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Abstract. Energy Disaggregation is the task of decomposing a single
meter aggregate energy reading into its appliance level subcomponents.
The recent growth of interest in this field has lead to development of
many different techniques, among which Artificial Neural Networks have
shown remarkable results. In this paper we propose a categorization of
experiments that should serve as a benchmark, along with a baseline
of results, to efficiently evaluate the most important aspects for this
task. Furthermore, using this benchmark we investigate the application
of Stacking on five popular ANNs. The models are compared on three
metrics and show that Stacking can help improve or ensure performance
in certain cases, especially on 2-state devices.

Keywords: NILM · Energy Disaggregation · Artificial Neural Networks
· Stacked Learning · Benchmark.

1 Introduction

In the modern world, one of the biggest problems humanity is facing is the in-
adequate management of electrical energy. Overconsumption causes a series of
negative phenomena that have both economic and ecological impact, at individ-
ual and mass scale. Numerous factors affect this problem, such as the dramatic
increase in usage of electrical devices in recent decades, as well as the global pop-
ulation growth. It is apparent that extensive research is required to have better
methods of controlling electrical energy consumption. The existence and appli-
cation of smart meters already contribute in that regard. Energy disaggregation
can make further use of those, to enhance load monitoring capabilities.

Energy disaggregation, also known as Non-intrusive load monitoring (NILM),
is the task of decomposing an aggregate energy signal into its sub-components,
i.e identifying the individual appliances signal from the whole energy consump-
tion of a house. It was first introduced by George Hart [4]. By applying NILM

? This work has been funded by the ΕΣΠΑ (2014-2020) Erevno-Dimiourgo-Kainotomo
2018/EPAnEK Program ’Energy Controlling Voice Enabled Intelligent Smart Home
Ecosystem’, General Secretariat for Research and Technology, Ministry of Education,
Research and Religious Affairs.



2 Symeonidis N. et al.

methods load monitoring becomes easier and less costly, due to the requirement
of only a single meter from which the device level signals can be extracted, in
contrast to ILM (intrusive load monitoring) methods where multiple meters are
needed per house. Therefore ILM has much bigger economical cost and increased
difficulty from installing and configuring the meters, its only advantage being its
guaranteed higher accuracy.

Many researchers focus on finding solutions where a model is trained per ap-
pliance, having as input the whole house energy data and as output the appliance
consumption. Each work has its own test cases defined and investigates a set of
metrics upon them. Due to this, many different possible scenarios are created,
which complicates the comparison between the proposed and existing solutions.
There is a lack of structure to follow when conducting the evaluation of a new
model. This creates a necessity for a well-defined set of experiments. A set like
this should include a variety of scenarios that cover a wide range of aspects and
goals for the model under evaluation. Each scenario is tied to a specific purpose,
that reveals if the model is suitable for the case.

In this paper we propose a benchmark framework for the evaluation of NILM
solutions. Also five ANNs are combined with the method of Stacking and then
evaluated with the proposed framework. This paper is structured as follows: in
section 2 some of the most popular neural network solutions, that are important
for this study, are reviewed. In section 3 the proposed categorization of experi-
ments is described. Section 4 expands upon the method of Stacking. Section 5
presents the most important results produced from Stacked learning. Section 6
includes conclusions from the experiments and discussion for future work. The
implementation of Stacking and the five used ANNs, a detailed spreadsheet con-
taining the defined experiments for each category, as well as baseline results can
be found in the following repository https://github.com/symeonick15/NILM-
Stacking.

2 Related Work

There have been many approaches to solving this problem, among which Machine
Learning (ML) has taken the lead of research in recent years. ML methods exhibit
great generalization capability on unseen environments, without the need of
prior information. Initially, Hart proposed a combinatorial optimization method,
which suffered from working only with devices that had a finite number of states.
Later Factorial Hidden Markov Models (FHMM) have become quite popular and
many developed techniques were based on them [7,15,1,19].

