Argumentation Frameworks with Attack
Classification

Alexandros Vassiliades!? Giorgos Flouris?
Theodore Patkos? Antonis Bikakis? Nick Bassiliades!
Dimitris Plexousakis?

1'School of Informatics, Aristotle University of Thessaloniki, Greece
2 Institute of Computer Science, Foundation for Research and
Technology - Hellas, Greece
3 Department of Information Studies, University College London, UK

valexande@csd.auth.gr, fgeo@ics.forth.gr, patkos@ics.forth.gr,
a.bikakis@Qucl.ac.uk, nbassili@Qcsd.auth.gr, dp@ics.forth.gr

Abstract

Abstract Argumentation Frameworks (AAFs), introduced by Dung
in [II], enabled a new way of reasoning with arguments, which does
not take into account the internal structure of arguments, but only how
they are related to each other. The only form of relation considered
in AAFs is a binary attack relation on the set of arguments. From
the definitions of acceptability semantics of AAF's, it is obvious that
attacks actually have a dual role: on the one hand, they generate
conflicts, on the other hand, they can defend other arguments from
attacks. In this paper, we propose a framework, where the modeler
can explicitly specify the role of each attack. For this purpose, we
define a set of conflict-generating attacks R, and a set of defending
attacks R, as well as a family of semantics that considers the role of
each attack while determining which arguments are attacked, which are
defended, and which will be included in each extension. We study the
formal properties of the proposed framework and semantics, show that
our framework is a generalization of AAFs, and assess its semantics
against a set of principles. Finally, we present a web application that
provides an interface for creating custom argumentation frameworks
and uses ASP to compute their extensions.

Keywords— Argumentation, Abstract Argumentation Framework, Attack Clas-
sification, Defending Attack, Conflict-Generating Attack



1 Introduction

Abstract Argumentation Frameworks (AAFs), introduced by Dung in [11], enabled
a new way of reasoning with arguments, which does not take into account the
internal structure of arguments, but only how they are related to each other. The
simplicity and intuitiveness of AAFs, along with their ability to capture various
types of non-monotonic reasoning, led to their wide adoption by the Knowledge
Representation and Reasoning community. The only form of relation considered
in AAFs is a binary attack relation on the set of arguments. From the definitions
of acceptability semantics of AAFs, which provide a solid mechanism for selecting
acceptable sets of arguments (called extensions), it is obvious that attacks actually
have a dual role: on the one hand, they generate conflicts, i.e., they disallow two
arguments that attack each other to be in the same extension; on the other hand,
they can defend other arguments from attacks, thereby allowing arguments to be
included in extensions, even if attacked, provided that all attacks are defended by
other arguments in the extension.

Based on this observation, in previous work, we considered semantics where
(some of the) attacks in the framework could be treated as having one of the two
roles only. For example, consider the following exchange of arguments, a, b, followed
by one of ¢1, ¢o and cs3.

a: I will take antibiotic X for my dental infection. It was recommended by my
dentist.

b: X contains penicillin and you are allergic to it, so better take Y.

c1: I read in its label that X doesn’t contain penicillin and X is more effective
than Y.

ca: Y has serious and frequent side-effects, so I'd better avoid it.

c3: 1 was allergic to penicillin when I was a child, I think it has now faded away.

It is obvious that b attacks a and each of ¢1, ¢o and c3 attacks b. However, the
nature and effect of each of these attacks is different. If one accepts ¢y, its attack
to b should completely invalidate b, and, as a result, a should be accepted. This
is captured by all acceptability semantics of AAFs that satisfy admissibility, i.e.,
they accept arguments that are not in conflict with any other accepted argument,
and are defended by the accepted arguments against all attacks.

Now, let us consider co, which is also in conflict with b and, if accepted, b should
be rejected. However, co does not defend a from b, in the sense that the information
it conveys is not relevant to the attack from b to a (which relies on the claim that
the person is allergic to penicillin and X contains penicillin). In other words, the
attack from cy to b has the single role of invalidating b (creating a conflict among
b and c3).

Finally, the attack from c3 to b has a different effect. It does not invalidate b,
but leaves some doubt about it. Given this attack, it would be reasonable to accept
cs and a and reject b (if one feels that the belief that the allergy has faded away



is strong enough to disregard the advice not to take the antibiotic), but it would
also be reasonable to accept c3 and b and reject a (if the belief that the allergy has
faded away is not strong enough to disregard the advice not to take the antibiotic).

The effect of the latter two types of attack (e.g., from ¢y or ¢3 to b) cannot be
captured by any of the existing acceptability semantics of AAFs. To address this
aim, we recently proposed a new abstract model of arguments, called multi-attack
argumentation frameworks (MAAFs) [21], which allows each attack to be associated
with a type, and we defined three types of semantics: firm, restricted and loose.
In MAAFS, a set of attack types is considered to have the “normal” behaviour,
i.e., both conflict-generating and defending, whereas the rest are assumed to have
only one (for firm or loose semantics), or neither of the two roles (for restricted
semantics).

A shortcoming of MAAFs is that conflict-generating and defending attacks
cannot co-exist. In other words, a MAAF can only support two different “classes” of
attacks: “normal” and “abnormal” ones, where the exact behaviour of “abnormal”
attacks is determined by the type of semantics considered (firm, restricted or loose).
In this paper, we generalize the idea of [2I] by allowing the modeller to specify
explicitly, and independently, what will be the role of each attack. For this purpose,
we define a set of conflict-generating attacks R, and a set of defending attacks R,
as well as a family of semantics that takes into account the role of each attack while
determining which arguments are attacked, which are defended, and which will be
included in each extension.

This paper is based on and significantly extends our previous work presented
in [21I] by providing: (a) a more generalized framework that extends MAAF with
the capability to explicitly specify the role of each attack; (b) a principle-based
analysis of the semantics of this framework; (c) a formal study of the properties of
the framework and its semantics, including its relation to AAFs; (d) a declarative
implementation, in the context of a Web Aprﬂ, where a user can develop their own
instantiations of the argumentation framework and access the reasoning that our
framework offers.

In the remainder of the paper, we define our new proposed framework, called
AAFs with Attack Classification, along with some properties of the framework and
its semantics (Section . We study the behaviour of the semantics with respect to
a standard set of principles proposed for AAFs (Section . To better illustrate our
approach, we present a use case on argumentation schemes (Section . Next, we
describe an implementation of the framework based on the language of ASP (Sec-
tion @ Finally, we discuss the related work (Section [7]) and conclude (Section .
A detailed introduction to MAAF's (as defined in [21]), proofs of formal properties
of the new framework, as well as ASP encodings for the Web App are provided in
the Appendix.
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2 Abstract Argumentation Frameworks with At-
tack Classification

In this section, we define the notions of conflict-generating, normal, defending and

irrelevant attacks, as well as the notion of classification of attacks for an AAF, and
we define the standard extension classes for the new argumentation framework.

2.1 Framework

" An AAF F= (A R) :
equipped with an attack classification
(R, R,), where: :
A ={a,b,c,d}
R ={(a,b), (b,d), (b,
F={ab o)
Ry ={(a,b),(b,¢), (d

c), (a,¢), (d,a)}

Figure 1: Running example

We recall that an argumentation framework is defined as a pair F = (A, R),
where A is the set of arguments and R C A x A is the set of attacks.

An attack classification over an AAF is a structure that determines which at-
tacks should be treated as conflict-generating and which attacks should be treated
as defending;:

Definition 1 Consider an AAF F = (A, R). An attack classification over F is a
pair (R., R,), such that R, C R, R; CR.

An example of an AAF equipped with an attack classification is shown in Figure
Note that an attack classification essentially breaks down the attacks into four
disjoint classes, or types, as follows:

e Normal attacks, i.e., attacks that behave in the classical manner. Such attacks
are both conflict-generating and defending, and are the ones that belong in
R.NR,. In our example, (a,b) is the only such attack.

o Conflict-generating attacks, i.e., attacks that can generate conflicts, but can-
not defend against one. Such attacks are the ones that belong in R, \R,. In
our example, (a,c¢) is conflict-generating.



e Defending attacks, i.e., attacks that can defend, but do not generate conflicts.
Such attacks are the ones that belong in R, \ R,. In our example, (b,c) and
(d, a) are defending.

e [rrelevant attacks, i.e., attacks that are neither conflict-generating, nor de-
fending. These attacks play no role in our semantics, and are essentially
ignored. These are the attacks that belong in R \ (R,UR,). In our example,
(b,d) is an irrelevant attack.

Note that symmetric attacks between two arguments a and b need not be of
the same type, e.g., it is possible that (a,b) € R, and (b,a) € R,;. For a given
AAF F = (A, R), equipped with an attack classification (R, R,), we write a — b
whenever (a,b) € R, a —. b whenever (a,b) € R., and a —4 b whenever (a,b) €
Ra-

We extend notation to sets of arguments, and, for B,C C A, we write B — C'if
and only if 3b € B, ¢ € C such that b — ¢ (analogously for B —. C, B —,4 C). For
singleton sets, we often write b — C and B — c¢ instead of {b} — C and B — {c},
respectively (analogously for —., —4).

2.2 Semantics

We will now recast the definitions associated with the standard extension classes
(already known from the work of Dung [I1]) for our setting. In the following, we use
shorthands to refer to the various types of semantics. In particular, we use cf for
conflict-free, ad for admissible, co for complete, pr for preferred, gr for grounded,
and st for stable. We also use o as a catch-all symbol to indicate any of these
extension types.

To define our semantics, following the tradition of Dung [I1], we first refine the
notion of defense, in a way that takes into account the role of attacks in the attack
classification:

Definition 2 Consider an AAF F = (A, R) and some attack classification (R, R ).
Given an argument a € A and a set € C A, we say that € defends a w.r.t. (R.,R,)
(or simply € defends a, when (R.,R,) is obvious from the context), if and only if
E —4 b whenever b —. a.

Returning to our running example, and the chosen attack classification, we
observe that {b,d} defends ¢, because there is only one conflict-generating attack
targeting ¢ (namely (a,c), i.e., a —. ¢), and there is a respective defending attack
(d, a) that originates from {b,d} and targets a (i.e., {b,d} —4 a).

Now, we can recast the standard definitions for the different types of semantics
given in [I1], using the above ideas:

Definition 3 Consider an AAF F = (A, R) and some attack classification (R, R ;).
A set £ C A is conflict-free w.r.t. (R, R,) (or simply cf, when (R, R ;) is obvious
from the context) if and only if it is not the case that € —. E.



In our running example, {b,d} is a cf-extension; indeed, note that, although
b — d, (b,d) is not a conflict-generating attack.

The same ideas are applied to admissible and complete extensions, whose defi-
nition essentially mimics the one typically used in AAFs, but considers the attack
classification through the alternative notion of defense (Definition [2)):

Definition 4 Consider an AAF F = (A, R) and some attack classification (R, R ;).
A set £ C A is an admissible extension w.r.t. (R.,R,) (or ad-extension for short,
omitting (R., R,) when obvious from the context) if and only if:

o £iscft
o Ifa €&, then £ defends a

Definition 5 Consider an AAF F = (A, R) and some attack classification (R, R ;).
A set £ C A is a complete extension w.r.t. (R.,R,) (or co-extension for short,
omitting (R., R,) when obvious from the context) if and only if:

o £ is an ad-extension

o If & defends a and EU {a} is cf, thena € &

Note that, in the above definition (Definition , instead of only requiring that
a € £ whenever £ defends a, we have included the additional requirement that
EU{a} is cf, thereby deviating somewhat from the definition pattern used in AAFs
for co-semantics [11]. This additional requirement is redundant in the AAF setting,
because it results as a corollary of the weaker definition. However, it is necessary
here, for reasons that will be clarified below through an example.

