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Abstract. Technological breakthroughs on smart homes, self-driving
cars, health care and robotic assistants, in addition to reinforced law
regulations, have critically influenced academic research on explainable
machine learning. A sufficient number of researchers have implemented
ways to explain indifferently any black box model for classification tasks.
A drawback of building agnostic explanators is that the neighbourhood
generation process is universal and consequently does not guarantee true
adjacency between the generated neighbours and the instance. This pa-
per explores a methodology on providing explanations for a neural net-
work’s decisions, in a local scope, through a process that actively takes
into consideration the neural network’s architecture on creating an in-
stance’s neighbourhood, that assures the adjacency among the generated
neighbours and the instance.The outcome of performing experiments us-
ing this methodology reveals that there is a significant ability in captur-
ing delicate feature importance changes.

Keywords: Explainable - Interpretable - Machine Learning - Neural
Networks - Autoencoders.

1 Introduction

Explainable artificial intelligence is a fast-rising area of computer science. Most
of the research in this area is currently focused on developing methodologies
and libraries for interpreting machine learning models for two main reasons:
a) increased use of black box machine learning models, such as deep neural
networks, in safety-critical applications, such as self-driving cars, health care
and robotic assistants, and b) radical law changes empowering ethics and human
rights, which introduced the right of users to an explanation of machine learning
models’ decisions that concern them.

Local Explanators are methods aiming to explain individual predictions of
a particular model. LIME [18] is a state-of-the-art methodology that first con-
structs a local neighbourhood around a given new unlabeled instance, by per-
turbing the instance’s features, and then trains a simpler transparent decision
model to extract the features’ importance. Subsequent model agnostic methods
like Anchors [19], X-SPELLS [12] and LORE (8] focused on generating better
neighbourhoods.
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This paper is concerned with generating better neighbourhoods too. How-
ever, it focuses on neural network models in particular, in contrast to the model
agnostic local explanators mentioned in the previous paragraph that can work
with any type of machine learning model. Our approach is inspired by the fol-
lowing observation: small changes at the input layer might lead to large changes
at the penultimate layer of a (deep) neural network, based on which the final
decision of the network is taken. We hypothesize that creating neighbourhoods
at the penultimate layer of the neural network instead, could lead to better
explanations.

To investigate this intuitive research hypothesis, we introduce our approach,
dubbed LioNets (Local Interpretation Of Neural nETworkS through penultimate
layer decoding). LioNets constructs a local neighbourhood at the penultimate
layer of the neural network and records the network’s decisions for this neigh-
bourhood. However, in order to build a transparent local explanator, we need to
have input representations at the original input space. To achieve this, LioNets
trains a decoder that learns to reconstruct the input examples from their repre-
sentations at the penultimate layer of the neural network. Taking together, the
neural network model and the decoder resemble an autoencoder.

For the evaluation of LioNets, a set of experiments have been conducted,
whose code is available at GitHub repository “LioNets”!. The results show that
LioNets can lead to more precise explanations than LIME.

2 Background and Related Work

In order to be able to present LioNets architecture, this section will provide a
sequence of definitions concerning the matter of explainable machine learning,
autoencoders and knowledge distillation.

2.1 Explainable Machine Learning

Explainable artificial intelligence is a broad and fast-rising field in computer
science. Recent works focus on ways to interpret machine learning models. Thus,
this paper will focus on explainable machine learning. An accurate definition is
the following:

“An interpretable system is a system where a user cannot only see but
also study and understand how inputs are mathematically mapped to
outputs. This term is favoured over “explainable” in the ML context
where it refers to the capability of understanding the work logic in ML
algorithms” [1].

There are several dimensions that can define an interpretable system accord-
ing to [9]. One interesting dimension is the scope of interpretability. There are
two different scopes. An interpretable system can provide global or/and local

! https://github.com/iamollas/LioNets
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explanations for its predictions. Global explanations can present the structure
of the whole system, while local explanations are focused on particular instances.

In the same paper, they are also presenting the desired features of any inter-
pretable system. Those are:

— Interpretability: Interpretability measures how much comprehensible is an
explanation. In fact, there is not a formal metric because for every problem
we measure different attributes.

— Accuracy: The accuracy, and probably other metrics, of the original model
and the accuracy of the explanator.

— Fidelity: Fidelity describes the mimic ability of the explanator, namely
the ability of the explanator on providing the same results as the model it
explains for specific instances.

2.2 Autoencoders

Autoencoders is a growing area within deep learning [13]. An autoencoder is an
unsupervised learning architecture and can be expressed as a function

fiX > X. (1)

Autoencoder networks are widely used for reducing the dimensionality of the in-
put data. They initially encode the original data into some latent representation
and subsequently reconstruct the original data by decoding this representation
to the original dimensions. The most common varieties of autoencoders are the
three following;:

— Vanilla: A three-layered neural network with one hidden layer.

