In addition, the
deeper one goes down the list, the higher the probability to
encounter irrelevant results becomes, thus impeding the dis-
covery of diverse views. This focus on relevance is perhaps
due to the limitations imposed by relying mostly on the tex-
tual modality of the images [15] (e.g., surrounding web page
text in the case of Google Images, tags and textual descrip-
tions in the case of Flickr). Obviously, ignoring the visual
content of the images limits the ability of a search engine
to provide either relevant or diverse results. Figure 1 shows
the first 10 results returned by Flickr (top) and Google im-
ages (middle) in response to a query about “La Madeleine”
church in Paris. Both result sets are not optimal in the sense
that they contain irrelevant and/or similar images.

In this paper, we propose a method that aims at refining
the initial ranking of existing image search engines so that
both the relevance and the diversity of the top results are im-
proved, as shown on Figure 1 (bottom). Our method builds
upon a diversification method [7] that casts the above prob-
lem into the optimization of a utility function that jointly
considers relevance and diversity. In contrast to [7] that used
a generic, unsupervised definition for relevance, we propose
a query and application-specific definition that is directly
learned from user feedback. This supervised definition alle-
viates several shortcomings of the unsupervised counterpart
and manages to provide a significantly more accurate rele-
vance scoring which, as we show, has a direct positive impact
on the overall diversification performance of the algorithm.
Although our method assumes the existence of relevance an-
notations, we explain that such annotations do not necessar-
ily need to be given by experts but can also be acquired via
implicit user feedback. Another important property of the
proposed diversification approach is that it allows the com-
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Figure 1: The first 10 results returned by Flickr (top) and Google (middle) in response to a query about“La Madeleine”

church in Paris. The bottom row corresponds to an optimal result set where each image captures a different aspect of

the query. ti denotes the topic that an image belongs to.

bination of multiple types of features in a principled and
effective way when computing the relevance of an image.

Our approach can be applied to different retrieval scenar-
ios. However, in this paper we focus on landmark retrieval
mainly due to the fact that a social image retrieval bench-
mark is available for this scenario (RDSI benchmark of Me-
diaEval 2013 [9] and 2014 [10]). Specifically, we consider the
case of a tourist who wants to plan a trip to an unfamiliar lo-
cation. Knowing only the name of the landmark, the person
uses it to learn more about it by visiting the corresponding
Wikipedia article where he/she can get a textual descrip-
tion and some example photos. Before deciding whether
this landmark is worth visiting, the tourist wants to get an
informative visual summary of it. A query using existing
search engines tends to return many similar images or hol-
iday photos that prominently feature people as the main
subject. Other results may include low quality images or
images of completely different locations. Ideally, the person
would like to receive photos capturing different visual char-
acteristics of the target location, e.g., different viewpoints,
architectural details, creative views, etc., so that most of the
perceived visual information is different from one photo to
another as in Figure 1 (bottom).

Using an early version of our method (briefly described
in [5] and [14]), we achieved top results in the RDSI bench-
marks of MediaEval 2013 and 2014. In this paper, we de-
velop the method further and provide an extensive analysis
of its performance. In particular, this paper makes the fol-
lowing contributions:

• We highlight the connection between the accuracy of
the relevance scoring component of the diversification
method of [7] and its diversification performance.

• We show that relevance scoring accuracy can be signif-
icantly improved by exploiting relevance annotations
and performing the scoring in a supervised manner.

• We evaluate supervised relevance scoring models built
from training sets of various compositions and show
that a small number of query-specific positive annota-
tions combined with application-specific positive and
negative annotations yield very good results.

• We develop a novel ensemble learning algorithm that
combines multi-dimensional and one-dimensional fea-
tures in a principled and effective way.

As a result, our method achieves significantly better di-
versification performance than a state-of-the-art reranking
method that uses an unsupervised definition of relevance
and outperforms the best performing systems of the 2013
and 2014 RDSI benchmarks by 7.5% and 5.7% respectively.