In our running example, {b,d} is an ad-extension, because: although a —. b,
it is also the case that d —4 a, so b is defended by {b,d}; and d is not attacked
by a conflict-generating attack. However, {b,d} is not a co-extension because c is
defended by {b,d} but not included.

Further, it can be shown that {b,c,d} is a co-extension. Indeed, {b,c,d} is
cf, as there is no conflict-generating attack among its members. Also, it is an ad-
extension, as it defends its members, as explained above. Moreover, although a is
also defended by {b,c,d} (in a trivial manner, as a is not attacked by a conflict-
generating attack), it is also the case that {a,b,c,d} is not cf; thus, by definition,
{b,c,d} is a co-extension. This example also shows why the extra requirement
in Definition [5| was necessary (as was also in MAAFs [2I]); without the extra
requirement, neither {b, ¢, d} nor {a,b,c,d} would be co-extensions, which would
be absurd. Moreover, without this extra requirement, no co-extension would exist
in the above example, because any such extension should include a, d, and, since d
is included, b, ¢ should be included too, leading to a non-cf set.

Grounded and preferred semantics are defined analogously:

Definition 6 Consider an AAF F = (A, R) and some attack classification (R, R ;).
A set £ C A is a grounded extension w.r.t. (R.,R,) (or gr-eztension for short,
omitting (R., R,) when obvious from the context) if and only if € is a minimal with
respect to set inclusion co-extension.



Definition 7 Consider an AAF F = (A, R) and some attack classification (R, R ;).
A set € C A is a preferred extension w.r.t. (R.,R,) (or pr-eztension for short,
omitting (R., R,) when obvious from the context) if and only if £ is a mazimal with
respect to set inclusion ad-extension.

In our running example, as already shown above, {b,¢,d} is a maximal ad-
extension (because {a,b,c,d} is not cf-extension), thus it is also a pr-extension.
Interestingly, {b, ¢, d} is also a gr-extension, because, we can easily verify that none
of its subsets are co-extensions (d is trivially defended and d defends both b and
¢). Moreover, {a,d} is also a gr-extension. This shows that the gr-extension is not
necessarily unique in our setting (as also was the case in MAAFs [21]), in contrast
to the standard Dung semantics [11].

Stable semantics also follow a similar pattern:

Definition 8 Consider an AAF F = (A, R) and some attack classification (R, R ;).
A set £ C A is a stable extension w.r.t. (R, R,) (or st-extension for short, omit-
ting (R., R,) when obvious from the context) if and only if:

o & is mazimally cf (i.e., a cf set that is mazimal w.r.t. the subset relation
among all other cf sets)

o £ —4a whenever a ¢ &

Note that Definition [§] also deviates somewhat from the definition pattern of
st semantics in standard AAF's. In particular, instead of requiring that £ is cf, we
have required that it is maximally cf. Moreover, we have required that a defending
attack against all arguments not in £ exists.

This alternative definition is necessary to capture the underlying intuition be-
hind the respective definition in [I1], namely that a st-extension attacks all argu-
ments not in the extension, therefore (a) the addition of any further argument will
render it conflicting, thus, it is maximally cf; (b) it defends itself against any attack
from such arguments even if such an attack does not really exist.

This will become clearer if we analyse the examples illustrated in Figure[2] In
the left example {a} is a stable extension in the respective AAF, whereas in the
right example it is not, which shows that a stable extension needs to defend itself
from all external arguments, even if they do not attack the extension itself. In the
setting with the attack classification, this is captured by the requirement that there
should exist a defending attack (a,b) to ensure that {a} is stable. In our running
example (Figure , note that {b, ¢, d} is a st-extension, but {a,d} is not.

3 Formal Properties

In this section, we study various properties of AAFs with an Attack Classification.
Most of the results below are reformulations of the respective propositions that
apply for AAFs, although there are exceptions. The proofs are given in Section [B]
of the Appendix.
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Figure 2: Two AAFs motivating our definition of stable extensions

3.1 Initial results and special cases

We start by showing the analogous of Dung’s fundamental lemma (Lemma 10 in

[110):

Proposition 1 Consider an AAF F = (A, R), some attack classification (R.,R,),
and some € C A. Then:

1. If € is an ad-extension, £ defends a and €U {a} is cf, then EU {a} is an
ad-extension.

2. If Rqg C Re, € is an ad-extension and E defends a, then €U {a} is an ad-
extension.

Notice that Dung’s fundamental lemma is not generally true for AAFs with
Attack Classification, except from the special case where there are no attacks which
are defending but not conflict-generating (case #2 of Proposition .

Using the second bullet of Proposition [I} we can show that Definitions [ and
can be formulated more simply (i.e., using the pattern of [I1]), when Ry C R.:

Proposition 2 Consider an AAF F = (A, R), some attack classification (R.,R,),
such that Rqg C R. and some £ C A. Then:

1. &£ is a co-extension if and only if £ is an ad-extension and a € £ whenever

& defends a.

2. € is a st-extension if and only if € is cf and € —4 a whenever a ¢ &.

3.2 Reductions of AAFs with an attack classification

The following two propositions show how AAFs with Attack Classification reduce
to standard AAFs [11] and MAAFs [2]] for special cases. We omit further details on
MAATF here, but the interested reader can see [21], or subsectionof the Appendix
in this paper.



Proposition 3 Consider an AAF F = (A,R) and some attack classification
(Rey Ry) such that R, = Rq = R. Then, for any o, € is a o-extension w.r.t.
(R Ry) if and only if € is a o-extension in the AAF F.

Proposition 4 Consider an AAF F = (A, R) and some attack classification
(ReyRy). Consider also a MAAF Fy = (Am, Ta, Ru) and some Ty € Tag.
Then, for any o-extension, the following hold:

1. If Re =R, Rq = {(a,b) | (a,b,7) € Ras,7 € To}, then £ is a o-extension
w.r.t. (R.,Ry) if and only if € is a fr-o-extension w.r.t. Ty in the MAAF
Fur-

2. If Re = Rag = {(a,b) | (a,b,7) € R, 7 € To}, then & is a o-extension w.r.t.
(ReyRy) if and only if € is a re-o-extension w.r.t. Ty in the MAAF Fy.

3. IfRi =R, Re = {(a,b) | (a,b,7) € Ry, 7 € To}, then € is a o-extension
w.r.t. (R, Ry if and only if € is a lo-o-extension w.r.t. Ty in the MAAF
Fur-

3.3 Hierarchy and Existence in Extensions

Initially, we show that a hierarchy of extensions, similar to the one shown in [IT],
holds for AAFs with Attack Classification:

Proposition 5 Consider an AAF F = (A, R), some attack classification (R, R )
and some € C A. Then:

1. If € is an ad-extension, then £ is a cf-extension
2. If € is a co-extension, then £ is an ad-extension
3. If € is a gr-extension, then &£ is a co-extension

4. If € is a pr-extension, then & is a co-extension
5.

If £ is a st-extension, then £ is a pr-extension

Existence results are also analogous to [11]]; in particular, for any AAF equipped
with an attack classification, all types of extensions exist, except maybe st-extensions.
To show this, we will first need an intermediate result, showing that we can “incre-
mentally” construct minimally-complete extensions starting from an ad one. The
proof uses an iterative function, similar to the function F4r used by Dung in [I1].
However, for AAFs with an Attack Classification, there are two subtleties.

First, Fap (as defined in [II]) adds all acceptable arguments in each iteration.
In our case, this could lead to a set that is not cf. For example, consider Figure
where we observe that each of the arguments a, b, ¢ is accepted by {d}, and adding
any one of them in {d} would result in an ad-extension; however adding them all
at the same time would result in a set that is not cf (and thus not ad). Therefore,
Dung’s construction is inappropriate for our purposes, and a more elaborate one is
needed.



Second, for infinite frameworks (i.e., argumentation frameworks with an infinite
set of arguments), the existence of a minimal fixpoint for Fap (in [I1]) is guaranteed
by the implicit use of the Knaster-Tarski theorem [I§], which requires an order
preserving function. Although Fsr is order-preserving, our alternative is not.

To overcome these problems, our proof uses a more complex iterative function,
employing ordinals. Our proof is analogous to the one employed in [2I] (Proposition
7); as a matter of fact, the proof of Proposition 7 in [2I] is a special case of our
proof here (see also Proposition . Importantly, our construction applies also to
standard AAFs, so it can be viewed also as an alternative proof for a well-known
property of AAFs. Note also that the proof employs the Axiom of Choice.

Proposition 6 Consider an AAF F = (A, R), some attack classification (R, R )
and some £, C A such that £, is an ad-extension. Then, there exists some E such
that € D &, and the following hold:

1. £ is a co-extension.

2. For any &' such that &, C &' C &, there exists a € £\ £ which is defended
by & and &' U {a} is cf.

3. For any &' such that £, C &' C &, £ is not a co-extension.

Now we are ready to show our existence result, namely that all extensions
(except st-extensions) exist in any AAF equipped with any attack classification:

Proposition 7 Consider an AAF F = (A,R) and some attack classification
(R.,R,). Then, for any o € {cf,ad, co,gr,pr}, there exists a o-extension.

The fact that st-extensions are not guaranteed to exist is an obvious corollary of
the fact that AAFs are special cases of AAFs equipped with an attack classification
(see Proposition [3). Propositions [5| and [7] are summarised in Figure

Stable > 0
Preferred > 1

’ Admissible > 1 ‘

{

’ Conflict-free > 1 ‘

Grounded > 1

Figure 3: Properties of extensions for AAFs with an attack classification
In AAFs, a gr-extension is unique. The counter-example of Figure [1| shows

that this is not the case here. However, in the special case where Ry C R., the
uniqueness of gr-extensions is guaranteed:

10



Proposition 8 Consider an AAF F = (A,R) and some attack classification
(R Ry), such that Rq C R.. Then, there exists a unique gr-extension.

3.4 Studying the effect of attack classifications

We will now show some results considering the effect of the attack classification on
the various extensions. Our first result shows that, as expected, irrelevant attacks
(i.e., those that are neither conflict-generating nor defending) have no effect:

Proposition 9 Consider two AAFs Fi = (A1, R1), Fo = (A, R2) and some
attack classification (R.,R,), such that Ay = Az and Rc URy C R1 C Ry. Then,
for any o € {cf,ad,co,pr,gr,st} and any € C A; = As, it holds that £ is a
o-extension in F1 w.r.t. (R, R, if and only if £ is a o-extension in Fo w.r.t.

<Rc7 Rd>

Another relevant question is what happens if we change the status of some at-
tacks, e.g., if a “normal” attack becomes conflict-generating or if a defending attack
becomes “normal”. Towards this, a series of results can be shown, summarised in
the following proposition:

Proposition 10 Consider an AAF F = (A,R) and two attack classifications
(RLRY), (R2,R2), such that R? C R C R and Ry C R%2 C R. Then, for
any € C A, the following hold:

1. If€iscf wrt. (RLRY), then it is cf w.r.t. (R%,R?).
2. Ifa € A and & defends a w.r.t. (RL,RYL), then € defends a w.r.t. (R2,R2).

