
 1

Deploying Defeasible Logic Rule Bases
for the Semantic Web

Efstratios Kontopoulos1, Nick Bassiliades1, Grigoris Antoniou2

1Department of Informatics
Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece
{skontopo,nbassili}@csd.auth.gr

2Institute of Computer Science
FO.R.T.H., P.O. Box 1385

GR-71110, Heraklion, Greece
antoniou@ics.forth.gr

Abstract. Logic is currently the target of the majority of the upcoming efforts
towards the realization of the Semantic Web vision, namely making the content
of the Web accessible not only to humans, as it is today, but to machines as well.
Defeasible reasoning, a rule-based approach to reasoning with incomplete and
conflicting information, is a powerful tool in many Semantic Web applications.
Despite its strong mathematical background, logic, in general, and defeasible
logic, in particular, may overload the user with tons of additional complex se-
mantic relationships among data and metadata of the Semantic Web. To this end,
a comprehensible, visual representation of these semantic relationships (rules)
would help users understand them and make more use of them. This paper pre-
sents VDR-DEVICE, a defeasible reasoning system, designed specifically for the
Semantic Web environment. VDR-DEVICE is an integrated development envi-
ronment for deploying and visualizing defeasible logic rule bases on top of RDF
Schema ontologies. The system consists of a number of subcomponents, which,
though developed autonomously, are combined efficiently, forming a flexible
framework. The system employs a defeasible reasoning system that supports di-
rect importing and processing of RDF data and RDF Schema ontologies as well
as a number of user-friendly rule base and ontology visualization modules.

Keywords: Semantic Web, Reasoning, Defeasible Logic, Visual Representation, Rule Edi-
tor, Rule Markup Languages

1. Introduction

The Semantic Web (SW) constitutes an effort to improve the current Web, by adding
metadata to web pages and, thus, making the content of the Web accessible not only
to humans, as it is today, but to machines as well [17]. This way, software agents for
example, will be able to “understand” the meaning of the information available on the
World Wide Web (WWW), resulting in better cooperation among agents as well as
between agents and human users. The basic principle behind the SW initiative lies in
organizing and inter-relating the available information, so that it can be utilized more
effectively by a variety of distinct Web applications.

The SW has not yet acquired a concrete substance, but still remains a vision to a
great extent, although various SW applications and software tools exist that can offer
solutions to practical problems. Stephens in [58] provides a list with existing applica-
tions that perform integration of heterogeneous scientific data or optimisation of en-
terprise search and navigation, but also with potential applications, such as enhancing

 2

the effectiveness of recruiting services or identifying patterns and insights in data.
However, in order for SW technologies to be fully adopted, they must first cope with
the problems of scalability, availability and reliability, all of which are fundamental
issues in enterprises. After these issues have been tackled with, then end-users will
begin to conceive the benefits that stem from the SW and realize the convenience and
diversity of services it offers. Furthermore, the new type of data and metadata should
not become an additional burden for the users who are already overwhelmed by in-
formation overload.

The mature steps towards accomplishing the Semantic Web vision have reached as
far as the development of ontologies and OWL, the Web Ontology Language, which is
currently the dominant standard in ontology encoding [14]. The upcoming efforts will
be targeted at logic and proofs that are believed to posses a key role in assisting users
towards eventually accepting the Semantic Web.

Defeasible reasoning [46], a member of the non-monotonic reasoning family, con-
stitutes a useful tool in this context. It represents a simple, rule-based approach to rea-
soning not only with incomplete or changing but also with conflicting information.
When compared to mainstream non-monotonic reasoning, the main advantages of de-
feasible reasoning are enhanced representational capabilities, coupled with low com-
putational complexity. Defeasible reasoning can represent facts, rules and priorities
and conflicts among rules. Such conflicts arise, among others, from rules with excep-
tions, which are a natural representation for policies and business rules (e.g. [54],
[55]) and priority information is often available to resolve conflicts among rules.

Despite its strong mathematical background, logic, in general, and defeasible logic,
in particular, may overload the user with tons of additional complex semantic rela-
tionships among data and metadata of the Semantic Web. To this end, a comprehensi-
ble, visual representation of these semantic relationships (rules) would help users un-
derstand them and make more use of them.

In this paper we present VDR-DEVICE, a system designed specifically for the SW
environment. It is an integrated development environment for deploying and visualiz-
ing defeasible logic rule bases on top of RDF Schema ontologies. VDR-DEVICE
consists of a number of subcomponents, which, though developed autonomously, are
combined efficiently, forming a flexible framework. Although early versions of the
various VDR-DEVICE visualization sub-components have already been presented in
previous work of ours ([12], [37], [38]), the focus of this paper is to study both the
integration into a unique system and the interaction between the various sub-
components.

At the core of the system lies a defeasible logic reasoner that processes rule bases,
expressed in textual and XML form, more thoroughly presented in [11]. The reason-
ing core imports and processes RDF data and RDF Schema ontologies. Although the
reasoning engine was successfully applied to a number of agent-based scenarios ([7],
[57]), as the size and complexity of a rule base increase, it becomes more difficult for
users to realize and comprehend dependencies among data and rules and the overall
underlying structure of the rule base. This is why the system is also comprised of (a) a
graphical defeasible logic rule base editor, an early version of which can be found in
[12], (b) a visual RDF Schema ontology editor, a design and early implementation of
which was presented in [38], and (c) a visual tool that produces graph-based represen-
tations of defeasible logic rule bases, whose representational schema (at least an early
version of it) can be found in [37]. Thus, VDR-DEVICE is not a task-specific tool,
namely, it does not aim at a specific layer/technology of the SW architecture. Instead,
its functionality covers most of the SW layers, starting from content representation

 3

(XML) and reaching logic (inference), while the next steps for the improvement of the
system are planned to encompass proofs as well [10].

During the various development phases of the system, a number of requirements
and specifications were being designated. The primary requirement, regarding the rea-
soning engine, was to support defeasible reasoning. As a consequence, a significant
requirement for the rule editor and the rule base visualization module was to adopt a
representation schema, which would prove intuitive and easy to apply. Moreover, a
secondary requirement for the rule and RDF Schema ontology editors is to prevent
users from syntactic and semantic errors during the development of rule bases and
ontologies respectively.

The requirements mentioned above were taken into account during the design and
implementation of VDR-DEVICE and the results are described in this paper, the rest
of which is organized as follows: Section 2 describes the basic characteristics of de-
feasible logic and outlines some of the most usual cases for applying defeasible rea-
soning in the Semantic Web. Section 3 presents our approach for visualizing defeasi-
ble logic rules, based on digraphs, while the next section describes the VDR-DEVICE
system in depth, covering in detail all its subcomponents. Section 5 presents a user
evaluation, performed on two VDR-DEVICE components, while the next section dis-
cusses related work paradigms, followed by the conclusions and ideas for future work.

2. Defeasible Logics

This section briefly describes the basic characteristics of defeasible reasoning and the
motivation for utilizing defeasible reasoning in the Semantic Web environment.

2.1. Basic Characteristics
The root of defeasible logics lies on research in knowledge representation and particu-
larly on inheritance networks. Defeasible logics can be seen as inheritance networks,
expressed in a logical rule language. In fact, they are the first non-monotonic reason-
ing approach, designed from its beginning to be realisable.

Being non-monotonic, defeasible logics deal with potential conflicts (inconsisten-
cies) among knowledge items. Thus, contrary to usual logic programming systems,
they contain classical negation. However, they can also deal with negation-as-failure
(NAF), the other type of negation typical of non-monotonic logic programming sys-
tems; in fact, Wagner argues that the Semantic Web requires both types of negation
[62]. In defeasible logics it is often assumed that NAF is not included in the object
language (the language, in which rules are expressed); however, it can be easily simu-
lated when necessary [6]. Thus, NAF can be used in the object language and the
original knowledge can be transformed to logical rules without NAF, exhibiting the
same behaviour.

Conflicts among rules are indicated by a conflict among their conclusions. These
conflicts are of local nature, meaning that they only arise between rules with conflict-
ing heads, contrary to other more mainstream non-monotonic approaches, such as
Reiter’s default logics [53], where a conflict may involve several defaults, a fact that
imposes computational cost [26], [36]. The simplest case is that one conclusion is the
negation of the other. The more complex case arises when the conclusions have been
declared to be mutually exclusive, a very useful representation feature in practical ap-
plications. Furthermore, while default logics attempt to provide an overview of all

 4

possible worlds, defeasible logics are sceptical in the sense that conflicting rules do
not fire. Thus, consistency of drawn conclusions is preserved. Priorities on rules may
be used to resolve some conflicts among rules. Priority information is often found in
practice, and constitutes another representational feature of defeasible logics.

The logics take a pragmatic view and have low computational complexity [40]. This
is not only achieved through the facts that they are sceptical (avoid the computation of
alternative extensions) and that the conflicts are local, both of which were mentioned
above, but also through:
o the absence of disjunction;
o the use of unidirectional rules;
o the local nature of priorities; only priorities between conflicting rules are used, as

opposed to systems of formal argumentation, where often more complex kinds of
priorities (e.g. comparing the strength of reasoning chains) are incorporated.
Relaxing any of these restrictions would jeopardise one of the key advantages of de-

feasible logic, namely its polynomial complexity. Clearly, these restrictions come at
the price of reduced expressive power, compared to other non-monotonic reasoning
approaches. For example, defeasible logics cannot be used for applications in which
alternative models or credulous reasoning are required, nor for solving NP-hard prob-
lems (for the latter we would need a representation of exponential size). However,
despite its conceptual simplicity, defeasible logic appears effective in the representa-
tion and execution of a variety of practical problems, including agent negotiation [57],
semantic brokering [7], modelling contracts [27], [32], and modelling business rules
[2]. Interestingly, these are some of the most promising application problems that are
expected to benefit from the use of Semantic Web techniques. Thus, it is interesting to
study the deployment of defeasible reasoning within the Semantic Web framework,
the main theme of this paper.

2.2. Motivation for Applying Non-monotonic Reasoning in the Se-
mantic Web

As mentioned before, defeasible reasoning is a non-monotonic method for reasoning
with incomplete and conflicting information. In this section we outline reasons why
this kind of approach is useful in the setting of the Semantic Web.

2.2.1. Reasoning with Incomplete Information
Business rules often have to deal with incomplete information [2]: in the absence of
certain information some assumptions have to be made that lead to conclusions not
supported by classical predicate logic. In many applications on the Web such assump-
tions must be made, because other players may not be able (e.g. due to communica-
tion problems) or willing (e.g. because of privacy or security concerns) to provide in-
formation. This is the typical case for applying non-monotonic knowledge representa-
tion and reasoning.

2.2.2. Rules with Exceptions
Rules with exceptions are a natural way of representation for policies and business
rules. And priority information is often implicitly or explicitly available to resolve
conflicts among rules. Potential applications include security policies [8], business
rules [2], e-contracting [27], brokering [7] and agent negotiations [28].

 5

2.2.3. Default Inheritance in Ontologies
Default inheritance is a well-known feature of certain knowledge representation for-
malisms. Thus, it may play a role in ontology languages, which currently do not sup-
port this feature. Grosof and Poon present some ideas for possible applications of de-
fault inheritance in ontologies [32]. A natural way of representing default inheritance
is rules with exceptions plus priority information. Thus, non-monotonic rule systems
can be utilized in ontology languages.

2.2.4. Ontology Merging
When ontologies from different authors and/or sources are merged, inconsistencies
and contradictions arise naturally (for example see [35]). Moreover, in domains such
as legal reasoning, ontologies may be defeasible, that is open to potential inconsisten-
cies, by their very nature. Predicate logic based formalisms, including all current Se-
mantic Web languages, cannot cope with inconsistencies. If rule-based ontology lan-
guages are used (e.g. DLP [31]) and if rules are interpreted as defeasible (i.e. they
may be prevented from being applied even if they can fire), then we arrive at non-
monotonic rule systems. More generally, when rules (e.g. policies or business rules)
are merged conflicts may arise easily, and a mechanism for reasoning with such con-
flicts is valuable; conflicting rules arise naturally in areas such as personalization (se-
lection of what to show next), security (weighting rules for and against providing ac-
cess to certain information), negotiations etc. Assuming that an automated ontology
merging and not display of several alternatives is desired, a skeptical approach, as
adopted by defeasible reasoning, is sensible, because it does not allow for contradic-
tory conclusions to be drawn. Moreover, priorities may be used to resolve conflicts
among rules, based on knowledge about the reliability of sources or on user input).
Thus, non-monotonic rule systems can support ontology integration.

2.3. Defeasible Logic - Syntax and Operational Semantics
A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) con-
sists of three basic ingredients: a set of facts (F), a set of rules (R) and a superiority
relationship (>). Therefore, D can be represented by the triple (F, R, >). We assume a
function-free first-order language.

In defeasible logic, there are three distinct types of rules: strict rules, defeasible
rules and defeaters. Strict rules are denoted by A → p, where A is a set of literals and
p a (positive or negative) literal, and are interpreted in the typical sense: whenever the
premises are indisputable, then so is the conclusion. An example of a strict rule is:
“Novels are books”, which, written formally, would become:
r1: novel(X) → book(X).

Contrary to strict rules, defeasible rules can be defeated by contrary evidence and
are denoted by A ⇒ p. Two examples are: r2: book(X) ⇒ hardcover(X)
(“Books are typically hard-covered”) and r3: novel(X) ⇒ ¬hardcover(X)
(“Novels are typically not hard-covered”).

Defeaters, denoted by A p, are rules that do not actively support conclusions, but
only defeat conflicting defeasible conclusions, by producing evidence to the contrary.
A defeater example is: r2’: cheap(X) ¬hardcover(X), which reads as:
“Cheap books might not be hard-covered”. This defeater can defeat, for example, rule
r2 mentioned above.

 6

Finally, the superiority relationship among the rule set R is an acyclic relation > on
R, that is, the transitive closure of > is irreflexive. Superiority relationships are used,
in order to resolve conflicts among rules. For example, given the defeasible rules r2
and r3, no conclusive decision can be made about whether a novel is eventually hard-
covered or not, because rules r2 and r3 contradict each other. But, if the superiority
relationship r3 > r2 is introduced, then r3 overrides r2 and we can indeed conclude
that the novel is not hardcover. In this case rule r3 is called superior to r2 and r2 infe-
rior to r3.

As stated earlier, the notion of negation-as-failure (NAF) plays an important role in
defeasible reasoning, since it raises the level of expressivity over logical negation, of-
fering the ability to describe exceptions or to describe exhaustive searches over the
current knowledge base. If, for example, we wish to find the cheapest book in our li-
brary, then we should formulate rule
r’: book(X), price(X,Y), NOT(book(Z), Z≠X, price(Z,W), W<Y)
 ⇒ cheapest(X).