The study around NILM has recently turned towards implementing solutions
based on artificial neural networks. Deep and convolutional neural networks
have become dominant in many fields like Computer Vision [9] and Natural
Language Processing [3], and have been used successfully in many problems that
include time series data. Their ability to extract features and handling complex
data has lead researchers to start developing NILM solutions based on them,
outperforming former approaches [14,5,11,12,18,10,2].
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Kelly and Knottenbelt [5] developed three ANN architectures for the task of
Energy Disaggregation. The first was a Denoising Auto Encoder that handles
the aggregate signal as a “noisy” series, which filters out the noise (i.e. signals
from other devices) to extract the target appliance consumption. The 2nd was
a Recurrent Neural Network that used LSTM units (long short-term memory)
and had the ability to “remember” previously given inputs to use them for pre-
diction. The last architecture would find the Start time, End time and mean
consumption of the first activation in a given window. All three were trained
on the UK-DALE dataset, having as input the whole-house aggregate signal
and as target the appliance consumption. An FHMM approach and Hart’s com-
binatorial optimization algorithm were also used for the same experiments. In
comparison, ANNs outperformed these two methods.

In another study, Mauch and Yang [12] implemented a different architecture
with LSTM units for the Energy Disaggregation task. The proposed deep recur-
rent network had as input the aggregate energy value at a specific timestamp
and as output the appliance consumption at the same timestamp. Among the
goals of this network was to automatically extract features from low-frequency
data and to generalize well on unseen buildings. REDD dataset was used for
train and prediction, for two ON/OFF and one multistate devices. Results were
promising both on seen and unseen buildings.

Zhang et al. [18] proposed a different deep convolutional architecture that
they named sequence to point. The method took its name from the main idea
to predict the value of a single time point, based on a sequence of values in the
input that has the time point at its midpoint. The input window used had 600
samples (1 hour). The network achieved state of the art results and had great
representation power, as it would base its predictions both on the past and the
future of a time point.

Krystalakos et al. [10] used Gated Recurrent Units during their experiments
to improve current LSTM architectures. To decrease the computational cost and
memory demands, LSTM neurons were replaced with GRU, fewer neurons were
used and dropout layers were added. Furthermore, a sliding window approach
was tested. The network was trained and tested on UK-DALE and compared
directly to implementations based on previous architectures, among which a
modified seq2point more suitable for online prediction (smaller input windows).
The proposed architecture showed promising results, especially on multi-state
devices, and it had the same or better results than LSTM while being lighter.

Although there wasn’t a benchmark that was actually followed by these stud-
ies to base their experiments, many have used the same or similar structure
presented in the work of Kelly and Knottenbelt [5]. Also, most had similarities
in their tests, such as having the trained model predicting in an unseen house,
aiming to evaluate specific aspects of the models.

In a review of ML approaches for NILM by Nalmpantis and Vrakas [13],
it is stated that an objective and direct comparison between different methods
is very difficult. The reason is that there are various metrics, many available
datasets, different criterias and a variety of methodologies that one can choose
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when evaluating NILM solutions. A qualitative and a quantitative analysis is
presented with methods for evaluation. Among these are Zeifman’s requirements
[17], as well “generalization” and “privacy” requirements, along with metrics for
each. Also a measure of disaggregation complexity is defined, to evaluate the
different environments.

3 Purpose

In this paper, we present a categorization of experiments with the purpose to
have a unified way of comparing models during research. The scenarios of the
proposed categorization include specific train and test cases, each with an ex-
plained purpose that explores an aspect of the model, plus a basic set of metrics
to evaluate the performance, as both classification and regression. Also, as a
reference point it can be further expanded with more cases or have its existing
modified, to accommodate additional scenarios, should it be required in a future
research, where a more specific goal is examined (e.g. commercial buildings). The
proposed benchmark is defined on a set of five appliances, however, the scenarios
included can easily be generalized for any device, or even different datasets.

