

DR-BROKERING – A Defeasible Logic-Based System for Semantic Brokering

Grigoris Antoniou1 Thomas Skylogiannis 2

1 Institute of Computer Science, FORTH,
Greece

antoniou@ics.forth.gr

2 Department of Computer Science,
University of Crete, Greece

dogjohn@csd.uoc.gr

Abstract

Electronic Brokering, is a good candidate for taking up
Semantic Web technology. In this paper we study the
brokering and matchmaking problem that is, how a
requester’s requirements and preferences can be
matched against a set of offerings collected by a broker.
The proposed solution uses the Semantic Web standard
of RDF to represent the offerings, and a deductive
logical language, based on non-monotonic reasoning,
for expressing the requirements and preferences. We
motivate and explain the approach we propose, and
report on a prototypical implementation exhibiting the
described functionality, in JADE agent environment.

1. Introduction

E-Commerce describes the revolution that is
currently transforming the way business is conducted,
through the use of information technology, and in
particular the World Wide Web. According to [14], in
the 1st generation e-Commerce applications (current
state), buyers and sellers are humans who typically
browse through a catalogue of well-defined
commodities (e.g. flights, books…) and make fixed
price purchases usually by means of credit card
transaction. Humans are in the loop of all stages of
buying process, something which is time consuming.

The 2nd generation of e-Commerce will be realized
through the use of automated methods of information
technology. Web users will be represented by software
agents. According to [17], there is an increasing use of
software agents for all the aspects of e-Commerce.

This vision is consistent with the Semantic Web
initiative [6], which enriches the current Web through

 Antonis Bikakis3 Nick Bassiliades4
3 Department of Computer Science,

University of Crete, Greece

 bikakis@csd.uoc.gr

4 Department of Informatics, Aristotle
University of Thessaloniki, Greece

 nbassili@csd.auth.gr

the use of machine-processable information about the
meaning (semantics) of information content. This way,
the meaning of displayed information is accessible not
only to humans, but becomes also accessible to software
agents.

At the present work we deal with semantic-based
brokering systems which help both service providers
and requesters to match their interests. The key
operations in such systems are to:

1. Identify appropriate services that satisfy user
requirements;

2. Select the best service(s) based on the user
preferences.

How to address these questions using Semantic
Web technology, is the main focus of the present work.
The three basic roles that we identify are the service
requester (or the buyer), the service provider (or seller),
and the broker. The technical solution we provide is
based on the following key ideas:

• Service requesters, service providers and
brokers are represented by software agents.

• The requirements of the service requester are
represented in a logical language using rules
and priorities. These requirements include both
indispensable requirements that must be met
for a service to be acceptable (for example, air-
conditioning is required), and soft requirements
(preferences) that can be used to select among
the potentially acceptable offerings. These
requirements are communicated to the broker

agent by the requester agent. This
communication initiates a brokering activity.

• The offerings are represented in a certain semi-
structured format using the Semantic Web
standard language RDF [4] for describing Web
resources. The provider agents communicate
the offerings to the broker agent.

• The terminology shared by providers,
requesters and brokers is organized in
ontologies using the Semantic Web standard of
RDF Schema [7].

• The broker is also a software agent and has
special knowledge both for the declarative
language and the advertisement format. It also
has the ability to perform semantic checks to
the information it receives.

• When the broker receives a request it matches
the request to the offerings by running the
request specification against the available
offerings, making use of information provided
by the shared ontology, as required. Then the
requester’s preferences are applied to select the
most suitable offering(s) which are then
presented to the requester.

The remainder of the paper is organized as follows.
Section 2 describes our solution to the brokering
problem, including a rationale for the chosen
technologies. Section 3 illustrates the approach using a
concrete example. Section 4 describes the technical
details of a system that implements the solution. Finally,
section 5 reviews related work and section 6 concludes
the paper and poses future research directions.