Rule r’ states that if a book with a specific price exists and the existence of a book
with a lower price cannot be confirmed, then the first book is considered the cheapest.
According to NAF, this “lack of knowledge”, regarding a cheaper book in the specific
example, is considered a failure.

Finally, another important element of defeasible reasoning is the notion of conflict-
ing literals. In applications literals are often considered to be conflicting and at most
one of a certain set should be derived. An example of such an application is price ne-
gotiation, where an offer should be made by the potential buyer. Possible offers can
be determined by several rules, whose conditions may or may not be mutually exclu-
sive. All rules have a positive offer literal in their head, since all rules try to make
an offer. However, only one offer literal should be concluded; thus, only one of the
rules should prevail, based on superiority relations among them. In this case, the con-
flict set is:

C(offer(x,y)) = { ¬offer(x,y) } ∪ { offer(x,z) | z ≠ y }

The conflict set for the literal offer(x,y) contains the negation of the literal
along with all the other offers that are different from offer(x,y). An example in
this setting is a book auction, where the following two rules make an offer for a novel,
based on the potential buyer’s requirements. However, the second one is more spe-
cific and its conclusion overrides the conclusion of the first one.
p: novel(X),price(X,Y),Y≤15 ⇒ offer(X,15)
q: novel(X),price(X,Y),Y≤15,author(X,”Asimov”) ⇒ offer(X,20)
q > p

According to defeasible logic proof theory [4], in order to show that a conclusion C
is provable defeasibly there are two choices: (1) to show that C is already definitely
provable, using a strict rule; or (2) to show that there is a strict or defeasible rule with
head C whose body literals have been defeasibly proven and there are no possible “at-
tacks”, that is, reasoning chains in support of ¬C. Formally, we must show that ¬C is
not definitely provable. Also we must consider the set of all rules which are not
known to be inapplicable and which have head ¬C (here we consider defeaters, too,
whereas they could not be used to support the conclusion C). Essentially each such
rule attacks the conclusion C. For C to be provable, each attacker must be counterat-
tacked by another rule with head C with the following properties: (i) the counter-

 7

attacker must be applicable, and (ii) it must be stronger than (i.e. superior to) the at-
tacker. Thus each attack on the conclusion C must be counterattacked by a stronger
rule.

Conclusively, defeasible logic has been studied extensively from the theoretical
perspective. In this paper we report on a development environment for defeasible
logic, embedded in semantic web technologies, so the focus is different. However, we
summarize here the main results from previous works:
• A full proof theory was presented in [4].
• The formal properties of the proof theory, including consistency and coherence re-

sults, were presented in [4].
• Relationships to other logic programming systems were presented in [6] and [5].
• An analysis of computational complexity is found in [40].
• Model-theoretic and argumentation semantics, with associated soundness and com-

pleteness results, are found in [39] and [29], respectively.
• Variations of defeasible logics were discussed in [3].

3. Visualizing Defeasible Logic Rules

Although defeasible logic is expressive, when the rule base increases in size and com-
plexity, it is useful to have the ability to visualize and comprehend dependencies and
competitions among data and rules, as well as visually identifying and differentiating
among the various rule types. So, end users might often consider a graphical trace and
an explanation mechanism very beneficial. Overall, in the case of complex rule bases,
visualization mechanisms are particularly useful, since they can better assist in clari-
fying the underlying structure of the rule base.

In this work we propose the use of directed graphs [34] (or digraphs, as they are
usually referred to) in the graphical representation of defeasible logic rules. To an ex-
tent, our approach is based on the methodology presented by Nute in [47], who ap-
plies d-graphs (defeasible logic graphs), for visualizing a set of defeasible logic rules.
However, the methodology we adopt adds a variety of extra features that offer expres-
sive power to the graph.

Therefore, in an attempt to leverage the graphs’ inability to associate data of a vari-
ety of types with the vertices and edges, we propose distinct vertex and edge types.
Thus, the digraphs in our approach contain two kinds of vertices (V=L∪R):
• Literals (L), represented by rectangles, called “atomic formula boxes”;
• Rules (R), represented by circles.

Edges (E=RE∪CE) are either rule edges (RE) or condition edges (CE). There are
three rule edge types (RE=S∪D∪F), one for each of the three rule types of defeasible
reasoning (strict rules S, defeasible rules D, defeaters F), similarly to [47]. This results
in rules of different types being represented more distinctively.

Rule edges connect a rule vertex with a rule conclusion vertex, namely a derived
literal:

{ }(,) |RE x y x R y L= ∈ ∧ ∈
Each rule vertex must have one and only one rule edge:
(), (), (,)x x R y y L x y RE∀ ∈ → ∃ ∈ ∧ ∈
()(), (,) ('), ' ' (, ')x y x y RE y y L y y x y RE∀ ∀ ∈ → ¬∃ ∈ ∧ ≠ ∧ ∈
There is only one condition edge type CE that connects a literal vertex with a rule

vertex:

 8

{ }(,) |CE x y x L y R= ∈ ∧ ∈
The same literal vertex can participate in multiple condition edges, meaning that the

same atomic formula can appear in the condition of multiple rules. Furthermore, the
same rule vertex can participate in multiple condition edges, meaning that a rule can
have multiple atomic formulas in its condition. When this happens the condition of
the rule is satisfied when ALL atomic formulas are simultaneously satisfied (logical
conjunction).

Notice that the defeasible rule graph is bipartite, since each edge, regardless of its
type, connects either a rule vertex to a literal vertex or vice versa.

The visual depiction of the rules, presented previously in section 2.3, is illustrated
below. More specifically, Fig. 1 displays rule r1 (strict rule), Fig. 2 displays rules r2
and r3 (defeasible rules) and Fig. 3 shows rule r2’ (defeater).

 r1

¬
novel(X)

¬

book(X)

Fig. 1. Visual representation of strict rule r1

r2

¬

hardcover(X)

r3

¬
novel(X)

¬
book(X)

Fig. 2. Visual representation of defeasible rules r2 and r3

r2’¬
cheap(X)

¬

hardcover(X)

Fig. 3. Visual representation of defeater r2’

As a notational convention, each atomic formula box (i.e. each literal vertex) is en-
closed in a literal box, which consists of two adjacent atomic formula boxes, where
the upper one represents a positive and the lower one represents the corresponding
negative atomic formula. This way the two contradicting atomic formulas are depicted
together but clearly separated. The set of all (normal) literal boxes LB is formally de-
fined as a set of pairs of contradicting atomic formula boxes (or literal vertices):

{(,) | }LB x x x L+= ¬ ∈
The set L+ is the set of all positive (or unsigned) atomic formulas. The set L- is the

set of all negative (signed) atomic formulas. These two sets are disjoint.
{ | }L x x L− += ¬ ∈ , L L+ −∩ ≡ ∅

For example, in Fig. 2, the head of rule r2 is positive, while that of rule r3 is ne-
gated; this is determined by the atomic formula box (upper/lower), on which the ar-
row commencing from the rule circle “lands”.

Arguments (variables or constants) can be incorporated inside the literal box, just
after the predicate name of each literal box. We call the set of all arguments for each
literal box, an argument pattern. Notice that a rule graph stands for one rule. How-
ever, since rules usually have variables, it also stands for the set of all possible instan-
tiations of the variables. Therefore, the same rule graph can be interpreted both as a

 9

schema and as a set of rule instantiations. This is also true for all the extensions and
variations of the atomic formula boxes found later in the paper.

Finally, there is one more edge type SE for the superiority relationship. Fig. 4
shows the superiority relationship r3 > r2 presented in section 2. Notice that this
edge type connects only rule vertices and it is orthogonal to the bipartite defeasible
rule graph.

{ }(,) |SE x y x R y R= ∈ ∧ ∈

 r3 r2>>>>>>>>>>>>>>>

Fig. 4. Visual representation of the superiority relationship r3 > r2

3.1. Representing Conditions
So far we have demonstrated how rules are represented by interconnecting literal
boxes with rule vertices and, also, how arguments of literals are presented, either be-
ing variables or constants. However, variables are usually associated with simple con-
ditions (e.g. X > 4), which theoretically could be represented as predicates, but practi-
cally it is more convenient to consider them more closely related to the literal where
the corresponding variable appears as an argument for the first time.

Simple conditions associated with any of the variables of a literal also appear inside
the literal box. However, since there can be many conditions, each one of them ap-
pears on a separate line (called condition pattern) below the literal. For example, if
the fragment price(X,Y),Y>15 appears in a rule condition, it can be represented as
in Fig. 5.

¬

price(X,Y)
Y > 15

Fig. 5. Representing simple conditions on variables

3.2. Visualizing NAF
Negation-as-failure or default negation (NAF) is represented with the help of back-
ward hyperarcs, or simply B-arcs [25]. A B-arc is a hyperarc he=(T(e),H(e))
(he∈HE) with |H(e)|=1; in other words, it’s a directed hyperedge, with a tail T consist-
ing of one or more vertices (|T(e)|>=1) and a head H consisting of a single vertex. The
NAF hyperedge connects multiple literal vertices with one rule vertex and is actually
considered a condition edge of a special type.

{ }(,{ }) |HE X y X L y R= ⊂ ∧ ∈
Of course, the definition of condition edges, given in section 3 above, must be ex-

tended to handle hyperdges as well.
{ }(,) |CE x y x L y R HE= ∈ ∧ ∈ ∪

The above definition suggests that the condition edges are either normal ones or
hyperdges, the latter denoting NAF in the rule condition. Furthermore, notice that a
hyperedge can have a tail with a single vertex; however, this is not equivalent to a
normal edge. To exemplify this, the difference between the two rules below is that for
rule r1 a normal condition edge (b,r1) is drawn between literal vertex b and rule ver-

 10

tex r1, whereas for rule r2 a hyperedge ({d},{r1}) is drawn between literal vertex d
and rule vertex r2.
r1: a, b → c
r2: a, not(d) → c
The meaning of the NAF hyperedge is that when ALL atomic formulas of the lit-

eral vertices that participate in the tail of the hyperedge are satisfied, then the condi-
tion of the rule vertex that participates in the head of the hyperedge is NOT satisfied.
When at least one of the atomic formulas of the tail is not satisfied, then the satisfac-
tion of the condition of the rule depends on the rest of the condition edges that it par-
ticipates.

Fig. 6 displays rule r’ from section 2.3, represented as a digraph, featuring a hy-
peredge. As can be observed, the NAF arc in the specific example has a tail that con-
sists of two vertices/literal boxes (|T(E)|=2) and a head that consists of just one ver-
tex/rule circle (|H(E)|=1).

r’

¬

cheapest(X)

¬
book(X)

¬
price(X,Y)

¬

price(Z,W)
W < Y

¬

book(Z)
Z ≠ X

Fig. 6. Representation of negation-as-failure

3.3. Representing Conflicting Literals
For the representation of conflicting literals, consider rules p and q, presented earlier
in section 2.3, which both produce the same literal type as a conclusion:

p: novel(X),price(X,Y),Y≤15 ⇒ offer(X,15)
q: novel(X),price(X,Y),Y≤15,author(X,”Asimov”) ⇒ offer(X,20)

The graph drawn by the two rules is depicted in Fig. 7 and, as can be observed,
both rules produce the same result type, which is included in a multi-literal truth box.
The multi-literal truth box consists of multiple adjacent (positive) atomic formula
boxes, all of which include the same literal type, although the argument patterns can
potentially be dissimilar. At most one of the literals must be true and superiority rela-
tionships (in the specific example q > p) can determine the priorities among the
rules.

Formally, multi-literal truth boxes are sets of conflicting literals of the same "sign"
(either all positive or all negative):

{ | () ()}MLB mlb mlb L mlb L+ −= ∈℘ ∨ ∈℘
Notice that the definition of literal boxes, given above in section 3, must be ex-

tended to cover multi-literal truth boxes, as well. Therefore, the set of literal boxes LB
consists of normal literal boxes (NLB), the ones that couple together positive and

 11

negative atomic formulae and have been presented above, and multi-literal truth boxes
(MLB), the ones presented in this subsection:

LB = NLB∪MLB, where {{ , } | }NLB x x x L+= ¬ ∈

¬

p¬
novel(X)

q

¬

offer(X,15)

offer(X,20) >
>
>
>
>
>
>

price(X,Y)
Y < 15

author(X,"Asimov") ...

...

Fig. 7. Representation of conflicting literals as a digraph

Notice that the definition of normal literal boxes has been slightly altered from
pairs to sets of two members, because elements of set LB should be of the same type.

3.4. Grouping Literal Boxes Together
A certain predicate, say price, can appear many times in a rule base, in many rule
conditions or even rule conclusions (if it is not a base predicate, i.e. a fact). All literal
boxes of the same predicate can be grouped together (as a notational convention) so
that the user can visually comprehend that all such boxes refer to the same set of liter-
als. In order to achieve this, we introduce the notion of a predicate box, which is sim-
ply a container for all the literal boxes that refer to the same predicate. Predicate
boxes are labelled with the name of the predicate. Furthermore, the literal boxes con-
tained inside the predicate box "lose" the predicate name, since the latter is located at
the top of the predicate box. Such a literal box, which appears inside a predicate box
and expresses conditions on instances of the specific predicate extension, is called
predicate pattern.

 book

¬

(Z)
Z ≠ X

¬
(X)

price

¬

(Z,W)
W < Y

¬
(X,Y)

cheapest

¬

(X)
r’

Fig. 8. Predicate box and predicate patterns

For example, the literal boxes in Fig. 6 can be grouped inside predicate boxes, ac-
cording to the predicate name. Fig. 8 displays the resulting representation. Notice that,
in general, each predicate pattern must contain exactly one argument pattern and zero,
one or more condition patterns.

 12

Notice that since the same predicate pattern can occur in multiple rule conditions,
there might be multiple similar predicate pattern boxes. Since the intention of our vis-
ual representation scheme is compactness, only a single predicate pattern box appears
and it participates in multiple condition edges. Furthermore, there might be predicate
patterns that are syntactically different, but they can be made similar through a unifi-
cation process. The theoretical part of our representation scheme dictates that these
predicate pattern boxes should be drawn separately because they involve different
variable names in different rules; therefore, if we omit them the user could not under-
stand how certain variables are used in a rule condition without being shared with
other condition patterns. However, in the practical part of our work we keep just one
of these unifiable patterns and when the user focuses on a certain rule, the variables of
the actual predicate pattern are visualized on-the-fly. Details on the unification algo-
rithm, as well as the literal box grouping, can be found in section 4.3.3.3.

4. The VDR-DEVICE System

VDR-DEVICE [12] is a flexible integrated development environment for deploying
defeasible logic rule bases on top of RDF Schema ontologies and consists of two pri-
mary subsystems:
a. the reasoning system that performs inference on RDF metadata, using defeasible

logic rules and produces the results, and
b.the graphical front-end that acts as the shell of the core reasoning system and em-

bodies a variety of development and representation tools.
The following section illustrates the overall system functionality, while subsequent

sections describe comprehensively the two subsystems as well as the various modules
they encompass.