3. If € is an ad-extension w.r.t. (RL,RL), then it is an ad-extensions w.r.t.
(R2,R3).

4. If € is a co-extension w.r.t. (R%,R?) and an ad-extension w.r.t. (RL,RY)
then it is a co-extension w.r.t. (RL RL).

5. If € is a pr-extension w.r.t. (R%,R2) and an ad-extension w.r.t. (R, RY)
then it is a pr-extension w.r.t. (RL,RY).

6. If € is a st-extension w.r.t. (R, RY) and mazimally cf w.r.t. (R2,R32) then
it is a st-extension w.r.t. (R?, R32).

Some comments regarding Proposition[I0]are in line here. First, it is interesting
to note how the direction of the implication changes depending on the semantics
considered. Moreover, in most cases, additional assumptions are needed, i.e., the
fact that £ is a co-extension in one of the attack classifications does not necessarily
imply that it is also a co-extensions w.r.t. the other. Also, notice that R C R! C
RandR}lnglg’R.

More importantly, gr-extensions are missing from Proposition [I0] As a matter
of fact, no similar condition can be devised for gr-extensions. In particular, if a

11



set is a gr-extension under one attack classification and a co-extension under the
other, this is not enough to guarantee that it is also a gr-extension under both.
More formally, we will consider the following two conditions (both of which turn
out to be false):

1. If £ is a gr-extension w.r.t. (R!,RL) and a co-extension w.r.t. (R2, R32)
then it is a gr-extension w.r.t. (R2, R2).

2. If € is a gr-extension w.r.t. (R% R2) and a co-extension w.r.t. (RL,RL)
then it is a gr-extension w.r.t. (RL, RL).

The first condition is shown to be false via Figure |4l In that figure, we observe
the same AAF, with two different attack classifications (R}, RY), (R%, R2), shown
in the left and right part of the figure respectively), where:

o Re={(a",t),(b,), (¥,0),(c,b), (c.), (', 0)}
o Ry ={(a,d),(b,),(¥,b),(c,;c), (¢, )}
o RZ={(d,1),(b,0),(¥,b), (c. ), (¢, 0)}
o R ={(a,a),(b,V),(V,b),(c.c), (¢ c)}

We observe that RZ C R! and R} = R2.

Let us now consider the AAF in Figure {4| from the perspective of <Ri,7?,llj>.
We observe that {a,b,c} is a gr-extension. Indeed, it is a co-extension, because
it defends all its members, and the addition of any extra argument would render
the set non-cf. Now, let us consider its subclasses: 0, {b}, {c} and {b,c} are not
co-extensions (because they defend a and if we add a in the respective set we get a
cf one); {a} and {a, ¢} are not co-extensions (because they defend o’ and and if we
add o’ in the respective set we get a cf one); finally, {a,b} is not an ad-extension
(due to the attack ¢ —. b). Thus, {a,b, c} is indeed a gr-extension w.r.t. (R!, R}).

Now, let us consider the same AAF, but from the perspective of (RZ R2).
Here, we observe that {a,b,c} is again a co-extension (as can be easily verified),
but {a, b} is also a co-extension, since the conflict-generating attack (¢/, ¢) is missing
in (R?,R2). Thus, {a,b,c} is not a gr-extension w.r.t. (R?, R2).

The second condition is shown to be false via the counter example of Figure
There, we depict the same AAF under two different attack classifications ((R}, R}),
(R2?,R2), shown in the left and right part of the figure respectively), where:

o Re={(ab), (ba)}
o Ry ={(a,0),(b,a)}
o RZ={(ba)}

o R ={(a,),(b,a)}

We observe again that R? C R} and R} = R2.

We now note that {b} is a co-extension from the perspective of (R.,RL), but
not a gr-extension (because () is also a co-extension w.r.t. (R!,RY})). On the
other hand, {b} is a gr-extension from the perspective of (R2, R2), as can be easily
verified.
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Figure 4: An AAF with two attack classifications (counter-example #1)
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Figure 5: An AAF with two attack classifications (counter-example #2)

4 A principle-based analysis

In order to better understand the behaviour of the different acceptability semantics
of AAFs, recent studies proposed a set of principles and examined which semantics
satisfy each of these principles. In this section, we present a similar principle-based
analysis for AAFs with Attack Classification and their semantics. The definitions
of the principles we consider are from [20]. They were originally defined for AAFs,
so, where necessary, we adjust them to fit the definitions of AAFs with attack
classification. We focus our attention to complete, preferred, grounded and stable
semantics. At the end of the section, Table [I| provides an overview of the results
and highlights the differences with AAFs.
We adopt the standard definition of isomorphic argumentation frameworks.

Definition 9 (Isomorphic) Two argumentation frameworks F1 = (A1, R1) and
Fo = (Aa,Ra) are isomorphic if and only if there exists a bijective function m:
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Ay — As, such that (a,b) € Ry if and only if (m(a),m(b)) € Re. This is denoted
by F1 = Fa.

We introduce the notion of isomorphic attack classifications to describe isomor-
phic argumentation frameworks whose attacks are classified in the same way.

Definition 10 (Isomorphic with Classification) Two argumentation frame-
works F1 = (A1, R1) and Fo = (Ag, Ra) such that Fy =,, Fa are equipped with
isomorphic attack classifications (R, RL) and (RZ,R2) if and only if for every
(a,b) € Ry, (m(a),m(b)) € Ry it holds that (a,b) € R iff (m(a), m(b)) € R? and
(a,b) € R iff (m(a),m(b)) € R2.

The language independence principle holds for the semantics that only take
into account the topology of the argumentation graph and the classification of
the attacks, and not the names of the arguments. We have extended its original
definition [3], to take into account the classification of the attacks.

Definition 11 (Language Independence) A semantics o satisfies the language
independence principle if and only if for every two argumentation frameworks F, =
(A1, R1), Fa = (Aa, Ra), such that F1 =, Fa, with isomorphic attack classifica-
tions (RL,RY) and (R?,R2), respectively, it holds that o(F2) = {m(E)|E € a(F1)},
where o(F1) is the set of o-extensions of F1 with respect to (RE, RL) and o(F2) is
the set of o-extensions of Fo with respect to (R%, R32).

In the following and all other propositions that appear in this section, the
mentioned semantics refer to the semantics of AAFs with Attack Classification, as
defined in Section[2.2] The proofs of all propositions are presented in the Appendix.

Proposition 11 Language independence is satisfied by co, gr, pr and st seman-
tics.

Dung [T1], introduced the notion of conflict-freeness, which was later stated as
a principle by [3]. Here, we extend the original definition to take into account the
classification of attacks.

Definition 12 (Conflict Freeness) A semantics o satisfies the conflict-freeness
principle if and only if for every argumentation framework F, for every classification
of its attacks (R.,R,), for every o-extension & of F with respect to (R,,R,), € is
conflict-free with respect to (R,, R,).

Proposition 12 Conflict-freeness is satisfied by co, gr, pr and st semantics.
Defense and admissibility were also proposed as principles by Baroni and Gia-

comin [3]. Here, we adjust their definitions to take into account the classification
of attacks.

14



Definition 13 (defense) A semantics o satisfies the defense principle if and
only if for every argumentation framework F, for every classification of its attacks
(ResRy), for every o-extension € of F with respect to (R, R,), and for every
argument a € €, £ defends a with respect to (R, R,).

Definition 14 (Admissibility) A semantics o satisfies the admissibility principle
if and only if for every argumentation framework F, for every classification of its
attacks (R.,R,), every o-extension € of F with respect to (R, R,) is admissible
with respect to (R, Ry).

Proposition 13 Defense and admissibility are satisfied by co, gr, pr and st se-
mantics.

Baroni and Giacomin [3] introduced the notions of strong defense and strong
admissibility. In our framework, these are defined as follows.

Definition 15 (Strong defense) Let F = (A, R), S C A and an attack classi-
fication (R.,R,;). An argument a € A is strongly defended by S if and only if for
every b € A such that b —. a there exists ¢ € S\ {a} such that ¢ =4 b and ¢ is
strongly defended by S\ {a}.

Definition 16 (Strong Admissibility) A semantics o satisfies the strong ad-
massibility principle if and only if for every argumentation framework F, for every
classification of its attacks (R, R,) and for every o-extension € of F with respect
to (R, Ry), € strongly defends all arguments it contains.

Strong admissibility is satisfied by the grounded semantics of AAF's, but this
does not hold for AAFs with Attack Classification. This is the first difference we
observe between the two frameworks.

Proposition 14 Strong admissibility is not satisfied by any of co, gr, pr and st
semantics.

Van der Torre and Vesic [20] proposed the principle of naivety, which we redefine
as follows:

Definition 17 (Naivety) A semantics o satisfies the naivety principle if and
only if for every argumentation framework F, for every classification of its attacks
(R Ry), and for every o-extension € of F with respect to (R.,R,), & is mazimal
for set inclusion conflict-free set in F with respect to (R, R,)-

Proposition 15 Naivety is satisfied by st semantics, but not by co, gr or pr.

Coste-Marquis et al. [I0] introduced the notion of indirect conflicts, which they
defined as follows:
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Definition 18 (Indirect Conflict) Let F = (A, R), S C A and a,b € A. Then,
a indirectly attacks b if and only if there is an odd-length path from a to b with
respect to the attack relation. S is without indirect conflicts if and only if there
exist no x,y € S such that x indirectly attacks y.

The indirect conflict-freeness principle is then defined as follows.

Definition 19 (Indirect Conflict Freeness) A semantics o satisfies the indirect
conflict-freeness principle if and only if for every argumentation framework F and
for every classification of its attacks (R.,R,), every o-extension € of F with respect
to (R.,R,) is without indirect conflicts.

Proposition 16 Indirect conflict-freeness is not satisfied by any of co, gr, pr and
st semantics.

Another principle proposed by Baroni and Giacomin in [3] was reinstatement,
according to which an extension must contain all the arguments it defends.

Definition 20 (Reinstatement) A semantics o satisfies the reinstatement prin-
ciple if and only if for every argumentation framework F, for every classification
of its attacks (R.,R,), for every o-extension € of F with respect to (R.,R,), and
for every a € A it holds that if € defends a with respect to (R.,R,), then a € £.

Interestingly, in contrast with AAFSs, reinstatement is not satisfied by any of
the semantics of AAFs with Attack Classification.

Proposition 17 Reinstatement is not satisfied by any of co, pr, gr and st se-
mantics.

Baroni and Giacomin studied in [3] another similar principle called weak rein-
statement, which has the following definition.

Definition 21 (Weak Reinstatement) A semantics o satisfies the weak rein-
statement principle if and only if for every argumentation framework F, for every
classification of its attacks (R.,R,), for every o-extension £ of F with respect to
(ReyRy), and for every a € A it holds that if £ strongly defends a with respect to
(ReyRy), thena € €.

As shown in the following proposition, weak reinstatement is also not satisfied
by any of the semantics of AAFs with Attack Classification, signifying another
important difference with AAF's.