2. Semantic Web-Enabled Brokering and
Matchmaking

2.1 Brokering and Matchmaking Architectures
Middle agents are special purpose agents which help

other agents to find each other or delegate their
requested services As described in [25], three different
kinds of middle agents prevail. They are called
matchmakers (or Yellow Pages Services), facilitators
and brokers respectively. We borrow the next two
figures from their work. A typical architecture of a
matchmaker is depicted in Fig.1. Different service
providers advertise their capabilities (1) and the
matchmaker puts them into a repository. When the
matchmaker is asked for a particular service by a service

requester (2), it returns information about all the
available service providers (3).

 Fig. 1Matchmaker Architecture

It now depends on the requester, which provider it will
choose (4) for the required service. Lastly, the provider
serves the request and returns the results (5). It is
assumed that the “address” of a matchmaker is well-
known.

Facilitators operate in a slightly different way as we
can see in Fig.2 Initially, providers advertise their
capabilities (1). After requesters have located a
facilitator (perhaps by means of matchmaker), they pass
on their preferences along with the delegation of a
service (2). The facilitator, in turn, picks one of the
providers to delegate the requested service (3). The
provider then returns the result (4) and the facilitator
returns it to the requester (5).

A variation of this architecture could be that the
facilitator agent itself performs the serving of a request
using services and information from other agents in
conjunction with his own services. In the latter case the
middle agent is called “broker”. We use the latter
variation for our implementation. However, we would
like to stress that our technology can easily be adapted
to realize any of the above architectures; we have chosen
to implement the broker architecture to demonstrate the
feasibility of the overall approach.

2.2 Description of Offerings
The offerings are described in RDF, the standard

Semantic Web language for representing factual
statements. This choice supports interoperability among
agents and applications.

Fig. 2 Facilitator-Broker Architecture

The offerings are enriched through reference to a
shared ontology. We assume that this ontology is
expressed in RDF Schema, a simple ontology language
based on RDF. We have chosen this language over the
use of OWL [13] because at present it is not clear how
the deductive capabilities of OWL and rule systems can
be combined; it is one of the main research lines in the
Semantic Web community. We could certainly use most
features of OWL Lite, given that they can be expressed
using rules [12].

2.3 Description of Requests and Preferences

The requirements and preferences of the requester

are described in a logical language. Before choosing one
or several languages for the specification of requests it is
important to establish a set of criteria that such
languages need to satisfy. The criteria presented below
are inspired from those formulated by [15] in the context
of techniques for information modeling. They
encompass several well-known principles of language
design.

Firstly, a language for specifying requirements and
preferences needs to be formal, in the sense that its
syntax and its semantics should be precisely defined.
Secondly, the language should be conceptual. This,
following the well-known Conceptualization Principle
of [11], effectively means that it should allow its users
to focus only and exclusively on aspects related to
requirements, without having to deal with any aspects
related to their realization or implementation. Thirdly, in
order to ease the interpretation of strategies and to
facilitate their documentation, the language should be
comprehensible. Comprehensibility can be achieved by
offering a graphical representation, by ensuring that the
formal and intuitive meanings are as much in line as
possible, and by offering structuring mechanisms (e.g.

decomposition). These structuring mechanisms often
lead to modularity, which in our setting means that a
slight modification to a strategy should concern only a
specific part of its specification. As we are interested in
the automation of the brokering process, the
requirements description language should be executable.
Finally, the language that we aim should be sufficiently
expressive, that is, it should be able to precisely capture
a wide spectrum of requirements.

We have chosen defeasible logic to represent
requesters’ requirements and preferences because it
satisfies the above criteria. In particular,

• It is a formal language with well-understood
meaning ([2] presents a proof theory, [19] its
model semantics, and [10] its argumentation
semantics), thus it is also predictable and
explainable.

• It is designed to be executable;
implementations are described in [20]. It is also
scalable, as demonstrated in the same paper,
where it was shown that 100,000 rules can be
processed efficiently. This is so because the
computational complexity of defeasible logic is
low [18].

• It is expressive, as demonstrated by the use of
rules in various areas of information
technology. In fact, among the logical systems,
it is rule-based systems that have been best
integrated in mainstream IT.