2. RELATED WORK
One of the first and seminal works on diversity in infor-

mation retrieval is the work of Carbonell and Goldstain [3].
Recognizing that in the context of text retrieval and sum-
marization, pure relevance ranking is not sufficient, they
proposed Maximal Marginal Relevance (MMR). MMR is a
reranking method that linearly combines independent mea-
surements of relevance and diversity (their relative weight is
a user-tunable parameter) into a single metric that is max-
imized in a greedy, iterative fashion. In [17], MMR was
combined with a language modelling framework to solve the
problem of subtopic retrieval where the task is to find docu-
ments that cover as many different subtopics of a query topic
as possible. In [4], a greedy algorithm is developed for max-
imizing the probability of finding at least one relevant docu-
ment in top n. This algorithm is similar to MMR and is also
shown to be a greedy maximizer of the instance or cluster
recall metric, i.e. the number of different subtopics covered
by a given set of results. More recently, a similar formula-
tion of the diversification problem was given by Deselaers et
al. [7] and was found to outperform a common clustering-
based diversification approach, in the context of diverse im-
age retrieval. As in MMR, diversification is achieved via the
optimization of a criterion that linearly combines relevance
and diversity. However, [7] gives a more general formulation
and uses dynamic programming algorithms to perform the
optimization in addition to the greedy, iterative algorithm
presented in [3]. In our work, we adopt the formulation of
[7] but combine it with a supervised definition of relevance
that leads to significantly better performance. Also, com-
pared to [7], where different modalities were combined in an
ad-hoc way, the use of learning allows us to develop a more
principled and effective way of combining multiple features.

Diversity in social image retrieval was the focus of the Me-
diaEval 2013 and 2014 RDSI benchmarks that attracted the
interest of many groups working in this area. Most partic-
ipants developed diversification approaches that combined
clustering with a strategy to select and return representa-
tive images from each cluster. Our MMR-based approach
has the advantage of targeting the diversification problem
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in a more straightforward way compared to clustering-based
approaches which first try to solve a different and presum-
ably more difficult problem (i.e. finding groups of similar
images). Also, despite the fact that most systems involved a
mechanism to improve relevance before enforcing diversity,
the majority did not exploit relevance annotations. Instead,
top-performing solutions ([11], [6]) used specialized filters
(e.g., face and blur detectors) and hand-coded rules (distant
images are irrelevant) in order to discard irrelevant images
according to the verbal definitions of relevance and irrele-
vance given by the task organizers. By learning the concept
of relevance through the use of query and application-specific
relevance annotations, our method can adapt automatically
to different queries and retrieval scenarios and thus repre-
sents a more general solution.

3. METHOD

3.1 Problem Definition
Let q be a query1 and I = {im1, . . . , imN} be a ranked

list of images that have been retrieved by an existing search
engine in response to q. Although the quality of the results
depends on the specific query and search engine, we expect
that for values of N up to a few hundreds, I will typically
comprise both relevant and irrelevant images and that some
of the relevant images might contain duplicate information2

(see Figure 1). The goal of a diversification method, is to
refine the initial ranking of the images in I so that relevant
images are ranked higher than irrelevant and top positions
contain as little duplicate images as possible. Since users
usually inspect only the top few results, reranking the whole
list is not needed and we instead request a K-sized subset
of images from I that are as relevant (to the query) and
as diverse (with each other) as possible. Among the many
measures that have been proposed in order to quantify the
above qualitative goal of a diversification method is, for in-
stance, the subtopic or cluster recall at K (CR@K) [17] that
measures the percentage of different topics/aspects retrieved
in the first K results. Note that a perfect CR@K requires
all K results to be relevant. A typical cut-off is K = 20
(adopted in MediaEval 2014 [10] and ImageCLEF 2008 [1]),
as most search engines present around 20 results on their
first page.

3.2 Maximal Marginal Relevance
MMR formulates the goal of a diversification method as

an optimization problem where one tries to maximize a lin-
ear combination of relevance and diversity, the so called
“marginal relevance”. According to the formulation given
in [7], the objective is to find the K-sized set S ⊂ I that
maximizes the following utility function:

arg maxS⊂I,|S|=K U(S|q) = w∗R(S|q)+(1−w)∗D(S), (1)

where R(S|q) is a measure of the relevance of S to the query,
D(S) is a measure of the diversity in S, and w is a param-
eter that controls the relative importance of relevance and
diversity. w can be either adjusted by the user or tuned (on
a diversity annotated validation set) to optimize a particular

1Note that q can be expressed as a textual, visual or mixed
query without loss of generality.
2These assumptions are shown to hold (Subsection 4.1)
when Flickr is used as search engine for landmark queries.

Figure 2: Wikipedia image of “Angkor Wat” (left), a rel-

evant inside view (center) and an irrelevant image with

a person in front of the monument (right).

quantitative measure (e.g., CR@20). Note that as implied
by Equation 1, diversity is independent of the query.

3.3 Relevance

3.3.1 Unsupervised Relevance
The relevance of a set of images S was defined in [7] as

R(S|q) =
∑

imi∈S

R(imi|q) =
∑

imi∈S

s(imi, imq), (2)

where R(imi|q) denotes the relevance of each individual im-
age to the query and s(imi, imq) is a normalized similarity
measure between imi and imq. Depending on the type of
representation chosen for the query and the database im-
ages, several different similarity functions may be used. For
instance, when both the query and the database images are
represented as text, s(imi, imq) could be the cosine similar-
ity between bag of word vectors, while in cases where the
query is expressed via an example image, s(imi, imq) could
be the (normalized) inverse of the Euclidean distance be-
tween the respective visual feature representations.