— Multilayer: A deeper neural network with more than one hidden or recur-
rent layers. For example Variational Autoencoders [11,17].

— Convolutional: Used for image or textual data. In practice, the hidden
layers are not fully connected, but convolutional layers.

2.3 Related Work

As already mentioned, LIME [18] is a state-of-the-art method for explaining
predictions. It follows a simple pipeline. It generates a neighbourhood of a specific
size for an instance by choosing randomly to put a zero value in one or more
features of every neighbour. Then the cosine similarity of each neighbour with the
original instance is measured and multiplied by one hundred. This constitutes
the weight on which the simple linear model will depend on for its training.
Thus, the most similar neighbours will have more impact on the training process
of the linear model. A disadvantage of LIME is in sparse data. Due to the
perturbation method that takes place on the original space, LIME can only
generate 2" different neighbours, where n the number of non-zero values. For
example, in textual data, in a sentence of six words represented as a vector
of four thousand features, where each feature corresponds to a word from the
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vocabulary, the non-zero features are only six. Hence, only 2° = 64 different
neighbours can be generated. However, LIME will create a neighbourhood of five
thousand instances by randomly sampling through the 64 unique neighbours.

X-SPELLS [12] is a forthcoming solution providing model agnostic local ex-
planations to black boxes dealing with sentiment analysis problems. The core
idea of this work is to generate neighbourhoods for instances, which they will con-
tain semantically correct synthetic neighbours, using techniques similar to para-
phrasing. By creating such neighbourhoods, using variational autoencoders [11,
17] to create new examples in the latent space, the goal is to present some of
these neighbours to the user as the explanation. To accomplish this, they train
a decision tree on the neighbourhood with labels assigned from the black box
and subsequently they are extracting the exemplars.

Another set of methodologies in explaining decision systems, and specifically
neural networks, are using Knowledge Distillation [10,7]. Those methods are
trying to explain globally the whole structure and the predictions of a deep
neural network, by distilling its knowledge to a transparent system. This idea
originates by the Dark Knowledge Distillation [20], which is trying to enhance
the performance of a shallow network (the student) through the knowledge of a
deeper and more complex network (the teacher).

3 LioNets

This section presents the full methodology and architecture of LioNets. LioNets
consist of four fundamental sub-architectures, which are visible in Fig 1 at points
1, 2, 6 and 11. The main part of such system is the neural network, which will
work as the predictor. A decoder based on the predictor is the second part.
Finally, a neighbourhood generation process and a transparent predictor are the
last two mechanisms. Hence, the following process should be executed.

3.1 Neural Network Predictor

For a given dataset, a neural network with a suitable fine-tuned architecture is
being trained on this dataset. The output layer is by design in the same length
as the number of classes of the classification problem. This process is similar
to other supervised methodologies of building and training a neural network for
classification tasks, which defines a function f: X — Y.

3.2 Encoder and Decoder

When the training process of the neural network is over, a duplicate it is created.
Then removing the last layer of this copy model and labelling every other layer
as untrainable, the foundations for the autoencoder have been defined. Actually,
these foundations would be the encoder, the first half of the autoencoder, thus
only the decoder part is missing. By building successfully the decoder part and
training it, the first two stages for Lionets’ completion are achieved. Although,



LioNets: Local Interpretation of Neural Networks through Penultimate Layer Decoding

Neighbor Instance
Instance @ on original dimensions
Add to

A r_origir!al } } }

/ Trained Weights Dataset
Representation of instance
in the penultimate layer e B
R =3

r Neighborhood 1
Generation Process
(-] labic] uaro @y (2]
O oa Decode

Extract
! ! [ab'c]

Explanations
icti b, Neighborhood
Prediction @ [[o b, c]] on reduced
[2,0] dimensions
[a,b,0]

100
105,0]
[a,0,0]

Audit for label

Train

Transparent
@ Audit for label Model

Fig. 1: LioNets’ architecture. In this flow chart, the four fundamental mechanisms
of LioNets are visible. In point 1 there is the predictor, while in point 2 the
decoder. In point 3 there is the neighbourhood generation process and in point
4 the transparent model.

this is the most difficult stage to complete since it is not easy to successfully train
autoencoders, especially when the first half of the autoencoder is untrainable.
Another approach is to build the autoencoder firstly and afterwards to extract
the layers in order to create the encoder, decoder and predictor networks.
Mathematically those neural networks can be expressed via these functions:

Encoder: X — Z, (2)
Decoder: Z — X, (3)
Autoencoder: X — X, (4)
Predictor: X =Y. (5)

By keeping the encoder part untrainable with stable weights, it guarantees
that the generated neighbourhood is transforming from the reduced dimensions
to the original dimensions with a decoder, which was trained with the original
architecture of the neural network. That process will produce a more representa-
tive neighbourhood for the instance, without any semantic meaning to humans.