Moreover, the effects of combining several neural networks with the method
of Stacking are investigated, by comparing them using the aforementioned taxon-
omy. Stacking has been used widely in Machine Learning approaches to combine
many different models in order to achieve better results than each model in-
dividually. The basic idea is to follow this method, in hope of improving the
performance of existing neural network architectures, and to see the actual im-
pact it has on them.

4 Taxonomy of Experiments

In this section, the proposed categorization of experiments is described, for usage
in the evaluation of new Energy Disaggregation models. Specifically, this method
is suitable for evaluating techniques (e.g. ANNs) that take an aggregate signal
as input and predict a specific appliance consumption. There are four main
categories of experiments described for this method and the purpose that each
serves. Although these can be expanded and/or modified to suit the goals of
individual studies, we also proceed to define the datasets and appliances used in
this study.

The two datasets used in this study are Reference Energy Disaggregation
Data Set (REDD) [8] and UK-DALE [6]. Both datasets are freely available, sup-
port low-frequency data, refer to domestic buildings and have several houses and
appliances for testing. They are also two of the most popular datasets in the field
of NILM. The target appliances are: fridge, kettle, microwave, washing machine,
and dishwasher. These have been used by many researchers because they cover
a wide range of appliance types a house may include. For example, the kettle is
a simple ON/OFF device, while the dishwasher is multistate with more complex
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behavior. Furthermore, they constitute most of a building’s consumption and
appear in most of the houses making a better target for evaluation.

4.1 Category 1: Single Building NILM

This is actually the most simple form of experiment, where training and pre-
diction happen on the data of the same building, at different time ranges. This
evaluates the performance of a model on an environment very similar to the
one it was trained on. This is a vital prerequisite for a technique. If it has poor
results here, it probably won’t do better at other experiments as well. Of course,
no house stays the same in reality, but that is also a part of the problem. The
specific experiment defined in this study for this category includes training and
testing on house 1 of UK-DALE. The test set is defined as the year following
April 2016, while the rest of the data are available for training. House 1 has the
most available data, thus making it suitable for both training and testing.

4.2 Category 2: Single building learning and generalization on same
dataset

Several experiments may be mapped to this category, one per house. Training
happens on one house of a selected dataset, while prediction is applied to the
rest houses. The purpose of these experiments is to evaluate the ability of the
model to generalize on relatively similar unseen houses when trained on data
on one house. Although learning is restricted to only one house, this also shows
if the trained model is overfitting on its data, which is another aspect to be
evaluated. It needs to be noted that houses here are considered similar (e.g. same
city/country), but in reality, even neighboring houses may be totally different in
their energy patterns (different appliances, consumption patterns, etc.). House
1 of UK-DALE is selected as the training set here again, while the rest of the
houses where the target appliance is present compose the test sets. The first
house has a good amount of data for learning, while the rest have a few months
each, so they are better for prediction.

4.3 Category 3: Multi building learning and generalization on same
dataset

In this category, the model is trained with data from more than one, relatively
similar houses (same dataset), while prediction is applied on data from a house
that was not present during training. The main purpose here is again to evaluate
the generalization ability of the method. The second aspect that is being assessed,
is the ability of the technique to learn from multiple different sources and combine
efficiently the knowledge extracted from them. A model that achieves this will
theoretically perform better on new unknown data, due to the variety of data it
has learned. This is a similar, but more complex task from the previous category,
because a learning algorithm may get “confused”, by the variance of the data.
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The experiments used for this category are defined for the UK-DALE dataset
and follow the same structure as the ones in the study of Kelly and Knottenbelt
[5], for tests on unseen buildings. This way a comparison with existing studies
becomes easier and more direct.

4.4 Category 4: Generalization to different dataset

By expanding the previous experiment with the prediction on a different dataset,
the task becomes even more difficult. The houses on which the model is tested
are not similar (e.g. different countries) to the ones it was trained on and may
present great differences in characteristics such as included appliances, appliance
types, energy grid, consumption behavior, etc. So to perform well the model must
possess strong generalization capabilities. The difficulty here can get great and
unpredictable. However, it is an interesting query, that evaluates an important
ability of a NILM solution. The training set is comprised of UK-DALE data,
while testing is applied to REDD data. The first has buildings in the UK, while
the second is for buildings in USA. The differences between these two can be
apparent, making them a suitable choice for this category.