• Finally, it is suitable for expressing
requirements and preferences in our setting.
This is so because it supports the natural
representation of important features:
o Rules with exceptions are a useful feature

in our problem. For example, a general
rule may specify acceptable offerings,
while more specific rules may describe
cases in which the general rule should not
apply and the offering should not be
accepted. We will elaborate on this point in
the next section when we consider a
concrete example.

o Priorities are an integral part of defeasible
logic, and are useful for expressing user
preferences for selecting the most
appropriate offerings from the set of the
acceptable offerings.

3. A Concrete Example
3.1 The Scenario

Bob, who holds a middle management position,
looks for an appropriate hotel room for his business trip
to Athens. He wishes to stay at a central hotel, or at least
at a hotel close to public transport. And he requires the
hotel to have air-conditioning, a gym, and generally
speaking a business standard.

In accordance with tight budgeting rules of his
company, Bob is willing to pay a modest price: 70 Euros
per night. However, if the hotel is central he is willing to
pay 80 Euros, and if the hotel has a pool he is willing to
pay 90 Euros.

If given the choice, he would go for a hotel with a
central location, with the lower price being his
secondary preference criterion.

3.2 Formalization of Requirements

We show how Bob’s firm requirements are
represented in defeasible logic. The predicate
acceptable(X) is used to denote that a hotel is
acceptable. The first rule says that, a priori, all hotels are
acceptable.
 r1: ⇒ acceptable(X)

However, any hotel not satisfying one of the required
features is unacceptable. The following rules describe
exceptions to the first, more general rule. In fact, rules
with exceptions are a common, very useful
representational mechanism of defeasible logic. Note
that the exception rules are declared to be stronger than
the general rule.

r2: ¬central(X), ¬publicTransport(X) ⇒
¬acceptable(X)

 r3: ¬gym(X)⇒ ¬acceptable(X)
 r4: ¬aircon(X) ⇒ ¬acceptable(X)
 r5: ¬businessStandard(X) ⇒ ¬acceptable(X)
 r2>r1, r3>r1, r4>r1, r5>r1

Next we must represent the price Bob is willing to pay
at most. The predicate offer(X,Y) denotes that Bob is
willing to pay at most Y Euros for hotel X.

 r6: ⇒ offer(X,70)
 r7: central(X) ⇒ offer(X,80)
 r8: pool(X) ⇒ offer(X,90)
 r8>r7>r6

A hotel is unacceptable if its price is higher than what
Bob is willing to pay. This rule is also an exception to
the general rule r1.

 r9: price(X,Y), offer(X,Z), X>Z ⇒
¬acceptable(X)
 r9>r1

3.3 Representation of Offered Hotels
The hotel offerings maintained by the broker are

stored as RDF facts, and are processed by the rules
representing the requirements. To increase readability
we also show the offerings as logical facts. For example,
hotel h1 can be described by the facts:¬central(h1),
aircon(h1),publicTransport(h1), category(h1,2),gym(h1),
price(h1,50), ¬pool(h1). Table 1 shows seven offerings
in table form. It is interesting to look at the category
information which does not appear in the rules
describing Bob’s requirements. This is natural since
Bob, coming from a different country, does not know
the meaning of the hotel ratings in Greece. It is an
ontology of the tourism domain that would establish a
link between the two. In our example, we assume that
business standard is provided by Greek hotels with at
least three stars.

Based on the rules of section 3.2 and the hotel
offerings, we see that: a) Hotel h1 is unacceptable
because it does not provide business standard (rule
r2).b)Hotel h4 is unacceptable because it does not have
air-conditioning (rule r4). c) Hotel h6 is unacceptable
because it does not have a gym (rule r3). d) Hotel h2 is
unacceptable because its price (100) is higher than what
Bob is willing to pay (90; rules r8, r9).e) Hotels h3, h5
and h7 are acceptable (rule r1).