The academic community has extensively explored ways to create better
neighbourhoods for an instance, but every methodology was focused on generat-
ing new instances in the level of the input. In this work, the generation processes
take place to the latent representation of the encoded input.
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3.3 Neighbourhood Generation Process

The neighbourhood generation process takes place after the training of the neural
network, the encoder and the decoder. This process could be a genetic algorithm,
like the proposed methods in LORE [8] or even another neural network, but
simpler solutions are preferred. In LioNets for an instance, that is desirable to
get explanations, after encoding it via the encoder neural network, extracting its
new representation form from the penultimate level of the neural network, the
neighbourhood generation process begins with input the instance with reduced
dimensions. By making small changes in the reduced space it could affect more
than one dimensions of the original space. Thus, the simple feature perturbation
methods on low dimensions will lead to a complex generated neighbour, which
most probably would have no semantic meaning for humans.

At that point in time, a specific number of neighbours is generated through
a selected generation process and that set of neighbours is given to the decoder,
in order to be reversed to the original dimensions.

3.4 Transparent Predictor

By the end of the neighbourhood generation stage, the neighbourhood dataset
is almost complete. The only missing part is the neighbours’ labels. Thus, the
neural network is predicting each instance of the neighbourhood dataset assign-
ing labels to every neighbour, in the form of probabilities. Afterwards, the final
dataset with the neighbours and their labels are given as training data to any
transparent regression model. The ultimate goal is to overfit that model to the
training data.

4 Evaluation

The following section is presenting the setup for the experiments. The data pre-
processing methods for two different datasets are described, alongside with the
neural network models preparation and the neighbourhood generation process.
Finally, there is a discussion about the results of the experiments.

4.1 Setup

Our experiments involve two textual binary classification datasets. The first
one concerns the detection of hateful YouTube comments? [3] and contains 120
hate and 334 non-hate comments. The second dataset deals with the detection
of spam SMS messages [2] and contains 747 spam and 4.827 ham (non-spam)
messages. The pre-processing of these datasets consists of the following steps for
each document:

— Lowercasing,

% https://intelligence.csd.auth.gr /research /hate-speech-detection
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Stemming and Lemmatisation through WordNet lemmatizer [14] and Snow-
ball stemmer [15],

— Phrases transformations [Table 1],

Removal of punctuation marks,

— Once again, Stemming and Lemmatisation.

“what’s” to “what is”
“don’t” to “do not”
“doesn’t” to “does not”
“that’s” to “that is”
“aren’t” to “are not”
g7 to “ig”
“isn’t” to “is not”

“%”  to “ percent”
“e-mail” to “email”

“m”  to ‘4 am”
“he’s” to “heis”
“she’s” to “she is”

“it7s77 to uit iS”
A“Ve” to « haven
Lnren to « aren

“7d7’ tO “ Would”
4471177 to “ Willﬁ
Table 1: Phrases and words transformations.

Then, for transforming the textual data to vectors a simple term frequency-
inverse document frequency [21] (TF-IDF) vectorization technique is taking
place.

Afterwards, the neural network predictor for these experiments consists of six
layers [Fig 2a] and it has ‘binary_crossentropy’ as loss function. The encoder has
five layers, which we extract from the predictor and the decoder has four layers
as well [Fig 2b], which we train using ‘categorical _crossentropy’ loss function.
The autoencoder is the combination of the encoder and the decoder.

In this set of experiments, a simple generation process via features per-
turbation methods is applied. Specifically, the creation of neighbours for an
instance emerges by multiplying one feature value at a time with 0 and 27,
z € {—2,—1,1,2}. Concisely, the above process generates instances which are
different in only one dimension in their latent representation.

