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Abstract. The rise of Internet-of-Things (IoT) and the exponential in-
crease of devices using sensors, has lead to an increasing interest in data
mining of time series. In this context, several representation methods
have been proposed. Signal2vec is a novel framework, which can repre-
sent any time-series in a vector space. It is unsupervised, computationally
efficient, scalable and generic. The framework is evaluated via a theoret-
ical analysis and real world applications, with a focus on energy data.
The experimental results are compared against a baseline using raw data
and two other popular representations, SAX and PAA. Signal2vec is su-
perior not only in terms of performance, but also in efficiency, due to
dimensionality reduction.
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1 Introduction

Time series is a sequence of data in time order, with values in continuous space.
The order can be irrelevant to time, but it is still important. This type of data has
always attracted the interest of scientists in a vast range of areas such as speech
recognition, finance, physics, biology etc. Some common tasks involving time
series are: motif discovery, forecasting, source separation, subsequence matching,
anomaly detection and segmentation.

In time series problems, regardless the approach, the performance of the solu-
tion is heavily affected by the representation of the data. The categories of repre-
sentations can be classified into data adaptive, non-data adaptive, model-based
and data dictated. The first one includes techniques such as Adaptive Piecewise
Constant Approximation [13], Singular Value Decomposition [15], Symbolic Nat-
ural Language [23], Symbolic Aggregate ApproXimation [16]. Approaches, which
belong to the second representation, are: Discrete Wavelet Transform [5], spectral

? This work has been funded by the ΕΣΠΑ (2014-2020) Erevno-Dimiourgo-Kainotomo
2018/EPAnEK Program ’Energy Controlling Voice Enabled Intelligent Smart Home
Ecosystem’, General Secretariat for Research and Technology, Ministry of Education,
Research and Religious Affairs.



2 C. Nalmpantis & D. Vrakas

DFT [9], Piecewise Aggregate Approximation [14] and Indexable Piecewise Lin-
ear Approximation [6]. Model based representations are based on statistics such
as Markov Models and Hidden Markov Model [19] and Auto-Regressive Moving
Average [7]. Finally, the most popular data dictated approach is Clipped [24].

In this paper a novel framework, named Signal2vec, is introduced. A similar
approach has been proposed by Nalmpantis et al. [20], where a model called
Energy2vec is used to create a hyperspace of energy embeddings. Energy2vec is
binded to the energy domain, is supervised and its applicability is limited. On
the other hand, Signal2vec is a general, unsupervised model and is applicable
in any time series. It is inspired by Word2vec [17] which builds a vector space,
maintaining semantic and syntactic relations of the original words. Word2vec
has been applied on numerous textual or discrete sequences such as recommen-
dation systems [2,22], ranking of sets of entities [4,10], biology [1] and others
[26]. Signal2vec is the first attempt, that extends Word2vec applicability on any
sequential data in continuous space.

The benefits and the drawbacks of the framework are discussed extensively
through a theoretical analysis. The framework is validated with experiments in
two different tasks: classification and single source separation. Both, the analysis
and the experiments are based on energy data.

2 Signal2Vec

Signal2vec consists of two main steps: tokenization and skip-gram model. The
former one is a discretization process, transforming a continuous time series into
tokens. The latter one transforms the sequence of tokens into embeddings. Figure
1 illustrates the steps of the framework.

2.1 Tokenization

Unsupervised tokenization is an abstract and scalable approach in order to dis-
cretize a time series. It can be applied on different domains and it can fit different
variations of data in the same domain. It is completed in two main steps: token
extraction and token assignment. The first step can be achieved by a clustering
algorithm. The second one uses classification, in order to transform a continuous
time series to a sequence of tokens.

At the current implementation, k-means is used to define the tokens, the
number of which is not known upfront. The best number of tokens, which is also
the number of clusters, is found by using silhouette score, within a desirable range
of values. Silhouette score shows which objects lie well within their cluster [25]
and the desirable range of values can be defined empirically. In energy domain
this range can be estimated by calculating the number of possible energy states
using complexity of power draws [8]. Next, the classifier k-nearest neighbors
is trained to map values of the signal to tokens. The classifier can be used to
tokenize time series from the same domain.
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Fig. 1. Signal2Vec framework.