4.1. VDR-DEVICE Functionality
Fig. 9 displays a sequence diagram, describing the functionality of VDR-DEVICE.
The system accepts as input the address of a defeasibe logic rule base (program, writ-
ten in the RuleML-like syntax of VDR-DEVICE – see section 4.2.2), which is created
or loaded with the help of the DRREd rule editor, described in the following sections.

The rule base contains only rules; the facts for the rule program are (input) RDF
documents, whose addresses are declared in the rule base header. The RDFSbuilder
module, also part of the VDR-DEVICE graphical front-end, can be applied in creating
the RDF Schema for the facts loaded. Nevertheless, users are not obliged to utilize
RDFSbuilder, since they can exploit whichever RDF Schema editor they feel com-
fortable with.

The rule base is submitted and the designated facts are downloaded by DR-DEVICE
[10], the core reasoning module of the system, and the inference process commences.
The rule conclusions are materialized inside DR-DEVICE as objects and the instances
of designated derived classes are exported as an RDF document, which includes the
RDF Schema definitions for the exported derived classes and those instances of the
exported derived classes, which have been proved, either positively or negatively, ei-
ther defeasibly or definitely.

The user can access the results through a web browser or through specialized soft-
ware that can customize the visualization. Notice that DR-DEVICE can also provide

 13

explanations about non-proved objects, i.e. objects that are not proved neither defi-
nitely nor defeasibly.

Fig. 9. VDR-DEVICE functionality

Finally, the system also offers the capability of visualizing the rule base, by auto-
matically producing a stratified directed rule graph with the help of the DL-RuleViz
tool, also described in a subsequent subsection.

4.2. DR-DEVICE Architecture
As mentioned earlier, DR-DEVICE [11] comprises the core reasoning system of
VDR-DEVICE and consists of two primary components (Fig. 10): The RDF
loader/translator and the rule loader/translator. The rule base is initially submitted to
the rule loader, which transforms it into the native CLIPS-like syntax through an
XSLT stylesheet and the resulting program is then forwarded to the rule translator,
where the defeasible logic rules are compiled into a set of CLIPS production rules
[19]. This is a two-step process: First, the defeasible logic rules are translated into sets
of deductive, derived attribute and aggregate attribute rules of the basic deductive rule
language of R-DEVICE [13], using the translation scheme described in [10]. Then, all
these deductive rules are translated into CLIPS production rules according to the rule
translation scheme in [13]. All compiled rule formats are also kept in local files
(structured in project workspaces), so that the next time they are needed they can be
directly loaded, improving speed considerably (running a compiled project is up to 10
times faster).

Meanwhile, the RDF loader downloads the input RDF documents (facts), including
their schemas, parses them, using the ARP parser, contained in the Jena Semantic
Web Framework [44] and translates RDF descriptions into CLIPS objects, according
to the RDF-to-object translation scheme in [13]: the inference engine of CLIPS per-
forms the reasoning by running the production rules and generates the objects that
constitute the result of the initial rule program. The compilation phase, based on the
meta-program of [42], guarantees correctness and completeness of the reasoning
process according to the operational semantics of defeasible logic.

Finally, the result-objects are exported to the user as an RDF/XML document
through the RDF extractor [13]. The RDF document includes the instances of the ex-

 14

ported derived classes, which have been proved, either positively or negatively, either
defeasibly or definitely.

RDF triple
Loader

RDF triple
Translator

Local Disk

Input RDF
document URI RuleML/DR-DEVICE

Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents

RDF
Extractor

Results - Objects CLIPS Rules

Rule
Loader

Xalan XSLT
Processor

Local Disk

RuleML
documents RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

Front-End USER

RuleML document

ARP
Parser

Fig. 10. The architecture of the DR-DEVICE defeasible reasoning system

4.2.1. The Object-Oriented RDF Data Model
The DR-DEVICE system employs an object-oriented view of the RDF data model,
where properties are treated as normal object attributes, encapsulated in resource ob-
jects. This way, properties of resources are not scattered across several triples, result-
ing in increased query performance due to less joins [13].

 (defclass books:novel
(is-a rdfs:Resource)
(multislot books:name (type LEXEME))
(multislot books:collectible (type LEXEME))
(multislot books:author (type LEXEME))
(multislot books:price (type INTEGER))

)

<rdfs:Class rdf:about="&books;novel" rdfs:label="novel">
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdf:Property rdf:about="&books;name" rdfs:label="name">
<rdfs:domain rdf:resource="&books;novel"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

<rdf:Property rdf:about="&books;collectible"
 rdfs:label="collectible">
<rdfs:domain rdf:resource="&books;novel"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

<rdf:Property rdf:about="&books;author"
 rdfs:label="author">
<rdfs:domain rdf:resource="&books;novel"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

<rdf:Property rdf:about="&books;price" rdfs:label="price">
<rdfs:domain rdf:resource="&books;novel"/>
<rdfs:range rdf:resource="&xsd;integer"/>

</rdf:Property>

<books:novel rdf:about="&books_ex;novel_1">
<books:name>I,Robot</books:name>
<books:author>Asimov</books:author>
<books:price rdf:datatype="&xsd;integer">25</books:price>
<books:collectible>yes</books:collectible>

</books:novel>

[books_ex:novel_1] of books:novel
(books:name "I,Robot")
(books:author "Asimov")
(books:price 25)
(books:collectible "yes")

[books:price] of rdf:Property
(uri books:price)
(source rdf)
(rdfs:isDefinedBy)
(rdf:type [rdf:Property])
(rdf:value)
(rdfs:comment)
(rdfs:label "price")
(rdfs:seeAlso)
(rdfs:domain [books:novel])
(rdfs:range [xsd:integer])
(rdfs:subPropertyOf)

(a)

(b)

(c)

(d)
Fig. 11. (a) RDF document excerpt, describing the “novel” class and its properties, as well as an in-
stance of the class (“novel_1”), (b) definition of class “novel” in COOL, (c) transformation of an

RDFS property into a COOL object, (d) COOL object, representing the novel instance in (a)

 15

For example, Fig. 11(a) describes an RDF Schema class (“novel”) with four prop-
erties (“name”, “collectible”, “author”, “price”) and a novel instance
(“novel_1”). The definition of class “novel” in COOL [19] is shown in Fig. 11(b).
Properties that have this class as their domain have been made slots for that class. Fur-
thermore, each property has been made an instance of the rdf:Property class (e.g.,
property “price” in Fig. 11(c)), while Fig. 11(d) shows the COOL object that corre-
sponds to instance “novel_1” in Fig. 11(a).

4.2.2. The Defeasible Logic Language
DR-DEVICE supports two types of syntax for defeasible logic rules: a native CLIPS-
like syntax and a RuleML-compatible one. Here we focus solely on the latter, since
the rule editor of the system allows the expression of rules only in this syntax. While
the RuleML-like syntax utilizes as many features of the official RuleML as possible,
several of the features of the rule language cannot be expressed by the existing
RuleML DTDs and/or XML Schema documents. For this reason a new DTD (v. 0.85
compatible) and new XML Schema documents (up to v. 0.91 compatible) were devel-
oped, using the modularization scheme of RuleML, extending the nafneg DTD of
RuleML, namely OO-Datalog with strong negation and negation-as-failure. A refer-
ence and DTD is included in [10]. However, the original DTD and XML Schema
documents can also be found at http://lpis.csd.auth.gr/systems/dr-
device.html, along with the system itself. Notice, that the system currently uses the
v. 0.85 compatible DTD.

A defeasible logic rule is represented by an imp element and consists of three sub-
elements: the head and body of the rule (_head and _body elements respectively) as
well as a label, encoded in a _rlab element, which includes the rule’s unique ID
(ruleID attribute) and its type (ruletype attribute). The latter can only take three
distinct values (strictrule, defeasiblerule, defeater).

For example, Fig. 12 illustrates how defeasible rule r3, presented earlier (in section
2.3), can be expressed in the RuleML-compatible language of the system.

 <imp>
<_rlab ruleID="r3" ruletype="defeasiblerule" superior="r2">

<ind>r3</ind>
</_rlab>

 <_head>
 <neg>
 <atom>

<_opr><rel>hardcover</rel></_opr>
 <_slot name="name"><var>x</var></_slot>
 </atom>

 </neg>
 </_head>
 <_body>
 <atom>

<_opr><rel href="books:novel"/></_opr>
 <_slot name="books:name"><var>x</var></_slot>
 </atom>
 </_body>
</imp>

Fig. 12. Representing rule r3 (see section 2.3) in the DR-DEVICE RuleML-compatible syntax

The rules consist of a head and a body. The body is the condition of the rule, which,
if satisfied, then the conclusion in the head of the rule is asserted. Actually, the rule
condition corresponds to a complex query over the current set of objects in the knowl-
edge base; if the result to the query is not the empty set, then the rule fires and a set of
derived objects is asserted according to the template defined in the rule head. Each

 16

atom in the rule body corresponds to a simple query over one predicate extension (in
the case of predicate calculus) or one class, in the case of DR-DEVICE, where there
are classes and objects, instead of predicates and facts. Notice that currently only
logical conjunction in the rule body is supported, along with negation-as-failure.

The rel elements of the operator (_opr) elements of atoms correspond to class
names, since atoms actually represent queries over CLIPS objects. The names of RDF
classes are referred to through the href attribute of the rel element, in the atoms in
the rule body, because they refer to classes defined elsewhere, while the names of the
derived classes in the rule head appear as the content of the rel element. Atoms have
named arguments, called slots, which correspond to object properties. Since RDF re-
sources are represented as CLIPS objects, atoms correspond to queries over RDF re-
sources of a certain class with certain property values. Superiority relations are repre-
sented as attributes of the superior rule (e.g. in Fig. 12 rule r3 is superior to r2). Nega-
tion is represented via a neg element that encloses an atom element.

There also exist comp_rules elements that declare groups of competing rules,
which derive competing positive conclusions (conflicting literals). For example, rules
p and q in Fig. 13 are competing over the conclusion offer(X,Y), since at most one
offer can be made in an offer case (see section 2.3). The constant cr1 in the figure is
just a label for this group of competing rules.

 <comp_rules c_rules="p q">
 <_crlab> <ind>cr1</ind> </_crlab>
</comp_rules>

Fig. 13. Declaring groups of competing rules

Further extensions to the RuleML syntax, include function calls that are used either
as constraints in the rule body or as new value calculators in the rule head. Addition-
ally, multiple constraints in the rule body can be expressed through the logical opera-
tors: _not, _and, _or, whose semantics are similar to the CLIPS connective con-
straints [19]. Finally, the header of the rule base (rulebase element), includes a
number of important parameters, implemented as attributes: rdf_import declares
the input RDF file(s), rdf_export represents the RDF file that contains the exported
results and rdf_export_classes represents the derived classes, whose instances
will be exported in RDF/XML format. An example is shown in Fig. 14.

Further details on the RuleML defeasible logic rule language of DR-DEVICE, as
well as its translation on a CLIPS-like notation and its execution as a set of deductive
rules has been presented elsewhere [10] and does not need to be repeated here, since
the main point of this work is to present the various visual interfaces to DR-DEVICE.

 <rulebase rdf_import="http://lpis.csd.auth.gr/.../books.rdf#"
 rdf_export="http://lpis.csd.auth.gr/.../export-books.rdf"
 rdf_export_classes="hardcover book">

Fig. 14. The rulebase element and its attributes

4.3. The Graphical Front-end
The front-end of the system allows direct interaction with the software in a user-
friendly manner. It is equipped with a number of tools that assist in developing defea-
sible logic rule bases, offering various representational aspects of the rule bases de-
veloped and modeling and creating RDF Schema ontologies. More specifically, these

 17

tools are: (i) DRREd, a graphical defeasible logic rule base editor, (ii) RDFSbuilder, a
visual RDF Schema ontology editor, and (iii) DL-RuleViz, a visual tool that produces
graph-based representations of defeasible logic rule bases.

4.3.1. DRREd - The Graphical Rule Editor
Writing rules in RuleML can often be a highly cumbersome task; thus, the need for
authoring tools that assist end-users in writing and expressing rules is imperative.
VDR-DEVICE is equipped with DRREd (Defeasible Reasoning Rule Editor), a
graphical rule editor that comprises the primary subcomponent of the system shell
[12] and aims at enhancing user-friendliness and efficiency during the development of
VDR-DEVICE RuleML documents.

The main window is composed of two major parts (Fig. 15): The left-hand-side
panel displays the rule base in XML tree-like format. Users can navigate through the
tree and can add elements to or remove elements from the tree, obeying to the
DTD/XML Schema constraints. Furthermore, the operations allowed on each element
depend on the element's meaning within the rule tree. However, no textual editing of
the rule base is allowed, in order for the well-formedness to be preserved.

Fig. 15. The main window of the graphical rule editor

The right-hand-side panel shows a table, which contains the attributes that corre-
spond to the selected tree node in the left panel (see section 4.2.2 for a reference to the
available attributes). The user can perform editing functions on the attributes, by alter-
ing the value for each attribute in the panel that appears at the bottom-right of the
main window, but the values that can be inserted depend on the chosen attribute.

The rationale behind the XML-tree representation of a rule base is based on the fact
that RuleML is an XML application and, therefore, a tree representation seems intui-
tive. Furthermore, a tree can have its branches expanded and collapsed, better allow-
ing users to focus on small or bigger parts of it.

The development of a rule base with DRREd is a process that depends heavily on
the context, i.e. the node being edited. Thus:
 When a new element is added to the tree, all its mandatory sub-elements are also
added. In case there are multiple alternative sub-elements, none is added; the user is

 18

responsible to manually add one of them, by right-clicking on the parent element
and choosing a sub-element from the pop-up menu that appears (Fig. 15).

 The atom element can be either negated or not. The wrapping/unwrapping of an
atom element within a neg element is performed via a toggle button on the over-
head toolbar.

 Since the core reasoning module (DR-DEVICE) features negation-as-failure
(NAF), which is typical of non-monotonic logic programming systems (see section
2.1), DRREd also offers the capability of applying NAF on atoms. By right-clicking
on an and element, users can add a naf child element that can encapsulate the
atom(s) to be negated with NAF, as imposed by RuleML.

 The function names in a fun_call element are partially constrained by the list of
CLIPS built-in functions. However, a custom user-defined function, which is un-
constrained, can still be applied.

 Rule IDs uniquely represent a rule within the rule base; therefore, they are collected
in a set and they are used to prohibit the user from entering duplicate rule IDs and
to constrain the values of IDREF attributes (i.e. attributes that reference an existing
ID, like the superior attribute that defines superiority relationships).