A limitation of the unsupervised definition of relevance
described above is that similarity, as quantified by common
textual or visual representation-measure combinations, does
not attempt to capture the concept of relevance as conceived
by users. In addition, similarity does not imply relevance
and vice versa. Consider, for instance, the landmark re-
trieval use case described in Section 1. As exemplified in
Figure 1 the optimal set of results might contain images
that are dissimilar to a reference, visual representation of
the query (e.g., the Wikipedia image) but are still considered
relevant to it e.g., inside views, architectural details, etc. On
the other hand, images that are visually similar to the query
might be considered irrelevant due to people being the main
focus of the image (Figure 2). The situation is even more
problematic when a textual representation is used because
textual similarity is often a poor proxy for visual similar-
ity (noisy or missing tags/descriptions). Although the use
of multiple modalities is expected to improve the accuracy
of relevance scoring, their combination is usually performed
with arbitrarily chosen weights [7].

3.3.2 Learning Relevance from User Feedback
Motivated by the shortcomings of unsupervised relevance

scoring described above and by the fact that improving the
relevance scoring quality within the MMR framework has
a direct positive impact on common diversification perfor-
mance measures (Subsection 5.1), we propose a supervised
relevance scoring method that exploits relevance annotations
in order to induce a more accurate definition of relevance.
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More specifically, for each query q, we build a probabilistic
model hq : X → [0, 1] that takes a n-dimensional represen-
tation of the image X = Rn as input and outputs the proba-
bility that the image is relevant to the query given the input.
These probabilistic outputs (hq(imi)) replace the unsuper-
vised similarity measurements (s(imi, imq)) in Equation 2.
In order to train this model, we assume the existence of a set
Dq = {(x1, y1), . . . , (xm, ym)} of m training examples where
xi ∈ X is the input vector and yi ∈ Y = {0, 1} is the class
value with yi = 1/0 denoting a relevant/irrelevant example.

Ideally, Dq will be composed of examples that have ex-
plicitly been annotated as relevant/irrelevant to q by the
user and will therefore constitute an accurate representa-
tion of what the user considers relevant. This, however,
requires considerable effort from the user. A more realistic
scenario is the collection of relevance annotations by exploit-
ing implicit relevance feedback given by multiple users for
the same query q. A search engine can count the number
of times that each image imi ∈ I is clicked (viewed) by
users when returned in response to a query q. Then, we
can reasonably assume that images with high click counts
are relevant to the query and images with lower click counts
are irrelevant. In fact, even a single click (or few to exclude
noise) will be sufficient to claim relevance of an image. On
the other hand, multiple feedback signals will be required
to confidently claim irrelevance of an image due to the im-
plicit and partial nature of the feedback: a) an image might
be relevant but contain duplicate information with another
image and therefore not clicked or b) an image far down the
list might have not been inspected at all. Therefore, exploit-
ing implicit user feedback as described above could result in
a set of query-specific positive (relevant) examples and, in
case of popular queries, negative (irrelevant) examples.

In this paper, we focus on infrequent queries for which
negative (irrelevant) examples are unavailable. To train hq

in this case, we combine few query-specific positive exam-
ples with positive and negative examples from other (popu-
lar) queries of similar type (e.g., landmark queries). Despite
being a seemingly counter-intuitive choice, the inclusion of
positive and negative examples from other queries of the
same type, increases the generalization ability of the classi-
fier (Subsection 5.2) because it helps capture an application
specific notion of relevance/irrelevance (e.g., out-of-focus or
human-in-focus images are irrelevant and drawings are rele-
vant in the RDSI task scenario).

3.3.3 A Multimodal Ensemble Classifier
When relevance annotations are used, a further advan-

tage over unsupervised approaches is that the combination of
multiple features can be incorporated into the learning pro-
cess. Here, we present Multimodal Stacking (MMS), an en-
semble classification scheme that learns how to combine the
outputs of multiple, independently trained classifiers (each
one using a different type of features) in order to make a
better relevance prediction. The algorithm is inspired from
stacked generalization [16], a method for the fusion of hetero-
geneous classifiers, widely known as stacking. The training
of MMS consists of the following steps: Initially, k indepen-
dent probabilistic classifiers hqi : Xi → [0, 1], i = {1, . . . , k}
are built, one for each multi-dimensional feature represen-
tation Xi ∈ Rni , ni > 1. Each of these single-modality
classifiers is then used to predict the classes of all training
examples and their predictions are gathered to form a meta