Table 1: A Set of offered hotels

Hotel h1 h2

h3 h4 h5 h6 h7

Central No Yes Yes Yes No No Yes

Public

Transport

Yes No Yes No Yes Yes Yes

Gym Yes Yes Yes Yes Yes No Yes

Pool No Yes Yes Yes No No No

A/C Yes Yes Yes No Yes Yes Yes

Category 2 4 3 3 3 3 3

Price 50 100 80 70 60 50 60

4. System Implementation
4.1 Agent Framework

The agent framework we used for the development
of our system is JADE [5]. JADE is an open-source
middleware for the development of distributed multi-
agent applications, based on the peer-to-peer
communication architecture. JADE is Java-based and
compliant with the FIPA specification [9]. It provides
libraries for agent discovery, communication and
interaction, based on FIPA standards.

4.2 System Architecture and Modules
The system architecture is shown in Fig. 3. In the

following we describe the modules of this architecture.
The main modules of the architecture are the reasoning
module (R.M.), the control module (C.M.) and the
internet module (I.M.). Each of the sub-modules that are
described below, belongs to a particular main module, as
depicted in Fig. 3.

RDF translator

The role of the RDF translator is to transform the
RDF statements into logical facts, and the RDFS
statements into logical facts and rules. This
transformation allows the RDF/S information to be
processed by the rules provided by the Service
Requester (representing the requester’s requirements
and preferences).

For RDF data, the SWI-Prolog RDF parser is used to
transform them into an intermediate format, representing
triples as rdf(Subject, Predicate, Object). Some
additional processing (i) transforms the facts further into
the format Predicate(Subject, Object); (ii) cuts the
namespaces and the “comment” elements of the RDF
files, except for resources which refer to the RDF
Schema, for which namespace information is retained.

In addition, for processing RDF Schema
information, the following rules capturing the semantics
of RDF Schema constructs are created:
 A: C(X):- rdf:type(X,C).
 B:C(X):- rdfs:subClassOf(Sc,C),Sc(X).
 C:P(X,Y):-rdfs:subPropertyOf(Sp,P),Sp(X,Z).
 D: D(X):- rdfs:domain(P,D),P(X,Z).
 E: R(Z):- rdfs:range(P,R),P(X,Z).

Let us consider rule B that captures the meaning of the
subclass relation of RDFS. A class Sc is subclass of a
class C when all instances of Sc are also instances of C.
Stated another way, if X is an instance of Sc then it is
also instance of C. That is exactly what rule B says.

All the above rules are created at compile-time, i.e.
before the actual querying takes place. Therefore, the

above rules although at first they seem second-order,
because they contain variables in place of predicate
names, they are actually first-order rules, i.e. predicate
names are constant at run-time.

Rule Parser & Translator

The Rule Parser is responsible for checking the

validity of the defeasible rules, which are submitted by
the Service Requester. The rules are considered to be
valid, if they follow the standard syntax of defeasible
logic, as described in [2]. If there are syntax errors, the
system informs the user about these errors, and does not
proceed to the translation. Otherwise, the parser creates
a symbol table, which includes all the rules and priority
information, and passes this table to the Translator.

The Rule Translator is responsible for transforming
the rules submitted by the Service Requester using the
syntax of defeasible logic, into Prolog rules that emulate
the semantics of defeasible logic. The method we use for
translating defeasible theories into logical programs is
described in detail in [3].

The logical program that derives from this procedure
will be later combined with the logical facts that
represent the RDF triples, and will be used to evaluate
the queries of the Service Requester.

Query Translator

In order to apply a query to the Prolog files, which
contain the rules and the facts, it must be properly
transformed into a valid Prolog query. This task is
performed by the Query Translator. There is a standard
format for the queries that the Service Requester can
make:

D x : which are the literals (atoms or their negation) x
which are provable according to the rules provided by
the Service Requester.

The literals ‘x’ represent the conclusions of the rules,
which are submitted by the Service requester. ‘x’ can be
for example of the form ‘accept_hotel(X)’. In this case a
query of the form ‘D accept_hotel(X)’, is intended to
find those literals X satisfying the conclusion
‘accept_hotel(X)’.