5 Artificial Neural Networks with Stacking

In this section, we investigate the application of ensemble learning to existing
NILM solutions, to further increase their accuracy. The combined model is eval-
uated using the aforementioned benchmark method, by comparing it with the
individual results of the models that were combined.

As recent research suggests that Artificial Neural Networks fare rather well
in the task of Energy Disaggregation, 5 such networks have been selected as the
base models for the ensemble. The selected networks are Denoising Auto-Encoder
(DAE)[5], Recurrent Neural Network (RNN)[5], Short Seq-2-point (SS2P)[18],
GRU Network (GRU)[10], GRU with sliding window (WGRU)[10]. All have
shown promising results in previous research, where some were better than the
others in certain situations. More info about those ANNs can be found in the
Related Work section.

The following is a summary of the ANNs architectures. DAE had a convolu-
tional layer, 3 fully connected layers and one more convolutional as the output,
with dropout between them. GRU had 2 convolutional, 2 bidirectional GRU and
2 fully connected layers. RNN had 1 convolutional, 2 bidirectional LSTM and
2 fully connected layers. WGRU had 1 convolutional, 2 bidirectional GRU and
2 fully connected layers, with dropout between the last 4. SS2P had 5 convo-
lutional layers and 2 fully connected ones, with dropout between them. More
details can be found at the provided code on github.

5.1 Introduction to Stacking

The basic idea behind stacking is combining several different learners, to achieve
better results than each of the base models would achieve individually. It is es-
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pecially efficient when base learners make different errors. Each algorithm learns
a part of the problem, while the final combined model is able to learn a greater
space. To achieve this, the training set should further be split into 2 separate
parts. The first part, usually much bigger than the other, is used to train each of
the base models. After each model is trained, the second part is given as an input
to each model to get their predictions. The predictions generated are then com-
bined into one matrix that will make up the training input of a different learner
(usually simpler), the meta-learner, while the target output is left as is (from
the second part). That way the stacked model learns from the predictions of the
base models, so it can combine them. After that, the stacked model is ready for
prediction. The prediction follows a similar procedure, where each base model
is given a copy of the input and then their predictions are given as an input to
the meta-model to generate the final prediction. Stacking is especially efficient
when base learners make different errors.

5.2 Implementation

The above procedure was implemented as a 2-step method for the stacking ex-
periments. During the first step, each of the neural networks was trained on a
part of the training set. Each trained model was also given the second part of
the train set and the test set as input for prediction, to generate the train and
test set of the stacked model respectively. The predictions were saved as inter-
mediate files to be reused. In the second step, the prediction for the stack train
was loaded and aligned on their timestamps. Then they were scaled and used to
fit the selected meta-regressor. In the final phase, the predictions on the test set
were loaded in the same way and given as input to the meta-model to generate
the final predictions.

The sampling ratio for all data was 6 seconds. Only real data were used, with
no synthetic data generation. Code is written in Python. The implementation
of the used networks was based on a previous study of Krystalakos et al. [10],
which were developed using Keras with Tensorflow backend on GPUs. NILMTK
was used for loading and preprocessing of data during the base model training
and stacking phase. Scikit-learn was used for the Meta-regressors.

The metrics used for the evaluation were F1, Relative Error in Total Energy
(RETE) and Mean Absolute Error (MAE).

F1 = 2× Precision×Recall

Precision + Recall
(1)

RETE =
|E′ − E|

max(E′, E)
(2)

MAE =
1

T

∑
|y′t − yt| (3)

Where E′ is the total predicted energy, E is the total true energy, y′t is the
consumption predicted at time t and yt is the true consumption at time t.
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6 Results and Discussion

Table 1. Fridge, Category 1, Train and
test on UK-DALE house 1.