The algorithm is evaluated using household energy data. Tokens represent
the energy states of each appliance, because token extraction is applied on the
submetered data. Then, sequences of tokens are created for each appliance. The
final sequence is a concatenation of the appliance specific sequences and corre-
sponds to the aggregated signal. In problems like power disaggregation, both
token extraction and token assignment would be applied directly on the ag-
gregated signal, because the submetered data are supposed to be unknown. The
analysis that follows is based on submetered data, in order to present meaningful
tokens, that correspond to appliances states.

2.2 Skip-gram

Signal2vec is based on word2vec, which uses either skip-gram model or continu-
ous bag-of-words (CBOW). Skip-gram predicts the words around the target word
and CBOW predicts the target word given its neighbours. Both methods can be
applied having minor differences on the results. For consistency, skip-gram is
selected for all the experiments.

Following tokenization, a time series is mapped to a sequence of tokens. This
sequence is now called a corpus. If the tokens are not abstract states and reflect
real-world conditions of the time series, then the corpus is a human description
of the total signal. The collection of the tokens consists a vocabulary. In order
to apply the skip-gram model, a context is also defined as the window to the
left and to the right of the target token. The objective of the algorithm is to
predict the context given a specific token. The architecture is a shallow neural
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network with one hidden layer and is trained with pairs of tokens. One token
is the target and the other one belongs to the context. The network trains the
weights of the hidden layer from the frequencies each pairing shows up. A more
formal definition of the objective function is defined next.

Let tkn1, tkn2,...tknT be a sequence of T training tokens. Then the objective
function tries to maximize the average log probability according to the formula:

1/T

T∑
t=1

∑
−c≤i≤c,i6=0

log p(tknt+i|tknt) (1)

, where c is the training context.
The order of the tokens in a context doesn’t affect the result of the algorithm,

which depends mainly on the frequency of the tokens. In word2vec model this is
mentioned by Mikolov et al. [18] as a limitation of the model, because it cannot
capture rules that dictate the order of words in a sentence. In time series usually
there aren’t any syntactic rules and there is no difference if a token is before or
after its neighbors.

The network is trained computing Noise Contrastive Estimation (NCE) [11]
loss function. The optimizer is the Adagrad with learning rate 0.001. The size of
each embedding is 300 and the window is 6 tokens. The data come from House
1 of UK-DALE dataset [12] during the year 2014.

3 Evaluation

3.1 Data and tools

The source of the data is the UK-DALE dataset, which includes both the aggre-
gated and the individual power consumption of the appliances in a house. House
1 is selected, because it has the most devices of all the houses. The preferred
programming language is Python. The tool named NILMTK [3] is used for ac-
cessing the database and preprocessing the energy data. In order to distribute
computation to many CPU cores and a GPU, the skip-gram model is developed
in Tensorflow. Tensorflow comes along with a suite of visualization tools, called
Tensorboard. It is used to plot diagrams of the model, visualize the embeddings
and evaluate the model. Tensorboard’s visualization tool uses PCA and TSNE
in order to plot the embedding space in three or two dimensions. The evaluation
of the embedding space is mainly done with tensorboard’s similarity tool, which
supports both cosine and euclidean distance.

3.2 Analysis of the learned representations

Signal2vec is a framework which transforms a time series to a continuous vector
space. In order to understand the intuition of a signal’s geometrical representa-
tion, an evaluation process is presented, focusing on household energy data.

In unsupervised tokenization the tokens are defined in an abstract mathe-
matical way. Tokenizing the aggregated energy signal is helpful solving real world
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problems, without any insight about the nature of the tokens. In this evaluation
the method is applied on the individual signals, extracting multiple states per
appliance. No window is used and tokens are mapped in high resolution, close
to the sampling rate. In order to get a physical image of the energy behavior,
diagrams depicting the frequency of each energy state are generated.

The name of the states is labeled by the name of each appliance, followed
by a number. Thus, the name of an energy state doesn’t directly reveal the real
world functionality, but only which appliance it belongs to. Also, regarding the
zero state of an appliance, it is no more distinguishable from the other states, as
it is just another extra label with arbitrary number. A diagram of an appliance
which is ON continuously would be the same with a diagram of an appliance
being continuously OFF. To avoid any ambiguity, energy plots from raw data
are used, as well.