Fig. 16. The namespace dialog window

An important component of the editor is the namespace dialog window (NDW)
(Fig. 16), which allows the user to determine which RDF/XML namespaces will be
used by the rule base. Namespaces are treated as addresses of input RDF Schema on-
tologies that contain the vocabulary for the input RDF documents, over which the
rules will be run. The namespaces that have been manually selected by the user to be
included by the system are analyzed, in order for all the allowed class and property
names for the rule base being developed to be extracted (see section 4.3.1.1). These
names are then used throughout the authoring phase of the RuleML rule base, con-
straining the corresponding allowed names that can be applied and narrowing the pos-
sibility for errors on behalf of the user.

Namespaces can be manually entered by the user, through the NDW. Firstly, the
system shows up in the NDW the namespaces contained in the input RDF documents
(indicated by the rdf_import attribute of the rulebase root element). Notice that it
is up to the user to include them or not as ontologies into the system. Furthermore, the
system shows up only namespaces that actually correspond to RDF documents, i.e. it
downloads them and finds out if they parse to triples. Next, they are checked for syn-
tactic consistency and are confirmed to contain RDF Schema declarations. The user
can also manually "discover" more namespaces, by pressing the "…" button next to
each namespace entry. The system then downloads the namespace documents con-
tained within this document and repeats the above namespace discovery procedure.

 19

When it discovers a new namespace, not already contained in the NDW, it shows it up
(unchecked).

Finally, users can examine all the exported results via a browser window, launched
by the system. The user can also examine the execution trace of compilation and run-
ning, both at run-time and also after the whole process has terminated (Fig. 17).

Fig. 17. VDR-DEVICE results and trace windows

In the following subsections, we present, in mathematical notation, how the infor-
mation needed to support the functionality of DRREd is extracted from the RuleML
document and the RDF Schema documents, discovered by DRREd and selected by
the user in the NDW.

4.3.1.1. Parsing RDF Schema Ontologies for Classes and Properties
The RDF Schema documents contained in the NDW are parsed in order to collect all
the definitions of base RDF classes and their properties, i.e. the vocabulary contained
in the imported ontologies. This information is used to constrain the user in which
class names and properties he/she can use in authoring rules.

The names of the classes found are collected in the base class set (CSb), along with
rdfs:Resource, the superclass of all RDF user classes. Therefore, set CSb is con-
structed as follows:

CSb = { c | (c rdf:type rdfs:Class) ∈ RDFS } ∪ {rdfs:Resource}

where (X Y Z) represents an RDF triple and RDFS is the set of all triples found in the
RDF Schema documents.

Except from the base class set, there also exists the derived class set (CSd), which
contains the names of the derived classes, i.e. the classes which lie at rule heads (con-
clusions). This set is constructed by parsing the RuleML document. CSd is initially
empty and is dynamically extended every time a new class name appears inside the
rel element of the atom in a rule head (or a negated atom). This set is mainly used
for loosely suggesting possible values for the rel elements in the rule head, but not
constraining them, since rule heads can either introduce new derived classes or refer
to already existing ones.

CSd = { c | c ∈ XPATH(//imp/_head//atom/_opr/rel) }

 20

Here we assume that the function XPATH(expression) evaluates an XPath [15] ex-
pression and returns the node-set that the equivalent XPath expression would have
returned. Therefore, the XPath expression //element, returns the set of nodes iden-
tical to element regardless of their position in the XML tree, the expression ./F or
./@F delivers the child element or attribute F of the current context node element.
while the expression.//F or .//@F delivers all the descendant F elements or attrib-
utes of the current context node. Finally, the expression ./F1/F2 delivers the element
F2 that is a child of the element F1 that is a child of the current context node, and so
on so forth. Notice that in some rules the atom element may not be the direct child of
the _head element because a neg element may lie in between, that is why there is a
double slash symbol between them in the above XPath expression.

The union of the above two sets results in CSf, which is the full class set (CSf = CSb
∪ CSd) and is used for constraining the allowed class names, when editing the con-
tents of the rel element inside atom elements of the rule body.

Furthermore, the RDF Schema documents are also being parsed for property names
and their domains. Similarly to the procedure described above, the properties detected
are placed in a base property set (PSb), which already contains some built-in RDF
properties (BIP) whose domain is rdfs:Resource:

BIP = {rdf:type, rdfs:label, rdfs:comment, rdfs:seeAlso,
 rdfs:isDefinedBy, rdf:value}
PSb = { P | (P rdf:type rdf:Property) ∈ RDFS } ∪ BIP

There also exists the derived property set (PSd), which contains the names of the
properties of the derived classes. This set is initially empty and is extended each time
a new property name appears inside the _slot element of the atom in a rule head:

PSd = { P | P ∈ XPATH(//imp/_head//atom/_slot/@name) }

Finally, the full property set (PSf) is the union of the above two sets: PSf = PSb ∪
PSd.

4.3.1.2. Detecting Property Domains
Each of the properties in the PSf set is further processed to detect the corresponding
domains (i.e. classes). Τhis phase also includes traversal of sub-property relations, in
order to inherit super-property domains. The domain set of each property is needed,
so that, for each atom element appearing inside the rule body, when a specific class C
is selected, the names of the properties that can appear inside the _slot sub-elements
are constrained only to those that have C as their domain. Notice that only slots of
rule body atoms need to be constrained in this way, since rule heads either define en-
tirely new classes (and slots) or they completely re-use already defined ones.

The DOMP set of domains for each base property P initially contains the direct do-
main(s) of P and the inherited domains of all the (direct and indirect) superproperties
of P (namely SUPPP, which is calculated at the end of this sub-section), according to
the RDFS semantics:

{ },),, | (
P

b P x
x SUPP

P PS DOM c P c RDFS DOM
∈

∀ ∈ = ∈ ∪rdfs:domain U

The RDF built-in properties (BIP) have rdfs:Resource as their domain:

∀P∈BIP, DOMP = { rdfs:Resource }

 21

If a base property does not have a domain, then rdfs:Resource is assumed:

∀P∈{ p | p∈(PSb-BIP) ∧ (¬∃c, (p rdfs:domain c) ∈ RDFS) },
DOMP = { rdfs:Resource }

As far as the derived properties are concerned, their domain is the derived class
where they appear (in rule heads).

∀P∈PSd, DOMP = { c |
c ∈ XPATH(//imp[./_head//atom/_slot/@name=P]/_head//atom/_opr/rel)}

Notice that inside the square brackets there is a logical expression that selects only
those elements that satisfy the expression.

The superproperty set SUPPP of each base property P contains both the direct and
indirect super-properties of P, by recursively traversing upwards the property hierar-
chy:

SUPPP = { SP | (P rdfs:subPropertyOf SP) ∈ RDFS } ∪
{ SP' | SP' ∈ SUPPSP ∧ SP ∈ SUPPP }

The properties that do not have super-properties (including the derived class prop-
erties) have an empty SUPPP.

∀P∈PSd, SUPPP = ∅
∀P∈{ p | p∈PSb ∧ (¬∃sp, (p rdfs:subPropertyOf sp) ∈ RDFS) }, SUPPP = ∅

4.3.1.3. Linking Classes with Properties
Since the properties are now fully described (each of them contains the corresponding
super-property and domain sets), every class C in the CSf set has to be linked with the
allowed properties. More specifically, for each class C, five distinct sets have to be
defined: superclass set SUPCC, subclass set SUBCC, owned property set OWNPC, in-
herited property set INHPC, and subsumed property set SUBPC. Owned properties of
a class are those properties that have this class explicitly in their domain set. Inherited
properties of a class are those properties that have a superclass of this class in their
domain. Finally, subsumed properties of a class are those properties that have a sub-
class of this class in their domain.

The SUPCC set contains all the direct and the indirect super-classes of C, by recur-
sively traversing upwards the class hierarchy:

SUPCC = { SC | (C rdfs:subClassOf SC) ∈ RDFS } ∪
{ SC' | SC' ∈ SUPCSC ∧ SC ∈ SUPCC }

If a class does not have a superclass, then it is considered to be a subclass of
rdfs:Resource. This also applies for the derived classes:

∀C∈CSd, SUPCC = {rdfs:Resource}
∀C∈{ c | c∈CSb ∧ (¬∃sc, (c rdfs:subClassOf sc) ∈ RDFS) },

SUPCC = {rdfs:Resource}

The SUBCC set can now be easily assembled, by inversing all the subclass relation-
ships (both direct and indirect):

SUBCC = { sbc | C ∈ SUPCsbc }

 22

The OWNPC set of owned properties is constructed, by examining the domain set of
each property object in the full property set:

OWNPC = { p | C ∈ DOMp }

The inherited property set INHPC is constructed, by inheriting the owned properties
from all the superclasses (both direct and indirect), according again to the RDFS se-
mantics:

INHPC = { p | p∈ OWNPSC ∧ SC ∈ SUPCC }

Finally, the subsumed property set SUBPC is constructed, by copying the owned
properties from all the subclasses (both direct and indirect):

SUBPC = { p | p∈ OWNPSC ∧ SC ∈ SUBCC }

Although the domain of a subsumed property of a class C is not compatible with
class C, it can still be used in the rule condition for querying objects of class C, imply-
ing that the matched objects will belong to some subclass C' of class C, which is
compatible with the domain of the subsumed property. For example, consider two
classes A and B, the latter being a subclass of the former, and a property P, whose
domain is B. It is allowed to query class A, demanding that property P satisfies a cer-
tain condition; however, only objects of class B can possibly satisfy the condition,
since direct instances of class A do not even have property P.

The above mentioned three property sets comprise the full property set FPSC:

FPSC = OWNPC ∪ INHPC ∪ SUBPC

which is used to restrict the names of properties that can appear inside a _slot ele-
ment (see Fig. 15), when the class of the atom element is C, as it is explained in detail
in the following sub-section.

4.3.1.4. Example
An example of all the above is shown in Table 1. Assume an RDF Schema ontology
with three classes connected through a hierarchy: the class novel is a subclass of the
book class and a superclass of the graphic_novel class. Some typical properties of
these classes are displayed in the “owned properties” row. After the RDF Schema
document is parsed, these classes are detected and included in the base class set (CSb).
Furthermore, the corresponding properties are determined and added to the base
property set (PSb). Eventually, every available class will be linked to the respective
properties, but also to the properties of its super- and subclasses, following the ration-
ale developed before in this section. The final status of the class properties is dis-
played in Table 1.

Table 1. Example of inherited, owned and subsumed properties

Classes
Properties

author collectible pic_artist
title printNo pic_quality

author author, title
title collectible, printNo

collectible, printNo pic_artist
pic_artist, pic_quality pic_qualitySubsumed

book novel graphic_novel

Owned

Inherited

 23

This logic is reflected in the rule editor, as Fig. 15 shows. If, for example, the user
wishes to formulate rule r1 (section 2), then he/she selects the novel class as the
value of the href attribute of the _opr element of an atom in the rule body and the
allowed properties to be entered at the _slot element are all the properties included
in Fig. 15. This facilitates the user, since he/she does not have to worry about which
properties can be applied to novel instances. Notice that it is allowed to query class
novel, demanding that property pic_artist satisfies a certain condition; however,
only objects of class graphic_novel can possibly satisfy the condition, since direct
instances of class novel do not even have pic_artist as a property. However, this
is not a problem for the underlying inference engine of CLIPS, since the latter will
transparently include only objects from class graphic_novel in the result.

4.3.2. RDFSbuilder – Object Modelling of RDF Schema Ontologies
The second module encompassed by the VDR-DEVICE graphical front-end is
RDFSbuilder, a visual RDF Schema (RDFS) ontology editor [38]. RDFSbuilder em-
phasizes on offering a familiar development approach that closely assimilates visual
object-oriented programming, i.e. using a variety of on-screen tools and drag & drop
controls. However, contrary to common ontology authoring tools, the system adopts a
fully object-oriented representation of the ontology model. This representation not
only makes the module directly usable by users, that are not accustomed to the par-
ticular RDF Schema modelling style, which was specified as a primary design re-
quirement of the software, but also complies with the basic design principles followed
by the DR-DEVICE reasoning subsystem (see section 4.2.1).

 <rdfs:Class rdf:about=”&ex;person”/>
<rdfs:Class rdf:about=”&cmp;employee”>
 <rdfs:subClassOf rdf:resource=”&ex;person”/>
</rdfs:Class>
<rdf:Property rdf:about=”&ex;name”>
 <rdfs:domain>ex:person</rdfs:domain>

<rdfs:range>xsd:string</rdfs:range>
</rdf:Property>
<rdf:Property rdf:about=”&cmp;salary”>
 <rdfs:domain>cmp:employee</rdfs:domain>

<rdfs:range>xsd:integer</rdfs:range>
</rdf:Property>

Fig. 18. Example of two classes in RDFSbuilder, accompanied by the corresponding RDF Schema
fragment

According to the system design principles, properties are encapsulated as attributes
in classes, resulting in a representation that appears dissimilar from the standards of
the RDFS model, but is not too differentiated from UML class diagrams. Classes are
represented as rectangles, properties are encapsulated by classes and the subclass rela-
tionship is represented by an arrow that commences from the subclass and ends on the
superclass rectangle. Users can also define globally visible properties, by declaring
rdfs:Resource as the property domain. Fig. 18 displays an example of two classes
in RDFSbuilder that share a super-/subclass relationship, accompanied by the corre-
sponding RDF Schema fragment.

4.3.2.1. The User Interface
Fig. 19 displays the main window of the module, which is composed of two major
parts: the upper part includes the toolbar, which contains icons, representing the most
common utilities of the editor, while the central part comprises the drawing panel,
where the user can visually design the ontology model.

 24

When attempting to insert a new class, the user has the option of (a) creating a
completely new “empty” class, which can then be manipulated and “filled” with
properties or, alternatively, (b) adding a class that belongs to an existing imported on-
tology. The process behind the second option is more extensively described in the fol-
lowing subsection.

Fig. 19. The main window of the module and the properties dialog box

Naturally, the characteristics of each class can be modified, while defining subclass
relationships is equally easy. The user has to indicate the subclass and the superclass,
by dragging a line from the former towards the latter. A “subclass” arrow, similar to
the one in Fig. 18, is then drawn that connects the two classes. Classes that have no
superclass in the model are considered to be direct subclasses of rdfs:Resource,
which represents the class of all resources.

RDFSbuilder prevents users from fundamental errors like concept hierarchy valid-
ity errors or inconsistencies in range restrictions and type inheritance, but does not
handle more serious consistency errors, like cycles in hierarchies or cross-ontology
inconsistencies.

4.3.2.2. Importing Classes and Properties from an Existing Ontology
Similarly to the NDW window in DRREd (see section 4.3.1), RDFSbuilder treats
namespaces as addresses of input RDF Schema ontologies that contain essential vo-
cabulary for the modeling of the ontology under development. The namespaces ap-
plied are used in pull-down menus and lists, in order to prevent potential errors on be-
half of the user.