MODEL F1 RETE MAE

DAE 0.637 0.224 35.81
GRU 0.673 0.130 34.03
RNN 0.662 0.270 34.69
SS2P 0.651 0.215 35.23
WGRU 0.641 0.224 34.30
AB-3d 0.674 0.163 33.54
AB-30 0.635 0.017 26.56

Table 2. Fridge, Category 3, Train on
houses 1, 2, 4 and test on 5 of UK-DALE.

MODEL F1 RETE MAE

DAE 0.514 0.176 47.17
GRU nan 0.296 53.87
RNN nan 0.318 53.92
SS2P nan 0.023 49.18
WGRU 0.569 0.243 51.85
DT5 0.641 0.221 46.71
AB-30 0.525 0.225 44.43

In this section, we present some of the most important results that were
observed during the experiments. A complete set of results can be found in the
supplied repository and was not presented here due to its size. Some results are
highlighted to indicate that they were the best among those that were tested
(best among base and among stacked). The following are the meta-regressors
referenced from the result matrices. Ada Boost with Decision Tree of depth 3, 25
estimators, learning rate 0.1 and ‘square’ loss (AB-3d). Ada Boost with Decision
Tree, 30 estimators and learning rate 0.5 (AB-30). Ada Boost with Decision Tree,
15 estimators and learning rate 0.5 (AB-15). Multi Layer Perceptron with one
hidden layer of 100 neurons (MLP). Decision Tree Regressor of depth 5, 15%
min split ratio, 9% min leaf ratio (DT5). Simple Decision Tree Regressor (DT).
Gradient Boosting Regressor with 25 estimators and learning rate 0.5 (GB).

As it can be seen among the ANNs, some results in F1 score are ’nan’.
In those cases the predictions of the model were never above the activation
threshold, leading to division by zero. This happens mostly on generalization
tasks, proving the difficulty of disaggregating the signal of an unseen building.
On the other hand stacking seems to have the advantage of overcoming this
problem.

Results for Category 1 experiments of fridge are shown at table 1. Among
base models, GRU was a clear winner. Stacking with AB-3d mostly improved
F1, while AB-30 had very good RETE and MAE. AB-3d had short trees, so it
could not be as accurate, but managed to hit the activation threshold better.
AB-30 has predictions closer to the ground truth values, as can be seen from
the figure 1, but seems a bit “unstable” (many spikes where it should have
continuous values). Maybe by applying a smoothing technique on top of it, it
could be further improved. Generally stacking has good results, especially with
AB-30, which enhances regression efficiency.

Table 2 shows the results of category 3 experiments for fridge. Here the
best RETE was not improved, however, it’s still better than 3 out of 5 of base
models. MAE is reduced, while DT5 also has very good F1. As above the short
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tree (DT5) is better suited for classification, while also is less prone to overfitting.
In general, tree-based models seem to work better with the fridge, probably due
to the simple, repetitive nature of its time series.

Table 3. Kettle, Category 1, Train and
test on UK-DALE house 1.

MODEL F1 RETE MAE

DAE 0.496 0.250 15.47
GRU 0.301 0.536 32.00
RNN 0.304 0.461 28.12
SS2P 0.322 0.110 19.95
WGRU 0.582 0.192 10.78
DT 0.740 0.130 8.11
AB-15 0.804 0.161 6.37

Table 4. Kettle, Category 3, Train on
houses 1, 2, 3, 4 and test on 5 of UK-
DALE.

MODEL F1 RETE MAE

DAE 0.504 0.055 10.71
GRU 0.104 0.383 24.48
RNN 0.250 0.419 43.58
SS2P nan 0.593 11.02
WGRU 0.663 0.122 10.16
DT 0.566 0.098 9.98
GB 0.583 0.033 10.44

Table 3 has the results of Category 1 experiments for kettle. F1 is greatly
increased with the application of stacking here, especially with AB-15 which also
greatly improves MAE metric and has better RETE than 3/5 of base models.
However even best RETE from stacking was worse than best from base models.
Again trees were the best combiners. In category 2 though, stacking did not do
so well. Probably because kettle is a relatively simple device and stacking forces
the final model to focus even more on house 1, it is easier to overfit.