Tensorboard is used to visualize and explore the embedding space. Dimen-
sionality reduction is achieved by means of PCA. The geometry of the space has
two distinct groups of points. One group represents high frequency states and
the other one low frequency states. The same separation based on frequency is
seen in word embeddings, where words follow Zipf’s law.

Fig. 2. TSNE: The embeddings are grouped in two clusters.

Another useful tool, which comes with Tensorboard, is a clustering analysis
using TSNE. The majority of the combinations of the values of perplexity and
learning rate give clear separation of the two groups that have been identified
with PCA. Figure 2 shows an example of the TSNE algorithm with perplexity 5
and learning rate 10. The two clusters are consistent even when trying different
settings of the algorithm. Only the shape is changing when the perplexity number
is much bigger. For example, perplexity 40 gives a circle, when projecting the
embeddings in 2D and the two groups are gathered in two different semicircles.
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Fig. 3. Frequency distribution of tokens.

In 3D the clusters are more clear because the two semicircles are separated as
two distinct shapes.

The similarity tool is used to find vectors that are close to each other. Both
Euclidean and cosine distance metrics are used, although there isn’t any signif-
icant difference in the results. For each similarity search, the respective plots
of the input vector and its five closest ones are compared. The results show
that embeddings with small distance in the geometrical space, have similar fre-
quency diagrams. The results are very robust in terms of distinguishing high
and low frequency energy states. Almost all the cases of similarity searches give
neighbor vectors, which correspond to the same category of frequency. On the
other hand, vectors belonging to the same cluster cannot be distinguished and
no characteristics are found to justify the results of a similarity search.

Figure 3 depicts the frequency distribution of tokens, derived from unsuper-
vised tokenization. There are two central points, forming two normal distribu-
tions. Comparing the frequency distributions and the geometric properties of the
embedding spaces, there is a connection between the tokens and the embeddings.
Skip-gram, transfered the properties of the sequence of tokens to a multidimen-
sional space. Assuming that sequences of tokens can be translated to frequency
of appliance usage, which in turn implies human behaviour and habits, it can
be concluded that the constructed vector space encapsulates the energy profile
of the house.

4 Real world applications

In this proposal two real world experiments are presented, classification and
energy disaggregation. The first one examines the capabilities of the proposed
framework to classify signals from different appliances efficiently. The second
one is a simple approach on how a single source separation problem, such as
energy disaggregation, can be solved using Signal2vec. The data are from UK-
DALE house 1 during the year 2014. The difference is that now the vectors are
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produced from the aggregated energy signal and they are used to transform any
other energy time series.

4.1 Multiclass classification of appliances’ energy consumption

The first experiment is a multiclass classification problem, identifying 12 different
appliances: oven, microwave, dish washer, fridge freezer, kettle, washer dryer,
toaster, boiler, television, hair dryer, vacuum cleaner and light. The classifier is
a random forest with 200 estimators. The dataset of different labeled signals is
created as follows. Firstly, the submetered data of 12 appliances are converted
to sequences of 300 dimensional vectors, using Signal2vec. Next, the data are
broken into smaller pieces with fixed length, corresponding to a specific time
period. For example during 9 months with data sampled every 6s, a time period
of 1 day and 12 appliances would give approximately 4188 labeled sequences of
vectors. Then the average vector of each 1 day length time series is calculated.
The average vector is the input to the classifier and the label is one of the 12
appliances. The metric that is used is mainly macro f1-score. The robustness of
the results was validated using a k-fold cross-validation, after the initial data had
been randomly shuffled. The parameter k is chosen as k=3, because for larger
values the test data sample was not statistically representative of the broader
dataset.

The results vary depending on the size of each time series. The smaller the
time period is, the worse the results are. This can be explained because in periods
smaller than a day some devices are not used at all. Indeed, for devices that are
used daily, such as fridge freezer, the classifier could recognize the appliance
successfully even with a time period of 4 hours with individual f1-score 0.95.
The respective macro f1-score for the 12 appliances was 0.39. Consequently, the
experiments for 12 appliances are meaningful for time period greater than a day.
Another approach would be to have an extra label for time periods during which
no device is on, known as zero state, but this is left for future work.