training set D′q = {(x′1, y1), . . . , (x′m, ym)}, where the input
vectors x′i = [hq1(x1), . . . , hqk (xk)] consist of the outputs of
the single-modality classifiers. This meta training set is used
to train a meta classifier h′q : X ′ → [0, 1], where X ′ ∈ Rk

is the meta input space and its output is the probability
that the image is relevant. At prediction time, the single-
modality classifiers are first applied to classify the unknown
instance and their outputs are used to form a meta instance
that is fed to the meta classifier which makes the final pre-
diction. Compared to early fusion approaches, MMS has the
advantage that features of different dimensionalities can be
easily combined since all models contribute one-dimensional
features to the meta classifier. Furthermore, additional fea-
tures can be easily incorporated into the final model by di-
rectly augmenting the input space of the meta classifier.

3.4 Diversity
Assuming a ranking imr1, . . . , imrK of the images in S,

Deselaers et al. [7] define diversity as

D(S) =

K∑
i=1

1

i

i∑
j=1

d(imri, imrj), (3)

where d(imri, imrj) is the dissimilarity between the images
ranked at positions i and j. Thus, high diversity scores
are given to image sets with a high average dissimilarity.
We notice that with this definition of diversity, an image
set that contains pairs of highly similar (and therefore not
diverse) images is allowed to receive a high diversity score
if the average dissimilarity is high. This results in a direct
negative impact on diversification measures such as CR@K.
Therefore, we adopt the following stricter definition:

D(S) = min
imi,imj∈S,i6=j

d(imi, imj), (4)

where the diversity of a set S is defined as the dissimilarity
between the most similar pair of images in S.

3.5 Optimization
An exhaustive optimization of U has high complexity as

it would require computing the utility of all N !
K!(N−K)!

K-

subsets of I. The computational cost becomes prohibitive
even if N is small (e.g., N ≈ 300) and one is interested in
identifying K = 20-sized MMR-optimal subsets. Therefore,
we apply a greedy, iterative optimization algorithm that was
also used in [3], with appropriate changes to reflect our new
definitions for relevance and diversity. This algorithm starts
with an empty set S and sequentially expands it by adding
at each step J = 1, . . . ,K the image im∗ that scores highest
(among the unselected images), to the following incremental
utility function:

U(im∗|q) = w ·hq(im∗)+(1−w)· min
imj∈SJ−1

d(im∗, imj), (5)

where SJ−1 represents S at step J − 1. In the first step, the
diversity term of Equation 5 is undefined (S is empty) and
thus the image with the highest relevance score is selected.

4. EXPERIMENTAL SETUP

4.1 Retrieving Diverse Social Images Task
During the task, participants were provided with a ref-

erence annotated development set of 30 queries - to build
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Table 1: Dataset statistics: number of queries (#q),

avg. number of relevant/irrelevant images (#r/#i), avg.

number of clusters (#c), F1@20 of Flickr ranking (#fp).

Set #q #r #i #c #fp

Dev 30 208.5 88.8 23.2 0.477
Test 123 199.9 96.4 22.6 0.470

their approaches - as well as a test set of 123 queries - upon
which they were evaluated - of which the ground truth was
disclosed only after the end of the task. Ground truth con-
sisted of relevance and diversity annotations provided by
experts for all images of each POI. Specifically, each im-
age was first labelled as either relevant or irrelevant and
then visually similar relevant images were grouped together
into clusters. Performance on each query was assessed us-
ing the F1@20 metric that is equal to the harmonic mean of
CR@20 and P@20 (the percentage of relevant images in the
top 20). Table 4.1 provides some key statistics of the RDSI
2014 dataset. In Section 5.4 we also apply our method on
the RDSI 2013 task that is structured similarly to RDSI
2014. The main difference is that RDSI 2013 uses CR@10
as the main evaluation metric. Further details about RDSI
2013 can be found at the corresponding overview paper [9].

A note on ground truth: Although the relevance anno-
tations provided in the RDSI task come from expert anno-
tators, the same type of ground truth could be acquired (for
popular queries) from implicit user feedback as described in
Subsection 3.3.2. Also, note that relevance annotated im-
ages from only 30 queries are used when building the model
that estimates the relevance of the images of each test query.
In addition to these images, we use the reference Wikipedia
page and images provided for each POI as query-specific pos-
itive examples. As we explained in Subsection 3.3.2, positive
examples can be easily acquired even for rare queries.

