

ECAI 2002
F. van Harmelen (Ed.)
IOS Press, 2002

370

Multiple and Partial Periodicity Mining in
Time Series Databases

Christos Berberidis1, Walid G. Aref2, Mikhail Atallah2, Ioannis Vlahavas1, Ahmed K. Elmagarmid2

Abstract. Periodicity search in time series is a problem that has
been investigated by mathematicians in various areas, such as sta-
tistics, economics, and digital signal processing. For large data-
bases of time series data, scalability becomes an issue that tradi-
tional techniques fail to address. In existing time series mining
algorithms for detecting periodic patterns, the period length is user-
specified. This is a drawback especially for datasets where no pe-
riod length is known in advance. We propose an algorithm that
extracts a set of candidate periods featured in a time series that
satisfy a minimum confidence threshold, by utilizing the autocor-
relation function and FFT as a filter. We provide some mathemati-
cal background as well as experimental results.12

1 INTRODUCTION

Periodicity is a particularly interesting feature that could be used
for understanding time series data and predicting future trends.
However, little attention has been paid on the study of the periodic
behavior of a temporal attribute. In real world data, rarely a pattern
is perfectly periodic (according to the strict mathematical definition
of periodicity) and therefore an almost periodic pattern can be
considered as periodic with some confidence measure. Partial
periodic patterns are patterns that are periodic over some but not all
the points in it.

Early work in time-series data mining addresses the pattern
matching problem. Agrawal et al. in the early 90’s developed
algorithms for pattern matching and similarity search in time series
databases [1, 2, 3]. Mannila et al. [4] introduce an efficient solution
to the discovery of frequent patterns in a sequence database. Chan
et al. [5] study the use of wavelets in time series matching and
Faloutsos et al. in [6] and Keogh et al. in [7] propose indexing
methods for fast sequence matching using R* trees, the Discrete
Fourier Transform and the Discrete Wavelet Transform. Toroslu et
al. [8] introduce the problem of mining cyclically repeated patterns.
Han et al. [9] introduce the concept of partial periodic patterns and
propose a data structure called the Max-subpattern Hit Set for
finding partial periodic patterns in a time series. Aref et al. in [10]
extend this work by introducing algorithms for incremental, on-line
and merge mining of partial periodic patterns.

The algorithms proposed in the above articles discover partial
periodic patterns for a user-defined period length. If the period
length is not known in advance, then these algorithms are not
directly applicable. One would have to exhaustively apply them for
each possible period length, which is impractical. In other words, it
is assumed that the period is known in advance thus making the

1 Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki 54006, Greece, email: { berber, vlahavas} @csd.auth.gr

2 Department of Computation, Purdue University, West Lafayette, IN
47907, USA, email: { aref, mja, ake} @cs.purdue.edu

process essentially ad-hoc, since unsuspected periodicities will be
missed.

Our contribution in this paper is a new algorithm for detecting
all the periodicities in a time series without any previous
knowledge of the nature of the data. The time series is considered
as a character sequence. The algorithm follows a filter-refine
paradigm. In the filter step, the algorithm utilizes the Fast Fourier
Transform to compute a Circular Autocorrelation Function that
provides us with a conservative set of candidate period lengths for
every letter in the alphabet of our time series. In the refine step, the
algorithm applies Han’s algorithm [9] for each candidate period
length to find partial periodic patterns, if any, within this candidate
period length. The complexity of our algorithm is O(ANlogN),
where A is the size of the alphabet and N the size of the time
series. The algorithm speeds up linearly both to the number of time
points and the size of the alphabet.

The rest of this paper proceeds as follows: the next section we
contains notation and definitions for the problem. In section 3 we
outline the steps of the algorithm we propose and we explain how
it works in detail. We provide some theoretical background and we
discuss the computational complexity of the algorithm. In section 4
we test our algorithm with various data sets, produce some
experimental results and verify them using Han’s algorithm. In the
last section we conclude this paper and suggest some directions for
further research.

2 NOTATION

A pattern is a string s = s1…sp over an alphabet L
�

{* }, where
the letter * stands for any single symbol from L. A pattern s’ =
s1’…sp’ is a subpattern of another pattern s if for each position i,

ii ss �
�

 or �
�
is * . For example, ab*d is a subpattern of abcd.