Thus, importing classes and properties from an existing RDF Schema ontology can
be performed by inserting the URL of the ontology to be imported as well as a corre-
sponding prefix (see Fig. 20). Note that a default system-defined namespace
(ex:http://www.example.org/) is already declared. The module, however, does
not currently handle conflicts among the imported ontologies, like disagreements in
class names or inconsistencies in classes and properties. These aspects, as well as
other ontology merging-related aspects, are, nevertheless included in plans for future
work.

 25

By clicking on the “Add” button, the ontology is added to the list of imported on-
tologies, but is not yet loaded. The user now has the choice of loading the ontology
either locked or unlocked; the former allows no modifications to the classes and prop-
erties imported from the specific ontology, while the latter performs exactly the oppo-
site functionality, allowing the user to modify the imported elements. Alternatively,
users can keep the ontology in an unloaded status (i.e. ontologies simply appear in the
list, but do not affect the ontology under development).

Fig. 20. Importing and RDFS ontology

The feature of locked/unlocked ontologies serves not only management purposes
(e.g. include an ontology in the list for later use), but also prevents user mistakes,
since a locked class, for instance, cannot be modified, but only extended. Locked on-
tologies are not contained in the exported RDF Schema file (only a namespace refer-
ence is included), while unlocked ontologies are fully copied into the exported file,
since the system cannot automatically extend a third-party class.

When the user selects an ontology to be loaded (either locked or unlocked), the se-
lected ontology is downloaded and parsed by Jena Semantic Web Framework [44],
which collects all the classes and properties contained in the loaded RDFS document.
The elements collected will then be available during the modelling of the ontology
developed and the user is offered the capability either to insert an imported class (see
previous section), including the corresponding properties (properties that have the
specific class as their domain), or to apply an imported property, through the “Class
Properties” menu.

Imported classes that belong to a loaded ontology can then be added to the current
model, with their locked/unlocked status indicating whether they can be modified,
enhanced or extended. Visually, imported classes are distinguished from the rest by
their outline colour, which is red for the locked classes and blue for the unlocked.

The user can also manually “discover” more namespaces, by pressing the “Ex-
plore” button in the bottom of the window, similarly to NDW in DRREd (section
4.3.1). The system then downloads the namespace documents contained within the
specific document and displays them in the namespaces list, accompanied by an
“Unloaded” flag.

4.3.2.3. Exporting the RDF Schema Ontology
Besides RDF/XML syntax (normal and abbreviated), the RDFS ontology developed
can also be exported to Notation 3 and N-Triple formats:
o Notation 3 (N3) [16] comprises a compact and easily readable alternative to RDF's

XML syntax, extended to allow greater expressiveness. N3 files typically have the
extension ‘.n3’.

 26

o N-Triples is a line-based, plain text format for encoding an RDF graph. It was
designed to be a fixed subset of N3. N-Triples content is typically stored in files
with an ‘.nt’ suffix to distinguish them from N3.

4.3.3. DL-RuleViz - Visualizing a Defeasible Logic Rule Base
Realizing the need to provide graphical trace and explanation mechanisms for the de-
rived conclusions, VDR-DEVICE is equipped with DL-RuleViz, a software module
for visualizing defeasible logic rule bases [37]. The module’s representational schema
is based on directed graphs and was introduced in section 3. The current section, how-
ever, focuses on how DL-RuleViz builds the defeasible logic rule base digraph. Note
that in our approach the visual representation of a defeasible logic rule base is bijec-
tive, meaning that every visualization implementation is mapped to by exactly one
rule base.

4.3.3.1. Class Boxes, Class Patterns and Slot Patterns
In this sub-section we describe how DL-RuleViz collects the class boxes, class pat-
terns and slot patterns to be visually drawn. To this end the input RuleML rulebase is
parsed and analyzed, re-using also some sets defined in sub-section 4.3.1.1.

Class boxes are simply containers and are the equivalent of predicate boxes de-
scribed previously. They are populated with one or more class patterns, the equivalent
of predicate patterns, also referred to in a previous section. In practice, class patterns
express conditions on filtered subsets of instances of the specific class. Slot patterns
are the equivalent of argument patterns and condition patterns. However, there are
certain differences that arise from the different nature of the tuple-based model of
predicate logic and the object-based model of VDR-DEVICE. In VDR-DEVICE class
instances are queried via named slots rather than positional arguments. Not every slot
needs to be queried and the position of the slot inside the object is irrelevant. There-
fore, instead of a single-line argument pattern we have a set of slot patterns in many
lines; each slot pattern is identified by the slot name. Furthermore, in the VDR-
DEVICE RuleML-like syntax, simple conditions are encapsulated inside the slot ele-
ments; this is reflected to the visual representation where condition patterns are en-
capsulated inside the associated slot patterns.

An example of all the above is seen in Fig. 21. The figure illustrates a class box that
contains three class patterns applied on the novel class. The first two class patterns
contain one slot pattern each, while the third one contains two slot patterns. As can be
observed, the argument list of each slot pattern is divided in two parts, separated by
”|”; on the left all the variables are placed and on the right all the corresponding ex-
pressions and conditions, regarding the variables on the left. In the case of constant
values, only the left-hand side is utilized; thus, the second class pattern of the box in
Fig. 21, for example, refers to all the collectible novels. This way the content of the
slot arguments is clearly depicted and easily comprehended. Finally, the third class
pattern refers to all the novels by Asimov with price greater than 18€. Fig. 22 displays
a code fragment matching the third class pattern of the class box in Fig. 21, written in
the RuleML-like syntax of VDR-DEVICE (v. 0.9).

To construct the class box set CBf, for each class c that belongs to the base and de-
rived full class sets (CSb and CSd, respectively) a class box cb with the same name is
constructed and placed inside the corresponding class box set CBb and CBd. CBf is the
union of the latter.

CBb = { cb | cb∈CSb }

 27

CBd = { cb | cb∈CSd }
CBf = CBb ∪ CBd

¬

novel

¬

name(X|)

collectible(“yes”|)

¬

author(“Asimov”|)
price(X|X>18)

Fig. 21. A class box example that contains three class patterns.

 <Atom>
<op>
<Rel uri="novel"/>

</op>
<slot>
<Ind>author</Ind>
<Data xsi:type="xs:string">Asimov</Data>

</slot>
<slot>
<Ind>price</Ind>
<Constraint>
<and_constraint>
<Var>x</Var>

<Function_call name=">">
<Var>x</Var>

<Ind>18</Ind>
</Function_call>

</and_constraint>
</Constraint>

</slot>
</Atom>

Fig. 22. Code fragment for the third class pattern of the class box in Fig. 21.

The class boxes are populated as follows: for each atom element inside a rule head
or body, a new class pattern is created and inserted into (or, in a wider point of view,
associated with) the class box, whose name matches the class name that appears in-
side the rel element of the specific atom. The set of all class patterns is denoted by
CP. In the meantime, the class pattern is associated with the rule it appears and its po-
sition in the rule (head or body) is noticed.

CPH = { <cp,cb,r> | r ∈ XPATH(//imp) ∧ cp ∈ XPATH(r/_head//atom) ∧
 cb ∈ XPATH(cp/_opr/rel) }

CPB = { <cp,cb,r> | r ∈ XPATH(//imp) ∧ cp ∈ XPATH(r/_body//atom) ∧
 cb ∈ XPATH(cp/_opr/rel/@href) }
CP = CPH ∪ CPB
Scb = { cp | <cp,cb,r> ∈ CP }

Notice that the CP set consists of tuples <cp,cb,r> where cp is the class pattern, cb
is the class box and r is the rule where the class pattern appears in. If the class pattern

 28

belongs to the CPH subset, then the corresponding class pattern appears in the head of
the rule, whereas if it belongs to the CPB subset, then it appears in the body of the
rule. The Scb set contains the class patterns for each class box cb.

A class box could remain empty, in case a base class is included in the loaded RDF
Schema document(s), but is not being used in any rule during the development of the
rule base. However, it is obvious that this does not apply for derived classes, since the
latter are dynamically detected and added to the full class set. Empty class boxes still
appear in the rule graph, but naturally play a limited role.

Similarly to class boxes, class patterns are populated with one or more slot patterns.
For each _slot element inside an atom, a slot pattern is created. Each slot pattern is a
tuple <sp,s,V,C> that consists of the _slot element sp, the slot name s (contained
inside the name attribute of the _slot element) and, a set V of variables and a set C
of value constraints. The latter (V and C) are optional, i.e. the corresponding sets may
be empty. The variable in the slot pattern is used in order to unify (retrieve) the slot
value, with the latter having to satisfy the set of constraints. In other words, slot pat-
terns represent conditions on slots (or class properties). Notice that if the V set is not
empty it contains at most one element, since only one variable is allowed to retrieve
the value of the corresponding slot. Each of the slot pattern “ingredients” (slot name,
variables and value constraints) is being retrieved from the children (direct and indi-
rect) of the _slot element in the XML tree representation of the rule base.

SPcp = { <sp,s,V,C> | cp ∈ XPATH(//atom) ∧ sp ∈ XPATH(cp/_slot) ∧
 s ∈ XPATH(sp/@name) ∧
 V ≡ (XPATH(sp/var) ∪ XPATH(sp/_and/var)) ∧
 C ≡ (XPATH(sp/ind) ∪ XPATH(sp/_not) ∪ XPATH(sp/_and/ind)
 ∪ XPATH(sp/_and/function_call))

Each slot pattern is associated with the class pattern cp of the relevant atom,
through the SPcp set. The union of all such sets of slot patterns is denoted by SP.

x
x CP

SP SP
∈

= U

Notice that the above expressions detect only the existence of a function_call
element. Of course, in order to construct the actual constraints in the constraint set of
the slot (as in Fig. 21), further drill-down of the function_call element is needed.
However, such processing is quite a low-level issue, that we do not believe it should
be discussed further.

4.3.3.2. Rule Circles and Arrow Types
Besides class boxes and their “ingredients” (class patterns, slot patterns), a number of
additional graph elements exists: circles that represent rules and arcs that connect the
vertices in the graph. The visual representation of rules in the digraph, using circles,
was also described in a previous section. There exist five types of connections in the
graph: three for the rule type, one for the superiority relationship, and one simple ar-
row connection type for connecting the class patterns of rule bodies to the rule circles.

In what follows, we first construct the five sets of arrows and then we use these sets
to construct the set of rule circles. The contents of these sets are tuples that contain
various pieces of information; among others they contain links from rule circles to
arrows and vice-versa.

 29

The rule type is equal to the value of the ruletype attribute inside the _rlab
element of the respective rule and can only take three distinct values (strictrule,
defeasiblerule, defeater). The corresponding arrow sets are denoted by SA,
DA and FA. The set of all arrows emanating from rule circles is denoted by RA. Each
arrow is represented by a tuple <r,cp> between the rule r and the corresponding pat-
tern cp of the rule head.

SA = { <r,cp> | r ∈ XPATH(//imp/_rlab[@ruletype="strictrule"]/@ruleID) ∧
<cp,cb,r> ∈ CPH }

DA = { <r,cp> | r ∈ XPATH(//imp/_rlab[@ruletype="defeasiblerule"]/@ruleID) ∧
<cp,cb,r> ∈ CPH }

FA = { <r,cp> | r ∈ XPATH(//imp/_rlab[@ruletype="defeater"]/@ruleID) ∧
<cp,cb,r> ∈ CPH }

RA = SA ∪ DA ∪ FA

The superiority relationship is represented as an attribute (superior) inside the
element of the superior rule. For each such relationship, a superiority arrow tuple
<r,sr> is created, linking the superior rule r with the inferior rule sr. SRA is the set of
all superiority arrows.

SRA = { <r,sr> | r ∈ XPATH(//imp/_rlab[@superior]/@ruleID) ∧
sr ∈ XPATH(//imp/_rlab[@ruleID=r]/@superior) }

Finally, the arrows between the class patterns of the rule body and the rule circles
are contained in the CA set:

CA = { <cp,r> | <cp,cb,r> ∈ CPB }

where <cp, r> is a tuple that consists of the class pattern and the corresponding rule.
Both are needed to uniquely identify such arrows, because the same class pattern can
be re-used in the body of many rules.

After the construction of arrows, the rule circles are constructed. For every rule r in
the rule base a rule circle is constructed, which consists of the tuple
<r,In,Out,SupIn,SupOut>, where r is the name of the corresponding rule, namely the
value of the ruleID attribute in the _rlab element of the corresponding rule, In is
the set of the incoming arrows from the class patterns, retrieved from the CA set, Out
is the outgoing arrow from the RA set, SupIn is the set of the incoming superiority re-
lationship arrows, retrieved from the SRA set, and SupOut is the set of the outgoing
superiority relationship arrows, retrieved from the same set. The set of all rule circles
is denoted by RC.

RC = { <r,In,Out,SupIn,SupOut> | r ∈ XPATH(//imp/_rlab/@ruleID) ∧
In ≡ { <cpin,r,plain> | <cpin,r> ∈ CA } ∧
((Out = <r,cpout,plain,strict> ∧ <r,cpout> ∈ SA) ∨
(Out = <r,cpout,plain,defeasible> ∧ <r,cpout> ∈ DA) ∨
(Out = <r,cpout,plain,defeater> ∧ <r,cpout> ∈ FA)) ∧
SupIn ≡ { <sr,r> | <sr,r> ∈ SRA } ∧ SupOut ≡ { <r,inf> | <r,inf> ∈ SRA } }

Notice that each one of the In and Out arrows has been assigned a plain type; this
is explained in the next subsection where the algorithm for the visual stratification of
the rulebase is presented. Furthermore, the Out arrow has been characterized accord-
ing to one of the three rule types.