Rule-Query-RDF Loader

 The role of this module is to download the files
which contain the rules and the query of the user, in
defeasible logic format. It also loads the appropriate
RDF data which correspond to service provider’s
advertisements.

Semantic-Syntactic Validator

This module is an embedded version of [24], a parser

for validating RDF documents. Upon receipt of an
advertisement, the RDF document which corresponds to
that advertisement is checked by this module. Among
others, the tests that are being performed are: class
hierarchy loops, property hierarchy loops, domain/range
of subproperties, source/target resources of properties
and types of resources.

Interaction and Communication Modules

For the implementation of these modules, we used
the Java classes of JADE framework. The
communication module is responsible for sensing the
network and notifying the control module when an
external event (e.g. a request message) occurs. In order
to decide the course of action based on with the
incoming messages, the agent uses its interaction
module, which defines the allowed sequence of actions,
according to the used interaction protocol, which in our
case is the FIPA request interaction protocol.

Fig.3 Agent-Based Semantic Brokering Architecture

XSB Evaluator

The role of the Evaluator is to apply the queries to
the Prolog files, which contain the facts and the rules,
and to evaluate the answer. When the Service Requester
makes a query, the Evaluator compiles the files
containing the facts and the rules, and applies the
transformed Prolog query to the compiled files.

The answer of the query is sent to the Control
Module of the system. We have employed XSB Prolog
as the compiler and evaluator for our system. We made
this choice, as we needed a logic programming system
supporting well-founded semantics. XSB Prolog offers
this functionality through its tnot operator.

4.3 A Typical Trace

Fig 4. shows a typical trace which we briefly discuss.
In this trace we assume an environment in which broker
agents must register with a Yellow Page, or directory
facilitator, service so that they can be located by
potential requesters. Similarly, requesters locate a
suitable broker via visiting the directory facilitator
(REQUEST:0,INFORM:0,REQUEST:1,INFORM:1,RE
QUEST:1,INFORM:1).

Seller in turn directly accesses the broker and sends
an advertisement (REQUEST:2). Broker informs the
seller agent that it will service its request (AGREE:2). It
then extracts the field “ITEM_rdfInfoAtWeb” from the
message and passes the URL to the Rule-Query-RDF
Loader, which downloads the RDF document from the
Internet (step 1 in Figure 6). Afterwards, the
semantic/syntactic validator module is fed with the RDF
document (step 2 in Figure 6). Finally, the validator
returns the result to the control module (step 3 in Figure
6) of the broker, which either returns to the seller a
result of success (INFORM:2) or a message of type
ADVERTISE_ERROR. The RDF file is stored in a local
database (step 4 in Figure 6).

At a later time, a service requester searches the
directory facilitator for a brokering service
(REQUEST:3) and receives an answer (INFORM:3)
suggesting a broker. The service requester agent asks the
broker to inform it with the available categories of
products for brokering (REQUEST:4). The broker
informs that it will service its request (AGREE:4) and,
when ready, returns the result (INFORM:4). After the
requester is notified of the available categories, it issues
a broker request (REQUEST:5) in the category of
interest (e.g. “itinerary”). This message provides
information about the location of the rules, the rules
language, and the query that the buyer wants to ask the
broker. The rules and the query are downloaded (step 5

in Fig. 3) and stored locally (step 6 in Fig. 3). Then, the
rules and the query, which are in defeasible logic, are
fed into the rule and query translator modules (steps 7, 8
in Fig. 3) and then into XSB engine (steps 9, 10 in Fig.
3).

Fig. 4 Trace From the Semantic Brokering
Interactions

Also, the instances and the domain ontology are
transformed to facts (steps 11, 12 in Fig. 3) and fed into
the XSB engine (step 13 in Fig. 3). All the transformed
data are combined by XSB and the result is returned to
the control module (step 14 in Fig. 3). Finally, the
broker sends to the buyer an inform message
(INFORM:5) which contains a link to the result of the
query, which is the address of one of the service
providers and the coresponding RDF description.