Assume that a pattern is periodic in a time series S of length N with
a period of length p. Then, S can be divided into

� �
pN /

segments of size p. These segments are called periodic segments.
The frequency count of a pattern is the number of the periodic
segments of the time series that match this pattern. The confidence
of a pattern is defined as the division of its frequency count by the
number of period segments in the time series (

� �
pN /). For

example, in the series abcdabddabfcccba, the pattern ab** is
periodic with a period length of 4, a frequency count of 3, and a
confidence of 3/4.

According to the Apriori property on periodicity discussed in
[9] “each subpattern of a frequent pattern of period p is itself a
frequent pattern of period p” . For example, assume that ab** is a
periodic pattern with a period of 4, then a*** and *b** are also
periodic with the same period. Conversely, knowing that a*** and
*b** are periodic with period 4 does not necessarily imply that
ab** is periodic with period 4.

 371

3 OUR APPROACH

Based on the Apriori property described in the previous section, we
present a new algorithm that generates a set of candidate periods
for the symbols of a time series. The filter/refine paradigm is a
technique that has been used in several contexts, e.g., in spatial
query processing [11]. The filter phase reduces the search space by
eliminating those objects that are unlikely to contribute to the final
solution. The refine phase, which is CPU-intensive, involves
testing the candidate set produced at the filter step in order to
verify which objects fulfil the query condition.

The filter/refine paradigm can be applied in various search
problems such as the search for periodicity in a time series. We use
the circular autocorrelation function as a tool to filter out those
periods that are definitely not valid.

We outline the major steps performed by our algorithm. The
explanation of the steps is given further down in this section.
1. Scan the time series once and create a binary vector of size N

for every symbol in the alphabet of the time series.
2. For each symbol of the alphabet, compute the circular

autocorrelation function vector over the corresponding binary
vector. This operation results in an output autocorrelation
vector that contains frequency counts.

3. Scan only half the autocorrelation vector (maximum possible
period is N/2) and filter out those values that do not satisfy the
minimum confidence threshold and keep the rest as candidate
periods.

4. Apply Han’s algorithm to discover periodic patterns for the
candidate periods produced in the previous step.
Steps 1—3 correspond to the filter phase while Step 4

corresponds to the refine phase, which uses Han’s Max-subpattern
Hit Set Algorithm that mines for partial periodic patterns in a time
series database. It builds a tree, called the Max–Subpattern tree,
whose nodes represent a candidate frequent pattern for the time
series. Each node has a count value that reflects the number of
occurrences of the pattern represented by this node in the entire
time series. For brevity, we refer the reader to [9] for further
details.

3.1 The Filter Phase

The first phase of our method is the creation of a number of binary
vectors. Assume we have a time series of size N. We create a
binary vector of size N for every letter in our alphabet. An ace will
be present for every occurrence of the corresponding letter and a
zero for every other letter.

The next step is to calculate the Circular Autocorrelation
Function for every binary vector. The term autocorrelation means
self-correlation, i.e., discovering correlations among the elements
of the same vector. We use Autocorrelation as a tool to discover
estimates for every possible period length.

The computation of autocorrelation function is the sum of N dot
products between the original signal and itself shifted every time
by a lag k. In circular autocorrelation, the point at the end of the
series is shifted out of the product in every step and is moved to the
beginning of the shifting vector. Hence in every step we compute
the following dot product for all N points:

 ��� �� N

x

kxfxf
N

kr
1

)()(
1

)((1)

This convolution-like formula calculates the discrete 1D circular
autocorrelation function for a lag k. For our purposes we need to
calculate the value of this function for every lag, which means for
N lags. Therefore, the overall formula for r(k) is computed for all
k=1 ... N. The complexity of this operation is O(N2), which is quite
expensive, especially when dealing with very large time series.
 Utilizing the Fast Fourier Transform (FFT) effectively reduces
the cost down to O(NlogN). The overall procedure is depicted as
follows:

))(()(*)(
1

))(()()(xfrxFxF
N

xFRxFxf IFFTFFT �������	����
�� (2)

In the above formula)(*)(xFxF is the dot product of F(x)

with its complex conjugate. The mathematical proof can be found
in the bibliography.