Results of category 3 experiments for kettle are shown at table 4. Among neu-
ral networks DAE and WGRU had the best results. With stacking, GB managed
to have the best RETE, about the same MAE and 2nd best F1 after WGRU.
It was a fine point between the strong points of the best base models. DT was
similar, with little worse on F1 and RETE, but the best MAE overall. A simple
tree is again among the best, because of the simplicity of the device’s behaviour.
Also boosting is susceptible to overfitting, risking generalization capabilities.

Table 5. Dishwasher, Category 1, Train
and test on UK-DALE house 1.

MODEL F1 RETE MAE

DAE 0.109 0.001 43.61
GRU 0.471 0.140 37.06
RNN 0.467 0.072 38.54
SS2P 0.550 0.047 31.01
WGRU 0.468 0.332 31.22
MLP 0.571 0.195 29.46

Table 6. Washing machine, Category 3,
Train on houses 1,5 and test on 2 of UK-
DALE.

MODEL F1 RETE MAE

DAE 0.128 0.566 28.18
GRU 0.156 0.601 32.05
RNN nan 0.679 33.21
SS2P 0.174 0.745 40.27
WGRU 0.302 0.568 10.55
AB-30 0.324 0.136 12.07
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Fig. 1. Sample signal plots including: original, predicted from ANN, predicted from
Stacking.

Dishwasher category 1 results can be found at table 5. Stacking here seems to
fail at the score of RETE. On the other hand MLP improves the best F1 and the
best MAE. AB-3d had an even better MAE, but lost even more on the metrics of
F1 and RETE. This time it was not trees, but MLP with 100 neurons that had
the best results, suggesting that a more complex model is required for devices
such as dishwasher, which have multiple states and complicated behaviour that
is time-dependent. Category 2 experiments of the dishwasher had mixed results:
F1 would be improved, while the other metrics varied, depending on the house
and meta-regressor. In Categories 3 and 4 stacking did not succeed, indicating
the requirement of a more appropriate technique.

Results of washing machine category 3 are shown at table 6. Among the ex-
periments of washing machine, some interesting results were found here. Most
meta-models had a great improvement of RETE. AB-30 managed to even in-
crease best F1 score, while keeping a near best MAE.

7 Conclusions and Future Work

We have proposed a benchmark to evaluate Energy Disaggregation models and
used it to evaluate the application of stacking on existing techniques. Through
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the experiments, many aspects of the proposed method were explored and stack-
ing showed promising results.

Across the results it appeared that some models were more suited than others
in different scenarios. The advantage of stacking was that it could either improve
those, or at least find a fine point between them, making it a robust solution.
The tested stacked models had good results mostly for disaggregating simple de-
vices (fridge, kettle), especially on same house train-test scenarios. Mainly, Tree
based models were the best combiners, while AdaBoosting could further enhance
them with the risk of overfitting. This risk was made apparent in generalization
experiments (Categories 2-4).

An example scenario that uses stacking could include a weak fast solution
that produces online results, which is later combined with the output of other
models to produce more accurate final predictions. For generalization tasks im-
provements seemed less and on complex devices stacking sometimes did not
succeed, possibly due to their complicated behaviour that is time dependant,
along with the number of states and functions they have. This suggests that
other meta-regressors may be more suited, possibly more complicated, time se-
ries oriented techniques like Neural Nets, that also have better generalization
abilities. Another form of ensemble learning or stacking would also be interest-
ing to test, like meta decision trees [16]. Maybe even another method on top of
that could be used to smooth/filter the predicted signal. Regarding the proposed
benchmark and the categories of experiments defined, there could also be some
other similar scenarios not included here. For example one could have a training
set combined from the 2 used datasets (UK-DALE, REDD) and test on both of
them or even a third.
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