Proposition 18 Weak reinstatement is not satisfied by any of co, gr, pr and st
semantics.
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Another similar principle introduced by Baroni and Giacomin in [3] is CF-
reinstatement. Here, this principle can be defined as follows.

Definition 22 (CF-Reinstatement) A semantics o satisfies the CF-reinstatement
principle if and only if for every argumentation framework F, for every classifica-
tion of its attacks (R.,R,), for every o-extension £ of F with respect to (R.,R,),
and for every a € A it holds that if £ defends a with respect to (R, R,) and EU{a}
is conflict-free, then a € £.

While AAFs and AAFs with Attack Classification behave totally differently
with respect to the two other forms of reinstatement, their behaviour is exactly the
same with respect to CF-reinstatement.

Proposition 19 CF-reinstatement is satisfied by co, gr, pr and st semantics.

The principle of I-mazimality, originally proposed in [3] states that an extension
cannot contain another extension.

Definition 23 (I-mazximality) A semantics o satisfies the I-mazimality principle
if and only if for every argumentation framework F, for every classification of its
attacks (R, R,), and for every o-extensions E1, E2 of F with respect to (R.,R,),
Zf 51 g 52 then 51 = 52.

Proposition 20 I-mazimality is satisfied by gr, pr and st semantics, but not by
co.

We next consider the allowing abstention principle, introduced by [I] and de-
fined as follows.

Definition 24 (Allowing Abstention) A semantics o satisfies the allowing ab-
stention principle if and only if for every argumentation framework F, for every
classification of its attacks (R.,R,), for every a € A, if there exist two o-extensions
&1, & of F with respect to (R,, R,), such that a € & and Ey —. a then there exists
an extension Es such that a ¢ Es and E does not attack (with a conflict-generating
attack) a.

AAFs and AAFs with Attack Classification behave differently with respect to
this principle for the complete and grounded semantics:

Proposition 21 Allowing abstention is not satisfied by any of co, gr, pr and st
semantics.

In order to define crash resistance [§] in our framework, we first need to intro-
duce the following two definitions.
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Definition 25 (Disjoint Argumentation Frameworks) Let F; = (A1, R1)
and Fa = (Aa, Ra) be two argumentation frameworks. The frameworks are called
disjoint if and only if Ay N Ay = 0.

An argumentation framework F* with classification of attacks (R}, R}), is con-
taminating if joining F* with an arbitrary disjoint framework F with classification
of attacks (R, R ), results in a framework F* U F having the same extensions as
F*.

Definition 26 (Contamination) An argumentation framework F* = (A*, R*)
with a classification of attacks (R}, R}) is contaminating for a semantics o if and
only if, for any argumentation framework F = (A, R) disjoint from F* with any
classification of attacks (R.,R,) it holds that F* U F and F* have the same o-
extensions. We shall denote this by o (F*UF) = o (F*).

Definition 27 (Crash Resistance) A semantics o satisfies the crash resistance
principle if and only if there are no contaminating argumentation frameworks for
.

Proposition 22 Crash resistance is satisfied by co, gr and pr semantics but not
by st.

Crash resistance forbids only the most extreme form of interferences between
disjoint subgraphs. A stronger property, non-interference, was defined by Caminada
et al. [8]. We first need to define a notion of isolated set, i.e., a set that neither
attacks outside arguments nor is attacked by them.

Definition 28 (Isolated) Let F = (A, R) be an argumentation framework, with
any type of classification for its attacks (R.,R,). A set S C A of arguments is
isolated in F if and only if the following holds.

(S x (ANS) U((ANS) x 5)NR =10

A semantics satisfies non-interference if for every isolated set S, the intersections
of the extensions with the set S coincide with the extensions of the restriction of
the frameworks on S.

Definition 29 (Non-Interference) A semantics o satisfies the non-interference
principle if and only if for every argumentation framework F= (A, R), with any
classification of attacks (R, R,) and for every S C A set of arguments isolated in
F, it holds 0 (F1g) ={ENS|E € 0 (F)}, where Fis = (S, RN (S x9)).

Proposition 23 Non-interference is satisfied by co, pr and gr semantics but not
by st.
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The previous principle can be made even stronger by considering the case when
the set S is not attacked by the rest of the framework but can attack the rest of
the framework with any attack. Such sets are called unattacked and are defined as
follows.

Definition 30 (Unattacked) Given an argumentation framework F= (A, R) with
a classification of attacks (R.,R,), a set of arguments U C A is unattacked if and
only if fa € A\U such that a attacks U. The set of unattacked sets in F is denoted
by US (F).

Using the notion of unattacked sets, the principle of directionality, introduced
by Baroni and Giacomin in [3], is defined as follows.

Definition 31 (Directionality) A semantics o satisfies the directionality prin-
ciple if and only if for every argumentation framework F= (A, R), with any clas-
sification of attacks (R, R,) and for every U € US (F) it holds that o (Fiy) =
{ENUIE € o (F)}.

While AAFs and AAFs with Attack Classification behave in the same way with
respect to crash resistance and non-interference, their behaviour is different for the
complete, preferred and grounded semantics with respect to directionality.

Proposition 24 Directionality is not satisfied by any of co, gr, pr and st seman-
tics.

We now consider two variants of directionality, called weak directionality and
semi-directionality, originally defined in [20].

Definition 32 (Weak Directionality) A semantics o satisfies the weak-directionality
principle if and only if for every argumentation framework F= (A, R), with any
type of classification for its attacks (R.,R,) and for every U € US (F) it holds that
o(Fv) 2{ENUIE o (F)}.

Definition 33 (Semi Directionality) A semantics o satisfies the semi-directionality
principle if and only if for every argumentation framework F= (A, R), with any
type of classification for its attacks (R.,R,;) and for every U € US (F) it holds that
o(Fiu) C{ENUIE€a(F)}.

Similar to directionality, AAFs with Attack Classification demonstrate a differ-
ent behaviour from AAF's with respect to weak directionality and semi-directionality

for the complete, grounded and preferred semantics.

Proposition 25 Weak directionality is satisfied by st semantics but not by co, gr
or pr.
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Proposition 26 Semi-directionality is not satisfied by any of co, gr, pr and st
semantics.

Table 1| provides an overview of the principles that are satisfied or violated by
each of the semantics of AAFs with Attack Classification, highlighting the differ-
ences with AAFs. As expected, AAFs with Attack Classification satisfy a subset
of the principles satisfied by AAFs. This is because AAFs are a special case of
AAFs with Attack Classification, as shown in Proposition [3] Some notable findings
are: (i) the two frameworks behave in the same way with respect to most of the
principles; (i¢) the grounded semantics does not satisfy strong admissibility; (i)
while none of the semantics satisfy reinstatement or weak reinstatement, they all
satisfy CF-reinstatement; (iv) allowing abstention is not satisfied by any of the
semantics; and (v) with respect to all directionality principles, AAFs with Attack
Classification behave in the same way with AAFs for the stable semantics, but, in
contrast with AAFs, they violate these principles for the complete, grounded and
preferred semantics.

Table 1: Principles and Semantics for Argumentation Framework with At-
tack Classification. We write highlight to denote a difference with AAFs.

Principle co |gr |pr |st

Language Independence (Def. Iﬁ[) Yes | Yes | Yes | Yes
Conflict Freeness (Def. Yes | Yes | Yes | Yes
Defense (Def. |ED Yes | Yes | Yes | Yes
Admissibility (Def. |ED Yes | Yes | Yes | Yes
Strong Admissibility (Def. No | No | No | No
Naivety (Def. No | No | No | Yes
Indirect Conflict Freeness (Def. No | No | No | No
Reinstatement (Def. I%[) No | No | No | No
Weak Reinstatement (Dei[ﬁ[) No | No | No | No
CF-Reinstatement (Def. @r Yes | Yes | Yes | Yes
I-maximality (Def. [23) No | Yes | Yes | Yes
Allowing Abstention (Def. @ No | No | No | No
Crash Resistance (Def. Yes | Yes | Yes | No
Non-Interference (Def. Yes | Yes | Yes | No
Directionality (Def. No | No | No | No
Weak Directionality (Def. No | No | No | Yes
Semi Directionality (Def. [3—35 No | No | No | No
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5 Use case: Argumentation Schemes

Argumentation schemes are patterns of arguments used in everyday conversational
argumentation [23]. Each scheme is informally described in terms of a set of defea-
sible premises and a conclusion, and is associated with a set of critical questions,
which are possible ways to undermine an argument matching the scheme. For
example, the scheme for arguments from position to know is described as follows:

Magor Premise: Source a is in a position to know about things in a certain subject
domain S containing proposition A.

Minor Premise: a asserts that A (in domain S) is true (false).

Conclusion: A is true (false).

The critical questions associated with this scheme are:

CQ;i: Is a in a position to know whether A is true (false)?
CQz2: Is @ an honest (trustworthy, reliable) source?
CQs: Did a assert that A is true (false)?

A formal model of argumentation schemes, which is still missing, would enable
evaluating arguments matching the schemes using computational methods. Here,
we show how they can be formalised as AAFs equipped with an attack classification.
Our approach consists of the following steps (for an example, see Figure @:

1. Model the argument matching a scheme, each critical question associated to
the scheme, and each response to a critical question as arguments in an AAF.

2. Add a normal attack from each critical question to the main argument.

3. Add an attack from each response to the corresponding critical question. If
the response adequately addresses the critical question, model the attack as
normal. If the response leaves a doubt, model it as a defending attack.

By modelling the attack from the response to the critical question as a normal
attack, we make sure that the attack from the critical question to the argument
is ineffective. If all critical questions are attacked with a normal attack, and if
there are no other counter-arguments, the argument becomes sceptically accepted.
On the other hand, by modelling the attack to the critical question as defending,
we leave some doubt regarding the acceptability of the argument. If there are no
other counter-arguments, the argument is not rejected but is included in some of
the extensions of the framework.

To illustrate this behaviour, we use the classic example of a dialogue in which
a tourist, wandering around in a foreign city, asks a stranger where the Central
Station can be found. The stranger says that the station is behind building X, so
the tourist believes that the station is there (a). The three questions that could
then be asked are: Is the stranger in position to know where the station is (¢g1)? Is
the stranger a reliable source (cg2)? Did the stranger indeed say that the Central
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Station is located behind building X (cg3)? Consider the following responses to
these questions: The stranger said she works at the station, she is therefore in
position to know (r1). She was wearing a uniform, so she is a reliable source (rz).
Her English was great, so I am sure she said that the station is located behind
building X (r3).

We can model this dialogue as an AAF as described above and as shown in
Figure[f] Considering the responses to the critical questions as adequate, we model
the attacks to the arguments representing the critical questions as normal. This
framework has only one (complete, grounded, preferred, stable) extension, which
contains the argument concluding that the Central Station is behind building X.

a: Argument claiming station is behind building X.
cq1: Is the stranger in position to know?

cqo: Is the stranger a reliable source?

cqs: Did the stranger indeed say ...7

ri: Stranger works at station.

r9: Stranger wears uniform.

r3: Stranger speaks perfect English.