Example 1: Consider the series abcdabebadfcacdcfcaa of length
20, where a is periodic with a period of 4 and a confidence of 3/4.
We create the binary vector 10001000100010000011. The circular
autocorrelation of this vector is given in Figure 1.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Time Points

C
irc

ul
ar

 A
ut

oc
or

re
la

tio
n

Figure 1. Circular Autocorrelation Function when the length is a
multiple of the period

The first value of the autocorrelation vector is the dot product of
the binary vector with itself, since the shifting lag is 0 and therefore
the two vectors align perfectly. Thus, the resulting value is the total
number of aces, which is the total number of occurrences of the
letter a. The peak identified in the above chart at position 5 implies
that there is probably a period of length 4 and the value of 3 at this
position is an estimate of the frequency count of this period.
According to this observation, we can extract those peaks, hence
acquiring a set of candidate periods. Notice that a period of length
4 also results in peaks at positions 5, 9, 13 etc.

The user can specify a minimum confidence threshold c and the
algorithm will simply extract those autocorrelation values that are
greater than or equal to cN/p, where p is the current position where
a period could exist.

One of the most important issues one has to overcome when
dealing with real world data is the inevitable presence of noise. The
computation of the autocorrelation function over binary vectors
eliminates a large number of non-periodic aces due to their
multiplication with zeroes, and hence leaving the periodic aces to
contribute to the resulting value. Otherwise, using autocorrelation

 372

over the original signal, would cause all the non-periodic instances
to contribute into a totally unreliable score estimate. Consequently,
such a value could be an acceptable estimate of the frequency
count of a period. Note that the value of the estimate can never be
smaller than the real one. Therefore, all the valid periodicities will
be included in the candidate set together with a number of false
ones that are the effect of the accumulation of random, non-
periodic occurrences with the periodic ones.

One major weakness of the circular autocorrelation is that when
the length of the series is not an integer multiple of the period, the
circularly shifting mechanism results in vectors with a higher
occurrence of unexpected values. This is usually increased by the
randomness of real world data and the presence of noise. In our
example the length of the series is N=20, which is an integer
multiple of the period p=4. When the length of the series is 21
(e.g., by adding a zero at the end of the binary vector), this results
in the circular autocorrelation given in Figure 2.

0 5 10 15 20 25
0

1

2

3

4

5

6

Time Points

C
irc

ul
ar

 A
ut

oc
or

re
la

tio
n

Figure 2. Circular Autocorrelation Function when the length is not a
multiple of the period

Notice that although the chart is different, there is still a peak at

position 5 implying the existence of a period of 4 with a frequency
count of 3. Since the maximum period is theoretically equal to N/2,
the peak at position 18 is ignored.

Repeating the algorithm described so far, for every symbol in
the alphabet of our time series will result in a set of possible
periods for each one of them. Note that a letter might have more
than one period. For every candidate period, there will be an
estimate of its confidence, according to their autocorrelation value.
Utilizing the Apriori property on periodicity discussed earlier in
this article, we can create periodicity groups, that is, groups of
letters that have the same period. Han’s algorithm [9] can be
applied to verify the valid periods and extract the periodic patterns.

Theorem: Consider a time series with N points. Also let a letter of
that time series feature periodicity with a period p1 with a
confidence c1. We can prove that this letter is also periodic with a
period of p2 and confidence c2 � c1, when p2 is a multiple of p1.

For example, if a is periodic with a period length of 4 and a
confidence of 75% then it is also periodic with a period of 8, 12, 16
etc. and the corresponding confidence measures are equal to or
greater than 0.75. Assume that b is periodic with a period of 8.
Based on the previous theorem we know that a is also periodic
with a period of 8 and therefore, we can create a periodicity group

consisting of those two letters and apply Han’s algorithm to check
whether there is a periodic pattern with a period of 8 or any of its
multiples.

A problem could arise when a number of successive
occurrences of a letter are repeated periodically.