4.2 Features
The different features used to represent the dataset are

grouped in three categories: a) visual - computed directly
from the image content, b) textual - computed from textual
annotations, and c) meta - computed from the metadata as-
sociated with the images. For all types of multi-dimensional
features unit length normalization is applied and cosine simi-
larity/distance is used for relevance/diversity computations.

Visual: After initial experiments with the features made
available by the task organizers [9], we extracted the follow-
ing state-of-the-art features that lead to significantly better
performance:

VLAD : d = 24, 576-dimensional VLAD+CSURF vectors
[13] are computed using a 128-dimensional visual vocabulary
and then projected to d′ dimensions with PCA and whiten-
ing. Using d′ = 128 leads to near-optimal results for both
relevance and diversity.

CNN : Convolutional neural network features adapted for
the landmark retrieval domain. These features were com-
puted using the Caffe framework [12], with the reference
model architecture but using images of 1,000 landmarks in-
stead of ImageNet classes. We collected approximately 1,200
images for each landmark and fed them directly to Caffe for
training after preliminary experiments that validated the
resilience of the CNN architecture to noisy images. This
change of training classes was inspired by recent domain
adaptation work presented in [2] that demonstrated higher

effectiveness in feature transfer when the training classes are
conceptually close to the datasets used in experiments. The
outputs of the fc7 layer, which includes 4, 096 dimensions,
constitute the initial features. Similarly to VLAD, the di-
mensionality of CNN was reduced to d′ = 128 with PCA, a
value which gives near-optimal results.

Textual: To generate textual features we first trans-
formed each query and each Flickr image into a text doc-
ument. For queries, we used a parsed version of the corre-
sponding Wikipedia page and for Flickr images we used a
concatenation of the words in their titles, descriptions and
tags. Bag-of-words features (BOW ) were then computed
for each document using the 10K most frequent terms of the
collection as the dictionary and term frequencies as term
weights. We found that by repeating the terms in the im-
age titles and descriptions two and three times respectively
to increase their contribution in the similarity compared to
the terms in the tags that are usually more noisy, lead to
increased performance.

Meta: The following one-dimensional features were com-
puted from the textual metadata and used as additional fea-
tures in the meta input space of the MMS algorithm: dis-
tance from the POI, Flickr rank, number of views.

5. EXPERIMENTS

5.1 Relevance Scoring Impact on Quality
In this experiment we want to study the relationship be-

tween the quality of the scores provided by the relevance
scoring component and the diversification performance as
measured by F1@20. A natural way to characterize the
quality of relevance scoring is to measure the ability of the
scoring function (either supervised or unsupervised) to as-
sign higher relevance scores to relevant images than irrel-
evant ones. A suitable measure that is commonly used to
asses the performance of probabilistic classifiers (as well as
scoring functions that assign higher scores to instances that
are considered more representative of the class) is the area
under ROC curve (AUC). AUC is equal to the probability
that a classifier will rank a randomly chosen positive in-
stance higher than a randomly chosen negative. Thus, an
AUC score of 0.5 corresponds to a random classifier and an
AUC score equal to 1 corresponds to a perfect classifier that
ranks all positives examples higher than negative.

Classifiers of various AUC scores are generated as fol-
lows: A positive rp = [plow, 1], plow ≥ 0 and a negative
rn = [0, nhigh], nhigh ≤ 1 relevance score range are de-
fined and each positive/negative example is assigned a ran-
dom score, drawn uniformly from the corresponding range.
When plow > nhigh we have a perfect class separation and
AUC equals to 1, while for plow ≤ nhigh classifiers of lower
AUC scores can be generated. Using the above process we
generated classifiers with average (across all test queries)
AUC scores of {0.5, 0.6, . . . , 1.0}. Figure 3 shows the aver-
age (across all test queries) F1@20 performance when each
of the above classifiers is plugged into the MMR algorithm
in combination with VLAD (red line), CNN (blue line) and
BOW (green line) features for diversity computation. In all
cases, we fix w = 0.5. We observe that with all types of
diversification features, F1@20 shows a strong positive cor-
relation with AUC, suggesting that improving the relevance
scoring quality is important for good diversification.
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Figure 3: F1@20 vs AUC.

5.2 Unsupervised vs Supervised Relevance
In this section we compare the unsupervised variant of the

MMR method [7] (uMMR), with the proposed supervised
variant, named sMMR. In both cases, we use the definition
of diversity presented in Equation 4 as it systematically led
to better results. We show experiments when either a vi-
sual (VLAD)3 or a textual (BOW) representation is used
for both relevance and diversity to highlight potential dif-
ferences between visual and textual features.