As soon as the neighbourhood is acquired, every neighbour is transformed
via the decoder to the original dimensions. Then, the transformed neighbour-
hood is given as input to the predictor to predict the class probabilities. Finally,
combining the output of the predictor with the transformed neighbourhood a
new oracle dataset has been created.
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Fig. 2: The predictor’s architecture(a) and the decoder’s architecture(b).

input: neighbourhood

output: X, y

transformed_neighbourhood = decoder.predict(neighbourhood)
class_probabilities = predictor.predict(transformed_neighbourhood)
X = transformed_neighbourhood, y = class_probabilities

Algorithm 1.1: Oracle dataset synthesis

The last step is to train a transparent model with this oracle dataset. It
might be useful to check the distribution of probabilities of this dataset and if
needed to transform it to have a normal distribution. In these experiments, the
transparent model chosen is a Ridge Regression model. By training this model,
the coefficients of the features are extracted and transformed into explanations,
presented as features’ weights in the x-axis of the following figures.

input: X, y, instance, feature_names
transparent_model = Ridge().fit(X,y)

coef = transparent_model.coef_
plot_explanation(coef*instance, feature_names)

Algorithm 1.2: Explaining an instance

4.2 Results on the Hate Speech Dataset

We take the following YouTube comment from the hate speech dataset as an
example: “aliens really, Mexicans are people too”. The true class of this comment
is mo hate. According to the neural network, the probability of the hate class is
approximately 0.00208.
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Fig. 3: Explanation plots of a hate speech instance via (a) LioNets and (b) LIME.

Fig. 3 visualizes the explanation of the neural network’s decision via LioNets
(3a) and LIME (3b). At first sight, they appear similar. Their main difference is
that they assign the feature’s “are” contribution to different classes. By removing
this word from the instance the neural network predicts 0.00197, which is a lower
probability. Thus, it is clear that the feature “are” it was indeed contributing to
the “Hate Speech” class for this specific instance as LioNets explained.

Although to support LioNets explanations, the generated neighbourhoods’
distances from the original instance computed and presented in Table 2. As
it seems the neighbours generated by LIME on original space, in this example,
when are encoded to the reduced space are further to the neighbours generated by
LioNets in the encoded space. However, when the LioNets’ generated neighbours
are transformed back to the original space, are more distant to the original
instance in comparison to LIME’s neighbours, but that is the assumption that
has been made through the beginning of these experiments. It is critical to
mention at this point, that these distances measured with neighbours generated
by changing only one feature at a time.

Euclidean distance
LIME: Generated on Original Space 0.3961
LIME: Encoded 0.9444
LioNets: Generated on Encoded Space 0.2163
LioNets: Decoded to Original Space 0.7635

Table 2: Neighbourhood distances for instance of hate speech dataset.
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4.3 Results on SMS spam dataset

The second example which is going to be explained belongs to the SMS spam
dataset. The text of the preprocessed instance is the following: “Wife.how she
knew the time of murder exactly”. This instance has true class “ham”. The
classifier predicted truthfully 0.00014 probability to be “spam”.

Fig. 4 presents two different explanations for the classifier’s prediction. As
before, Fig. 4a shows the explanation provided by LioNets and Fig. 4b shows
LIME’s explanation. The contribution of feature “wife” to the prediction is as-
signed to different classes in each explanation. To prove the stability and ro-
bustness of LioNets, this feature is removed and by auditing again the neural
network the new prediction is lower with a probability of 0.000095. Thus, it is
clear that feature “wife” was indeed contributing to the “spam” class as LioNets
explained and captured.
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Fig. 4: Explanation plots of SMS spam instance using LioNets(a) and LIME(D).

Like before, the neighbourhoods’ distances from the original instance are
computed and presented in Table 3. As it seems the neighbours generated by
LIME on original space, by projecting them into the encoded space, are more dis-
tant to the encoded instance, compared to the neighbours generated by LioNets
directly in the encoded space.

5 Conclusion

In summary, the LioNets architecture provides valid explanations for the de-
cisions of a neural network that are comparable to other state-of-the-art tech-
niques, while at the same time it guarantees better adjacency between the gen-
erated neighbours of an instance because the generation of the neighbours is
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Euclidean distance
LIME: Generated on Original Space 0.3184
LIME: Encoded 0.8068
LioNets: Generated on Encoded Space 0.3459
LioNets: Decoded to Original Space 0.7875

Table 3: Neighbourhood distances for instance of SMS spam collection.

performed on the penultimate layer of the network. In addition, LioNets can
create better, larger and more representative neighbourhoods, because the gen-
eration process takes place at the encoded space, where the instance has a dense
representation. These are the main points of creating and using LioNets on de-
cision systems like neural networks.

One main disadvantage of LioNets is that it is focused only on explaining
neural networks, thus it is not a model agnostic method. Moreover, the overall
process of building LioNets is harder than training neural network predictors,
because they demand the training of a decoder, which is a difficult task.

Future work plans include testing the LioNets methodology on different vari-
ations of encoders and decoders and implementing more complex neighbour-
hood generation and neighbours selection processes. In addition, we would like
to explore different transparent models for explaining the instances, such as
rule-based models [5], decision tree models [16, 4] and models based on abstract
argumentation [6]. Lastly, we plan to evaluate LioNets based on human subject
experiments.
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