Figure 6: Model of a dialogue with an argument from position to know

Consider now the case that the response to cgs is the following: “There was
too much noise and I couldn’t hear what the stranger was saying, but I could read
her lips” (r4). Obviously, such a response would leave a doubt about whether the
station is indeed located behind building X. To capture this case, we model the
attack from rj§ to cqs as a defending attack. The framework then has two complete
extensions, one in which a is accepted ({r1,r2,75,a}) and another in which a is not
accepted ({r1,72,75,cqs}). While there might be other ways to end up with the
same extensions by using standard AAFs and by adding additional arguments or
attacks, our approach offers a standard and intuitive way of modelling argumen-
tation schemes, with critical questions attacking the main argument and responses
attacking the critical questions. Following this approach, the acceptability of the
main argument depends only on characterising the attack to the critical question.

6 A Declarative Implementation

The proposed framework has been implemented as a Web Apﬂﬂ through which
users can write their own AAFs with Attack Classification and request the compu-

*nttp://139.91.183.45:8070/
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tation of all/one of the o-extensions, where o € {cf,ad, co,st,pr,gr}. For each
request, the App returns the number of o-extensions (if the user requests all o-
extensions), the o-extension(s) and the time that the solver needed to compute the
extensions.

The various semantics have been encoded in the language of Answer Set Pro-
gramming (ASP), a declarative, non-monotonic formalism suitable for solving com-
binatorial and optimization problems. The Web App uses the Clingﬂ and Asprin
ASP reasonerf] to execute the logic programs. Asprin is applied when optimiza-
tions, such as subset/superset relations, are needed.

% Problem Configurations Potassco/

Argumentation Graph Encodiny H
© g & Clingo

All Extensions OR
argument(al;...;aN). One Extension
attacks(al,c2, conflict). +

----- o-extension
attacks(aN,a1, defending).

PythonWrapper

O) :
e Potassco/

Asprin

)
]

Figure 7: Workflow of the Application

The main components and the workflow of our implementation are shown in
Figure[7] The wrapper and the ASP code are available in our GitHub repositoryﬂ
The ASP encoding of the different semantics is also shown in subsection [C] of the
Appendix.

In brief, the system receives an ASP program representing an AAF with Attack
Classifications, along with the user’s choice of semantics to compute. Through a
GUI, the user can specify the type of extensions she is interested in and also if
she wishes one or all extensions (step 1 in Figure . Then, the system computes
the corresponding extensions by applying the associated (to the selected semantics)
ASP code. It uses Clingo to compute the cf, ad and co extensions, and Asprin

3https://potassco.org/clingo/
“https://potassco.org/asprin/
https://github.com/valexande/Argumentation-with-Classification
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to compute the gr, pr and st extensions, taking advantage of its capability to
compute maximal or minimal answer sets (step 3). The wrapper deals with all data
communication and transformation among components (steps 2 and 4). Finally, the
results, along with some analytics, are presented on the GUI (step 4).

aCD

@ )

Figure 8: Running Example

Next, we discuss the rationale of our ASP encoding with the help of an example.
Consider the framework shown in Figure [8| containing the arguments {a,b,c}, a
conflict-generating attack from argument a to ¢, a defending attack from argument b
to ¢, and a normal attack from a to b. The encoding of this input in ASP, according
to our implementation, is as follows:

argument (a;b;c) .

attacks(a, b, conflict).
attacks(a, c, conflict).
attacks(a, b, defending).
attacks(b, c, defending).

The first rule defines the available arguments of the framework, and then all
attack relations are specified by means of the attacks/3 predicate.

The ASP program for cf begins by generating combinations of arguments that
may comprise a possible answer:

{cf_extension(A) : argument(A)}.

The above so-called choice rule generates every possible subset of the set of argu-
ments, and for each subset, it instantiates the cf_extension/1 predicate with every
argument it contains. In our example, a program having this rule alone would gen-
erate 8 answer sets, each containing instances of cf-extension with arguments from

each of the following sets: {},{a}, {b}, {c}, {a, b}, {a,c}, {b,c}, {a,b,c}.
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Apparently, not all of these answer sets are valid cf-extensions for the given
framework. In order to compute the valid conflict-free sets, an appropriate con-
straint needs to be applied:

:— cf_extension(A1l), cf_extension(A2), attacks(Al, A2, conflict).

The above constraint eliminates any answer where an internal conflict-generating
attack among arguments exists. In our running example, when this constraint is
applied, together with the choice rule and the input, it will generate 5 answer sets,
one for each of the following sets: {},{a}, {b},{c},{b,c}.

The same rationale is applied to the other extensions. For instance, for comput-
ing the ad extensions, we initially consider all cf extensions, and we start pruning
any answer set that does not satisfy the following constraint:

:— ad_extension(A), not defendedByExtension(A).

The following rules specify the cases that the defendedByFExtension/1 predicate is
true:

defendedByExtension(A) :-

argument (A),

not argumentGetsConfAttack(A).
defendedByExtension(A) :-

argument (A),

attacks(Al, A, conflict),

attacks (A2, Al, defending),

cf_extension(A2).
argumentGetsConfAttack(A) :- argument(A),

attacks(_, A, conflict).

The first rule represents the case that an argument does not receive a conflict-
generating attack. The second rule describes the case that the argument is defended
against conflict-generating attacks by a conflict-free set. The third rule is used to
describe arguments receiving a conflict-generating attack. These rules implement
the conditions of admissibility as described in Definition[4 In our running example,
these rules will generate two ad answer sets: {}, {a}.

The computation of pr and gr extensions, is trivial with Asprin. We first
compute all the ad and co answer sets, respectively for pr and gr, and then we
find the maximal (for pr) or minimal (for gr) sets among them. For the pr answer
sets, the rules that compute the maximal w.r.t. subset relation ad answer sets are:

#preference (pl,superset){ad_extension(A)}.
#optimize(pl).

The first line is a preference predicate with name p1 and type superset for the atom
ad_extension/1. In the second line, we ask to optimize pI. Eventually, Asprin will
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compute the maximal subsets for the atom ad_extension/1. If more than one
maximal answer sets exist, all of them will be returned.

Similar is the case for gr. With the following rules, we find the minimal w.r.t.
subset relation co answer sets.

#preference (pl,subset){co_extension(A)}.
#optimize(pl).

In our running example, the gr, pr, and co answer sets are the same: {a}.

For the st semantics, we use a similar set of rules to compute the maximal
conflict-free sets. We then use the following two rules to find the arguments attacked
(with a defending attack) by these sets, and to prune the answers that contain
arguments that are neither contained nor attacked by these sets:

other(A) :- argument(A), not cf_extension(4),
cf_extension(B), attacks(B,A, defending).

:— argument(A), not other(A), not cf_extension(A).

In our running example, there is no st extension.

7 Related Work

The need to further refine the notion of attack in argumentation frameworks has led
to several different extensions of AAFs. For example, AAFs with Recursive Attacks
(AFRA) [2] and Extended Argumentation Frameworks (EAF) [I7] extended the
definition of attack, allowing attacks to be directed not only to arguments, but also
to other attacks. The difference between the two is that, while in EAFs only attacks
whose target is an argument can be attacked, in AFRA any attack can be attacked.
This idea is orthogonal to our approach that considers a classification of attacks,
which are, however, all directed to arguments, and studying the combination of
these two approaches, e.g., by allowing different types of attack that can be directed
to either arguments or attacks is an interesting research direction.

Commonsense Argumentation Frameworks [22], on the other hand, included
two types of attacks, which differ in the type of arguments they are directed to, i.e.,
deductive arguments or commonsense arguments. In our framework, all arguments
are of the same type and attacks are not characterized by the arguments they are
directed to, but by the role that the modeler would like them to have in the process
that selects an acceptable set of arguments.

Bipolar Argumentation Frameworks (BAF) [J] introduced support as a new
kind of interaction among arguments in abstract argumentation. The definition
and role of direct defeats is the same as that of attacks in AAFs, while the role of
support is to help arguments establish their rationality. A combination of supports
and defeats in a chain of arguments can lead to different types of defeat among
arguments such as indirect and supported defeats. The main difference with our
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approach is that such types of interaction are not primitive but result from the
combination of the pairwise interactions in a chain of arguments. Another impor-
tant difference is that all types of defeat in BAFs have the same dual role with the
attacks in AAFs, i.e. to generate conflicts and to defend other arguments.

Some other studies have introduced weights or preferences on attacks follow-
ing quantitative or qualitative approaches. For example, Weighted Argumentation
Systems [I3] assign weights to attacks as a way to describe their strength, and use
the idea of an inconsistency budget as a way to disregard attacks up to a certain
weight. The idea of weighted attacks is also used in [14], where the acceptability
of arguments is not defined in terms of the standard Dung-style extensions, but
in terms of numerical values derived from a set of equations describing the argu-
ments and the attacks. Weighted Argumentation Systems are also presented in
[6]. The main difference with our approach is that our aim is not to capture the
strength of attacks, but the different roles that attacks may have in an argumenta-
tion framework. These two ideas are orthogonal, and combining them to develop
a weighted argumentation framework with attack classification would be an inter-
esting future research direction. While social networks is indeed a domain where
numerical weights can be derived from the reactions of the users, in many other
domains such types of data may not be available.

A qualitative approach to represent preferences among attacks was proposed
n [16]. Similarly to our approach, the authors defined a framework with (an ar-
bitrary number of) types of attack. These are partially ordered and each attack
is assigned one of these types. This allows for a finer grained definition of defense
(compared to AAFs), which can roughly be described as follows: an argument is
defended against an attack from a counter-argument, if the latter receives a stronger
attack from another argument. It also allows for a finer definition of acceptabil-
ity semantics, which take into account the relative difference of strength between
defensive and offensive attacks.

All such preference-based approaches and many others, such as [I5][7], which use
either numerical values or priorities to represent the (relative) strength of attacks,
have a common aim: to capture the (absolute or relative) strength of arguments
and to resolve conflicts by comparing the conflicting arguments according to their
strength. Our aim, on the other hand, is to capture the different roles that attacks
may have in an argumentation framework. These two ideas are orthogonal, and
combining them to develop a weighted or preference-based argumentation frame-
work with attack classification would be an interesting future research direction.

Similarly to our approach, [19] considers different types of attack (or attack
relations) among arguments. Their approach is based on the intuition that each
attack relation can represent a different criterion according to which the arguments
can be evaluated one against another. The evaluation of arguments is based on the
aggregation of the different attack relations using methods from social choice theory,
such as majority voting, and the use of the standard acceptability semantics of
AAFs in the aggregate argumentation framework. They do not, therefore, provide
ways to treat certain criteria differently than others, which is one of the main
characteristics of the AAFs with Attack Classification where conflict-generating
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and defending attacks have different effects on the acceptability of the arguments
they attack or defend.

Deductive argumentation [5] also supports different types of attack, which de-
pend on the underlying logic. For example, choosing classical logic as the base logic
provides seven different types of attack. The different types of attack in such frame-
works are associated with the internal structure of arguments and cannot therefore
be directly compared with our framework where arguments are abstract. Extending
those frameworks with the ability to explicitly represent the role of attacks, as in
our framework, would enable alternative ways to reason with structured arguments,
which might be useful in some domains.