When a visual representation is used, the unsupervised
definition of relevance needs to be adapted because the RDSI
benchmark provides up to five (instead of 1) example im-
ages per query. Rather than arbitrarily choosing one of
the available images, we use two alternative definitions of
relevance that lead to better results. Given a composite
query q = {imq1, . . . , imqm}, uMMRavg defines the rele-
vance of each image imi as the average similarity R(imi|q) =
1
m

∑
imqi∈q s(imi, imqi) and uMMRmax defines relevance as

the maximum similarity R(imi|q) = maximqi∈q s(imi, imqi).
The two variants coincide when m = 1. sMMR can be in-
stantiated with any classification algorithm. We choose L2-
regularized Logistic Regression (the LibLinear implemen-
tation of [8]) as it provided a good trade-off between effi-
ciency and accuracy compared to other state-of-the-art clas-
sifiers in preliminary experiments. To select the regulariza-
tion parameter c, we perform leave-one(-query)-out cross-
validation on the development set and choose the value c ∈
{10−2, 10−1, . . . , 102} that gives the best average AUC. De-
pending on how the training set is composed for each query,
three different variants of the sMMR method are created:

sMMRq: The training set contains only the Wikipedia
images or the textual representation of the Wikipedia page.
Since these are positive examples, we add few randomly cho-
sen Flickr images from other queries as negative examples.
sMMRq represents the case where only few query-specific
positive examples are available and attempts to capture the
query-specific notion of relevance.

sMMRa: The training set is composed of Flickr images
from other queries as positive and negative examples. This
variant represents the case where query-specific training ex-
amples are unavailable and we can only use positive and
negative training examples from other queries, for which

3Similar results were obtained with CNN features.

Table 2: AUC and F1@20 performance (averaged over

test set queries) of the uMMR and sMMR variants using

visual and textual features.

VLAD BOW
Method AUC F1@20 AUC F1@20

uMMRavg 0.622 0.536 0.660 0.503
uMMRmax 0.613 0.528 0.660 0.503

sMMRq 0.624 0.535 0.666 0.553
sMMRa 0.664 0.536 0.571 0.481
sMMRaq×1 0.665 0.536 0.575 0.487
sMMRaq×10 0.669 0.532 0.589 0.514
sMMRaq×100 0.690 0.545 0.640 0.541
sMMRaq×1000 0.693 0.561 0.670 0.555

sufficient user feedback is available. sMMRa attempts to
capture the application-specific notion of relevance.

sMMRaq: The training set is composed of Flickr images
from other queries as positive and negative examples as well
as the Wikipedia page/images as positive examples. This
variant represents the case where few query-specific positive
examples are combined with positive and negative exam-
ples from other queries for which an adequate amount of
user feedback is available. We found that simply combining
the few query-specific positive examples with a significantly
larger number of application-specific positive examples gen-
erates very similar models with the sMMRa variant. There-
fore, we experimented with assigning higher weights to the
query-specific positive examples in order to increase their
contribution to the formation of the classification bound-
ary. sMMRaq attempts to capture both the query and the
application-specific notion of relevance.

Table 2 presents the test set AUC and F1@20 scores of
the variants of uMMR and sMMR presented above. AUC is
calculated on the relevance rankings produced by each vari-
ant (without diversification). The reported F1@20 scores
correspond to using a value for w ∈ {0.0, 0.1, . . . , 1.0} that
was tuned to optimize F1@20 on the development set.

When VLAD features are used, we observe that all sMMR
variants outperform the uMMR variants in terms of AUC.
Among the uMMR variants uMMRavg obtains better AUC
than uMMRmax. Interestingly, despite the absence of any
query-specific relevance information, the sMMRa variant ob-
tains a significantly better AUC than both uMMRavg and
sMMRq, suggesting that capturing an application-specific
notion of relevance is important in relevance scoring using vi-
sual features. As expected, when the query and application-
specific relevance information are combined in the sMMRaq

variant, AUC performance improves even further, especially
when a large weight is assigned to query-specific examples.
AUC performance increases from 0.665 when equal weight is
given to the query-specific examples (sMMRaq×1) to 0.693
when a 1000 times higher weight is given (sMMRaq×1000).
With respect to F1@20, although a strong correlation with
AUC is still observed, there are cases where a better AUC
does not necessarily lead to better F1@20. This is attributed
to a poor tuning of the w parameter as a result of using a
small amount of training queries. Nevertheless, we notice
that sMMRaq×1000, the best performing variant in terms of
AUC, also obtains the best F1@20 score (0.561) that is about
5% better than the 0.536 score obtained by uMMRavg.
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When textual features are used, the uMMR method (the
two variants coincide in this case) is only slightly outper-
formed by sMMRq and sMMRaq×1000 in terms of AUC. Con-
trarily to when visual features are used, sMMRa obtains a
significantly lower AUC compared to both uMMR and the
sMMR variants that use query-specific information. This
suggests that application-specific information is not suffi-
cient to produce a good relevance scoring when this scoring
is based only on the textual modality. Nevertheless, the rel-
evance scoring produced by sMMRa is better than random
scoring (AUC=0.5) and the sMMRaq×1000 variant that com-
bines query and application-specific information is again the
best performer. With respect to F1@20, we observe that,
with the exception of the sMMRa and sMMRaq×1 variants,
all other variants produce better F1@20 scores than uMMR.
When sMMRaq×1000 is used, F1@20 increases from 0.503 to
0.555, a 10% improvement.