Example 2: Consider the series aabaacaadacdbdbdabc, where aa*
is repeated in 3 out of 6 periodic segments, while a** is repeated in
4 periodic segments. The circular autocorrelation chart for the
symbol a is given in Figure 3.

A clear peak at position 4 can be seen, implying the existence of
a period of 3. The frequency estimate according to the
autocorrelation function is 6, which happens to be two times the
actual frequency count, which is 3.

The presence of noise does not affect the completeness of the
algorithm, since it discovers all the periodicities that exist.
However, it might also produce some non-existing periodicities,
which are pruned in the refine phase.

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

Figure 3. Circular Autocorrelation Function when successive periodic
occurrences of the letter

3.2 Analysis

Our algorithm requires 1 scan over the database in order for the
binary vectors to be created. Then it runs in O(NlogN) time for
every letter in the alphabet of the series. Consequently the total run
time depends on the size of the alphabet. Generally speaking we
can say that this number is usually relatively small since it is a
number of user specified classes in order to divide a range of
continuous values.

4 EXPERIMENTAL RESULTS

We tested our algorithm over a number of data sets. The most
interesting data sets we used were supermarket and power
consumption data. The former contain sanitized data of timed sales
transactions for some Wal-Mart stores over a period of 15 months.
The latter contain power consumption rates of some customers
over a period of one year and were made available through the
CIMEG1 project. Synthetic control data taken from the Machine
Learning Repository [12] were also used. Different runs over

1 CIMEG: Consortium for the Intelligent Management of the Electric Power
Grid. helios.ecn.purdue.edu/~cimeg/Index.html.

 373

different portions of the data sets showed that the execution time is
linearly proportional to the size of the time series as well as the size
of the alphabet. Figure 4 shows the behavior of the algorithm
against the number of the time points in the time series.

Figure 5 shows that the algorithm speeds up linearly to
alphabets of different size. The size of the alphabet implies the
number FFT computations of size N required. The times shown on
the chart below correspond to a synthetic control data set of N =
524288 time points.

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

Number of Points (in thousands)

T
im

e
(s

ec
)

Figure 4. Run time against data sets of different size

.

0

10

20

30

40

2 4 6 8 10

Alphabet Size

T
im

e
(s

ec
)

Figure 5. Run time against different alphabets

As far as accuracy is concerned, our algorithm was proved to be

complete. We tried three datasets containing the number of
customers per hour in three Wal-Mart stores. Letter A stands for
nearly zero transactions per hour, while F stands for high number
of transactions per hour. The algorithm returned the one period that
is most likely to be correct. Alternatively, instead of searching for a
single candidate period, we could mine for a larger set of
candidates. Table 1 summarizes the results. The “ACF” column is
the Autocorrelation estimate produced for the periodic occurrences
of a letter, while the “Frequency” column is the number of
occurrences of each letter in the Time Series. Notice that for most
letters in all three datasets the suggested period is 24 or a multiple
of it (e.g. 168, 336, 504).

Given the output of the filter step described in the previous
experiment we tried to verify it using Han’s algorithm for the
extraction of partially periodic patterns. For reasons of brevity we
provide periodic patterns produced by Han’s algorithm only for the
third data set of Table 1. We mined for patterns of period length 24
and we set the minimum confidence threshold to 60%. Alterna-

tively, we could have mined for patterns with a period length of
168, however we chose to verify the daily cyclic behavior of these
data. The results are displayed in Table 2, showing that 24 is a
valid period length.

Table 1. Results for the 3 Wal-Mart stores

Data Symbols Period ACF Frequency

A 24 227.88 3532
B 168 1140.5 2272
C 24 93.76 1774
D 336 648.17 874
E 504 2782.02 2492

Store
 1

F 4105 81.61 48
A 24 252.43 3760
B 168 1750.37 2872
C 168 936.36 2199
D 168 851.93 2093

Store
2

E 1176 90 140
A 168 2034.53 3920
B 168 1436.71 2331
C 168 950.68 2305
D 336 434.05 655
E 24 99.85 1830

Store
3

F - - 23

Table 2. Verification with Han’s algorithm

Pattern Confidence (%)