Abstract Argumentation Frameworks with Attack Classification generalize AAF's
in a way that cannot be captured by any of the other extensions of AAF's discussed
in this section. As shown in Proposition [3] the framework we propose preserves
compatibility with AAFs retaining many of its nice properties (see Section . This
also makes it possible to extend AAFs with Attack Classification with additional
features of other frameworks (e.g., preferences, weights on arguments or attacks,
etc.), which are also compatible with AAFSs, resulting in even more expressive ar-
gumentation models. The study of such potential extensions is among our plans
for future work.

8 Conclusion

Motivated by the observation we made in [2I] on the dual role of attacks in ab-
stract argumentation frameworks, in this paper we introduce a new abstract model
of arguments called Abstract Argumentation Frameworks with Attack Classifica-
tion. Its main characteristic is that it allows specifying the role of each attack in a
given argumentation graph. Specifically, it allows classifying attacks into four dis-
joint sets: normal attacks, which are equivalent to the standard attacks of AAFs;
conflict-generating attacks, which generate conflicts, but cannot defend against one;
defending attacks, which can defend other arguments, but do not generate conflicts;
and irrelevant attacks, which are neither conflict-generating nor defending and are,
therefore, ignored. This classification allows our framework to more accurately
model real-world dialogues where different responses to the same argument may
have a different effect on its acceptability. We recast the definitions of conflict-free,
admissible, complete, preferred, grounded and stable extension-based semantics to
account for the attack classification that we introduced to AAFs. To examine the
behaviour of the new framework and its semantics, we studied their properties and
their relation with the semantics of AAFs, and we assessed the different semantics
against a set of standard principles. Finally, to enable testing our framework, we
developed a Web App that supports the creation of argumentation frameworks with
attack classification and the computation of their extensions.

As we explain in Section [7] the attack classification that we extend AAFs with,
is orthogonal to other extensions that previous studies have proposed. The com-
bination of different extensions can, therefore, lead to more expressive frameworks
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that introduce preferences or weights on different types of attack, or apply the
proposed classification to other types of attack such as the second-order attacks of
EAFs [I7], the high-order attacks of AFRA [2] or the structure-aware attacks of
structured argumentation frameworks.

Our plans for future work include extending both the theoretical and the practi-
cal results we present in this paper. In terms of theory, we plan to define alternative
semantics for our framework (e.g., semi-stable, eager, ideal, etc.) based on their
corresponding definitions for AAFs. We also want to extend our principle-based
analysis with other principles that are related to the notion of skepticism, such
as skepticism adequacy and resolution adequacy [3] or to expressiveness, such as
tightness, conflict-sensitiveness and com-closure [12]. Such an analysis will help us
better understand the advantages and limitations of our approach and its differ-
ences with AAFs. We also plan to define new principles, which will be specific to
AAFs with Attack Classification. This will help further analyse the behaviour of
this framework, and may also lead to the definition of new semantics, tailored to
its distinctive features.

Another possible theoretical extension of our work would be to make the “de-
fending” property attack-specific. In particular, one could argue that a defending
attack from argument a to argument b may be defending some (but not all) of the
conflict-generating attacks originating from b. To support this, we could consider
a formalism, where the “characterization” of the attack as defending would also
include the (conflict-generating) attacks that it can be used to defend other argu-
ments from. This would, of course, result in a more complex formalism, but also a
more expressive one.

In terms of practical work, we want to evaluate and refine the Web App in
terms of performance and usability. We also want to explore potential applications
of our framework in domains where the proposed classification of attacks fits well
with the types of information they use, such as persuasion dialogues or debates in
Web forums and social media.
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Appendix

A Multi Attack Argumentation Frameworks

In this section, we provide the background material which refers to MAAFs and
their semantics, originally defined in [2I]. A multi-attack argumentation framework
is an argumentation framework where attacks are of multiple types.

Definition 34 A multi-attack argumentation framework (MAAF for short) is a
tuple (A, T,R), such that:

o A is a set of arguments
e T is a set of attack types

e RCAXxAXTis a set of type-annotated attacks among arguments

Note that A and/or T can be infinite, so R can be infinite too. Intuitively an
attack (a,b,7) € R represents that a attacks b, and that the attack is of type 7.
Note that the same two arguments may be related with attacks of different types,
in which case each attack type is represented as a different triple in R.

For any given set of types To C T, we say that a attacks b w.r.t. Ty (denoted
by a =, b) if there exists 7 € Ty, such that (a,b,7) € R. For simplicity, we often
write —- to denote — (7}, and — to denote —7. We extend notation to sets of
arguments, and, for B,C C A, we write B —, C if and only if 3b € B, ¢ € C such
that b =7, c. For singleton sets, we often write b —7; C' and B —7; ¢ instead of
{b} =7, C and B — 7, {c}, respectively.

The restriction of an MAAF to a specific set of types Ty is the AAF that is
generated from the MAAF by considering only the attacks in 7p. Formally, given
an MAAF (A, T,R), the restriction of (A, T,R) to Tp is an AAF (A, R'), where
A=A and R’ = {(a,b) | (a,b,7) € R for some 7 € Ty}

To define MAAF extensions, we introduce three new classes of semantics: firm,
restricted and loose. For each type of semantics defined in [I1I] (e.g., admissible,
complete, etc), we define its counterpart for each class (e.g., firmly admissible, re-
strictively stable, loosely complete, etc.). The three classes differ in how certain
types of attack are considered. As already mentioned, the idea behind our seman-
tics is the treatment of certain types of attacks as being conflict-generators only
or attackers only. To do this, we consider a certain set of types, say 7Ty, which
are treated in the “normal” manner. Different types of semantics can now result
depending on the exact behaviour of the attacks in 7\ 7o. In particular:

1. Firm semantics (e.g., admissible, complete etc) w.r.t. a certain set of attack
types (say To) requires a candidate extension to be defended against all types
of attacks, and an attack can be defended only by attacks from 7. In other
words, attacks in Ty have the standard behaviour, but attacks in 7\ 7o act
as conflict-generators only, not as defenders. We call them firm because,
while they allow any type of argument to unleash offensive attacks, they only
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allow certain types of attack (those in 7p) to defend an argument, making its
defense more difficult.

2. Restricted semantics (e.g., admissible, complete etc) w.r.t. a certain set of
attack types (say 7o) require a candidate extension to be defended against
attacks from 7j only, and an attack can be defended only by attacks from
To- Thus, restricted semantics essentially consider only the attacks in 7,
both for the attacks and for defending against them, i.e., attacks in 7\ To
are totally ignored.

3. Loose semantics (e.g., admissible, complete etc) w.r.t. a certain set of attack
types (say 7o) are the most “relaxed” ones, as they require a candidate exten-
sion to be defended only against attacks from 7g, while defense can happen
by any type of attack. In other words, in loose semantics, attacks in T\ To
are treated as defenders only, and cannot generate attacks. Loose semantics
allows attacks to be ignored, so they may result to extensions that are not
defended against all attacks, specifically against attacks that are of types not
in 7o.

In the following, we use shorthands to refer to the various types and classes of
semantics. In particular, for the three classes of semantics, we use fr for firm, re for
restricted, and lo for loose semantics. We also use 6 as a catch-all variable that refers
to any of these classes. Similarly, for types of extensions, we use cf for conflict-free,
ad for admissible, co for complete, pr for preferred, gr for grounded, and st for
stable. We also use o as a catch-all variable to indicate any of these extension types.
For example, we write fr-co-extension to refer to a firmly complete extension, and
f-o-extension to refer to an extension of class # and the type denoted by o.

The definitions for the above semantics in MAAF's follow:

Definition 35 Consider an MAAF (A, T, R), some To C T, some a € A and some
set € C A. We define the notion of defense for the different classes of semantics
as follows:

o & firmly defends a (or fr-defends a) w.r.t. To if and only if € =7, b whenever
b—a

o & restrictively defends a (or re-defends a) w.r.t. To if and only if £ =7, b
whenever b =1, a

e & loosely defends a (or lo-defends a) w.r.t. Ty if and only if € — b whenever
b 7, a

Definition 36 Consider an MAAF (A, T,R) and some Ty C T. For8 € {fr,re,lo},
a set £ C A is a 0-ad extension w.r.t. To (in words: firmly/restrictedly/loosely
admissible) if and only if:

o &isf-cf
o [fa€&, then € 0-defends a w.r.t. T
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Definition 37 Consider an MAAF (A, T,R) and some To C T. For 8 € {fr,re,lo},
a set £ C A is a 0-co extension w.r.t. To (in words: firmly/restrictedly/loosely
complete) if and only if:

o £isf-ad
o [f & O-defends a w.r.t. Ty, and EU{a} is 8-cf w.r.t. Ty, then a € €
Definition 38 Consider an MAAF (A, T,R) and some To C T. A set € C A is

a 0-gr extension w.r.t. Ty (in words: firmly/restrictedly/loosely grounded) if and
only if € is a minimal with respect to set inclusion 0-co extension w.r.t. J.

Definition 39 Consider an MAAF (A, T,R) and some To C T. A set E C A is
a 0-pr extension w.r.t. Ty (in words: firmly /restrictedly/loosely preferred) if and
only if £ is a mazimal with respect to set inclusion 0-ad extension w.r.t. Ty.

Definition 40 Consider an MAAF (A, T,R) and some To CT. A set EC A is:
e A firmly stable extension (fr-st) w.r.t. To if and only if:
— & is maximally fr-cf w.r.t. Ty
— & =7, a whenever a ¢ €
e A restrictedly stable extension (re-st) w.r.t. 7o if and only if:
— & is maximally re-cf w.r.t. Ty
— & =71, a whenever a ¢ £
e A loosely stable extension (lo-st) w.r.t. 7o if and only if:

— & is maximally lo-cf w.r.t. Ty

— & — a whenever a ¢ £

B Proofs for Formal Properties

Proof of Proposition

Case #1 of the proposition is obvious by the fact that £ defends all its elements,
as well as a and thus it defends all elements of £U {a}. Also, EU {a} is cf, by the
hypothesis.

For case #2, again, we observe that €U {a} defends all its elements, so it suffices
to show that £U {a} is cf. We note 4 different cases:

o If £ —. &, then we get a contradiction, because £ is cf.

o If £ =, a, then, since & defends a, it follows that &€ —4 &, thus &€ —. &, a
contradiction since £ is cf.

e If a —. &, then, since £ is an ad-extension, it follows that £ —; a, thus
&€ —. a, a contradiction by the second bullet.
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e If a —. a, then, since &£ defends a it follows that £ —4 a, ie., & —. a, a
contradiction again.

It follows that €U {a} is cf, and thus an ad-extension. O

Proof of Proposition [2]

The first result is direct by combining Definition [5] Proposition [1| (second bullet),
and the fact that if £ is ad, then it is cf by definition.

For the second result, note that if £ is cf and £ —4 a whenever a ¢ £, then £ —. a
whenever a ¢ £, thus £ is maximally cf. The result is now direct from Definition
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Proof of Proposition

We observe that, for any a,b € A: a —. b if and only if a —4 b if and only if
(a,b) € R. We also observe that Proposition [2] applies, since Rq C R.. Combining
the above facts with the definitions of the various semantics in Subsection and
n [I1], the result follows trivially. O

Proof of Proposition
For the first case, we observe that, for all a,b € A:

e a —. bin the AAF if and only if a — b in the MAAF
e a —4 bin the AAF if and only if a =, b in the MAAF

Combining these two facts with the respective definitions in Subsection [2.2] and
[21], the result follows trivially.
Analogously, for the second case and for all a,b € A:

e a —.bin the AAF if and only if a —7; b in the MAAF
e a —4 b in the AAF if and only if a =7, b in the MAAF

Again, the result follows trivially from the respective definitions.
Finally, for the third case and for all a,b € A:

e a —.bin the AAF if and only if a —7; b in the MAAF
e a —4 bin the AAF if and only if a — b in the MAAF
Again, the result follows trivially from the respective definitions. |

Proof of Proposition

#1, #2 and #3 are obvious by the respective definitions.