 30

4.3.3.3. The Rulebase Stratification Algorithm
After having collected all the necessary graph elements and having populated all the
class boxes with the appropriate class and slot patterns (see previous sections), the
next task is the placement of each element in the graph. To this end, an algorithm for
the visualization of the defeasible logic rule base was implemented. At its founda-
tions, the algorithm takes advantage of common rule stratification techniques (e.g.
[61]). Unlike the latter, however, that focus on computing the minimal model of a rule
set, our algorithm aims at the optimal visualization outcome. More specifically, the
goal is to produce a highly readable graph that conveys the required information to the
user, according to aesthetic criteria discussed in graph visualization literature (e.g. in
[21] or [60]). These criteria are embodied in the visualization algorithm, as optimiza-
tion goals. The algorithm is displayed in Fig. 23.

 str:=1,
foreach cb∈CB do VCPcb:=∅,
foreach cb∈CBb do stratumcb:=str,
foreach cb∈CBd do stratumcb:=MAXINT,
while |RC|≠0 do

RuleTemp:=∅,
str:=str+1,
foreach <R,In,Out,SupIn,SupOut>∈RC do

here:=true
foreach <cpin,R,Type>∈In do

if (∃<cpin,cb,R>∈CP ∧ stratumcb>=str)
then here:=false
else if (<cp'in,R,Type'>∈In ∧ ∃<cp'in,cb',R>∈CP ∧ stratumcb'=str-1)

then here:=false
if here=true

then stratumR:=str, RC:=RC-{<R,In,Out,SupIn,SupOut>},
RuleTemp:=RuleTemp ∪{<R,In,Out,SupIn,SupOut>},

foreach <R,In,Out,SupIn,SupOut>∈RuleTemp do
In'=In,
foreach <cpin,R,Type>∈In do

if (∃<cpin,cb,R>∈CP ∧ stratumcb=str-1)
then Type':=plain
else Type':=expandable,

In:=In-{<cpin,R,Type>}∪{<cpin,R,Type'>}
VCPcb:= insert_cp_into_cb(cpin,VCPcb),

RuleTemp:=RuleTemp-{<R,In',Out,SupIn,SupOut>}∪{<R,In,Out,SupIn,SupOut>},
str:=str+1,
CbTemp:=∅,
foreach <R,In,Out,SupIn,SupOut>∈RuleTemp do

if (∃<R,cpout,OrientType,RType>∈Out ∧ ∃<cpout,cb,R>∈CPd ∧ stratumcb=MAXINT)
then stratumcb:=str, CbTemp:=CbTemp∪{cb},

foreach <R,In,Out,SupIn,SupOut>∈RuleTemp do
if (∃<R,cpout,OrientType,RType>∈Out ∧ ∃<cpout,cb,R>∈CPd ∧ cb∈CbTemp)

then OrientType':=plain
else OrientType':=dotted,

Out':=Out-{<R,cpout,OrientType,RType>}∪{<R,cpout,OrientType',RType>},
RuleTemp:=RuleTemp-{<R,In,Out,SupIn,SupOut>}∪{<R,In,Out',SupIn,SupOut>},
VCPcb:=insert_cp_into_cb(cpout,VCPcb)

Fig. 23. The rulebase stratification algorithm

As can be observed, the algorithm generates a straight-line graph, giving a left-to-
right orientation to the flow of information; namely, the arcs in the digraph are di-
rected from left to right, resulting in a less complex derived graph that minimizes
crossings. The graph elements are “stratified”, meaning that they are placed in strata
(or columns), with the first stratum located on the utmost left and the numbering of
the strata following the same left-to-right orientation. In other words, the proposed
algorithm deals with the “stratification” of the graph elements, calculating the optimal
stratum, where each graph element (rule circle or class box) has to be placed.

 31

During the execution of the algorithm, the following steps can be distinguished:
1. All the base class boxes are placed in stratum #1 and all the derived class boxes are

assigned to the maximum allowed integer MAXINT.
2. The algorithm enters a loop, consecutively assigning strata to rule circles and de-

rived class boxes, incrementing each time the stratum counter by 1.
a. In order for a rule circle to be assigned to a stratum, all its premises have to be-

long to previous strata, with at least one of them belonging to the immediately
previous stratum.

b. In order for a class box to be assigned to a stratum, it has to contain the conclu-
sions of rules in the immediately previous stratum.

If cycles are encountered in the graph (i.e. if a conclusion of a new rule is a premise
for an existing rule in a previous stratum), then neither the conclusion of the new rule
is drawn again, nor the arrow connecting the new rule with the existing conclusion is
drawn backwards. Instead, in order for the complexity of the graph to be reduced, a
special type of “dotted” arrow is applied, commencing from the rule circle and ending
in three dots “…”. By clicking on the arrow, the user is presented with a popup win-
dow, displaying the rule at full detail, including its premises and conclusion.

Also, according to the algorithm, only the arcs that connect two consecutive graph
elements are drawn by default. When the stratum difference between the class box of
a class pattern and a rule circle is greater than 1 (i.e. the class box of the class pattern
and the rule circle are not assigned to consecutive strata), the arrow that connects
them is qualified as “expandable” (contrary to “plain”). To prevent graph cluttering,
expandable arrows are not drawn by default, but can indeed be included in the graph
at the user’s discretion, by “expanding” (or revealing) all the arcs of the correspond-
ing rule. Notice that there always exists at least one "plain" arrow connecting a class
pattern of the previous stratum to a rule circle in the next stratum, according to the
step 2a above.

Furthermore, the algorithm also features class pattern unification, which offers a
simplified display of multiple unifiable class patterns; two or more class patterns are
considered as unifiable, if the corresponding variables and expressions can be unified.
When multiple class patterns are unifiable, only one of them is drawn. The choice
among the unifiable patterns to be drawn is based on the currently focused rule; only
the class patterns involved in the body and the head of the currently focused rule are
displayed.

 set of tuple function insert_cp_into_cb(CP,VCPCB)
foreach <RCP,ECPs>∈VCPCB do
if equal_class_patterns(CP,RCP) then return VCPCB
if equivalent_class_patterns(CP,RCP) then

foreach ecp∈ECPs do
if equal_class_patterns(CP,ecp) then return VCPCB

VCPCB := VCPCB – {<RCP,ECPs>} ∪ {<RCP,ECPs∪{CP}>}
return VCPCB

VCPCB := VCPCB ∪ {<CP,∅>}
return VCPCB

Fig. 24. The main class pattern unification function.

The unification process is triggered by the insert_cp_into_cb function (Fig.
24) that inserts a class pattern into the set VCPcb, which determines how the class pat-
terns of a class box cb will be visually displayed. More specifically, this set consists
of tuples <RCP,ECPs>, where RCP is a class pattern that will be visually displayed,
whereas ECPs is a set of equivalent (unifiable) class patterns with the RCP, that will
be visualized only when the rule that they are involved with is focused by the user. If

 32

a class pattern does not have any other unifiable class patterns, then ECPs is empty.
Notice also, that if there are equal class patterns (see below) then only one of them is
ever inserted in the set either as an RCP or in the ECPs set.

In order to determine if a class pattern will be visually displayed, it is compared
with every other RCP class pattern already included in the VCPcb set and it is classi-
fied either as equal or equivalent. If it is equal, it is ignored and the VCPcb set remains
unchanged. If it is equivalent, then it must be added to the corresponding ECPs set,
unless it is equal to one of the class patterns there. Finally, if nothing of the above
holds, then the class pattern is added to the VCPcb set.

Two class patterns are checked for equality with the function
equal_class_patterns (APPENDIX A), by consecutively checking for equality
the corresponding slot patterns (function equal_slot_patterns) and slot con-
straints (function equal_slot_constraints).

Two class patterns are checked for equivalence or unifiability with the function
equivalent_class_patterns (APPENDIX A), by performing similar controls on
the slot patterns (function equivalent_slot_patterns) and slot constraints
(function equivalent_slot_constraints). Two patterns are unifiable either
when they are equal, or when they have the same name, the same number of compo-
nent patterns and each component pattern (i.e. slot, variable, constant, constraint, etc.)
of one term is unifiable with one component pattern of the other term. Variables are
unifiable, whereas different constants and operator symbols are not. Notice that con-
straints can take the following forms (this is reflected in the function equiva-
lent_slot_constraint):
• Unary constraints "Op Opr", where Op is the operator and Opr is the operand, as

for example "~ 5" (not equal to 5).
• Binary constraints "Opr1 Op Opr2", where Op is the operator and Opr1, Opr2

are the operands, as for example "3 | 4" (either equal to 3 or 4).
• Functional constraints "(Fun Ops)", where Fun is the function name and Ops is

the list of arguments of the function.

¬

author(“Asimov”|)
price(X|X>18)

(c) (b)

¬

name(“John”|)

(a)

¬
name(Y|)

Fig. 25. Unifying class patterns (a), (b) and (c) with class patterns inserted into the class box of Fig. 21

For example, consider the class box in Fig. 21 and the three class patterns in Fig.
25. Class pattern (a) is neither equal nor equivalent to any of the existing three class
patterns in the class box and is, thus, defined as qualified for addition, meaning that it
can be safely added into the box. Class pattern (b) is equal to an existing class pattern
(the third one) and is not added into the class box, while class pattern (c) is equivalent
to an existing class pattern (the first one) and is unified with it, meaning that it is
added into the class box, but only one of the two unified class patterns is displayed
each time, depending on the rule being focused.

4.3.3.4. Example
This section outlines an example that can better illustrate the functionality of the algo-
rithm described above. Suppose that we have the following rule base:

 33

r1: novel(X) → book(X)
r2: novel(X), hardcover(X) ⇒ collectible(X)
r3: novel(X) ⇒ ¬hardcover(X)
r4: novel(X),author(X,“Asimov”),price(X,Y),Y>18 ⇒ hardcover(X)
r5: novel(X),price(X,Y),

NOT(novel(Z),Z≠X,price(Z,W),W<Y) ⇒ cheapest(X)
r6: book(X) ⇒ hardcover(X)
r4 > r3

Some of the rules above were encountered in a previous section, while rule r4 reads
as “Novels by Asimov with a price greater than 18€ are typically hard-covered” and
rule r5 reads as “If a book with a specific price exists and there is no other book with
a lower price, then the first book is considered the cheapest”. Rule r5 is a typical ex-
ample of applying negation-as-failure. Also, five classes are needed in the example, as
Table 2 illustrates: one base class (novel) and four derived classes (book, hard-
cover, collectible and cheapest). Notice that, although for presentation sim-
plicity author and price are presented as predicates in the example, in fact they are
slots of the novel class, according to the object-oriented RDF model of the underly-
ing system, as it was explained in section 4.2.1 and is clearly displayed in Fig. 26 and
in Fig. 11.

Table 2. Classes included in the rule base of the example

Base Class novel

Derived Classes book, hardcover,
cheapest, collectible

Table 3. Stratum assignments for the classes and the rules in the example

stratum #1 novel
stratum #2 r1, r3, r4, r5
stratum #3 book, hardcover, cheapest
stratum #4 r2, r6
stratum #5 collectible

Table 3 displays the final stratum assignments, according to the algorithm. After
applying the algorithm, it comes up that five strata (or columns) are needed to display
all the graph elements. The first stratum is mapped to the first column on the left, the
second stratum to the column on the right of the first one and so on. Vertices in one
column are never connected with vertices in the same column. An exception, how-
ever, is the case of rule superiorities, which is a connection type that indeed might
connect rules that belong to the same stratum.

Fig. 26 displays the resulting graph, produced by DL-RuleViz, the rule base visu-
alization module of DRREd. The implementation is totally compliant with the algo-
rithm presented in the previous section. Notice the “dotted” arrow “leaving” rule r6.
As explained earlier, the specific arrow type is applied in cases of rule conclusions
appearing in earlier strata than the rule. By clicking on the arrow, a pop-up window
presents the user with details, regarding the corresponding rule, displaying its prem-
ises and conclusion (Fig. 26 - window on the right).

The example features a case of a “collapsed” rule (rule r2), which is a rule with
premises that also belong to earlier strata than the immediately previous one. In these
cases, the relevant connection is not drawn by default. Instead, a “+” symbol appears

 34

underneath the rule circle, indicating that the corresponding rule can be “expanded”.
An “expanded” rule then has all its “incoming” connections drawn (these connections
are called “expandable connections”, as mentioned before). Rule r2 can be expanded,
as seen in Fig. 27.

Fig. 26. Implementation of the visualization algorithm by DL-RuleViz

The derived graph also depicts the superiority relationship r4 > r3, included in the
rule base, as well as negation-as-failure, exactly as the representation methodology
dictates (sections 3 and 3.2). DL-RuleViz does not yet represent multi-literal truth
boxes for conflicting literals, being currently under development.

Fig. 27. A fully expanded rule (rule r2) in DL-RuleViz

The two aspects of the rule base (the XML-tree representation, used by DRREd and
the directed graph, produced by DL-RuleViz) are interrelated, meaning that traversal
and alterations in one are also reflected in the other and vice versa. So, if for example
the user focuses on a specific element in the tree and then switches to the digraph
view, the corresponding element in the digraph is also selected and the data relevant
to it displayed.

5. User Evaluation

Post-graduate students attending the Semantic Web course at our university were
asked to participate in assessing two modules of VDR-DEVICE, namely DRREd and

 35

DL-RuleViz. More specifically, they were given a defeasible logic rule base and were
asked to model it, using the two components. They were also requested to answer one
on-line questionnaire for each module. The questionnaire was not aimed at the usabil-
ity of the software facilities; instead, its primary objective was to allow users to
evaluate the representation schema adopted by each of the systems. The results are
described in the following subsections.

5.1. DRREd User Evaluation
The DRREd on-line evaluation survey was divided in two major parts: the first part
focused on the comprehensibility and intuitiveness of the XML-tree representation,
adopted by the module, while the second part asked users to evaluate the degree of
assistance that this representation schema offers during the development of a rule
base.

Regarding the former part of the survey, 76% of the participants found the repre-
sentation intuitive, 68% found it easily comprehensible and 52% found it interesting.
On the other hand, only 40% found the interface aesthetically pleasing, 32% found it
difficult to understand and 12% considered it unacceptable.

As for the latter part of the survey, 80% of the participants believed that DRREd
indeed assists in the development of a defeasible logic rule base, 60% believed that
the system considerably improves productivity (i.e. minimizes development time),
72% considered that the representation gives a better overview of rule dependencies,
while only 28% of the users would rather use another tool.

Overall, 76% of the users were satisfied with DRREd and only 20% would prefer
more features in the proposed representation. Finally, DRREd made defeasible logic
attractive to 80% of the participants. The most important drawback of the system was
its lack of visual representations, a task that DL-RuleViz intends to handle. The lack
of help tools as well as other control mechanisms was also pointed out. All these
weaknesses are planned to be dealt with in future versions of the system.

5.2. DL-RuleViz User Evaluation
Contrary to the previous one, the second on-line survey consisted of a single part,
containing questions, related to the intuitiveness and user-friendliness of the proposed
representation of defeasible logic rule bases. Users generally seemed to understand
and appreciate the adopted representation methodology. More specifically, 72% of the
participants found the representation intuitive, the same percentage considered that
the representation gives a better overview of rule dependencies, 88% found it easy to
understand, 80% found it aesthetically satisfactory, all of them (100%) found it inter-
esting, while only 12% found it incomprehensible and unacceptable.

Overall, the result of using the DL-RuleViz module was considered acceptable and
impressive by 44% and 30% of the users, respectively. Several users would, neverthe-
less, prefer more features in the proposed representation (32%), while, on the other
hand, DL-RuleViz made defeasible logic attractive to 76% of the participants. Some
shortcomings that users detected and will be dealt with in our future improvements of
the module include handling more than one variable in a class pattern and represent-
ing conflicting literals.