To test whether there is statistical significance in the ob-
served differences in F1@20 between uMMR and sMMR we
performed the Wilcoxon signed-ranks test between their best
performing variants separately for each feature. The null
hypothesis is rejected in all cases (VLAD, CNN and BOW)
with a p ≤ 0.01 confirming the superiority of sMMR.

5.3 Multimodal Fusion
So far, we compared instantiations of the uMMR and

sMMR methods that used only a single type of features for
relevance scoring. In this section, we want to evaluate the
performance of the two methods when more features are
combined to assign relevance scores.

In particular, to create a multi-feature instantiation of
the uMMR method given k types of features, we compute
the relevance of each image to the query as R(im|q) =
1
k

∑k
i=1 Ri(im|q), where Ri(im|q) is computed according to

equation 2. That is, unsupervised relevance scores are com-
puted independently for each feature and then averaged to
produce an overall relevance score. In the case of composite
queries, the uMMRavg variant is used as it gave slightly bet-
ter results than uMMRmax in Subsection 5.2. The resulting
method is called uMMR-M.

To combine multiple features in sMMR, we use the MMS
method presented in Subsection 3.3.3. More precisely, the
sMMRaq×1000 configuration is used for the single-modality
models since it was found superior to other configurations
in Subsection 5.2. L2-regularized Logistic Regression is used
as classification algorithm for both the single-modality mod-
els and the meta model and the regularization parameter
is tuned as described in Subsection 5.2 but searching in a
wider range of values (c ∈ {10−4, 10−3, . . . , 10−4}) for the
meta model. The resulting method is called sMMR-MMS.

Table 3 presents the AUC and F1@20 scores obtained with
uMMR-M and sMMR-MMS using pairs of the three multi-
dimensional features presented in Subsection 4.2 (rows 4-
6). We also present results for sMMR-MMS when the three
one-dimensional features (meta) presented in Subsection 4.2
are used within the MMS algorithm as described in Subsec-
tion 3.3.3 (rows 7-9). Results using each of the three fea-
tures alone for both relevance and diversity are also reported
to facilitate comparison (rows 1-3). AUC scores are calcu-
lated on the relevance rankings produced by each variant
and the reported F1@20 scores correspond to using a value
for w ∈ {0.0, 0.1, . . . , 1.0} that was tuned to optimize F1@20
on the development set. In all multi-feature instantiations,

Table 3: AUC and F1@20 performance (averaged over

test set queries) of uMMR-M and sMMR-MMS using

various combinations of features.

Feature(s)
AUC F1@20 AUC F1@20

uMMRavg sMMRaq×1000

VLAD 0.622 0.536 0.693 0.561
CNN 0.733 0.530 0.808 0.572
BOW 0.660 0.503 0.670 0.555

uMMR-M sMMR-MMS
VLAD+CNN 0.729 0.580 0.806 0.594
VLAD+BOW 0.697 0.586 0.727 0.578
CNN+BOW 0.765 0.588 0.814 0.608

VLAD+CNN+meta N/A N/A 0.828 0.619
VLAD+BOW+meta N/A N/A 0.740 0.590
CNN+BOW+meta N/A N/A 0.827 0.631

VLAD features were used for diversification as they gave
the best F1@20 scores when tested with artificial classifiers
of various AUC performances in Subsection 5.1.

Looking at the results obtained with single-modality in-
stantiations we observe that the AUC performance obtained
with CNN features is significantly better compared to VLAD
and BOW when either uMMRavg or sMMRaq×1000 is used
for relevance scoring. This superiority of CNN for relevance
scoring explains also the better F1@20 performance obtained
with CNN features despite the fact that VLAD were found
better for diversity scoring in Section 5.1.