5. Related Work

InfoSleuth [21] is an agent-based information
discovery and retrieval system that adopts “broker
agents” to perform the syntactic and semantic
matchmaking. The broker uses a rule-based reasoning
engine, implemented in LDL The brokering is realized
in two levels. Syntactic brokering and. Semantic
brokering

[23] proposes the use of RDF/RDFS for the
matchmaking process. Each advertisement, either for
service request, or for service offering is represented as
an RDF resource. Properties from this resource
characterize the type of requested or offered service. The
advertisements are stored into a repository and the
matching of advertisements is reduced to matching of
RDF graphs. The authors implement a matching
algorithm.

[16] assesses the requirements for a service
description language and ontology, and argue that
DAML+OIL and DAML-S common service ontology,
fulfil these requirements. This argument is supported by
their design and implementation of a prototype
matchmaker which uses a description logic reasoner to
match service advertisements and requests based on the
semantics of ontology based service descriptions.
Similar is the work of [22]. They also use DAML-S to
describe the advertisements along with the request and
afterwards they use a matching algorithm.

[8] propose the iAgent which consists of inference,
control and communication layer. They propose that the
facts are extracted from semantic mark-up documents
that are written in DAML+OIL. The fact translator
module of the iAgent, converts all the DAML+OIL
documents into prolog format. iAgent uses a Horn-based
logic engine (SWI-Prolog) for inferencing.

6. Conclusion and Future Work

In this paper we studied the brokering and

matchmaking problem, that is, how a requester’s
requirements and preferences can be matched against a
set of offerings collected by a broker. The proposed
solution uses the Semantic Web standard of RDF to
represent the offerings, and a deductive logical language
for expressing the requirements and preferences. We
motivated and explained the approach we propose, and
reported on a prototypical implementation exhibiting the
described functionality in an agent environment.

In the future we intend to extend the described work
in various directions:

 Firstly, we observe that the broker maintains the
offered services locally, but in our system we did not
present technological support for maintaining the
offerings in a database system. We currently work on
the use of use RDF Suite [1], a system for storing and
retrieving RDF/S information. The extension of the
system is straightforward.

Another idea worth following is to represent the
offerings using rules, too. This way we can provide
richer representation capabilities than are possible with
RDF, e.g. to describe conditional capabilities (that is,
certain properties hold under specific conditions).

 We also plan to implement the matchmaker and
facilitator functionalities of [25] outlined in section 2.
Finally, we intend to integrate our brokering system,
with the negotiation system described in [26]. This
problem is orthogonal to that of
brokering/matchmaking; for example, bargaining can

take place after identification of appropriate service
providers.

References

[1] S. Alexaki, V. Christophides, G. Karvounarakis, D.

Plexousakis and K. Tolle (2001). “The ICS-FORTH
RDFSuite: Managing Voluminous RDF Description
Bases”. In Proc. 2nd International Workshop on the
Semantic Web, Hongkong, May 1, 2001

[2] G. Antoniou, D. Billington, G. Governatori and M.J.
Maher (2001). “Representation results for defeasible
logic”. ACM Transactions on Computational Logic 2, 2
(2001): 255 - 287

[3] Antoniou & Bikakis (2004). “A System for Non-
Monotonic Rules on the Web” .Workshop on Rules and
Rule Markup Languages for the Semantic Web (RuleML
2004), G. Antoniou, H. Boley (Ed.), Springer-Verlag,
Hiroshima, Japan, 8 Nov. 2004

[4] D. Beckett (2004). RDF/XML Syntax Specification,

W3C Recommendation, February 2004. Available at:
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/

[5] F.Bellifemine, G Caire, A.Poggi, G. Rimassa (2003).
“JADE A White Paper”. Telecom Italia EXP magazine
Vol 3, No 3 September 2003