 36

6. Related Work

There exist several systems specifically designed for the Semantic Web environment,
although, to the best of our knowledge, no system exists yet that can adequately cover
so many aspects of the SW architecture. ISWIVE [20] is, nevertheless, a paradigm of a
system that attempts to integrate a variety of SW technologies. The system visualizes
SW resources, using RDF and topic maps and it also provides an interactive semantic
query mechanism. However, contrary to VDR-DEVICE presented in this work, IS-
WIVE cannot support more sophisticated types of reasoning (e.g. defeasible reason-
ing) and can, thus, only handle queries of limited expressiveness. VDR-DEVICE, on
the other hand, is a more integrated solution, since it also offers visualization mecha-
nisms of the rule bases developed as well as the ontologies loaded.

d-GRAPHER [48] consists of a visual defeasible graph (d-graph) editor and a
prolog-based inference engine. The system includes error-checking routines that pre-
vent the construction of illegal graphs, displaying appropriate error messages. Al-
though d-GRAPHER is the first system that introduced the visual development of d-
graphs, utilizing a representational methodology that comprised the basis of the im-
plementation philosophy behind the rule base drawing module of VDR-DEVICE, it
has, nevertheless, a couple of weaknesses: the rule bases produced are of an elemen-
tary level of expressiveness, not allowing conjunction/disjunction of atoms or repre-
sentation of slot variables and value constraints. The system is not able to express
more “demanding” rule bases and is now considered depreciated.

Mandarax [22] is a rule platform, which provides a rule mark-up language (com-
patible with RuleML) for expressing rules and facts that refer to Java objects. It is
based on derivation rules with negation-as-failure, top-down rule evaluation, and gen-
erating answers by logical term unification. RDF documents can be loaded into Man-
darax as triplets. Furthermore, Mandarax is supported by Oryx, a graphical rule man-
agement tool. Oryx includes a repository for managing the vocabulary, a formal-
natural-language-based rule editor and a graphical user interface library. Contrasted,
the rule authoring tool of VDR-DEVICE (DRREd) lies closer to the XML nature of
its rule syntax and follows a more traditional object-oriented view of the RDF data
model. Furthermore, VDR-DEVICE supports both negation-as-failure and strong ne-
gation, and supports both deductive and defeasible logic rules.

Each of the following subsections outlines systems that are similar to each of the
respective VDR-DEVICE subcomponents.

6.1. Defeasible Reasoning Engines
Deimos [42] is a flexible, query processing system based on Haskell. It implements
several variants, but neither conflicting literals nor negation as failure in the object
language. Also, the current implementation does not integrate with Semantic Web,
since it is solely a defeasible logic engine (for example, there is no way to treat RDF
data and RDFS/OWL ontologies; nor does it use an XML-based or RDF-based syntax
for syntactic interoperability). Therefore, it is only an isolated solution, although ex-
ternal translation modules could provide such interoperability. Finally, it is proposi-
tional and does not support variables.

Delores [42] is another implementation, which computes all conclusions from a de-
feasible theory. It is very efficient, exhibiting linear computational complexity.
Delores only supports ambiguity blocking propositional defeasible logic; so, it does
not support ambiguity propagation, nor conflicting literals, variables and negation as

 37

failure in the object language. Also, it does not integrate with other Semantic Web
languages and systems, and is thus an isolated solution.

SweetJess [31] is another defeasible reasoning system, based on Jess. It integrates
well with RuleML; however, SweetJess rules can only express reasoning over ontolo-
gies expressed in DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on
arbitrary RDF data, like DR-DEVICE. Furthermore, SweetJess is restricted to simple
terms (variables and atoms) and, although this also applies to DR-DEVICE to a large
extent, the basic DR-DEVICE language [13] can support a limited form of functions
in the following sense: (a) path expressions are allowed in the rule condition, which
can be seen as complex functions, where allowed function names are object referenc-
ing slots; (b) aggregate and sorting functions are allowed in the conclusion of aggre-
gate rules. Finally, DR-DEVICE can also support conclusions in non-stratified rule
programs due to the presence of truth-maintenance rules [10].

Apart from defeasible reasoning, there also exist other non-monotonic rule systems
for the Semantic Web. An example is dlvhex [23], a reasoning engine for HEX-
programs, which are non-monotonic logic programs with external and higher-order
atoms. Through external atoms, HEX-programs can deal with external knowledge,
such as RDF datasets or description logics bases. This functionality is similar to DR-
DEVICE, which also handles RDF meta-data coming from external sources. How-
ever, the way results are returned to the user is differentiated: DR-DEVICE returns
the result-objects as an RDF/XML document that includes the instances of the ex-
ported derived classes, which have been proved, while dlvhex directly prints the resul-
tant models as output in the form of answer sets, which can be confusing for large rule
sets.

6.2. Rule Editors
Besides Oryx, the RuleML editor described above, there exists a small number of
other rule editor implementations. RuleVISor [43] is a rule editor paradigm, based on
the Semantic Web Rule Language (SWRL), implemented as part of the SAWA
(Situation Awareness Assistant) framework. The editor assists in the construction and
maintenance of SWRL rules, also cooperating with ontologies that provide the con-
tent, upon which a rule set is to be built. The tool offers a user-friendly, yet frame-
based and elementary, development environment, which, especially in the cases of
rule bases of a considerable size, proves to be rather impractical.

The Protégé SWRL Rule Editor [49] is an open-source rule editor for SWRL, de-
veloped as a plug-in to Protégé-OWL [52]. The tool allows users to switch between
SWRL rule editing and editing of OWL entities, also supporting tight integration with
rule engines. Similarly to DRREd, the Protégé SWRL Rule Editor performs syntactic
and semantic checking, as a rule is being entered, ensuring that each rule is syntacti-
cally correct. However, the rule base design approach adopted by the editor is dissimi-
lar from the one adopted by DRREd: the former expresses rules as sets of predicate-
based logical expressions, while the latter considers rule bases as XML trees, although
both the underlying rule languages (the VDR-DEVICE RuleML-like language and
SWRL) are XML-based.

A third rule editor example is WAB [9], an axiom and rule editor, integrated in the
WebODE Ontology Editor. It allows creating first order logic axioms and rules, using
a graphical user interface. As expected, each rule consists of a left- and a right-hand
side, with the former consisting of conjunctions of atoms and the latter consisting of a
single atom. Once a rule is created, WAB checks both the syntax of the rule and its

 38

consistency with the associated ontology and transforms the rule into Horn clauses.
Nevertheless, WAB allows the display of only one rule at a time, turning the handling
of voluminous rule bases into a less manageable task.

6.3. RDF Schema Ontology Editors
There exist several implementations of editors that create or manipulate RDF Schema
documents. MR3 [59] is such a tool for editing RDF-based content. It is efficient and
supports all the basic functions of the RDFS model, but follows the traditional RDF
visual representation, namely, the graph is created by drawing a distinct geometrical
figure (i.e. ellipses and boxes) for each entity, which finally leads to a quite confusing
graph. Furthermore, its utilities are somewhat complicated to use by an unfamiliar
user and, thus, comprises a solution, suitable only for experienced users.

Altova SemanticWorks [1] is a commercial product, which also offers all the basic
functions of the RDFS model. Users can visually design Semantic Web instance
documents, vocabularies, and ontologies and then output them in either RDF/XML or
N-triples formats. Its RDF representation and utilities, however, are too complicated
to understand and handle, even for users familiar with RDF and RDF Schema, making
the software difficult to use.

Protégé [52], is an open-source ontology editor and knowledge base framework. It
supports the creation, visualization, and manipulation of ontologies not only in RDFS
but also in OWL, RDF and XML Schema. Besides its advanced functionality and ef-
ficiency, Protégé also features flexible plug-in mechanisms that add extensibility to
the system as well as a wide user community, involved with a variety of research and
industrial projects. However, Protégé features a modeling environment, based on
graphical aids and mainly a tree representation of the ontologies developed, while
RDFSbuilder is purely visual. On the other hand, there also exists OWLViz, one of
Protégé’s plug-ins, but it is merely a visualization tool for OWL ontologies, not al-
lowing development or modeling of ontologies.

Another system that represents knowledge in a graphical context is Spectacle [24]
that facilitates the creation of information presentations that meet the needs of end
users. One of Spectacle’s key components is the Cluster Map, used for visualizing
ontological data. Actually, the Cluster Map is used to visualize RDFS-based light-
weight ontologies that describe the domain through a set of classes and their hierar-
chical relationships. With Spectacle, users can efficiently perform analysis, search and
navigation, although the system functionality is restricted to lightweight ontologies
only.

IsaViz [51] and RDFSViz [56] are two more similar tools. The former represents
models as directed graphs using the traditional representation of a model. It is quite
simple to use but with limited functionality. The latter is a web implementation of an
RDF Schema visualisation service. It provides an online demo, where users can enter
the URL of their own RDFS files and the corresponding graph is generated. Both sys-
tems, nevertheless, are not editors but visualization tools, similarly to OWLViz men-
tioned above.

6.4. Rule Base Visualization Tools
Besides d-GRAPHER, described earlier, no modern system exists yet that can visu-
ally represent defeasible logic rules. There exist, however, systems that implement
rule representation and visualization. Such an example is Strelka, implemented as a

 39

plug-in for the Fujaba Tool Suite [18]. Strelka is a tool for making URML models (a
UML-based Rule Modelling Language) that supports modelling of derivation, produc-
tion and reaction rules and serialization of URML models into the XML format
R2ML. As in DL-RuleViz, a rule in Strelka is represented graphically as a circle with
a rule identifier, with incoming arrows representing rule conditions or triggering
events and outgoing arrows representing rule conclusions or produced actions. The
system also offers visual authoring of rule bases. Its underlying visual rule representa-
tion language is quite expressive, which, however, also implies that the user has to be
accustomed to its characteristics, a process that probably demands a steeper learning
curve.

CViz [33] represents another attempt to visualize rule sets and, in particular, classi-
fication rules that consist of two parts: condition part and decision part. The system
introduces a rather innovative visualization approach, by representing rules as strips
(called rule polygons), which cover the area that connect the corresponding attribute
values. Nevertheless, the user evaluation, performed on the system, has proved that
CViz indeed assists users in understanding the relationships among data and concen-
trating on the meaningful data in the process of discovering knowledge. Besides the
heavily differentiated representational approach, CViz’s difference from DL-RuleViz
can be traced in its ability to handle a vast number of classification rules, falling how-
ever short in visualizing rule chaining, something that our module aims at.

CPL (Conceptual Programming Language) [50] constitutes an effort to bridge the
gap between Knowledge Representation (KR) and Programming Languages (PL).
CPL is a visual language for expressing procedural knowledge explicitly as programs.
The basic notion in CPL are Conceptual Graphs (CGs), which are connected, multi-
labeled bipartite oriented graphs and can express declarative and/or procedural
knowledge, by defining object and action constructs. Particularly, the addition of vis-
ual language constructs (data-flow/flowchart) to Conceptual Programming allows the
process of actions as data-flow diagrams that convey the procedural nature of the
knowledge within the representation. Both CPL and the DL-RuleViz underlying vis-
ual rule language are expressive; the latter, however, adds the flexibility and intuitive-
ness of defeasible reasoning to the graph.

7. Conclusions and Future Work

This paper argued that logic is currently the target of the majority of the upcoming
efforts towards the realization of the Semantic Web vision and presented the basic
characteristics of defeasible reasoning, which represents a rule-based approach to rea-
soning with incomplete and conflicting information. Defeasible reasoning is consid-
ered a potent tool in many SW-related applications. A system, based on defeasible
reasoning and specifically designed for the Semantic Web environment, was also pre-
sented in this work. The system is called VDR-DEVICE1 and it comprises a visual
integrated development environment for developing and deploying defeasible logic
rule bases. The system employs a user-friendly graphical shell and a defeasible rea-
soning system that supports direct import from the Web and processing of RDF data
and RDF Schema ontologies. The graphical shell consists of a number of modelling
and visualization facilities, such as graphical and visual rule base visualization mod-
ules (DL-RuleViz), a graphical rule base editor (DRREd) and an RDF Schema Ontol-
ogy authoring tool (RDFSbuilder).

1 VDR-DEVICE is available at: http://lpis.csd.auth.gr/systems/dr-device.html

 40

During the development phases of VDR-DEVICE, a number of requirements and
specifications were designated. The primary requirement, regarding the reasoning en-
gine, was to support defeasible reasoning. Consequently, the rule editor and visualiza-
tion modules had to adopt a suitable defeasible logic representation schema, which
would prove intuitive and easy to apply. Moreover, a secondary requirement for the
editors was to prevent users from syntactic and semantic errors during development.
The user evaluation performed on DRREd and DL-RuleViz, also presented in this
work, confirms that the above requirements are indeed met by the VDR-DEVICE
modules.

Currently, we are working on potential improvements of the VDR-DEVICE sys-
tem, such as: (i) enhancing DL-RuleViz with visual rule authoring utilities, (ii) adding
RDF authoring capabilities to RDFSbuilder, as well as mechanisms for handling on-
tology conflicts, and (iii) enabling DRREd to seamlessly support newer versions of
RuleML based on XML Schema. For example, an interesting potential would be to
support the user through the visual rule system to take full advantage of the CLIPS
capabilities behind the core reasoning module (DR-DEVICE), with e.g. built-in or
user-defined functions.

On the other hand, we are also extending the core reasoning system, DR-DEVICE,
to handle proofs, in order to provide proof explanation on the Semantic Web, based
on defeasible reasoning. The enhancement of rule base visualization with visual rule
execution tracing can ultimately lead to visualizing proofs and validating the conclu-
sions of the system. In this way, we can delve deeper into the Proof layer of the Se-
mantic Web architecture, implementing facilities that would increase the trust of users
towards the Semantic Web.

8. References

[1] Altova, SemanticWorks. Visual Semantic Web design tool for RDF and OWL.
http://www.altova.com/products/semanticworks/semantic_web_rdf_owl_editor.html,
last accessed: November 20, 2006.

[2] Antoniou, G., Arief, M. Executable Declarative Business Rules and their Use in Elec-
tronic Commerce. Proc. ACM Symposium on Applied Computing, pp. 6-10, ACM
Press, 2002.

[3] Antoniou, G., Billington, D., Governatori, G., Maher, M. J. A Flexible Framework for
Defeasible Logics. Proc. Nat'l Conf. Artificial Intelligence (AAAI '00), pp. 405-410,
2000.

[4] Antoniou, G., Billington, D., Governatori, G., Maher, M. J. Representation results for
defeasible logic. ACM Trans. Comput. Log. 2(2), pp. 255-287, 2001.

[5] Antoniou, G., Billington, D., Governatori, G., Maher, M. J. Embedding defeasible logic
into logic programming. Theory and Practice of Logic Programming, 6(6), pp. 703-
735, 2006.

[6] Antoniou, G., Maher, M.J., Billington, D. Defeasible Logic versus Logic Programming
without Negation as Failure. Journal of Logic Programming, 41(1), pp. 45-57, 2000.

[7] Antoniou, G., Skylogiannis, T., Bikakis, A., Bassiliades, N. DR-BROKERING: A se-
mantic brokering system. Knowledge-Based Systems, 20(1), pp. 61-72, 2007.

[8] Ashri, R., Payne, T., Marvin, D., Surridge, M., Taylor, S. Towards a Semantic Web
Security Infrastructure. Proc. Semantic Web Services 2004 Spring Symposium Series,
Stanford University, Stanford California, 2004.