With respect to two-feature instantiations we observe that
sMMR-MMS obtains better AUC scores than uMMR-M in
all cases. The situation is similar with respect to F1@20
where uMMR-M obtains better F1@20 only in one case
(VLAD+BOW). We also observe that with either uMMR-
M or sMMR-MMS, both AUC and F1@20 are always better
than using any of the two features alone with the exception
of the VLAD+CNN combination where slightly worse per-
formance is obtained in terms of AUC compared to using
the CNN features alone. This can be attributed to the facts
that a) CNN and VLAD are both visual representations and
thus have a small degree of complementarity and b) CNN
significantly outperforms VLAD in terms of AUC. Using
the CNN+BOW feature combination and the sMMR-MMS
method, a 0.631 F1@20 score is obtained that is about 6%
better than the F1@20 obtained by the best single-modality
instantiation. To test whether there is statistical significance
in the observed differences in F1@20 between uMMR-M and
sMMR-MMS we performed the Wilcoxon signed rank test
between their best two-feature instantiations (CNN+BOW).
The null hypothesis is rejected with a p ≤ 0.01.

Finally, we see that when the meta features are used,
both AUC and F1@20 improve further. In particular, the
CNN+BOW+meta combination obtains the highest F1@20
followed by VLAD+CNN+meta and VLAD+BOW+meta.

Time efficiency: Compared to uMMR, sMMR has the
additional computational cost of training the relevance de-
tection models. However, these models will typically be
trained offline. During the online reranking phase, uMMR
has to compute similarity scores between the query image
and the top-N results of a search engine while sMMR has
to classify each of the top-N images. When a linear model
is used (as done here), the computational cost is similar.
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Table 4: Comparison to best RDSI task results.
Method 2013 (CR@10) 2014 (F1@20)

Best in RDSI 0.440 [11] 0.597 [6]
This paper 0.473 +7.5% 0.631 + 5.7%

Using one core of an i5 2.4 GHz processor, the training of
a sMMRaq×1000 model on 8919 images took ∼0.5 sec with
VLAD and CNN and ∼9 sec with BOW features while using
such a model to predict the relevance score of a single image
took ∼0.01 ms and ∼0.3 ms respectively. A sMMR-MMS
model combining the predictions of any two such models
took an additional time of 200 ms to train and ∼0.007 ms
to make a prediction. Reranking 300 images to select a
20-sized subset with the greedy algorithm of Subsection 3.5
using VLAD features for diversity took ∼50 ms.

5.4 Comparison to Best RDSI Results
Table 4 compares the test performance of our best di-

versification method, sMMR-MMS, with that of the best
performing systems of the MediaEval 2013 and 2014 RDSI
tasks. As in previous experiments, the c parameter of the
logistic regression models used in the MMS algorithm was
tuned to optimize AUC on the development set. Using this
procedure, we built MMS relevance scoring models with the
feature combinations presented above and then applied di-
versification using VLAD. For each sMMR-MMS instantia-
tion, we evaluated its performance on the development set
using values for w ∈ {0.0, 0.05, . . . , 1.0} and selected the in-
stantiation that obtained the maximum F1@20 score and the
corresponding w value, and applied it on the test set. For
the RDSI 2013 task, CR@10 was used instead of F1@20 for
model selection since it was the primary evaluation measure
of this benchmark. In both cases, the best results were ob-
tained using the CNN+BOW+meta combination. As shown
in Table 4, our method outperforms the best systems of
RDSI 2013 and 2014 by 7.5% and 5.7% respectively.

6. CONCLUSIONS - FUTURE WORK
We introduced a supervised version of the popular MMR

diversification algorithm and showed that using few query-
specific, positive relevance annotations combined with extra-
query but application-specific, positive and negative rele-
vance annotations leads to significant performance improve-
ments of relevance scoring in terms of AUC. Furthermore, we
captured the strong relationship between the AUC score and
a common diversification measure (F1@K) within the MMR
framework and showed that improved relevance results in
better diversification. Finally, we presented a novel multi-
modal ensemble classifier (MMS) and showed that it effec-
tively combines different types of multi- and one-dimensional
features. The resulting diversification method significantly
outperformed competing methods in two benchmarks.

Despite its computational efficiency, the greedy maximiza-
tion algorithm that we used might fail to find the global
optimum of the utility function in Equation 1. To deal
with this problem, [7] developed dynamic programming al-
gorithms that consider many alternative paths simultane-
ously, thus increasing the chance of finding an optimal solu-
tion. Although these variants were not considered here, they
are directly applicable to our method and could further im-

prove its performance. In this paper, we focused on the
relevance scoring component of the MMR method, however,
the quality of diversity scoring plays an equally important
role. In the future, we want to investigate supervised tech-
niques for improving the quality of diversity scoring and a
principled way of combining multiple features to compute
diversity scores. Application-wise, we would like to evaluate
our method in a privacy-aware retrieval setting.
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