AAAAAABBBB***********B*A 62.47288

AAAAAA**BB************AA 72.66811
AAAAAA***BC***********AA 60.95444
AAAAAA***B************AA 75.70499
AAAAAA*BB************BAA 63.34056
AAAAAA*BBB************AA 60.95444
AAAAAABBB************BAA 61.38828
AAAAAABBB************B*A 69.63123
AAAAAABBB*************AA 65.72668
AAAAAABBBB***********B*A 62.47288

5 CONCLUSIONS AND FURTHER WORK

In this paper we proposed a method for efficiently discovering a set
of candidate periods in a large time series. Our algorithm can be
used as a filter to discover the candidate periods without any
previous knowledge of the data along with an acceptable estimate
of the confidence of a candidate periodicity. It is useful when
dealing with data whose period is not known or when looking for
unexpected periodicities. Algorithms such as Han’s described in
[9] can be used to extract the patterns. We tried our method against
various data sets and it proved to speed up linearly against different
alphabets and different numbers of time points. We also verified its
expected completeness using Han’s algorithm.

We implemented and tested our algorithm using a main memory
FFT algorithm, however, a disk-based FFT algorithm [13, 14]
would be more appropriate for handling larger time series that do
not fit in the main memory. Interesting extension of our work
would be the development of an algorithm to perform over other
kinds of temporal data such as distributed and fuzzy. Finally, we
intend to investigate the application of an algorithm or a function,
other than the circular autocorrelation, that would require a smaller
number of FFT computations.

 374

REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. Swami, Efficient Similarity
Search in Sequence Databases. In Proc. of the 4th Int. Conf.
on Foundations of Data Organization and Algorithms,
Chicago, Illinois, October 1993.

[2] R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim. Fast
Similarity Search in the Presence of Noise, Scaling, and
Translation in Time-Series Databases. In Proc. of the 21st Int.
Conf. on Very Large Databases, Zurich, Switzerland,
September 1995.

[3] R. Agrawal and R. Srikant. Mining Sequential Patterns. In
Proc. of 1995 Int. Conf. on Data Engineering, Taipei, Taiwan,
March 1995.

[4] H. Mannila, H Toivonen, and A. I. Verkamo. Discovering
Frequent Episodes in Sequences. In Proc. of the 1st Int. Conf.
on Knowledge Discovery and Data Mining, Montreal,
Canada, August 1995.

[5] K. Chan and A. Fu. Efficient Time-Series Matching by
Wavelets. In Proc. of 1999 Int. Conf. on Data Engineering,
Sydney, Australia, March 1999.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
Subsequence Matching in Time-Series Databases. In Proc. of
the 1994 ACM SIGMOD Int. Conf. on Management of Data,
Minneapolis, Minnesota, May 1994.

[7] E. Keogh, K. Chakrabarti, M. Pazzani and S. Mehrotra.
Dimensionality Reduction for Fast Similarity Search in Large
Time Series Databases. Springer-Verlag, Knowledge and
Information Systems (2001) p. 263–286.

[8] H. Toroslu and M. Kantarcioglu. Mining Cyclically Repeated
Patterns. Springer Lecture Notes in Computer Science 2114,
p. 83 ff., 2001.

[9] J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial
Periodic Patterns in Time Series Databases. In Proc. of 1999
Int. Conf. on Data Engineering, Sydney, Australia, March
1999.

[10] W. G. Aref, M. G. Elfeky and A. K. Elmagarmid.
Incremental, Online and Merge Mining of Partial Periodic
Patterns in Time-Series Databases. Submitted for journal
publication. Purdue Technical Report, 2001.

[11] Orenstein J. A. Redundancy in Spatial Databases, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Portland, USA,
1989, pp. 294-305.

[12] Blake, C.L. & Merz, C.J. (1998) UCI Repository of Machine
Learning Databases.
www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA:
University of California, Department of Information and
Computer Science.

[13] Numerical Recipes in C: The Art of Scientific Computing.
External Storage or Memory-Local FFTs. pp 532-536.
Copyright 1988-1992 by Cambridge University Press.

[14] J. S. Vitter. External Memory Algorithms and Data Structures:
Dealing with Massive Data. ACM Computing Surveys, Vol.
33, No. 2, June 2001.