[9] Arpírez, J.C., Corcho, O., Fernández-López, M., Gómez-Pérez, A. WebODE in a Nut-
shell. AI Magazine, 24(3):37-48, 2003.

 41

[10] Bassiliades N., Antoniou G., Governatori G. Proof Explanation in the DR-DEVICE
System. Proc. 1st International Conference on Web Reasoning and Rule Systems (RR
2007), Springer-Verlag, LNCS 4524, pp. 249-258, Innsbruck, Austria, 2007.

[11] Bassiliades N., Antoniou G., Vlahavas I. A Defeasible Logic Reasoner for the Semantic
Web. International Journal on Semantic Web and Information Systems, 2(1), pp. 1-41,
2006.

[12] Bassiliades, N., Kontopoulos, E., Antoniou, G. A Visual Environment for Developing
Defeasible Rule Bases for the Semantic Web. Proc. RuleML-2005, pp. 172-186, Gal-
way, Ireland, Springer-Verlag, LNCS 3791, 2005.

[13] Bassiliades N., Vlahavas I. R-DEVICE: An Object-Oriented Knowledge Base System
for RDF Metadata. International Journal on Semantic Web and Information Systems,
Amit Sheth, Miltiadis D. Lytras (Ed.), Idea Group, 2(2), pp. 24-90, 2006.

[14] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P. F., Stein, L. A. OWL web ontology language reference.
www.w3.org/TR/owl-ref/, W3C Recommendation, 10 February 2004.

[15] Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Robie, J., Simeon,
J. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/, W3C Recom-
mendation, 23 January 2007.

[16] Berners-Lee, T. N3 Primer: Getting into RDF & Semantic Web using N3.
http://www.w3.org/2000/10/swap/Primer, last accessed: December 19, 2007.

[17] Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web. Scientific American,
284(5), 34-43, 2001.

[18] Burmester S., Giese h., Niere J., Tichy M., Wadsack J., Wagner R., Wendehals L.,
Zündorf A. Tool Integration at the Meta-Model Level within the FUJABA Tool Suite.
International Journal on Software Tools for Technology Transfer (STTT), vol. 6, pp.
203-218, 2004.

[19] CLIPS Basic Programming Guide (v. 6.24). www.ghg.net/clips/CLIPS.html, last ac-
cessed: April 27, 2007.

[20] Chen, I., Fan, C., Lo, P., Kuo, L., and Yang. C. ISWIVE: An Integrated Semantic Web
Interactive Visualization Environment. Proc. 19th International Conference on Ad-
vanced Information Networking and Applications (AINA'05), pp. 701-706, Volume 2,
IEEE Computer Society, Washington, DC, 2005.

[21] di Battista, G., Eades, P., Tamassia, R., Tollis, I.G. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall, 1999.

[22] Dietrich, J., Kozlenkov, A., Schroeder, M., Wagner, G. Rule-based Agents for the Se-
mantic Web. Electronic Commerce Research and Applications, 2(4), pp. 323–338,
2003.

[23] Eiter T., Ianni G., Schindlauer R., Tompits H. dlvhex: A System for Integrating Multi-
ple Semantics in an Answer-Set Programming Framework. Proc 20th Workshop on
Logic Programming and Constraint Systems (WLP ’06), M. Fink, H. Tompits, and S.
Woltran (Ed.), pp. 206-210, TU Wien, Inst. f. Informationssysteme, TR 1843-06-02,
2006.

[24] Fluit, C., Sabou, M., van Harmelen, F. Ontology-Based Information Visualization.
Visualizing the Semantic Web, Springer-Verlag, pp. 36-48, 2003.

[25] Gallo, G., Longo, G., Pallottino, S. Directed hypergraphs and applications. Discrete
Applied Mathematics, 42(2), pp. 177-201, 1993.

[26] Gottlob, G. Complexity Results for Nonmonotonic Logics. Journal of Logic and Com-
putation, 2, pp. 397-425, 1992.

[27] Governatori, G. Representing business contracts in RuleML. International Journal of
Cooperative Information Systems, 14(2-3), pp. 181-216, 2005.

[28] Governatori, G., Dumas, M., Hofstede, A. ter, Oaks P. A formal approach to protocols
and strategies for (legal) negotiation. Proc. 8th International Conference of Artificial In-
telligence and Law, pp. 168-177, ACM Press, 2001.

[29] Governatori, G., Maher, M. J., Antoniou, G., Billington, D. Argumentation Semantics
for Defeasible Logic. Journal of Logic and Computation, 14(5), pp.675-702, 2004.

 42

[30] Grosof, B. N. Prioritized conflict handing for logic programs. Proc. 1997 Int. Sympo-
sium on Logic Programming, pp. 197-211, 1997.

[31] Grosof, B. N., Gandhe, M.D., Finin, T.W. SweetJess: Translating DAMLRuleML to
JESS. Proc. Int. Workshop on Rule Markup Languages for Business Rules on the Se-
mantic Web. Held at 1st Int. Semantic Web Conference, 2002.

[32] Grosof, B. N., Poon T.C. SweetDeal: Representing Agent Contracts with Exceptions
Using Semantic Web Rules, Ontologies, and Process Descriptions. International Jour-
nal of Electronic Commerce (IJEC), Special Issue on Web E-commerce, 8(4):61-98,
2004.

[33] Han, J., An, A., Cercone, N. CViz: An Interactive Visualization System for Rule Induc-
tion. Proc. 13th Biennial Conference of the Canadian Society on Computational Studies
of intelligence: Advances in Artificial intelligence, H. J. Hamilton (Ed.), pp. 214-226,
LNCS, vol. 1822. Springer-Verlag, London, 2000.

[34] Harary F. Graph Theory. Addison-Wesley, Reading, MA, 1994.
[35] Huang, Z., van Harmelen F., ten Teije, A. Reasoning with inconsistent ontologies:

Framework, Prototype, and Experiment. Semantic Web Technologies: Trends and Re-
search in Ontology-based Systems, John Davies, Rudi Studer, Paul Warren (Ed.), pp.
71-93, John Wiley and Sons, Ltd., 2006.

[36] Kautz, H. A., Selman, B. Hard Problems for Simple Default Theories. Artificial Intelli-
gence, 28, pp. 243-279, 1991.

[37] Kontopoulos, E., Bassiliades, N., Antoniou, G. Visualizing Defeasible Logic Rules for
the Semantic Web. Proc. 1st Asian Semantic Web Conference (ASWC'06), pp. 278-
292, Beijing, China, Springer-Verlag, LNCS 4185, 2006.

[38] Kontopoulos, E., Kravari, K., Bassiliades, N. Object-Oriented Modelling of RDF
Schema Ontologies. Proc. 11th Pan-Hellenic Conference on Informatics (PCI 2007),
pp. 479-489, Patras, Greece, 18-20 May 2007.

[39] Maher M. J. A model-theoretic semantics for defeasible logic. Proc. Workshop on
Paraconsistent Computational Logic, pp. 67-80, 2002.

[40] Maher M. J. Propositional Defeasible Logic has Linear Complexity. Theory and Prac-
tice of Logic Programming, 1(6), pp. 691-711, 2001.

[41] Maher M. J., Governatori G. A Semantic Decomposition of Defeasible Logics. Proc.
AAAI’99, pp. 299-305, 1999.

[42] Maher, M. J., Rock, A., Antoniou, G., Billington, D., Miller, T. Efficient Defeasible
Reasoning Systems. Int. Journal of Tools with Artificial Intelligence, 10(4), pp. 483-
501, 2001.

[43] Matheus, C., Kokar, M., Baclawski, K., Letkowski, J. An Application of Semantic Web
Technologies to Situation Awareness. Proc. 4th International Semantic Web Confer-
ence (ISWC 2005), Galway, Ireland, 2005.

[44] McBride, B. Jena: Implementing the RDF Model and Syntax Specification. Proc. 2nd
Int. Workshop on the Semantic Web, 2001.

[45] Nute, D. A Decidable Quantified Defeasible Logic. D. Prawitz, B. Skyrms, D. Wester-
ståhl (Ed.), Logic, Methodology and Philosophy of Science IX, Elsevier Science B.V,
pp. 263–284, 1994.

[46] Nute, D. Defeasible Reasoning. Proc. 20th Int. Conference on Systems Science, pp.
470-477, IEEE Press, 1987.

[47] Nute, D., Erk, K. Defeasible logic graphs: I. Theory. Decis. Support Syst., 22(3), pp.
277-293, 1998.

[48] Nute, D., Hunter, Z., Henderson, C. Defeasible logic graphs: II. Implementation. Decis.
Support Syst., 22(3), 295-306, 1998.

[49] O'Connor, M. J., Knublauch, H., Tu, S.W., Grossof, B., Dean, M., Grosso, W.E.,
Musen, M.A. Supporting Rule System Interoperability on the Semantic Web with
SWRL. Proc. 4th International Semantic Web Conference (ISWC), Galway, Ireland,
2005.

 43

[50] Pfeiffer, H. D., Hartley, R. T. Temporal, Spatial, and Constraint Handling in the Con-
ceptual Programming Environment, CP. Journal for Experimental and Theoretical AI,
4:2, pp.167-182, 1992.

[51] Pietriga, E. IsaViz: A Visual Authoring Tool for RDF. http://www.w3.org/
2001/11/IsaViz/, last accessed: November 20, 2006.

[52] Protégé Ontology Editor and Knowledge Acquisition System.
http://protege.stanford.edu/, last accessed: December 4, 2006.

[53] Reiter, R. A logic for default reasoning. Artificial Intelligence Journal, 13, pp. 81-132,
1980.

[54] Rissland, E.L., Skalak, D.B. CABARET: rule interpretation in a hybrid architecture.
Int. J. Man-Mach. Stud. 34(6), pp. 839–887, 1991.

[55] Schild, U. J., Herzog, S. The use of meta-rules in rule based legal computer systems.
Proc. 4th Int. Conf. on Artificial Intelligence and Law (ICAIL’93), pp. 100-109, ACM
Press, 1993.

[56] Sintek, M., Lauer, A. The FRODO RDFSViz Tool. http://www.dfki.uni-
kl.de/frodo/RDFSViz/, last accessed: November 20, 2006.

[57] Skylogiannis T., Antoniou G., Bassiliades N., Governatori G., Bikakis A. DR-
NEGOTIATE – A System for Automated Agent Negotiation with Defeasible Logic-
Based Strategies. Data & Knowledge Engineering, Elsevier, 63(2), pp. 362-380, 2007.

[58] Stephens, S. The Enterprise Semantic Web: Technologies and Applications for the Real
World. The Semantic Web: Real-World Applications from Industry, J. Cardoso, M.
Hepp, M. Lytras (Ed.), pp. 17-37, http://www.springerlink.com/content/
vm612k7207406570, Springer-Verlag, to be published 2008.

[59] Takeshi, M., Noriaki, I., Naoki, F., Takahira, Y. A Graphical RDF-based Meta-Model
Management Tool. IEICE Transactions on Information and Systems, Special Issue on
Knowledge-Based Software Engineering, Vol.E89-D, No.4, pp 1368-1377, 2006.

[60] Tamassia, R. Graph drawing. Handbook of Discrete and Computational Geometry. J. E.
Goodman and J. O'Rourke (Ed.), pp. 815-832, CRC Press, 1997.

[61] Ullman, J. D. Principles of Database and Knowledge-Base Systems. Vol. 1, Computer
Science Press, 1988.

[62] Wagner G. Web Rules Need Two Kinds of Negation. Proc. 1st Workshop on Semantic
Web Reasoning, pp. 33-50, LNCS 2901, Springer, 2003.

9. APPENDIX A

In the following we present the functions for checking if two class patterns are either
equal or equivalent, which is needed in order to determine if a class pattern needs to
be visualized separately in a class box or it can be unified with another one (section
4.3.3.3). Notice that the "foreach x∈X" construct denotes an iteration of the vari-
able x over all members of the set X, and has nothing to do with the universal quanti-
fier of first-order logic.

boolean function equal_class_patterns(cp1,cp2)
SP1:=SPcp1
SP2:=SPcp2
foreach sp1∈SP1 do
SP2_before:=SP2,
foreach sp2∈SP2 do
if equal_slot_patterns(sp1,sp2) then SP2:=SP2-{sp2}, break,

if SP2_before=SP2 then return FALSE
if SP2=∅ then return TRUE else return FALSE

boolean function equal_slot_patterns(<sp1,s1,V1,C1>,<sp2,s2,V2,C2>)
if s1≠s2 then return FALSE
if V1≠V2 then return FALSE

 44

if NOT equal_slot_constraints(C1,C2) then return FALSE
return TRUE

boolean function equal_slot_constraints(cs1,cs2)
foreach c∈cs1 do
if c∈cs2 then cs2:=cs2-{c} else return FALSE

if cs2=∅ then return TRUE else return FALSE

boolean function equivalent_class_patterns(cp1,cp2)
SP1:=SPcp1
SP2:=SPcp2
foreach sp1∈SP1 do
SP2_before:=SP2,
foreach sp2∈SP2 do
if equivalent_slot_patterns(sp1,sp2) then SP2:=SP2-{sp2}, break,

if SP2_before=SP2 then return FALSE
if SP2=∅ then return TRUE else return FALSE

boolean function equivalent_slot_patterns(<sp1,s1,V1,C1>,<sp2,s2,V2,C2>)
if s1≠s2 then return FALSE
if NOT equivalent_slot_constraints(C1,C2) then return FALSE
return TRUE

boolean function equivalent_slot_constraints(cs1,cs2)
foreach c1∈cs1 do
cs2_before:=cs2,
foreach c2∈cs2 do
if equivalent_slot_constraint(c1,c2) then cs2:=cs2-{c2}, break,

if cs2_before=cs2 then return FALSE
if cs2=∅ then return TRUE else return FALSE

boolean function equivalent_slot_constraint(c1,c2)
if c1=c2 then return TRUE
if c1="Op Opr1A" ∧ c2="Op Opr2A" ∧ is_var(Opr1A) ∧ is_var(Opr2A) then return TRUE
if c1="Opr1A Op Opr1B" ∧ c2="Opr2A Op Opr2B" ∧ unifiable(Opr1A,Opr2A) ∧
 unifiable(Opr1B,Opr2B)
 then return TRUE
if c1="(function Ops1)" ∧ c2="(function Op2)" ∧ unifiables(Operands1,Operands2)
 then return TRUE
return FALSE

boolean function unifiables(As,Bs)
while As≠∅ do
if NOT unifiable(first(As),first(Bs)) then return FALSE,
As:=rest(As),
Bs:=rest(Bs)

 if Bs=∅ then return TRUE else return FALSE

boolean function unifiable(A,B)
if A=B then return TRUE
if is_var(A) ∧ is_var(B) then return TRUE
return FALSE