For #4, it suffices to show that if o defends a and £ U {a} is cf, then a € o.
Indeed, we observe that, under the above assumptions £ U {a} is an ad-extension,
so if a ¢ o, then EU {a} D &, a contradiction by the fact that £ is a maximal
ad-extension.

For #5, note that if £ is a st-extension, then it is cf, and also defends itself against
all external attacks, thus it is ad. Furthermore, it is maximally ad, since it is
maximally cf. Therefore, £ is a pr-extension. O
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Proof of Proposition [6]

We will prove the result constructively. First, we will describe a construction over
F, and then we will show that this construction generates some £ with the prop-
erties required. The proof is broken down in steps, represented as claims proved
individually below; the last claim (Claim [5]) shows the result.

Construction. We assume a well-order < over A (its existence is guaranteed by
the Axiom of Choice). For a given set E C A, we denote by miny F the minimal
element of E according to <.

Moreover, for E C A, set E® = {a € A\ E | E: defends a, EU{a} is cf}, i.c., the
arguments that are defended by E, and do not conflict with E.

We define the function: ¢ : 24 — 24 as follows:

E , when EV =0
(E) :{ EU{min(E®)} | when EY #£0

Finally, we define a function G recursively on the ordinals as follows:

G(B) =&, , when =0
G(B+1)=0¢(G(B)) , when 3 is a successor ordinal
G(B)=U{G(v) | v < B} , when B is a limit ordinal

Claim 1. For two ordinals 3,7, if 8 < ~, then G(8) C G(v).

Proof of Claim 1. We will use transfinite induction on ~.

If v = 0, then the result holds trivially as there is no g for which § < . Suppose
that the result holds for all v < §; we will show that it holds for v = §.

If 6 is a successor ordinal, then there exists some 6~ such that 6 = §~+1. Clearly, by
the definition of G and ¢, G(§) 2 G(d~). Furthermore, by the inductive hypothesis,
G(67) 2 G(B), which shows the result.

If § is a limit ordinal, then the result follows directly by the definition of G. )

Claim 2. For any ordinals 3, G(8) 2 &,.
Proof of Claim 2. If § = 0 the result follows by the definition of G. If 5 > 0, the
result follows by Claim o

Claim 3. For any ordinal 3, G(3) is an ad-extension.

Proof of Claim 3. We will use transfinite induction over 8. For g = 0, the result
follows by our assumption on &,. Now suppose that it holds for all 5 < v. We will
show that it holds for 8 = ~.

If v is a successor ordinal, then take v~ such that v =+~ 4+ 1. Then, by definition,
G(v) = ¢(G(y7)). By the inductive hypothesis G(77) is an ad-extension. Moreover,
by the definition of ¢, ¢(F) is an ad-extension whenever E' is an ad-extension, so
G(7) is an ad-extension.

If «y is a limit ordinal, then suppose that G(7) is not cf. Then, there exist a1,as €
G(7) such that {aj,az2} is not cf, and, thus, there exist ordinals d1,d2 such that
01 < 7, 02 < 7, a1 € G(01), as € G(d2). If §; = 6o then G(d1) is not cf, a
contradiction by the inductive hypothesis. If §; < d2 then G(d2) 2 G(d1) (by Claim
7 s0 aj,as € G(d2), a contradiction by the inductive hypothesis. The case of
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da < 07 is analogous. Thus, G(7) is cf.

Now consider some a € G(7). Then, by the definition of G, there exists some § < 7y
such that a € G(§). Since G(9) is an ad-extension by the inductive hypothesis, it
follows that G(8) defends a, so, given that G(v) 2 G(6) (Claim[]), we conclude that
G(v) defends a. Thus, G(v) is an ad-extension. o

Claim 4. There exists ordinal 3 such that G(8) = G(8+ 1).

Proof of Claim 4. By Claim [I} we conclude that G is an increasing function from
the ordinals into 2. It cannot be strictly increasing, as if it were we would have an
injective function from the ordinals into a set, violating Hartogs’ lemma. Therefore
the function must be eventually constant, so for some 3, G(8) = G(8 + 1). o

Claim 5. There exists some £ such that £ O &,, and the following hold:
1. £ is a co-extension.

2. For any &’ such that & C & C &, there exists a € £\ £ which is defended
by & and &' U {a} is cf.

3. For any & such that £ C & C &, £ is not a co-extension.

Proof of Claim 5. By Claim [4] there exists ordinal 8 such that G(3) = G(8 + 1).
Set £ =G(B). By Claim |2} £ D &,, so it is an adequate choice. We will show that
& satisfies the required properties.

For the first result, note that by Claim [3| £ is an ad-extension. Moreover, £ =
G(B) = G(B+1) = d(G(B)) = #(E), which implies that £ ¥ = ), which, in tandem
with the fact that £ is an ad-extension leads to the conclusion that £ is a co-
extension.

For the second result, take some £’ such that &, C & C £.

Set S ={y | G(y) € &}. We observe that 3 € S, so S # . Set 6 = min. S.
Obviously, § = S or § < 5.

If § = 0, then G(§) = &, C &', a contradiction.

If § is a successor ordinal, then take 6~ such that 6 = §~+1. Thus, G(§) = ¢(G(67)).
By construction, G(6~) C & and G(0) Z &', therefore G(§) = G(0~)U{a}, for some
a for which G(67) defends a and G(67) U {a} is cf. If a € &, then G(§) C &', a
contradiction by the choice of 4, so a ¢ €. Moreover, a € G(§). If § = 3 then
G(6) =&, ,s0a €& If§ < Bthena € G(6) C G(B) (by Claim[l)), so a € €. We
conclude that @ € £\ &’. Thus, we have found some a with the required properties.
If § is a limit ordinal, then, by the definition of 4, G(§') C &’ for all &' < 4.
Therefore, G() = Js .5 G(8") € &', a contradiction by the choice of 0.

The third result follows from the second: indeed, as there exists a € £\ £ which is
defended by & and &' U {a} is cf, it cannot be the case that £’ is a co-extension.
0]

O

Proof of Proposition

We first observe that () is ¢f and an ad-extension, so the claim is true for o €
{cf,ad}.

Let us now turn our attention to the case where ¢ = pr. Our proof follows the
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lines of the respective proof in [4]. Set AD = {£ | £ is an ad-extension} (AD # (),
as shown above). We will show that any C-chain (&;);c; (for some appropriate set
of indexes I) in AD possesses an upper bound. Indeed, set £ = |J&;. Obviously
£ D &;, so it is an upper bound; it remains to show that £ € AD, i.e., that £ is an
ad-extension.

Suppose that £ is not cf, i.e., there exist a;,as € & such that a —. b. By the
definition of £, there exist &;, £; such that a; € &;, ax € &; for some i,5 € I. It
is the case that & C &; or £ C &;, so suppose, without loss of generality, that
& C &;. Then ai,as € &, a contradiction, since &; is an ad-extension (thus cf).
Thus, € is cf. It remains to show that £ defends all a € £. Indeed, take some a € £.
Then, a € &; for some ¢ € I, and, thus &; defends a, which implies that £ defends a,
since £ D &;. Thus, any C-chain (&;);er in AD possesses an upper bound, which,
by Zorn’s Lemma, implies that AD has a maximal element, i.e., that there exists a
pr-extension.

By proposition [5| the existence of a pr-extension implies that there exists a co-
extension as well.

For gr-extensions, note that ) is an ad-extension, so applying Proposition [f for
&, = () we ensure the existence of some £ which is minimally co-extension, i.e., £
is a gr-extension. O

Proof of Proposition

Given that () is an ad-extension, we can apply Proposition [6]for £, = 0 to get some
&€ which is a minimal co-extension, i.e., £ is a gr-extension. Now suppose that
there is a second gr-extension, say £ (£’ # &). Obviously, £ € & and &' € £. Set
Eo=ENE'. Tt follows that ) C & C &, so by Proposition |§| again there exists some
a € £\ & which is defended by & and & U {a} is cf. Moreover, & C &', so a is
defended by &’. But £’ is a gr-extension, thus a co-extension and also &£’ defends
a. Thus, given that Rqy C R., we can apply Proposition [2| (bullet #1) to conclude
that a € £, a contradiction by the choice of a. O

Proof of Proposition [9]
The result is direct by the fact that the relations —., —4 are identical in the two
frameworks. O

Proof of Proposition

For #1: suppose that there exist a,b € € such that (a,b) € R, then (a,b) € R. so
€ is not cf wr.t. (RE,RY), a contradiction.

For #2: consider some b € A such that (b,a) € R2. Then, (b,a) € R., so, by the
hypothesis, there exists ¢ € £ such that (¢, b) € 7'\’,(11 C T\’%, which proves the result.
For #3: direct from the first two bullets.

For #4: it suffices to show that if £ defends a w.r.t. (RL,RL) and EU{a} is cf w.r.t.
(RL,RL) then a € £. Indeed, by the second result, we conclude that & defends a
w.r.t. (R2 R3), whereas by the first result we conclude that £ U {a} is cf w.r.t.
(R2,R2). Given that & is a co-extension w.r.t. (R2 R2), it follows that a € &,
which proves the result.

For #b5: suppose, for the sake of contradiction, that £ is not a pr-extension w.r.t.
(RL,RL). Then, there exists some £ D &, such that £ is an ad-extension w.r.t.
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(RL,RL). By the second result, £ is also an ad-extension w.r.t. (R2 R2), a
contradiction by the fact that £ is a pr-extension w.r.t. (R2, R2).
For #6: direct by the fact that R} C R2 and the hypotheses. O

Proof of Proposition

It follows directly from the definitions of co, gr, pr and st semantics, according
to which, whether a set of arguments & is an extension of an AAF F = (4,R) or
not depends only on its attack relation, R, and the classification of the attacks,
(R, R,), and not on the names or labels of the arguments in R. O

Proof of Proposition
It follows directly from the definitions of co, gr, pr and st semantics, according to
which every co, gr, pr or st extension must be cf. O

Proof of Proposition

Admissibility follows directly from the definitions of co, gr and pr semantics, ac-
cording to which every co, gr or pr extension must be ad. According to the
definition of st semantics, every st-extension is cf and defends itself against all
arguments it doesn’t contain; it is, therefore, ad. Since admissibility is a special
case of defense, defense is also satisfied by co, gr, pr and st semantics. O

We introduce the following lemma to simplify the proofs of some of the remain-
ing propositions.

Lemma 1 Any principle that is not satisfied by the o-semantics of AAF is not
also satisfied by the o-semantics of AAFs with Attack Classification.