[6] T. Berners-Lee (1999). “Weaving the Web”. Harper
1999

[7] D. Brickley, R.V. Guha (2004). RDF Vocabulary
Description Language 1.0: RDF Schema W3C
Recommendation, February 2004. Available at:
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[8] Y-C. Chen, W-T. Hsu, P-H. Hung (2003). “Towards
Web Automation by Integrating Semantic Web and Web
Services”. In Proc. 12th International WWW Conference

[9] FIPA. http://www.fipa.org
[10] G. Governatori and M.J. Maher. “An argumentation-

theoretic characterization of defeasible logic”. In
Proceedings of the 14th European Conference on
Artificial Intelligence}, Amsterdam, 2000. IOS Press

[11] J.J. van Griethuysen, editor. “Concepts and
Terminology for the Conceptual Schema and the
Information Base”. Publ. nr. ISO/TC97/SC5/WG3-N695,
ANSI, 11 West 42nd Street, New York, NY 10036, 1982

[12] B. N. Grosof, I. Horrocks, R. Volz and S. Decker
(2003). “Description Logic Programs: Combining Logic
Programs with Description Logic”. In: Proc. 12th Intl.
Conf. on the World Wide Web (WWW-2003), ACM Press

[13] D.L. McGuinness , F. van Harmelen (2004). OWL
Web Ontology Language Overview W3C
Recommendation, February 2004. Available at:
http://www.w3.org/TR/owl-features/

[14] M. He, N.R. Jennings, and H-F. Leung (2003). “On
Agent-Mediated Electronic Commerce”. IEEE
Transactions on Knowledge and Data Engineering Vol.
15, No 4 July/August 2003

[15] A.H.M. ter Hofstede. “Information Modelling in Data
Intensive Domains”. PhD thesis, University of Nijmegen,
Nijmegen, The Netherlands, 1993

[16] L. Li and I. Horrocks (2003). “A Software Framework
for Matchmaking Based on Semantic Web Technology”.
In Proc. 12th International Conference on WWW, ACM
2003

[17] P. Maes, R.H. Guttman and A.G. Moukas (1999).
“Agents that Buy and Sell”. Communications of the ACM
Vol. 42, No. 3 March 1999

[18] M.J. Maher (2001). “Propositional Defeasible Logic
has Linear Complexity”. Theory and Practice of Logic
Programming 1,6, p. 691-711

[19] M.J. Maher (2002). “A Model-Theoretic Semantics for
Defeasible Logic”, Proc. Workshop on Paraconsistent
Computational Logic, 67 - 80, 2002

[20] M.J. Maher, A. Rock, G. Antoniou, D. Billington and
T. Miller (2001). “Efficient Defeasible Reasoning
Systems”. International Journal of Tools with Artificial
Intelligence 10,4 (2001): 483--501

[21] M. Nodine, W. Bohrer, A. Hee Hiong Ngu (1998).
“Semantic Brokering over Dynamic Heterogeneous Data
Sources in InfoSleuth”. In Proc. 15th International
Conference on Data Engineering, IEEE Computer
Society

[22] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara
(2002). “Semantic Matching of Web Services
Capabilities”. In Proc. 1st International Semantic Web
Conference (ISWC-2002)

[23] D. Trastour, C. Bartolini, J. Gonzalez- Castillo (2001).
“A Semantic Web Approach to Service Description for
Matchmaking of Services”. HP Technical Report. August
2001

[24] VRP. The ICS-FORTH Validating Rdf Parser –VRP
(2004). Available at:
http://139.91.183.30:9090/RDF/VRP/

[25] H-C. Wong and K. Sycara (2000). “A Taxonomy of
Middle-agents for the Internet”. In Proc. 4th
International Conference on Multi Agent Systems
(ICMAS-2000)

[26] T. Skylogiannis, G. Antoniou, N. Bassiliades, G.
Governatori (2004) “DR-NEGOTIATE - A System for
Automated Agent Negotiation with Defeasible Logic-
Based Strategies”. Submitted at the 5th International
Conference on e-Technology, e-Commerce, e-Service
(EEE05)