The framework is robust when the appliances are increased. For example
using 7 day length time series for the cases of 6, 12 and 17 appliances the macro
f1-score is 0.97 (+/- 0.019), 0.94 (+/- 0.015) and 0.79 (+/- 0.015) respectively.
Figure 4 shows a confusion matrix summarizing the classification results of 12
appliances. It is worth mentioning that most of the misclassifications concern
the oven. This is not a surprise because an oven’s energy consumption heavily
depends on the way it is used.

Table 1 compares Signal2vec against raw data and two other representations,
SAX [16] and PAA [14]. The results involve time series with sizes 1, 5 and 7 days,
using 3 cross validation. Other classifiers have also been tested. Regardless the
representation, random forest showed the best results. SAX and PAA have been
tuned to get the best possible f scores. Overall Signal2vec is superior, not only
giving the best results, but also because the dimension of the final representative
vector is independent of the length of the time series. Signal2vec is surpassed by
PAA, only for short time series such as 1 day size. A possible explanation is that
temporal patterns are more important during short periods, because a device is
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Fig. 4. Confusion matrix of 12 classes using Signal2vec.

used rarely. When calculating the average vector any temporal patterns are lost,
whereas in PAA they are maintained. For future experiments more sophisticated
methods can be evaluated e.g. weighted average vector. Finally, it is notable that
for larger time series the results for raw data are getting worse. This is explained
by the dimensionality explosion, which signal2vec faces by compressing all the
information into a single vector of constant dimensions.

Table 1. Macro f1 score for 12 appliances.

TS size Signal2vec Raw SAX PAA
1 day 0.730 0.730 0.682 0.814
3 days 0.878 0.732 0.748 0.869
5 days 0.930 0.681 0.767 0.897
7 days 0.942 0.693 0.766 0.920

4.2 Energy disaggregation

Many machine learning approaches, including deep learning, have been proposed
for the problem of energy disaggregation [21]. The majority of them use one
model for each appliance, because they underperform when trying to disaggre-
gate many devices. The current experiment tackles energy disaggregation as a
multilabel classification problem. The input data come from the main aggregated
energy signal, following the same procedure as in the first experiment. The whole
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time series during 2014 is segmented into fixed windows. Signal2vec is applied to
each window and finally the average vectors are calculated. Each representative
vector is the input to a multilayer percepton classifier with one hidden layer and
100 neurons. The fixed windows that have been tested correspond to 4, 8, 12 and
24 hours. The labels are the appliances that were ON at least one time during
the fixed time period. The results are very encouraging, especially when compar-
ing the performance of the same model identifying 6 and 12 appliances. Table 2
presents the results in details. Additional experiments need to be implemented
for comparison with other models.

Table 2. Macro f1 score of energy disaggregation.

TS size 6 Appliances 12 Appliances
4 hours 0.534 (+/- 0.029) 0.512 (+/- 0.008)
8 hours 0.654 (+/- 0.005) 0.599 (+/- 0.037)
12 hours 0.722 (+/- 0.015) 0.678 (+/- 0.043)
24 hours 0.868 (+/- 0.032) 0.757 (+/- 0.045)

5 Conclusion

Signal2vec is a computationally efficient model, which transforms the data of a
time series into a vector space. The trained embeddings are easily reusable and
maintain some of the properties of the original data. It is unsupervised, requires
no domain knowledge, is scalable and applicable in different areas e.g. speech
recognition, finance, health, IoT.

Specifically, in energy domain, it is the first time the energy profile of a build-
ing is mapped to a multidimensional space. Once the embeddings are trained,
they can be reused either by incorporating them in a neural network or by
other models as features. Two different classification problems have been show-
cased, with application in real world problems. The first one classifies different
categories of signals, coming from different sources. The second one, energy dis-
sagregation, is a single source separation problem. Both experiments showed very
promising results, reducing a time series of thousands values to a 300 dimensional
vector.

Further research is suggested to be conducted to improve Signal2vec, show
experimental results in other real world problems and compare against state-of-
the-art methods.
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