Proof of Lemma [il

Consider a semantics of AAFs ¢ and a principle p not satisfied by o. This means
that there is an AAF, F = (A, R) and a o-extension of it £ not satisfying the
requirements of p. From Proposition [3| £ is also a o-extension of F = (A, R) with
attack classification (R.,R;), where R, = Rq = R. Since £ does not satisfy the
requirements of p, the o semantics of AAFs with Attack Classification violate p. [J

Proof of Proposition

As shown in [3], strong admissibility is not satisfied by the co, pr and st semantics of
AAFs. By Lemmal[l] it is also not satisfied by the co, pr and st semantics of AAFs
with Attack Classification. For the gr semantics, consider an AAF F = (A, R)
with Attack Classification (R, R,), where: A = {a,b,c}, R, = {(a,b), (a,c)} and
R, = {(c,a)}. Its grounded extensions are &; = {a} and & = {b, ¢} and & does not
strongly defend c¢. Therefore, strong admissibility is not satisfied by gr semantics
either. O

Proof of Proposition

As shown in [20], naivety is not satisfied by the co, gr and pr semantics of AAFs.
By Lemma [l it is also not satisfied by the co, gr and pr semantics of AAFs
with Attack Classification. For the st semantics, naivety follows directly from its
definition. O

39



Proof of Proposition

As shown in [10], indirect conflict-freeness is not satisfied by any of co, gr, pr and
st semantics of AAFs. By Lemmal[T] it is also not satisfied by any of co, gr, pr
and st semantics of AAFs with Attack Classification. g

Proof of Proposition

Consider the AAF shown in Figure[l] {b,c,d} is a complete, grounded, preferred
and stable extension, which defends a but does not contain it. Therefore, reinstate-
ment is not satisfied by any of co, gr, pr and st semantics. O

Proof of Proposition

In the AAF shown in Figure(l} {b, ¢, d} strongly defends a but does not contain it.
Therefore, weak reinstatement is not satisfied by any of co, gr, pr and st semantics.
O

Proof of Proposition

C F-reinstatement follows directly from the definitions of co, gr and pr semantics.
For the st semantics: Suppose there is a st extension £ and an argument a such
that €U {a} is conflict-free and a does not belong to €. This cannot be the case
because £ would not be maximally cf. Therefore, CF-reinstatement is also satisfied
by the st semantics. O

Proof of Proposition

As shown in [3], I-maximality is not satisfied by the co semantics of AAFs. By
Lemmal I} it is also not satisfied by the co semantics of AAFs with Attack Classifi-
cation. I-maximality follows directly from the definitions of gr, pr and st semantics.
O

Proof of Proposition

Consider the AAF shown in Figure [1l {b,¢,d} and {a,d} are co, gr and pr ex-
tensions. Argument b is contained in {b,c,d} and attacked by {a,d} and there is
no other (co, gr or pr) extension. The non-satisfiability of allowing abstention by
the st semantics follows directly from its definition, which requires that every st
extension must be maximally cf. O

The following lemma has been proved for AAFs in [I]. We will prove that this
result holds also for AAFs with Attack Classification. This lemma will be used for
proving the remaining propositions.

Lemma 2 For all semantics of AAFs with Attack Classification: (i) directionality
implies non-interference and (ii) non-interference implies crash resistance.

Proof of Lemma [2.
(i) follows directly from Definitions [28] and according to which every isolated
set is also an unattacked set.

For (ii), suppose that for a semantics o that satisfies non-interference, there is
a contaminating argumentation framework F* = (A*,R*). Then for any frame-
work F = (A, R) disjoint from F* it holds that o(F*) = o(F* U F). However,
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o satisfies non-interference and A is isolated in F* U F, thus: o ((F*UF)j4) =
{ENAIE € o (FFUF)}. F* = (A*,R*) and F = (A, R) are disjoint, therefore,
o ((F*UF) 4) = o(F) and by the initial supposition, 7* and F have the same
set of o-extensions. Therefore, the previous equation implies: o (F) = {ENA|E €
o (F*)}, and, since F* and F are disjoint, o (F) = o (F*). This is obviously a con-
tradiction, unless o returns only the empty set as an extension for any framework,
which is not the case for any of the semantics that we study. O

Proof of Proposition

By Proposition [23| and Lemma [2], co, gr and pr semantics satisfy crash resistance.
As shown in [§], crash resistance is not satisfied by the st semantics of AAFs.
By Lemma [1] it is also not satisfied by the st semantics of AAFs with Attack
Classification. O

Proof of Proposition

We show that for ¢ = co, for any argumentation framework F = (A, R) with
any classification of attacks (R.,R,) and for any isolated set S C A: o (Fis) =
{ENS|E € o (F)}. Let Sy an isolated set of F and &; a co-extension of Fg,. Then
Sy = A\ 57 should also be isolated, since it doesn’t attack or receive any attacks
from S;. Let & be a co-extension of F|s,. For both &£ and &, it holds that they
are conflict-free and they defend all arguments they contain from attacks from Sy
(resp. S3). Since there are no attacks between S; and Ss, both &£ and & defend all
arguments they contain from attacks from A and & = & U &, is conflict-free. £ is,
therefore, admissible in F. Furthermore, & (resp. &) cannot defend any argument
in Sy (resp. S1). Therefore, £ contains all arguments in A that it defends from
attacks from A. It is, therefore, a co-extension of F and & = £ N S;. Since this
holds for any extension of Sy, co (Fs,) C {€N 51| € co(F)}.

Consider now any co-extension of F, £, such that £ = €' N S;. £ is conflict-
free and defends all arguments it contains from attacks from A, therefore, given
that there are no attacks between Sy and Sy = A\ Sy, & is conflict-free and defends
all arguments it contains from attacks from S;. This means that £ is admissible in
Fs,. Since £ is complete, there is no argument a; in A\ £ and therefore also in
S1\ &1, such that £ defends a; and £'U{a;} is conflict-free. Given that there are no
attacks between S; and S, this means that there is no argument a; € Sy \ £] such
that & defends a; and & U {a;} is conflict-free. & is, therefore, a co-extension of
Fs,- Since this holds for any co-extension of F, co(F,g,) 2 {€N S1|€ € co (F)}.
The co semantics, therefore, satisfies non-interference.

Using a similar proof process, it can be easily verified that pr and gr semantics
also satisfy non-interference.

As shown in [3], non-interference is not satisfied by the st semantics of AAFs.
By Lemma [I] it is also not satisfied by the st semantics of AAFs with Attack
Classification. g

Proof of Proposition
From Definitions and [33] it follows that a semantics o satisfies directionality
if and only if o satisfies both weak- and semi-directionality. Since, by Propositions
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and [26] none of the co, gr, pr and st semantics satisfy both weak- and semi-
directionality, they do not satisfy directionality either. O

Proof of Proposition

For co, gr and pr semantics: Consider an AAF F = (A, R) with attack classifica-
tion (R, R,), where: A ={a,b,c}, R, = {(b,a)} and R, = {(c¢,b)}. Consider the
unattacked set U = {b, c}. The only co-, pr- and gr-extension of Fy is & = {b, c}.
F has two co-, pr- and gr-extensions: & = {a,b} and & = {a, c}. Neither & NU
nor & N U is equal to &, the only extension of F . Therefore, co, gr and pr
semantics do not satisfy weak directionality.

For st semantics: Consider any st-extension, &, of an AAF F = (A, R),
equipped with some attack classification (R.,R,;) and an unattacked set of ar-
guments U € US (F). By definition, £ is maximal among the conflict-free subsets
of A. £NU is, therefore, maximal among the conflict-free subsets of U. & attacks
(with a defending attack) all arguments that are not in &, therefore ENU attacks
(with a defending attack) all arguments in U \ {€NU}. E€NU, therefore, fulfils all
the conditions for being a st-extension of F|y;, which means that for o = st, for
every U € US (F) it holds that o (Fyy) 2 {ENUIE € o (F)}. Weak directionality
is, therefore, satisfied by the st semantics. O

Proof of Proposition
The example used in the Proof of Proposition is a proof that co, gr and pr
semantics do not satisfy semi-directionality.

By Propositions and st semantics does not satisfy directionality but
satisfies weak directionality. Given that a semantics o satisfies directionality if and
only if o satisfies both weak- and semi-directionality, st semantics does not satisfy
semi-directionality. O

C ASP Code for Web App
YISTITSTISTTISTTISTTSo
% Conflict free Extension (Def 3)

% Generate all possible extensions
{cf_extension(A) : argument(A)}.

% Generate the Answer Sets without

% internal conflict —generating attacks
:— cf_extension (Al), cf_extension (A2),
attacks (Al, A2, conflict).

#show cf_extension /1.

TISTTTSTSSSTTISTTISTTSo
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% Admissible Extension (Def 4)
% Import code for computation of cf_extensions

% Consider all c¢f extensions
ad_extension (A) :—
cf_extension (A).

% If an argument (a) of a cf set (S)
% receives an attack
argumentGetsConfAttack (A) :—
argument (A) ,
attacks (-, A, conflict).

% The argument (a) must be defended
% by the set (S)
defendedByExtension (A) :—
argument (A) ,
not argumentGetsConfAttack (A).
defendedByExtension (A) :—
argument (A) ,
attacks (Al, A, conflict),
attacks (A2, Al, defending), ad_extension (A2).

% Remove the cf sets that contain an argument (a)
% not defended by the set (S)
:— ad_extension (A), not defendedByExtension(A).

#show ad_extension /1.

TITTSSSTITTTTTTTSIS TS0
% Complete Extension (Def 5)
% Import code for computation of ad_extensions

% Gather all admissible extensions
co_extension (A) :—
ad_extension (A).

% Given an admissible set (S) and an argument (a)
% then S U {a} must be cf (x)
attacksExtension (A) :—
attacks (A, Al, conflict),
co_extension (Al).
getsAttackedByExtension (A) :—
attacks (Al, A, conflict),
co_extension (Al).
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% If S defends a. Then, a belongs in S (x*x)
compliantArg (A)
defendedByExtension (A),
not getsAttackedByExtension (A),
not attacksExtension (A).

% Remove the sets admissible sets which
% do not obey (%) and (xx)

:— compliantArg(A), not co_extension (A).
#show co_extension /1.

TISSTTTISSSTTTIISSTT o
% Grounded Extension (Def 6)
% Import code for computation of co_extensions

% Find the smallest (w.r.t subset relation) co extension(s)
#preference (pl,subset){co_extension (A)}.
#optimize (pl).

gr_extension (A) :— co_extension (A).
#show gr_extension /1.

TTTTSSTITTTTTTTIISTSo
% Preferred Extension (Def 7)
% Import code for computation of ad_extensions

% Find the biggest (w.r.t subset relation) ad extension(s)
#preference (pl,superset){ad_extension (A)}.
#optimize (pl).

pr_extension (A) :— ad_extension(A).
#show pr_extension /1.

TTTTSSIITTTTTTTIISISo
% Stable Extension (Def 8)
% Import code for computation of cf_extensions

% Find the biggest (w.r.t subset relation) cf extension(s)
#preference (pl,superset){cf_extension (A)}.

#optimize (pl).

% The argument(s) (A) not contained in
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% the biggest cf extension(s) must receive
% a defending attacks

other (A) :— argument(A), not cf_extension (A),

cf_extension (B), attacks(B,A, defending).
:— argument (A), not other(A), not cf_extension(A).

st_extension (A) :— cf_extension (A).
#show st_extension /1.
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